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1. Introduction

Governments, aid donors and the development community at large are increasingly
asking for hard evidence on the impacts of public programs claiming to reduce poverty. Do we
know if such interventions really work? How much impact do they have? Past “evaluations”
that only provide qualitative insights into processes and do not assess outcomes against explicit
and policy-relevant counterfactuals are now widely seen as unsatisfactory.

This chapter critically reviews the main methods available for the counterfactual analysis
of programs that are assigned exclusively to certain observational units. These may be people,
households, villages or larger geographic areas. The key characteristic is that some units get the
program and others do not. For example, a social fund might ask for proposals from
communities, with preference for those from poor areas; some areas do not apply, and some do,
but are rejected.? Or a workfare program (that requires welfare recipients to work for their
benefits) entails extra earnings for participating workers, and gains to the residents of the areas in
which the work is done; but others receive nothing. Or cash transfers are targeted exclusively to
households deemed eligible by certain criteria.

After an overview of the archetypal formulation of the evaluation problem for such
assigned programs in the following section, the bulk of the chapter examines the strengths and
weaknesses of the main methods found in practice; examples are given throughout, mainly from
developing countries. The penultimate section attempts to look forward — to see how future
evaluations might be made more useful for knowledge building and policy making, including in
“scaling-up” development initiatives. The concluding section suggests some lessons for

evaluation practice.

2. The archetypal evaluation problem

An “impact evaluation” assesses a program’s performance in attaining well-defined
objectives against an explicit counterfactual, such as the absence of the program. An observable
outcome indicator, Y, is identified as relevant to the program and time-period over which impacts
are expected. “Impact” is the change in Y that can be causally attributed to the program. The

2 Social funds provide financial support to a potentially wide range of community-based projects,

with strong emphasis given to local participation in proposing and implementing the specific projects.



data include an observation of Y; for each unit i in a sample of size n. Treatment status, T,, is
observed, with T, =1 when unit i receives the program (is “treated”) and T, =0 when not.?
The archetypal formulation of the evaluation problem postulates two potential outcomes

for each i: the value of Y; under treatment is denoted Y, while it is Y;° under the counterfactual

of not receiving treatment.* Then unit i gainsG; =Y, —Y,° . In the literature, G, is variously

termed the “gain”, “impact” or the “causal effect” of the program for unit i.
In keeping with the bulk of the literature, this chapter will be mainly concerned with

estimating average impacts. The most widely-used measure of average impact is the average

treatment effect on the treated: TT = E(G|T =1). In the context of an anti-poverty program, TT

is the mean impact on poverty amongst those who actually receive the program. One might also

be interested in the average treatment effect on the un-treated, TU = E(G|T =0) and the

combined average treatment effect (ATE):
ATE=E(G) =TT Pr(T =1)+TU Pr(T =0)

We often want to know the conditional mean impacts, TT(X) = E(G|X T =1,
TU(X) = E(G|X , T =0) and ATE(X) = E(G|X) , for a vector of covariates X (including unity
as one element). The most common method of introducing X assumes that outcomes are linear

in its parameters and the error terms (" and 1), giving:
YT =X, 8"+ (i=1,..0) (1.1)

YC = X% + u’ (i=1,..n) (1.2)

3 The bio-medical connotations of the word “treatment” are unfortunate in the context of social

policy, but the near-universal usage of this term in the evaluation literature makes it hard to avoid.
4 This formulation of the evaluation problem in terms of potential outcomes in two possible states

was proposed by Rubin (1974) (although with an antecedent in Roy, 1951). In the literature, Y, or Y (1)

and Y, or Y (0) are more commonly used for Y "andY ©. My notation (following Holland, 1986) makes
it easier to recall which group is which, particularly when | introduce time subscripts later.



We define the parameters 8" and A such that X is exogenous (E (' |X) = E(u°|X)=0).
The conditional mean impacts are then:

TT(X)=ATE(X)+E(u" - u°|X,T =1)

TU(X) = ATE(X)+E(u" — u°|X,T =0)

ATE(X) = X (8" - £°)

How can we estimate these impact parameters from the available data? The literature has
long recognized that impact evaluation is essentially a problem of missing data, given that it is

physically impossible to measure outcomes for someone in two states of nature at the same time

(participating in a program and not participating). It is assumed that we can observe T, , YiT for
T, =1and Y,° for T, =0. Butthen G, is not directly observable for any i since we are missing
the dataon Y;" for T, =0 and Y, for T, =1. Nor are the mean impacts identified without
further assumptions; neither E(Y © |T =1) (as required for calculating TT and ATE) nor

E(YT |T =0) (as needed for TU and ATE) is directly estimable from the data. Nor do equations

(1.1) and (1.2) constitute an estimable model, given the missing data.
With the data that are likely to be available, an obvious place to start is the single
difference (D) in mean outcomes between the participants and non-participants:
D(X)=E[YT|X, T =1]-E[Y°|X,T =0] (2)
This can be estimated by the difference in the sample means or (equivalently) the Ordinary Least
Squares (OLS) regression of Y on T. For the parametric model with controls, one would estimate

(1.1) on the sub-sample of participants and (1.2) on the rest of the sample, giving:

YT =X, BT+ 0T =1 (3.1)
YE =X, +ufif T, =0 (3.2)
5 This is possible since we do not need to isolate the direct effects of X from those operating

through omitted variables correlated with X.



Equivalently, one can follow the more common practice in applied work of estimating a single
(“switching™) regression for the observed outcome measure on the pooled sample, giving a
“random coefficients” specification:®

Y, =X (BT - BT, + X, +¢& (i=1,...,n) (4)

where &, =T, (1] —u)+u° . A popular special case in practice is the common-impact model,

which assumes that G, = ATE =TT =TU for all i, so that (4) collapses to: !

Y, = ATET, + X, B + i’ (5)
A less restrictive version only imposes the condition that the latent effects are the same for the
two group (i.e., z = u ), so that interaction effects with X remain.

While these are all reasonable starting points for an evaluation, and of obvious
descriptive interest, further assumptions are needed to assure unbiased estimates of the impact
parameters. To see why, consider the difference in mean outcomes between participants and
non-participants (equation 2). This can be written as:

D(X)=TT(X)+B™ (X) (6)
where:®

BT (X)=E[Y°|X, T =1]-E[Y°|X,T =0] @)
is the bias in using D(X) to estimate TT(X); B™" is termed selection bias in much of the

evaluation literature. Plainly, the difference in means (or OLS regression coefficient on T) only
delivers the average treatment effect on the treated if counterfactual mean outcomes do not vary

with treatment, i.e., B =0. In terms of the above parametric model, this is equivalent to
assuming that E[1.“|X, T =1] = E[4°|X,T = 0] =0, which assures that OLS gives consistent
estimates of (5). If this also holds for " then OLS will give consistent estimates of (4). 1 shall
refer to the assumption that E(u°|X,T =t) = E(x"|X,T =t) =0 for t=0,1 as “conditional

exogeneity of placement.” In the evaluation literature, this is also variously called “selection on

0 Equation (4) is derived from (3.1) and (3.2) using the identity: Y, =T.Y," + (1-T,)Y, .
! The justification for this specialization of (4) is rarely obvious and (as we will see) some popular
estimation methods for equation (5) are not robust to allowing for heterogeneity in impacts.

8 Similarly B™ (X) = E(Y"|X, T =1)-E(Y"|X,T =0) and
BA™(X)=B™ (X)Pr(T =1)+B™ (X)Pr(T =0) in obvious notation.
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observables,” “unconfounded assignment” or “ignorable assignment,” although the latter two

terms usually refer to the stronger assumption that YT and Y © are independent of T given X.

The rest of this chapter examines the estimation methods found in practice. One way to

assure that B'™ =0 is to randomize placement. Then we are dealing with an experimental

evaluation, to be considered in section 4. By contrast, in a nonexperimental (NX) evaluation
(also called an “observational study” or “quasi-experimental evaluation”) the program is non-
randomly placed.9 NX methods fall into two groups, depending on which of two (hon-nested)
identifying assumptions is made. The first group assumes conditional exogeneity of placement,
or the weaker assumption of exogeneity of changes in placement with respect to changes in
outcomes. Sections 5 and 6 look at single-difference methods while section 7 turns to double- or
triple-difference methods, which exploit data on changes in outcomes and placement, such as
when we observe outcomes for both groups before and after program commencement.

The second set of NX methods does not assume conditional exogeneity (either in single-
difference or higher-order differences). To remove selection bias based on unobserved factors
these methods require some potentially strong assumptions. The main assumption found in
applied work is that there exists an instrumental variable that does not alter outcomes conditional

on participation (and other covariates of outcomes) but is nonetheless a covariate of
participation. The instrumental variable thus isolates a part of the variation in program placement
that can be treated as exogeneous. This method is discussed in section 8.

Some evaluators prefer to make one of these two identifying assumptions over the other.
However, there is no sound a priori basis for having a fixed preference in this choice, which
should be made on a case-by-case basis, depending on what we know about the program and its

setting, what one wants to know about its impacts and (crucially) what data are available.

3. Generic issues in practice

The first problem often encountered in practice is getting the key stakeholders to agree to
doing an impact evaluation. There may be vested interests that feel threatened, possibly
including project staff. And there may be ethical objections. The most commonly heard

objection to an impact evaluation says that if one finds a valid comparison group then this must

S As we will see later, experimental and NX methods are sometimes combined in practice, although

the distinction is still useful for expository purposes.



include equally needy people to the participants, in which case the only ethically acceptable
option is to help them, rather than just observe them passively for the purposes of an evaluation.
Versions of this argument have stalled many evaluations in practice. Often, some kind of “top-
down” political or bureaucratic force is needed; for example, state-level randomized trials of
welfare reforms in the US in the 1980s and ‘90s were mandated by the federal government.

The ethical objections to impact evaluations are clearly more persuasive if eligible people
have been knowingly denied the program for the purpose of the evaluation and the knowledge
from that evaluation does not benefit them. However, the main reason in practice why valid
comparison groups are possible is typically that fiscal resources are inadequate to cover everyone
in need. While one might object to that fact, it is not an objection to the evaluation per se.
Furthermore, knowledge about impacts can have great bearing on the resources available for
fighting poverty. Poor people benefit from good evaluations, which weed out defective anti-
poverty programs and identify good programs.

