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Abstract

This paper combines remote-sensed data and individual
child-, mother-, and household-level data from the Demo-
graphicand Health Surveys for five countries in Sub-Saharan
Africa (Malawi, Tanzania, Mozambique, Zambia, and
Zimbabwe) to design a prototype drought-contingent
targeting framework that may be used in scarce-data con-
texts. To accomplish this, the paper: (i) develops simple
and easy-to-communicate measures of drought shocks; (ii)
shows that droughts have a large impact on child stunting

in these five countries—comparable, in size, to the effects of
mother’s illiteracy and a fall to a lower wealth quintile; and
(iii) shows that, in this context, decision trees and logistic
regressions predict stunting as accurately (out-of-sample) as
machine learning methods that are not interpretable. Taken
together, the analysis lends support to the idea that a data-
driven approach may contribute to the design of policies
that mitigate the impact of climate change on the world’s
most vulnerable populations.
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1 Introduction

Rural Sub-Saharan Africa has the largest concentration of poor and deprived households
in the world (World Bank (2018), Skoufias et al. (2019)). These households are particu-
larly vulnerable to anomalous weather events.! These events are projected to increase
in frequency and become more severe in a warmer world. However, policy responses
to these events are often slow and large funding gaps are the norm. A transparent and
data-driven early warning and monitoring framework may engender the requisite bud-
get flexibility and responsiveness.? Yet, survey data that would inform such a framework
are collected infrequently and at a considerable cost (Beegle et al. (2016), Castafieda et al.
(2018)). Consequently, existing surveys need to be complemented with current data and
additional analysis. Our objective is to contribute to the design of a transparent and com-
parable early warning framework that identifies deprived children in areas that are both
data-constrained and vulnerable to the impacts of climate change.

In what follows, we develop a drought-contingent framework, for five countries in
Southern Africa, that identifies children at risk of being stunted. This paper makes four
contributions that may inform policies designed to mitigate the impacts that climate change
has on the world’s most vulnerable populations. First, we provide a prototype of a
drought-contingent targeting system for data-scarce contexts.> While several countries
(c.f. Devereux and Nzabamwita (2018)) and economists (e.g. Alderman (2009), Barrett
(2010), Clarke and Dercon (2016), and Hill et al. (2019)) have advocated for a standard and
data-driven approach, there are few studies that provide a detailed empirical analysis
of a drought-contingent targeting strategy. In this paper we build prototype drought-
contingent targeting frameworks that are comparable across countries because they em-
ploy standard, objective and verifiable measures of child and maternal anthropometrics,
in addition to standard measures of household deprivation such as those related to hous-
ing, sanitation and education.

Second, our design is intended to assist programs in reaching beneficiaries based on

ISee, for example, Kudamatsu et al. (2012), Alfani et al. (2019), Damania et al. (2017, Ch. 3), Wineman et
al. (2017), Lentz et al. (2