Having (hopefully) secured agreement to do the evaluation, a number of problems must
then be addressed at the design stage, which this section reviews.

Is there selection bias? The assignment of an anti-poverty program typically involves
purposive placement, reflecting the choices made by those eligible and the administrative
assignment of opportunities to participate. It is likely that many of the factors that influence
placement also influence counterfactual outcomes. Thus there must be a general presumption of
selection bias when comparing outcomes between participants and non-participants.

In addressing this issue, it is important to consider both observable and unobservable
factors. If the X’s in the data capture the “non-ignorable” determinants of placement (i.e., those
correlated with outcomes) then it can be treated as exogenous conditional on X. To assess the
validity of that assumption one must know a lot about the specific program; conditional
exogeneity should not be accepted, or rejected, without knowing how the program works in
practice and what data are available.

In equations (3) and (4), the X’s enter in a linear-in-parameters form. This is commonly
assumed in applied work, but it is an ad hoc assumption, which is rarely justified by anything
more than computational convenience (which is rather lame these days). Under the conditional
exogeneity assumption, removing the selection bias is a matter of assuring that the X’s are
adequately balanced between treatment and comparison observations. When program placement



is independent of outcomes given the observables (implying conditional exogeneity) then the
relevant summary statistic to be balanced between the two groups is the conditional probability

of participation, called the propensity score. The propensity score plays an important role in a
number of NX methods, as we will see in section 5.

The region of the propensity scores for which a valid comparison group can be found is
termed the region of common support, as in Figure 1. Plainly, when this region is small it will be

hard to identify the average treatment effect. This is a potentially serious problem in evaluating
certain anti-poverty programs. To see why, suppose that placement is determined by a “proxy-
means test” (PMT), as often used for targeting programs in developing countries. The PMT
assigns a score to all potential participants as a function of observed characteristics. When
strictly applied, the program is assigned if and only if a unit’s score is below some critical level,
as determined by the budget allocation to the scheme. (The PMT pass-score is hon-decreasing in
the budget under plausible conditions.) With 100% take-up, there is no value of the score for
which we can observe both participants and non-participants in a sample of any size. This is an
example of what is sometimes called “failure of common support” in the evaluation literature.

This example is a rather extreme. In practice, there is usually some degree of fuzziness in
the application of the PMT and incomplete coverage of those who pass the test. There is at least
some overlap, but whether it is sufficient to infer impacts must be judged in each case.

Typically, we will have to truncate the sample of non-participants to assure common
support; beyond the inefficiency of collecting unnecessary data, this is not a concern. More
worrying is that a non-random sub-sample of participants may have to be dropped for lack of
sufficiently similar comparators. This points to a trade-off between two sources of bias. On the
one hand, there is the need to assure comparability in terms of initial characteristics. On the
other hand, this creates a possible sampling bias in inferences about impact, to the extent that we
find that we have to drop treatment units to achieve comparability.

All is not lost when there is too little common support to credibly infer impacts on those
treated. Indeed, knowing only the local impact in a neighborhood of the cut-off point may well
be sufficient. Consider the policy choice of whether to increase a program’s budget by raising
the “pass mark” in the PMT. In this case, we only need know the impacts in a neighborhood of

the pass-mark. Section 6 further discusses “discontinuity designs” for such cases.



So far we have focused on selection bias due to observable heterogeneity. However, it is
almost never the case that the evaluator knows and measures all the relevant variables. Even
controlling optimally for the X’s by nicely balancing their values between treatment and
comparison units will leave latent non-ignorable factors — unobserved by the evaluator but
known to those deciding participation. Then we cannot attribute to the program the observed
D(X) (equation 2). The differences in conditional means could just be due to the fact that the
program participants were purposely selected by a process that we do not fully observe. The

impact estimator is biased in the amount given by equation (7). For example, suppose that the
latent selection process discriminates against the poor, i.e., E[Y “|X,T =1]> E[Y ¢|X,T =0]

where Y is income relative to the poverty line. Then D(X) will overestimate the impact of the
program. A latent selection process favoring the poor will have the opposite effect. In terms of
the classic parametric formulation of the evaluation problem in section 2, if participants have
latent attributes that yield higher outcomes than non-participants (at given X) then the error terms
in the equation for participants (3.1) will be centered to the right relative to those for non-
participants (3.2). The error term in (4) will not vanish in expectation and OLS will give biased
and inconsistent estimates. (Again, concerns about this source of bias cannot be separated from
the question as to how well we have controlled for observable heterogeneity.)

A worrying possibility for applied work is that the two types of selection biases discussed
above (one due to observables, the other due to unobservables) need not have the same sign. So
eliminating selection bias due to one source need not reduce the total bias, which is what we care
about. I do not know of an example from practice, but this theoretical possibility does point to

the need to think about the likely directions of the biases in specific contexts, drawing on other

evidence or theoretical models of the choices underlying program placement.

Is selection bias a serious concern in practice? Lalonde (1986) and Fraker and Maynard
(1987) found large biases in various NX methods when compared to randomized evaluations of a
U.S. training program. (Different NX methods also gave quite different results, but that is hardly
surprising since they make different assumptions.) Similarly, Glewwe et al. (2004) found that
NX methods give a larger estimated impact of “flip charts” on the test scores of Kenyan school
children than implied by an experiment; they argue that biases in their NX methods account for
the difference. In a meta-study, Glazerman et al. (2003) review 12 replication studies of the

impacts of training and employment programs on earnings; each study compared NX estimates



of impacts with results from a social experiment on the same program. They found large
discrepancies in some cases, which they interpreted as being due to biases in the NX estimates.

Using a different approach to testing NX methods, van de Walle (2002) gives an example
for rural road evaluation in which a naive comparison of the incomes of villages that have a rural
road with those that do not indicates large income gains when in fact there are none. Van de
Walle used simulation methods in which the data were constructed from a model in which the
true benefits were known with certainty and the roads were placed in part as a function of the
average incomes of villages. Only a seemingly small weight on village income in determining
road placement was enough to severely bias the mean impact estimate.

Of course, one cannot reject NX methods in other applications on the basis of such
studies; arguably the lesson is that better data and methods are needed, informed by past
knowledge of how such programs work. In the presence of severe data problems it cannot be too
surprising that observational studies perform poorly in correcting for selection bias. For example,
in a persuasive critique of the Lalonde study, Heckman and Smith (1995) point out that (amongst
other things) the data used contained too little information relevant to eligibility for the program
studied, that the methods used had limited power for addressing selection bias and did not
include adequate specification tests.”® Heckman and Hotz (1989) argue that suitable
specification tests can reveal the problematic NX methods in the Lalonde study, and that the
methods that survive their tests give results quite close to those of the social experiment.

The 12 studies used by Glazerman et al. (2003) provided them with over 1,100
observations of paired estimates of impacts — one experimental and one NX. The authors then
regressed the estimated biases on regressors describing the NX methods. They found that NX
methods performed better (meaning that they came closer to the experimental result) when
comparison groups were chosen carefully on the basis of observable differences (using
regression, matching or a combination of the two). However, they also found that standard
econometric methods for addressing selection bias due to unobservables using a control function
and/or instrumental variable tended to increase the divergence between the two estimates.

These findings warn against presuming that more ambitious and seemingly sophisticated

NX methods will perform better in reducing the total bias. The literature also points to the

10 Also see the discussion in Heckman et al. (1999).
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importance of specification tests and critical scrutiny of the assumptions made by each estimator.
This chapter will return to this point in the context of specific estimators.

Are there hidden impacts for “non-participants”? The classic formulation of the
evaluation problem outlined in section 2 assumes no interference with the comparison units,

which allows us to locate a program’s impacts amongst only its direct participants. We observe

the outcomes under treatment (Y," ) for participants (T, =1) and the counterfactual outcome

(Y,%) for non-participants (T, = 0). The comparison group is unaffected by the program.™

This can be a strong assumption in practice. Spillover effects to the comparison group are
have been a prominent concern in evaluating large public programs, for which contamination of
the control group can be hard to avoid due to the responses of markets and governments, and in
drawing lessons for scaling up (“external validity”) based on randomized trials (Mofitt, 2003).

To give a rather striking example in the context of antipoverty programs in developing
countries, suppose that we are evaluating a workfare program whereby the government commits
to give work to anyone who wants it at a stipulated wage rate; this was the aim of the famous
Employment Guarantee Scheme (EGS) in the Indian state of Maharashtra and in 2006 the
Government of India implemented a national version of this scheme. The attractions of an EGS
as a safety net stem from the fact that access to the program is universal (anyone who wants help
can get it) but that all participants must work to obtain benefits and at a wage rate that is
considered low in the specific context. The universality of access means that the scheme can
provide effective insurance against risk. The work requirement at a low wage rate is taken by
proponents to imply that the scheme will be self-targeting to the income poor.

This can be thought of as an assigned program, in that there are well-defined
“participants” and “non-participants.” And at first glance it might seem appropriate to collect
data on both groups and compare their outcomes (after cleaning out observable heterogeneity).
However, this classic evaluation design could give a severely biased result. The gains from such
a program are very likely to spillover into the private labor market. If the employment guarantee
is effective then the scheme will establish a firm lower bound to the entire wage distribution —
assuming that no able-bodied worker would accept non-EGS work at any wage rate below the
EGS wage. So even if one picks the observationally perfect comparison group, one will

1 Rubin (1980) dubbed it the stable unit treatment value assumption (SUTVA).
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conclude that the scheme has no impact, since wages will be the same for participants and non-
participants. But that would entirely miss the impact, which could be large for both groups.

To give another example, in assessing treatments for intestinal worms in children, Miguel
and Kremer (2004) argue that a randomized design, in which some children are treated and
some are retained as controls, would seriously underestimate the gains from treatment by
ignoring the externalities between treated and “control” children. The design for the authors’
own experiment neatly avoided this problem by using mass treatment at the school level instead
of individual treatment (using control schools at sufficient distance from treatment schools).

Spillover effects can also arise from the behavior of governments. Indeed, whether the
resources made available actually financed the identified project is often unclear. To some
degree, all external aid is fungible. Yes, it can be verified in supervision that the proposed sub-
project was actually completed, but one cannot rule out the possibility that it would have been
done under the counterfactual and that there is some other (infra-marginal) expenditure that is
actually being financed by the external aid. Similarly, there is no way of ruling out the
possibility that non-project villages benefited through a re-assignment of public spending by
local authorities, thus lowering the measured impact of program participation.

This problem is studied by van de Walle and Mu (2006) in the context of a World Bank
financed rural-roads project in Vietnam. Relative to the original plans, the project had only
modest impact on its immediate objective, namely to rehabilitate existing roads. This stemmed
in part from the fungibility of aid, although it turns out that there was a “flypaper effect” in that
the aid stuck to the roads sector as a whole. Chen et al. (2006) also find evidence of a
“geographic flypaper effect” for a poor-area development project in China.

How are outcomes for the poor to be measured? For anti-poverty programs the
objective is typically defined in terms of household income or expenditure normalized by a
household-specific poverty line (reflecting differences in the prices faced and in household size
and composition). If we want to know the program’s impact on poverty then we can set Y=1 for
the “poor” versus Y=0 for the “non-poor.”** That assessment will typically be based on a set of
poverty lines, which aim to give the minimum income necessary for unit i to achieve a given

reference utility, interpretable as the minimum “standard of living” needed to be judged non-

12 Collapsing the information on living standards into a binary variable need not be the most

efficient approach to measuring impacts on poverty; we return to this point.

12



poor. The normative reference utility level is typically anchored to the ability to achieve certain
functionings, such as being adequately nourished, clothed and housed for normal physical
activity and participation in society.*®

With this interpretation of the outcome variable, ATE and TT give the program’s impacts
on the headcount index of poverty (% below the poverty line). By repeating the impact
calculations for multiple “poverty lines” one can then trace out the impact on the cumulative
distribution of income. Higher order poverty measures (that penalize inequality amongst the
poor) can also be accommodated as long as they are members of the (broad) class of additive
measures, by which the aggregate poverty measure can be written as the population-weighed
mean of all individual poverty measures in that population.*

However, focusing on poverty impacts does not imply that we should use the constructed
binary variable as the dependent variable (in regression equations such as (4) or (5), or nonlinear
specifications such as a probit model). That entails an unnecessary loss of information relevant
to explaining why some people are poor and others are not. Rather than collapsing the
continuous welfare indicator (as given by income or expenditure normalized by the poverty line)
into a binary variable at the outset it is probably better to exploit all the information available on
the continuous variable, drawing out implications for poverty after the main analysis."

What data are required? When embarking on any impact evaluation, it is obviously
important to know the programs’ objectives. More than one outcome indicator will often be
identified. Consider, for example, a scheme that makes transfers targeted to poor families
conditional on parents making human resource investments in their children.’® The relevant
outcomes comprise a measure of current poverty and measures of child schooling and health
status, interpretable as indicators of future poverty.

B Note that the poverty lines will (in general) vary by location and according to the size and

demographic composition of the household, and possibly other factors. On the theory and methods of
setting poverty lines see Ravallion (2006).

" See Atkinson (1987) on the general form of these measures and examples in the literature.

I have heard it argued a number of times that transforming the outcome measure into the binary
variable and then using a logit or probit allows for a different model determining the living standards of
the poor versus non-poor. This is not correct, since the underlying model in terms of the latent continuous
variable is the same. Logit and probit are only appropriate estimators for that model if the continuous
variable is unobserved, which is not the case here.

16 The earliest program of this sort in a developing country appears to have been the Food-for-
Education program (now called Cash-for-Education) introduced by the Government of Bangladesh in
1993. A famous example of this type of program is the Program for Education, Health and Nutrition
(PROGRESA) (now called Opportunidadas) introduced by the Government of Mexico in 1997.

15
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It is also important to know the salient administrative/institutional details of the program.
For NX evaluations, such information is key to designing a survey that collects the right data to
control for the selection process. Knowledge of the program’s context and design features can
also help in dealing with selection on unobservables, since it can sometimes generate plausible
identifying restrictions, as discussed further in sections 6 and 8.

The data on outcomes and their determinants, including program participation, typically

come from sample surveys. The observation unit could be the individual, household, geographic

area or facility (school or health clinic) depending on the type of program. Clearly the data
collection must span the time period over which impacts are expected. The sample design is
invariably important to both the precision of the impact estimates and how much can be learnt
from the survey data about the determinants of impacts. Section 9 returns to this point.

Survey data can often be supplemented with useful other data on the program (such as
from the project monitoring data base) or setting (such as from geographic data bases).'’
Integrating multiple data sources (such by unified geographic codes) can be highly desirable.

An important concern is the comparability of the data on participants and non-
participants. Differences in survey design can entail differences in outcome measures. Heckman
et al. (1999, Section 5.33) show how differences in data sources and data processing assumptions
can make large differences in the results obtained for evaluating US training programs. Diaz and
Handa (2004) come to a similar conclusion with respect to Mexico’s PROGRESA program; they
find that differences in the survey instrument generate significant biases in a propensity-score
matching estimator (discussed further in section 5), although good approximations to the
experimental results are achieved using the same survey instrument.

There are concerns about how well surveys measure the outcomes typically used in
evaluating anti-poverty programs. Survey-based consumption and income aggregates for
nationally representative samples typically do not match the aggregates obtained from national
accounts (NA). This is to be expected for GDP, which includes non-household sources of
domestic absorption. Possibly more surprising are the discrepancies found with both the levels

and growth rates of private consumption in the NA aggregates (Ravallion. 2003b).*® Yet here

o For excellent overviews of the generic issues in the collection and analysis of household survey

data in developing countries see Deaton (1997).
18 The extent of the discrepancy depends crucially on the type of survey (notably whether it collects
consumption expenditures or incomes) and the region; see Ravallion (2003b).
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too it should be noted that (as measured in practice) private consumption in the NA includes
sizeable and rapidly growing components that are typically missing from surveys (Deaton,
2005). However, aside from differences in what is being measured, surveys encounter problems
of under-reporting (particularly for incomes; the problem appears to be less serious for
consumptions) and selective non-response (whereby the rich are less likely to respond).*®

Survey measurement errors can to some extent be dealt with by the same methods used
for addressing selection bias. For example, if the measurement problem affects the outcomes for
treatment and comparison units identically (and additively) and is uncorrelated with the control
variables then it will not be a problem for estimating ATE. This again points to the importance
of the controls. But even if there are obvious omitted variables correlated with the measurement
error, more reliable estimates may be possible using the double-difference estimators discussed
further in section 7. This still requires that the measurement problem can be treated as a
common (additive) error component, affecting measured outcomes for treatment and comparison
units identically. These may, however, be overly strong assumptions in some applications.

It is sometimes desirable to collect panel data (also called longitudinal data), in which
both participants and non-participants are surveyed repeatedly over time, spanning a period of
expansion in program coverage and over which impacts are expected. Panel data raise new
problems, including respondent attrition (another form of selection bias). Some of the methods
described in section 7 do not strictly require panel data, but only observations of both outcomes
and treatment status over multiple time periods, but not necessarily for the same observation
units; these methods are thus more robust to the problems in collecting panel data.

As the above comments suggest, NX evaluations can be data demanding as well as
methodologically difficult. One might be tempted to rely instead on “short cuts” including less
formal, unstructured, interviews with participants. The problem in practice is that it is quite
difficult to ask counter-factual questions in interviews or focus groups; try asking someone
participating in a program: “what would you be doing now if this program did not exist?”
Talking to participants (and non-participants) can be a valuable complement to quantitative

surveys data, but it is unlikely to provide a credible impact evaluation on its own.

9 On the implications of such selective survey compliance for measures of poverty and inequality

and some evidence (for the US) see Korinek et al. (2006).
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Sometimes it is also possible to obtain sufficiently accurate information on the past
outcomes and program participation using respondent recall, although this can become quite

unreliable, particularly over relatively long periods, depending on the variable and whether there
are important memory “markers.” Chen et al. (2006) demonstrate that 10-year recall by survey

respondents in an impact evaluation is heavily biased toward more recent events.

4. Social experiments

A social experiment aims to randomize placement, such that all units (within some well-
defined set) have the same chance ex-ante of receiving the program. Unconditional
randomization is virtually inconceivable for anti-poverty programs, which policy makers are
generally keen to target on the basis of observed characteristics, such as households with many
dependents living in poor areas. However, it is sometimes feasible a program assignment that is
partially randomized, conditional on some observed variables, X. The key implication for the

evaluation is that all other (observed or unobserved) attributes prior to the intervention are then
independent of whether or not a unit actually receives the program. By implication,B™ (X) =0,

and so the observed ex-post difference in mean outcomes between the treatment and control
groups is attributable to the program.?® In terms of the parametric formulation of the evaluation
problem in section 2, randomization guarantees that there is no sample selection bias in
estimating (3.1) and (3.2) or (equivalently) that the error term in equation (4) is orthogonal to all
regressors. The non-participants are then a valid control group for identifying the counterfactual,

and mean impact is consistently estimated (nonparametrically) by the difference between the
sample means of the observed values of Y," and Y,° at given values of X; .

Issues with social experiments: There has been much debate about whether
randomization is the ideal method in practice.”* Social experiments have often raised ethical
objections and generated political sensitivities, particularly for governmental programs. (It is
easier to do social experiments with NGOs, though for small interventions.) There is a
perception that social experiments treat people like “guinea pigs,” deliberately denying program

access for some of those who need it (to form the control group) in favor of some who don’t

2 However, the simple difference in means is not necessarily the most efficient estimator; see
Hirano et al. (2003).
2 On the arguments for and against social experiments see (inter alia) Heckman and Smith (1995),

Burtless (1995), Moffitt (2003) and Keane (2006).
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(since a random assignment undoubtedly picks up some people who would not normally
participate). In the case of anti-poverty programs, one ends up assessing impacts for types of
people for whom the program is not intended and/or denying the program to poor people who
need it — in both cases running counter to the aim of fighting poverty.

These ethical and political concerns have stalled experiments or undermined their
continued implementation. This appears to be why randomized trials for welfare reforms went
out of favor with state governments in the US after the mid-1990s (Mofitt, 2003) and why
subsequent evaluations of Mexico’s PROGRESA program have turned to NX methods.

Avre these legitimate concerns? As noted in section 3, the evaluation itself is rarely the
reason for incomplete coverage of the poor in an anti-poverty program; rather it is that too few
resources are available. When there are poor people who can’t get on the program given the
resources available, it has been argued that the ethical concerns favor social experiments; by this
view, the fairest solution to rationing is to assign the program randomly, so that everyone has an
equal opportunity of getting the limited resources available.?

However, it is hard to appreciate the “fairness” of an anti-poverty program that ignores
available information on differences in the extent of deprivation. A key, but poorly understood,
issue is what constitutes the “available information.” As already noted, social experiments
typically assign participation conditional on certain observables. But the things that are
observable to the evaluator are generally a subset of those available to key stakeholders. The
ethical concerns with experiments persist when it is known to at least some observers that the
program is being withheld from those who clearly need it, and given to those who do not.

Other concerns have been raised about social experiments. Internal validity can be
questionable when there is selective compliance with the theoretical randomized assignment.
People are (typically) free agents. They do not have to comply with the evaluator’s assignment.
And their choices will undoubtedly be influenced by latent factors determining the returns to
participation.”® The extent of this problem depends on the specific program and setting;
selective compliance is more likely for a training program (say) than a cash transfer program.

2 From the description of the Newman et al. (2003) study it appears that this is how randomization
was defended to the relevant authorities in their case.

2 The fact that people can select out of the randomized assignment goes some way toward
alleviating the aforementioned ethical concerns about social experiments. But selective compliance
clouds inferences about impact.
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Sections 7 and 8 will return to this issue and discuss how NX methods can help address the
problem.

The generic point is that the identification of impacts using social experiments is rarely
“assumption-free.” It is important to make explicit all the assumptions that are required,
including about behavioral responses to the experiment; see, for example, the interesting
discussion in Keane (2006) comparing experiments with structural modeling.

Recall that the responses of third parties can generate confounding spillovers (section 3).
A higher level of government might adjust its own spending, counteracting the assignment. This
is a potential problem whether the program is randomized or not, but it may well be a bigger
problem for randomized evaluations. The higher level of government may not feel the need to
compensate units that did not get the program when this was based on credible and observable
factors that are agreed to be relevant. On the other hand, the authorities may feel obliged to
compensate for the “bad luck” of units being assigned randomly to a control group.
Randomization can induce spillovers that do not happen with selection on observables.

This is an instance of a more general and fundamental problem with randomized designs
for anti-poverty programs, namely that the very process of randomization can alter the way a
program works in practice. There may well be systematic differences between the characteristics
of people normally attracted to a program and those randomly assigned the program from the
same population. (This is sometimes called “randomization bias.”) Heckman and Smith (1995)
discuss an example from the evaluation of the JTPA, whereby substantial changes in the
program’s recruiting procedures were required to form the control group. The evaluated pilot
program is not then the same as the program that gets implemented — casting doubt on the
validity of the inferences drawn from the evaluation.

The JTPA illustrates a further potential problem, namely that institutional or political
factors may delay the randomized assignment. This promotes selective attrition and adds to the
cost, as more is spent on applicants who end up in the control group (Heckman and Smith, 1995).

A further critique points out that, even with randomized assignment, we only know mean
outcomes for the counterfactual, so we cannot infer the joint distribution of outcomes as would
be required to say something about (for example) the proportion of gainers versus losers amongst
those receiving a program (Heckman and Smith, 1995). Section 9 returns to this topic.
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Examples: Randomized trials for welfare programs and reforms were common in the US
in the 1980s and early 1990s and much has been learnt from such trials (Moffitt, 2003). In the
case of active labor market programs, two examples are the Job Training Partnership Act (JTPA)
(see, for example, Heckman et al., 1997b), and the US National Supported Work Demonstration
(studied by Lalonde, 1986, and Dehejia and Wahba, 1999). For targeted wage subsidy programs
in the US, randomized evaluations have been studied by Burtless (1985), Woodbury and
Spiegelman (1987) and Dubin and Rivers (1993).

Another (rather different) example is the Moving to Opportunity (MTO) experiment, in
which randomly chosen public-housing occupants in poor inner-city areas of five US cities were
offered vouchers for buying housing elsewhere (Katz et al., 2001; Moffitt, 2001). This was
motivated by the hypothesis that attributes of the area of residence matter to individual prospects
of escaping poverty. The randomized assignment of MTO vouchers helps address some long-
standing concerns about past NX tests for neighborhood effects (Manski, 1993).%

There have also been a number of social experiments in developing countries. A well-
known example is Mexico’s PROGRESA program, which provided cash transfers targeted to
poor families conditional on their children attending school and obtaining health care and
nutrition supplementation. The longevity of this program (surviving changes of government)
and its influence in the development community clearly stem in part from the substantial, and
public, effort that went into its evaluation. One third of the sampled communities deemed
eligible for the program were chosen randomly to form a control group that did not get the
program for an initial period during which the other two-thirds received the program. Public
access to the evaluation data has facilitated a number of valuable studies, indicating significant
gains to health (Gertler, 2004), schooling (Schultz, 2004; Behrman et al., 2002) and food
consumption (Hoddinott and Skoufias, 2004). A comprehensive overview of the design,
implementation and results of the PROGRESA evaluation can be found in Skoufias (2005).

In another example for a developing country, Newman et al. (2002) were able to
randomize eligibility to a World Bank supported social fund for a region of Bolivia. The fund-
supported investments in education were found to have had significant impacts on school

infrastructure but not on education outcomes within the evaluation period.

o Note that the design of the MTO experiment does not identify neighborhood effects at the origin,

given that attributes of the destination also matter to outcomes (Moffitt, 2001).
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Randomization was also used by Angrist et al. ( 2002) to evaluate a Colombian program
that allocated schooling vouchers by a lottery. Three years later, the lottery winners had
significantly lower incidence of grade repetition and higher test scores.

Another example is Argentina’s Proempleo experiment (Galasso et al., 2004). This was a
randomized evaluation of a pilot wage subsidy and training program for assisting workfare
participants in Argentina to find regular, private-sector jobs. Eighteen months later, recipients of
the voucher for a wage subsidy had a higher probability of employment than the control group.
(We will return later in this chapter to examine some lessons from this evaluation more closely.)

It has been argued that the World Bank should make greater use of social experiments.
While the Bank has supported a number of experiments (including most of the examples for
developing countries above), that is not so of the Bank’s Operations Evaluation Department (the
semi-independent unit for the ex-post evaluation of its own lending operations). In the 78
evaluations by OED surveyed by Kapoor (2002), only one used randomization;* indeed, only 21
used any form of counterfactual analysis. Cook (2001) and Duflo and Kremer (2005) have
advocated that OED should do many more social experiments.”® Before accepting that advice
one should be aware of some of the concerns raised by experiments.

A well-crafted social experiment will eliminate selection bias, but that leaves many other
concerns about both their internal and external validity. The rest of this chapter turns to the main

nonexperimental methods found in practice.

5. Propensity-score methods

As section 3 emphasized, selection bias is to be expected in comparing a random sample
from the population of participants with a random sample of non-participants (as in estimating
D(X) in equation 2). There must be a general presumption that such comparisons misinform
policy. How much so is an empirical question. On a priori grounds it is worrying that many NX
evaluations in practice provide too little information to assess whether the “comparison group” is

likely to be sufficiently similar to the participants in the absence of the intervention.

> From Kapoor’s description it is not clear that even this evaluation was a genuine experiment.

OED only assesses Bank projects after they are completed, which makes it hard to do proper
impact evaluations. Note that other units in the Bank that do evaluations besides OED, including in the
research department invariably use counterfactual analysis and sometimes randomization.
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In trying to find a comparison group it is natural to search for non-participants with
similar pre-intervention characteristics to the participants. However, there are potentially many
characteristics that one might use to match. How should they be weighted in choosing the
comparison group? This section begins by reviewing the theory and practice of matching using
propensity scores and then turns to other uses of propensity scores in evaluation.

Propensity-score matching: This method aims to select comparators according to their

propensity scores, as given by P(Z) =Pr(T = ]JZ) (0< P(2)<1), where Z is a vector of pre-

exposure control variables (which can include pre-treatment values of the outcome indicator).?’
The values taken by Z are assumed to be unaffected by whether unit i actually receives the
program. PSM uses P(Z) (or a monotone function of P(Z)) to select comparison units. An
important paper by Rosenbaum and Rubin (1983) showed that if outcomes are independent of

participation given Z, then outcomes are also independent of participation given P(Z;).?® The

independence condition implies conditional exogeneity of placement (B™ (X) =0), so that the
(unobserved) E(Y ©|X,T =1) can be replaced by the (observed) E(Y “|X,T =0). Thus,asina

social experiment, TT is non-parametrically identified by the difference in the sample mean
outcomes between treated units and the matched comparison group (D(X)). Under the
independence assumption, exact matching on P(Z) eliminates selection bias, although it is not
necessarily the most efficient impact estimator (Hahn, 1998; Angrist and Hahn, 2004).

Thus PSM essentially assumes away the problem of endogenous placement, leaving only
the need to balance the conditional probability, i.e., the propensity score. An implication of this
difference is that (unlike a social experiment) the impact estimates obtained by PSM must always
depend on the variables used for matching and (hence) the quantity and quality of available data.

There is an important (often implicit) assumption in PSM and other NX methods that
eliminating selection bias based on observables will reduce the aggregate bias. That will only be
the case if the two sources of bias — that associated with observables and that due to unobserved
factors — go in the same direction, which cannot be assured on a priori grounds (as noted in

section 3). If the selection bias based on unobservables counteracts that based on observables

a The present discussion is confined to a binary treatment. In generalizing to the case of multi-

valued or continuous treatments one defines the generalized propensity score given by the conditional
probability of a specific level of treatment (Imbens, 2000; Lechner, 2001; Hirano and Imbens, 2004).

2 The result also requires that the T;’s are independent over all i. For a clear exposition and proof
of the Rosenbaum-Rubin theorem see Imbens (2004).
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then eliminating only the latter bias will increase aggregate bias. While this is possible in theory,
replication studies (comparing NX evaluations with experiments for the same programs) do not
appear to have found an example in practice; | review lessons from replication studies below.

The variables in Z may well differ from the covariates of outcomes (X in section 2); this
distinction plays an important role in the methods discussed in section 8. But what should be
included in Z?%° The choice should be based on knowledge about the program and setting, as
relevant to understanding the economic, social or political factors influencing program
assignment that are correlated with counterfactual outcomes. Qualitative field work can help; for
example, the specification choices made in Jalan and Ravallion (2003Db) reflected interviews with
participants and local administrators in Argentina’s Trabajar program (a combination of
workfare and social fund). Similarly Godtland et al. (2004) validated their choice of covariates
for participation in an agricultural extension program in Peru through interviews with farmers.

Clearly if the available data do not include a determinant of participation relevant to
outcomes then PSM will not have removed the selection bias (in other words it will not be able
to reproduce the results of a social experiment). Knowledge of how the specific program works
and theoretical considerations on likely behavioral responses can often reveal likely candidates
for such an omitted variable. Under certain conditions, bounds can be established to a matching
estimator, allowing for an omitted covariate of program placement (Rosenbaum, 1995; for an
example see Aakvik, 2001). Later in this chapter we will consider alternative estimators that can
be more robust to such an omitted variable (although requiring further assumptions).

Common practice in implementing PSM is to use the predicted values from a logit or
probit as the propensity score for each observation in the participant and the non-participant
samples, although non-parametric binary-response models can be used; see Heckman et al.,
(1997).*° The comparison group can be formed by picking the “nearest neighbor” for each

participant, defined as the non-participant that minimizes I5(Zi )— I5(Zj) as long as this does

2 For guidance on this and the many other issues that arise when implementing PSM see the useful

paper by Caliendo and Kopeinig (2005).
% The participation regression is of interest in its own right, as it provides insights into the targeting
performance of the program; see, for example, the discussion in Jalan and Ravallion (2003b).
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not exceed some reasonable bound.*! Given measurement errors, more robust estimates take the
mean of the nearest (say) five neighbors, although this does not necessarily reduce bias.

It is a good idea to test for systematic differences in the covariates between the treatment
and comparison groups constructed by PSM; Smith and Todd (2005a) describe a useful
“balancing test” for this purpose.

The typical PSM estimator for mean impact takes the form ™" (Y[ - > "W, Y,*)/ NT

where NT is the number receiving the program, NC is the number of non-participants and the
Wij;’s are the weights. There are several weighting schemes that have been used in the literature
(see the overview in Caliendo and Kopeinig, 2005). These range from nearest-neighbor weights
to non-parametric weights based on kernel functions of the differences in scores whereby all the
comparison units are used in forming the counterfactual for each participating unit, but with a
weight that reaches its maximum for the nearest neighbor but declines as the absolute difference
in propensity scores increases; Heckman et al. (1997b) discuss this weighting scheme.*®

The statistical properties of matching estimators (in particular their asymptotic properties)
are not as yet well understood. In practice, standard errors are typically derived by a
bootstrapping method, although the appropriateness of this method is not evident in all cases.
Abadie and Imbens (2006) examine the formal properties in large samples of nearest-k neighbor
matching estimators (for which the standard bootstrapping method does not give valid standard
errors) and provide a consistent estimator for the asymptotic standard error.

Mean impacts can also be calculated conditional on observed characteristics. For anti-
poverty programs one is interested in comparing the conditional mean impact across different
pre-intervention incomes. For each sampled participant, one estimates the income gain from the
program by comparing that participant’s income with the income for matched non-participants.
Subtracting the estimated gain from observed post-intervention income, it is then possible to
estimate where each participant would have been in the distribution of income without the

program. On averaging this across different strata defined by pre-intervention incomes one can

3 When treated units have been over-sampled (giving a “choice-based sample”) and the weights are

unknown one should instead match on the odds ratio, P(2)/(1- P(Z)) (Heckman and Todd, 1995).

% Rubin and Thomas (2000) use simulations to compare the bias in using the nearest five neighbors
to just the nearest neighbor; no clear pattern emerges.

% Frélich (2004) compares the finite-sample properties of various estimators and finds that a local
linear ridge regression method is more efficient and robust than alternatives.
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assess the incidence of impacts. In doing so, it is a good idea to test if propensity-scores (and

even the Z’s themselves) are adequately balanced within strata (as well as in the aggregate), since

there is a risk that one may be confusing matching errors with real effects.

Similarly one can construct the empirical and counter-factual cumulative distribution
functions or their empirical integrals, and test for dominance over a relevant range of poverty
lines and measures. This is illustrated in Figure 2, for Argentina’s Trabajar program. The figure
gives the cumulative distribution function (CDF) (or “poverty incidence curve”) showing how
the headcount index of poverty (% below the poverty line) varies across a wide range of possible
poverty lines (when that range covers all incomes we have the standard cumulative distribution
function). The vertical line is a widely-used poverty line for Argentina. The figure also gives the
estimated counter-factual CDF, after deducting the imputed income gains from the observed
(post-intervention) incomes of all the sampled participants. Using a poverty line of $100 per
month (for which about 20% of the national population is deemed poor) we see a 15 percentage
point drop in the incidence of poverty amongst participants due to the program,; this rises to 30
percentage points using poverty lines nearer the bottom of the distribution. We can also see the
gain at each percentile of the distribution (looking horizontally) or the impact on the incidence of
poverty at any given poverty line (looking vertically).>*

In evaluating anti-poverty programs in developing countries, single-difference
comparisons using PSM have the advantage that they do not require either randomization or
baseline (pre-intervention) data. While this can be a huge advantage in practice, it comes at a
cost. To accept the exogeneity assumption one must be confident that one has controlled for the
factors that jointly influence program placement and outcomes. In practice, one must always
consider the possibility that there is a latent variable that jointly influences placement and
outcomes, such that the mean of the latent influences on outcomes is different between treated
and untreated units. This invalidates the key conditional independence assumption made by
PSM. Whether this is a concern or not must be judged in the context of the application at hand;
how much one is concerned about unobservables must depend, of course, on what data one has
on the relevant observables. Section 7 will give an example of how far wrong the method can go

with inadequate data on the joint covariates of participation and outcomes.

i On how the results of an impact assessment by PSM can be used to assess impacts on poverty

measures robustly to the choice of those measures and the poverty line see Ravallion (2003b).
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How does PSM differ from other methods? In a social experiment (at least in its pure
form), the propensity score is a constant, since everyone has the same probability of receiving
treatment. Intuitively, what PSM tries to do is create the observational analogue of such an
experiment in which everyone has the same probability of participation. The difference is that in
PSM it is the conditional probability (P(2)) that is intended to be uniform between participants
and matched comparators, while randomization assures that the participant and comparison
groups are identical in terms of the distribution of all characteristics whether observed or not.
Hence there are always concerns about remaining selection bias in PSM estimates.

A natural comparison is between PSM and an OLS regression of the outcome indicators
on dummy variables for program placement, allowing for the observable covariates entering as
linear controls (as in equations 4 and 5). OLS requires essentially the same conditional
independence (exogeneity) assumption as PSM, but also imposes arbitrary functional form
assumptions concerning the treatment effects and the control variables. By contrast, PSM (in
common with experimental methods) does not require a parametric model linking outcomes to
program participation. Thus PSM allows estimation of mean impacts without arbitrary
assumptions about functional forms and error distributions. This can also facilitate testing for
the presence of potentially complex interaction effects. For example, Jalan and Ravallion
(2003a) use PSM to study how the interaction effects between income and education influence
the child-health gains from access to piped water in rural India. The authors find a complex
pattern of interaction effects; for example, poverty attenuates the child-health gains from piped
water, but less so the higher the level of maternal education.

PSM also differs from standard regression methods with respect to the sample. In PSM
one confines attention to the region of common support (Figure 1). Non-participants with a
score lower than any participant are excluded. One may also want to restrict potential matches in
other ways, depending on the setting. For example, one may want to restrict matches to being
within the same geographic area, to help assure that the comparison units come from the same
economic environment. By contrast, the regression methods commonly found in the literature
use the full sample. The simulations in Rubin and Thomas (2000) indicate that impact estimates
based on full (unmatched) samples are generally more biased, and less robust to miss-
specification of the regression function, than those based on matched samples.
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A further difference relates to the choice of control variables. In the standard regression
method one looks for predictors of outcomes, and preference is given to variables that one can
argue to be exogenous to outcomes. In PSM one is looking instead for covariates of
participation. It is clearly important that these include those variables that also matter to
outcomes. However, variables with seemingly weak predictive ability for outcomes can still
help reduce bias in estimating causal effects using PSM (Rubin and Thomas, 2000).

It is an empirical question as to how much difference it would make to mean-impact
estimates by using PSM rather than OLS. Comparative methodological studies have been rare.
In one exception, Godtland et al. (2004) use both an outcome regression and PSM for assessing
the impacts of field schools on farmers' knowledge of good practices for pest management in
potato cultivation. They report that their results were robust to changing the method used.
However, other studies have reported large differences between OLS with controls for Z and
PSM based on P(Z) (Jalan and Ravallion, 2003a; van de Walle and Mu, 2006).

How well does PSM perform? Returning to the same data set used by the Lalonde
(1986) study (described in section 3), Dehejia and Wahba (1999) found that PSM achieved a
fairly good approximation — much better than the NX methods studied by Lalonde. It appears
that the poor performance of the NX methods used by Lalonde stemmed in large part from the
use of observational units outside the region of common support. However, the robustness of the
Dehejia-Wahba findings to sample selection and the specification chosen for calculating the
propensity scores has been questioned by Smith and Todd (2005a), who argue that PSM does not
solve the selection problem in the program studied by Lalonde.®

Similar attempts to test PSM against randomized evaluations have shown mixed results.
Agodini and Dynarski (2004) find no consistent evidence that PSM can replicate experimental
results from evaluations of school dropout programs in the US. Using the PROGRESA data
base, Diaz and Handa (2004) find that PSM performs well as long as the same survey instrument
is used for measuring outcomes for the treatment and comparison groups. The importance of
using the same survey instrument in PSM is also emphasized by Heckman et al. (1997a, 1998) in
the context of their evaluation of a US training program. The latter study also points to the

importance of both participants and non-participants coming from the same local labor markets,

® Dehejia (2005) replies to Smith and Todd (2005a), who offer a rejoinder in Smith and Todd
(2005b). Also see Smith and Todd (2001).

26



and of being able to control for employment history. The meta-study by Glazerman et al. (2003)
finds that PSM is one of the NX methods that can significantly reduce bias, particularly when
used in combination with other methods.

Other uses of propensity scores in evaluation: There are other evaluation methods that
make use of the propensity score. These methods can have advantages over PSM although there
have as yet been very few applications in developing countries.

While matching on propensity scores eliminates bias (under the conditional exogeneity
assumption) this need not be the most efficient estimation method (Hahn, 1998). Rather than
matching by estimated propensity scores, an alternative impact estimator has been proposed by
Hirano et al. (2003). This method weights observation units by the inverses of a nonparametric
estimate of the propensity scores. Hirano et al. show that this practice yields a fully efficient
estimator for average treatment effects. Chen et al. (2006) and van de Walle and Mu (2006)
provide examples in the context of evaluating the impacts on poverty of development projects.

Propensity scores can also be used in the context of more standard regression-based

estimators. Suppose one simply added the estimated propensity score I3(Z) to an OLS
regression of the outcome variable on the treatment dummy variable, T. (One can also include
an interaction effect between F3(Zi) and T,.) Under the assumptions of PSM this will eliminate
any omitted variable bias in having excluded Z from that regression, given that Z is independent
of treatment given P(Z).*® However, this method does not have the non-parametric flexibility
of PSM. Adding a suitable function of f’(Z) to the outcome regression is an example of the
“control function” (CF) approach, whereby under standard conditions (including exogeneity of X
and Z) the selection bias term can be written as a function of F3(Z) 3" Identification rests either

on the nonlinearity of the CF in Z or the existence of one or more covariates of participation (the

vector Z) that only affect outcomes via participation. Subject to essentially the same
identification conditions, another option is to use F3(Z) as the instrumental variable for program

placement, as discussed further in section 8.

% This provides a further intuition as to how PSM works; see the discussion in Imbens (2004).

Heckman and Robb (1985) provide a thorough discussion of this approach; also see the
discussion in Heckman and Hotz (1989). On the relationship between CF and PSM see Heckman and
Navarro-Lozano (2004) and Todd (2007). On the relationship between CF approaches and instrumental
variables estimators (discussed further in section 8) see Vella and Verbeek (1999).
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6. Exploiting program design

Nonexperimental estimators can sometimes usefully exploit features of program design
for identification. Discontinuities generated by program eligibility criteria can help identify
impacts in a neighborhood of the cut-off points for eligibility. Or delays in the implementation
of a program can also facilitate forming comparison groups, which can also help pick up some
sources of latent heterogeneity. This section discusses these methods and some examples.

Discontinuity designs: Under certain conditions one can infer impacts from the
differences in mean outcomes between units on either side of a critical cut-off point determining

program eligibility. To see more clearly what this method involves, let M; denote the score

received by unit i in a proxy-means test (say) and let m denote the cut-off point for eligibility,

such that T, =1 for M; <m and T, =0 otherwise. Examples include a proxy-means test that
sets a maximum score for eligibility (section 3) and programs that confine eligibility within
geographic boundaries. The impact estimator is E(Y ' |M =m-¢)-E(Y® |M =m+¢) for some

arbitrarily small £ > 0. In practice, there is inevitably a degree of fuzziness in the application of

eligibility tests. So instead of assuming strict enforcement and compliance, one can follow Hahn
et al. (2001) in postulating a probability of program participation, P(M) = E(T|M) , Which is an

increasing function of M with a discontinuity at m. The essential idea remains the same, in that
impacts are measured by the difference in mean outcomes in a neighborhood of m.

The key identifying assumption is that the discontinuity at m is in outcomes under
treatment not outcomes under the counterfactual.®® The existence of strict eligibility rules does
not mean that this is a plausible assumption. For example, the geographic boundaries for
program eligibility will often coincide with local political jurisdictions, entailing current or past
geographic differences in (say) local fiscal policies and institutions that cloud identification. The
plausibility of the continuity assumption for counterfactual outcomes must be judged in each
application.

In a test of how well discontinuity designs perform in reducing selection bias,
Buddelmeyer and Skoufias (2004) use the cut-offs in PROGRESA’s eligibility rules to measure
impacts and compare the results to those obtained by exploiting the program’s randomized

% Hahn et al. (2001) provide a formal analysis of identification and estimation of impacts for

discontinuity designs under this assumption.
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design. The authors find that the discontinuity design gives good approximations for almost all
outcome indicators.

The method is not without its drawbacks. It is assumed that the evaluator knows M; and

(hence) eligibility for the program. That will not always be the case. Consider (again) a means-
tested transfer whereby the income of the participants is supposed to be below some pre-
determined cut-off point. In a single cross-section survey, we observe post-program incomes for
participants and incomes for non-participants, but typically we do not know income at the time
the means test was actually applied. And if we were to estimate eligibility by subtracting the
transfer payment from the observed income then we would be assuming (implicitly) exactly what
we want to test: whether there was a behavioral response to the program. Retrospective
questions on income at the time of the means test will help (though recognizing the possible
biases), as would a baseline survey at or near the time of the test. A baseline survey can also
help clean out any pre-intervention differences in outcomes either side of the discontinuity, in
which case one is combining the discontinuity design with the double difference method
discussed further in section 7.

Note also that a discontinuity design gives mean impact for a selected sample of the
participants, while most other methods (such as social experiments and PSM) aim to give mean
impact for the treatment group as a whole. However, the aforementioned common-support
problem that is sometimes generated by eligibility criteria can mean that other evaluations are
also confined to a highly selected sub-sample; the question is then whether that is an interesting
sub-sample. The truncation of treatment group samples to assure common support will most
likely tend to exclude those with the highest probability of participating (for which non-
participating comparators are hardest to find), while discontinuity designs will tend to include
only those with the lowest probability. The latter sub-sample can, nonetheless, be relevant for
deciding about program expansion; section 9 returns to this point.

Although impacts in a neighborhood of the cut-off point are non-parametrically identified
for discontinuity designs, the applied literature has more often used an alternative parametric
method in which the discontinuity in the eligibility criterion is used as an instrumental variable

for program placement; we will return to give examples in section 8.
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Pipeline comparisons: The idea here is to use as the comparison group people who have
applied for a program but not yet received it.** PROGRESA is an example; one third of eligible
participants did not receive the program for 18 months, during which they formed the control
group. In the case of PROGRESA, the pipeline comparison was randomized. NX pipeline
comparisons have also been used in developing countries. An example can be found in Chase
(2002) who used communities that had applied for a social fund (in Armenia) as the source of the
comparison group in estimating the fund’s impacts on communities that received its support. In
another example, Galasso and Ravallion (2004) evaluated a large social protection program in
Argentina, namely the Government’s Plan Jefes y Jefas, which was the main social policy
response to the severe economic crisis of 2002. To form a comparison group for participants
they used those individuals who had successfully applied for the program, but had not yet
received it. Notice that this method does to some extent address the problem of latent
heterogeneity in other single-difference estimators, such as PSM; the prior selection process will
tend to mean that successful applicants will tend to have similar unobserved characteristics,
whether or not they have actually received the treatment.

The key assumption here is that the timing of treatment is random given application. In
practice, one must anticipate a potential bias arising from selective treatment amongst the
applicants or behavioral responses by applicants awaiting treatment. This is a greater concern in
some settings than others. For example, Galasso and Ravallion argued that it was not a serious
concern in their case given that they assessed the program during a period of rapid scaling up,
during the 2002 financial crisis in Argentina when it was physically impossible to immediately
help everyone who needed help. The authors also tested for observable differences between the
two sub-sets of applicants, and found that observables (including idiosyncratic income shocks
during the crisis) were well balanced between the two groups, alleviating concerns about bias.
Using longitudinal observations also helped; we return to this example in the next section.

When feasible, pipeline comparisons offer a single-difference impact estimator that is
likely to be more robust to latent heterogeneity. The estimates should, however, be tested for
bias due to poorly balanced observables and (if need be) a method such as PSM can be used to

deal with this prior to making the pipeline comparison (Galasso and Ravallion, 2004).

% This is sometimes called “pipeline matching” in the literature, although this term is less than ideal

given that no matching is actually done.
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Pipeline comparisons might also be combined with discontinuity designs. Although I
have not seen it used in practice, a possible identification strategy for projects that expand along
a well defined route is to measure outcomes on either side of the project’s current frontier.
Examples might include projects that progressively connect houses to an existing water,
sanitation, transport or communications network, as well as projects that expand that network in
discrete increments. New facilities (such as electrification or telecommunications) often expand
along pre-existing infrastructure networks (such as roads, to lay cables along their right-of-way).
Clearly one would also want to allow for observable heterogeneity and time effects. There may
also be concerns about spillover effects; the behavior of non-participants may change, in
anticipation of being hooked up to the expanding network.

7. Higher-order differences

So far the discussion has focused on single-difference estimators that only require a
single survey. More can be learnt if we track outcomes for both participants and non-participants
over time. A pre-intervention “baseline survey” in which one knows who eventually participates
and who does not, can reveal specification problems in a single-difference estimator. If the
outcome regression (such as equations 4 or 5) is correctly specified then running that regression
on the baseline data should indicate an estimate of mean impact that is not significantly different
from zero (Heckman and Hotz, 1989).

With baseline data one can go a step further and allow some of the latent determinants of
outcomes to be correlated with program placement given the observables. This section begins
with the double-difference (DD) method, which relaxes the conditional exogeneity assumption of

single-difference NX estimators by exploiting a baseline and at least one follow-up survey post-
intervention. The discussion then turns to situations — common for safety-net programs set-up
to address a crisis — in which a baseline survey is impossible, but we can track ex-participants;
this illustrates the triple-difference estimator.

The double-difference estimator: The essential idea is to compare samples of
participants and non-participants before and after the intervention. After the initial baseline
survey of both non-participants and (subsequent) participants, one does a follow-up survey of
both groups after the intervention. Finally one calculates the difference between the “after” and

“before” values of the mean outcomes for each of the treatment and comparison groups. The
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difference between these two mean differences (hence the label “double difference” or
“difference-in-difference”) is the impact estimate.

To see what is involved, let Y;, denote the outcome measure for the i’th observation unit
observed at two dates, t=0,1. By definitionY, =Y,° +T.G, and (as in the archetypal evaluation
problem described in section 2), it is assumed that we can observe T, Y,/ when T, =1, Y,© for
T, =0,butthat G, =Y, —Y, is not directly observable for any i (or in expectation) since we
are missing the dataon Y,/ for T, =0 and Y,” for T, =1. To solve the missing-data problem,

the DD estimator assumes that the selection bias (the unobserved difference in mean
counterfactual outcomes between treated and untreated units) is time invariant, in which case the

outcome changes for non-participants reveal the counterfactual outcome changes, i.e.:
ECY,S =Y T, =) =E(Y, =Y  |T, =0) (8)

This is clearly a weaker assumption than conditional exogeneity in single-difference estimates;
B/T =0 forall timplies (8) but is not necessary for (8). Since period 0 is a baseline, with
T,; =0 forall i (by definition), Y,; =Y, foralli. Then it is plain that the double-difference
estimator gives the mean treatment effect on the treated for period 1:

DD=E(Y, =Y. |T,=)-E(Y,° =Y  |T,=0)=E(G, |T, =1) 9)
Notice that panel data are not necessary for calculating DD. All one needs is the set of four
means that make up DD; the means need not be calculated for the same sample over time.

When the counterfactual means are time-invariant (E[Y, - Y, |Tl =1]=0), equations (8)

and (9) collapse to a reflexive comparison in which one only monitors outcomes for the

treatment units. Unchanging mean outcomes for the counterfactual is an implausible assumption
in most applications. However, with enough observations over time, methods of testing for
structural breaks in the times series of outcomes for participants can offer some hope of
identifying impacts; see for example Piehl et al. (2003).

For calculating standard errors and implementing weighted estimators it is convenient to
use a regression estimator for DD. The data over both time periods and across treatment status
are pooled and one runs the regression:

Yo =a+ T t+)T,+0t+¢ (t=01;i=1,...,n) (10)
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The single-difference estimator is SD, = E[(Y,|T;; =1) —(Y,|T;; = 0)]= At +» while the DD
estimator is DD, = SD, —SD, = . Thus the regression coefficient on the interaction effect
between the participation dummy variable and time in equation (10) identifies the impact.

Notice that equation (10) does not require a balanced panel; for example, the interviews
do not all have to be done at the same time. This property can be useful in survey design, by
allowing “rolling survey” approach, whereby the survey teams move from one primary sampling
unit to another over time; this has advantages in supervision and likely data quality. Another
advantage of the fact that (10) does not require a balanced panel is that the results will be robust
to selective attrition. In the case of a balanced panel, we can instead estimate the equivalent
regression in the more familiar “fixed-effects” form:

Y, =a + BT t+6, +n,+v, (11)
Here the fixed effectis 77, = )T, +7° + 1, . %

Note that the term »T,, in equation (10) picks up differences in the mean of the latent
individual effects, such as would arise from initial selection into the program. The single-
difference estimate will be biased unless the means of the latent effects are balanced between
treated and non-treated units (7" =7, i.e., » =0). This is implausible in general, as
emphasized in section 2. The double-difference estimator removes this source of bias.

This approach can be readily generalized to multiple time periods; DD is then estimated
by the regression of Y;; on the (individual and date-specific) participation dummy variable T,
interacted with time, and with individual and time effects. Or one can use a differenced
specification in which the changes over time are regressed on T, with time fixed effects.*!

Examples of DD evaluations: In an early example, Binswanger et al. (1993) used this
method to estimate the impacts of rural infrastructure on agricultural productivity in India, using

district-level data. Their key identifying assumption was that the endogeneity problem —

whereby infrastructure placement reflects omitted determinants of productivity — arose entirely

® Note that 7, =77 Ty + 777 (L=T,.) = 7T, +77° + 14 (E(y, |Ti1) #0)) where y =777 —77°,
= =7 T+ —7°)A-T,), E(;) =0, &, =vy +u and a=a +77°.

41 As is well-known, when the differenced error term is serially correlated one must take account of
this fact in calculating the standard errors of the DD estimator; Bertrand et al. (2004) demonstrate the
possibility for large biases in the uncorrected (OLS) standard errors for DD estimators.
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through latent agro-climatic factors that could be captured by district-level fixed effects. They
found significant productivity gains from rural infrastructure.

In another example, Duflo (2001) estimated the impact on schooling and earnings in
Indonesia of building schools. A feature of the assignment mechanism was known, namely that
more schools were built in locations with low enrolment rates. Also, the age cohorts that
participated in the program could be easily identified. The fact that the gains in schooling
attainments of the first cohorts exposed to the program were greater in areas that received more
schools was taken to indicate that building schools promoted better education. Frankenberg et al.
(2005) use a similar method to assess the impacts of providing basic health care services through
midwives on children’s nutritional status (height-for-age), also in Indonesia.

Galiani et al. (2005) used a DD design to study the impact of privatizing water services
on child mortality in Argentina, exploiting the joint geographic (across municipalities) and inter-
temporal variation in both child mortality and ownership of water services. Their results suggest
that privatization of water services reduced child mortality.

A DD design can also be used to address possible biases in a social experiment, whereby
there is some form of selective compliance or other distortion to the randomized assignment (as
discussed in section 4). An example can be found in Thomas et al. (2003) who randomized
assignment of iron-supplementation pills in Indonesia, with a randomized-out group receiving a
placebo. By also collecting pre-intervention baseline data on both groups, the authors were able
to address concerns about compliance bias.

While the classic design for a DD estimator tracks the differences over time between
participants and non-participants, that is not the only possibility. Jacoby (2002) used a DD
design to test whether intra-household resource allocation shifted in response to a school-feeding
program, to neutralize the latter’s effect on child nutrition. Some schools had the feeding
program and some did not, and some children attended school and some did not. The author’s
DD estimate of impact was then the difference between the mean food-energy intake of children
who attended a school (on the previous day) that had a feeding program and the mean for those
who did not attend such schools, less the corresponding difference between attending and non-
attending children found in schools that did not have the program.

Another example can be found in Pitt and Khandker (1998) who assessed the impact of
participation in Bangladesh’s Grameen Bank (GB) on various indicators relevant to current and
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future living standards. GB credit is targeted to landless households in poor villages. Some of
their sampled villages were not eligible for the program and within the eligible villages, some
households were not eligible, namely those with land (though it is not clear how well this was
enforced). The authors implicitly use an unusual DD design to estimate impact.** Naturally, the
returns to having land are higher in villages that do not have access to GB credit (given that
access to GB raises the returns to being landless). Comparing the returns to having land between
two otherwise identical sets of villages — one eligible for GB and one not — reveals the impact
of GB credit. So the Pitt-Khandker estimate of the impact of GB is actually the impact on the
returns to land of taking away village-level access to the GB.* By interpretation, the “pre-
intervention baseline” in the Pitt-Khandker study is provided by the villages that have the GB,
and the “program” being evaluated is not GB but rather having land and hence becoming
ineligible for GB. (I return to this example below.)

The use of different methods and data sets on the same program can be revealing. As
compared to the study by Jalan and Ravallion (2002b) on the same program (Argentina’s
Trabajar program), Ravallion et al. (2005) used a lighter survey instrument, with far fewer
questions on relevant characteristics of participants and non-participants. These data did not
deliver plausible single-difference estimates using PSM when compared to the Jalan-Ravallion
estimates for the same program on richer data. The likely explanation is that using the lighter
survey instrument meant that there were many unobservable differences; in other words the
conditional independence assumption of PSM was not valid. Given the sequence of the two
evaluations, the key omitted variables in the later study were known — they mainly related to
local level connections (as evident in memberships of various neighborhood associations and
length of time living in the same barrio). However, the lighter survey instrument used by
Ravallion et al. (2005) had the advantage that the same households were followed up over time
to form a panel data set. It would appear that Ravallion et al. were able to satisfactorily address
the problem of bias in the lighter survey instrument by tracking households over time, which
allowed them to difference-out the miss-matching errors arising from incomplete data.

42

This is my interpretation; Pitt and Khandker (1998) do not mention the DD interpretation of their
design. However, it is readily verified that the impact estimator implied by solving equations (4a-d) in
their paper is the DD estimator described here. (Note that the resulting DD must be normalized by the
proportion of landless households in eligible villages to obtain the impact parameter for GB.)

4 Equivalently, they measure impact by the mean gain amongst households who are landless from
living in a village that is eligible for GB, less the corresponding gain amongst those with land.
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This illustrates the trade-off between collecting cross-sectional data for the purpose of
single-difference matching, versus collecting longitudinal data with a lighter survey instrument.
An important factor in deciding which method to use is how much we know ex ante about the
determinants of program placement. If a single survey can convincingly capture these
determinants then PSM will work well; if not then one is well advised to do at least two rounds
of data collection and use DD, possibly combined with PSM, as discussed below.

While panel data are not essential for estimating DD, household-level panel data open up
further options for the counterfactual analysis of the joint distribution of outcomes over time for

the purpose of understanding the impacts on poverty dynamics. This approach is developed in

Ravallion et al. (1995) for the purpose of measuring the impacts of changes in social spending on
the inter-temporal joint distribution of income. Instead of only measuring the impact on poverty
(the marginal distribution of income) the authors distinguish impacts on the number of people
who escape poverty over time (the “promotion” role of a safety net) from impacts on the number
who fall into poverty (the “protection” role). Ravallion et al. apply this approach to an
assessment of the impact on poverty transitions of reforms in Hungary’s social safety net. Other
examples can be found in Lokshin and Ravallion (2000) (on the impacts of changes in Russia’s
safety net during an economy-wide financial crisis), Gaiha and Imai (2002) (on the Employment
Guarantee Scheme in the Indian state of Maharashtra) and van de Walle (2004) (on assessing the
performance of Vietnam’s safety net in dealing with income shocks).

Panel data also facilitate the use of dynamic regression estimators for the DD. An
example of this approach can be found in Jalan and Ravallion (2002), who identified the effects
of lagged infrastructure endowments in a dynamic model of consumption growth using a six-
year household panel data set. Their econometric specification is an example of the non-
stationary fixed-effects model proposed by Holtz-Eakin et al. (1988), which allows for latent
individual and geographic effects and can be estimated using the Generalized Method of
Moments, treating lagged consumption growth and the time-varying regressors as endogenous
(using sufficiently long lags as instrumental variables). The authors found significant longer-
term consumption gains from improved infrastructure, such as better rural roads.

Concerns about DD designs: Two key problems have plagued DD estimators. The first
is that, in practice, one sometimes does not know at the time the baseline survey is implemented
who will participate in the program. One must make an informed guess in designing the
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sampling for the baseline survey; knowledge of the program design and setting can provide
clues. Types of observation units with characteristics making them more likely to participate
will often have to be over-sampled, to help assure adequate coverage of the population treatment
group and to provide a sufficiently large pool of similar comparators to draw upon. Problems can
arise later if one does not predict well-enough ex ante who will participate. For example,
Ravallion and Chen (2005) had designed their survey so that the comparison group would be
drawn from randomly sampled villages in the same poor counties of rural China in which it was
known that the treatment villages were to be found (for a poor-area development program).
However, the authors subsequently discovered that there was sufficient heterogeneity within
poor counties to mean that many of the selected comparison villages had to be dropped to assure
common support. With the benefit of hindsight, greater effort should have been made to over-
sample relatively poor villages within poor countries.

The second source of concern is the DD assumption of time-invariant selection bias.
Infrastructure improvements may well be attracted to places with rising productivity, leading a
geographic fixed-effects specification to overestimate the economic returns to new development
projects. The opposite bias is also possible. Poor-area development programs are often targeted
to places that lack infrastructure and other conditions conducive to economic growth. Again the
endogeneity problem cannot be dealt with properly by positing a simple additive fixed effect.
The selection bias is not constant over time and the DD will then be a biased impact estimator.

Figure 3 illustrates the point. Mean outcomes are plotted over time, before and after the
intervention. The lightly-shaded circles represent the observed means for the treatment units,
while the hatched circle is the counterfactual at date t=1. Panel (a) shows the initial selection
bias, arising from the fact that the program targeted poorer areas than the comparison units (dark-
shaded). This is not a problem as long as the bias is time invariant, as in panel (b). However,
when the attributes on which targeting is based also influence subsequent growth prospects we
get a downward bias in the DD estimator, as in panel (c).

Two examples from actual evaluations illustrate the problem. Jalan and Ravallion (1998)
show that poor-area development projects in rural China have been targeted to areas with poor
infrastructure and that these same characteristics resulted in lower growth rates; presumably,
areas with poor infrastructure were less able to participate in the opportunities created by China’s
growing economy. Jalan and Ravallion show that there is a large bias in DD estimators in this
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case, since the changes over time are a function of initial conditions (through an endogeneous
growth model) that also influence program placement. On correcting for this bias by controlling
for the area characteristics that initially attracted the development projects, the authors found
significant longer-term impacts while none had been evident in the standard DD estimator.

The second example is the Pitt and Khandker (1998) study of Grameen Bank. Following
my interpretation above of their method of assessing the impacts of GB credit, it is clear that the
key assumption is that the returns to having land are independent of village-level GB eligibility.
A bias will arise if GB tends to select villages that have either unusually high or low returns to
land. It seems plausible that the returns to land are lower in villages selected for GB (which may
be why they are poor in the first place) and low returns to land would also suggest that such
villages have a comparative advantage in the non-farm activities facilitated by GB credit. Then
the Pitt-Khandker method will overestimate GB’s impact.

The upshot of these observations is that controlling for initial heterogeneity is crucial to
the credibility of DD estimates. Using PSM for selecting the initial comparison group is an
obvious corrective, and this will almost certainly reduce the bias in DD estimates. In an example
in the context of poor-area development programs, Ravallion and Chen (2005) first used PSM to
clean out the initial heterogeneity between targeted villages and comparison villages, before
applying DD using longitudinal observations for both sets of villages. When relevant, pipeline
comparison groups can also help to reduce bias in DD studies (Galasso and Ravallion, 2004).
The DD method can also be combined with a discontinuity design (Jacob and Lefgren, 2004).

These observations point to important synergies between better data and methods for
making single difference comparisons (on the one hand) and double-difference (on the other).
Longitudinal observations can help reduce bias in single difference comparisons (eliminating the
additive time-invariant component of selection bias). And successful efforts to clean out the
heterogeneity in baseline data such as by PSM can reduce the bias in DD estimators.

What if baseline data are unavailable? Anti-poverty programs in developing countries
often have to be set up quickly in response to a macroeconomic or agro-climatic crisis; it is not
feasible to delay the operation to do a baseline survey. (Needless-to-say, nor is randomization an
option.) Even so, under certain conditions, impacts can still be identified by observing
participants’ outcomes in the absence of the program after the program rather than before it. To
see what is involved, recall that the key identifying assumption in all double-difference studies is
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that the selection bias into the program is additively separable from outcomes and time invariant.
In the standard set-up described earlier in this section, date O precedes the intervention and DD
gives the mean current gain to participants in date 1. However, suppose now that the program is
in operation at date 0. The scope for identification arises from the fact that some participants at

date 0 subsequently drop out of the program. The triple-difference (DDD) estimator proposed by

Ravallion et al. (2005) is the difference between the double differences for stayers and leavers.
Ravallion et al. show that their DDD estimator consistently identifies the mean gain to
participants at date 1 (TT) if two conditions hold: (i) there is no selection bias in terms of who
leaves the program and (ii) there are no current gains to non-participants. They also show that a
third survey round allows a joint test of these two conditions. If these conditions hold and there
is no selection bias in period 2, then there should be no difference in the estimate of gains to
participants in period 1 according to whether or not they drop out in period 2.

In applying the above approach, Ravallion et al. (2005) examine what happens to
participants’ incomes when they leave Argentina’s Trabajar program as compared to the
incomes of continuing participants, after netting out economy-wide changes, as revealed by a
matched comparison group of non-participants. The authors find partial income replacement,
amounting to one-quarter of the Trabajar wage within six months of leaving the program,
though rising to one half in 12 months. Thus they find evidence of a post-program
“Ashenfelter’s dip,” namely when earnings drop sharply at retrenchment, but then recover.**

Suppose instead that we do not have a comparison group of nonparticipants; we calculate
the DD for stayers versus leavers (that is, the gain over time for stayers less that for leavers). It
is evident that this will only deliver an estimate of the current gain to participants if the counter-
factual changes over time are the same for leavers as for stayers. More plausibly, one might
expect stayers to be people who tend to have lower prospects for gains over time than leavers in
the absence of the program. Then the simple DD for stayers versus leavers will underestimate the
impact of the program. In their specific setting, Ravallion et al. find that the DD for stayers
relative to leavers (ignoring those who never participated) turned out to give a quite good

approximation to the DDD estimator. However, this may not hold in other applications.

44 “Ashenfelter’s dip” refers to the bias in using DD for inferring long-term impacts of training

programs that can arise when there is a pre-program earnings dip (as was found in Ashenfelter, 1978).
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8. Instrumental variables
The nonexperimental estimators discussed so far require some form of (conditional)
exogeneity assumption for program placement. The single-difference methods assume that

placement is uncorrelated with the latent determinants of outcome levels while the double-

difference assumes that changes in placement are uncorrelated with the changes in these latent
factors. We now turn to a popular method that relaxes these assumptions, but adds new ones.
The instrumental variables estimator (IVE): Returning to the archetypal model in
section 2, the standard linear IVE makes two extra assumptions. The first is that there exists an
instrumental variable (1V), denoted Z, which influences program placement independently of X:
T=yZ +X,0+v, (y#0) (11)

(Z is exogeneous, as is X.) The second assumption is that impacts are homogeneous, in that
outcomes respond identically across all units at given X ( z = x° for all i in the archetypal
model of section 2); a common special case in practice is the common-impact model:

Y, = ATET, + X, 8° + u° (5)

We do not, however, assume conditional exogeneity of placement. Thus v, and x° are
potentially correlated, inducing selection bias (E(x° |X ,T) = 0). But now there is a solution.
Substituting (11) into (5) we obtain the reduced form equation for outcomes:

Y, =7Z, + X,(B° + ATE.S) + 4, (12)

where 7 = ATEy and g, = ATEv, + 1 . Since OLS gives consistent estimates of both (11) and

12), the Instrumental Variables Estimator (IVE), 7., /7., -, consistently estimates ATE.* The
( ots ' Yous y

assumption that Z; is not an element of X, allows us to identify 7 in (12) separately from S3°.

This is called the “exclusion restriction” (in that Z; is excluded from (5)).

Strengths and weaknesses of the IVE method. The standard (linear) IVE method
described above shares some of the weaknesses of other NX methods. As with OLS, the validity
of causal inferences typically rests on ad hoc assumptions about the outcome regression,
including its functional form. PSM, by contrast, is non-parametric in the outcome space.

4 A variation is to re-write (11) as a nonlinear binary response model (such as a probit or logit) and

use the predicted propensity score as the 1V for program placement (Wooldridge, 2002, Chapter 18).
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However, when a valid 1V is available, the real strength of IVE over most other NX
estimators is its robustness to the existence of unobserved variables that j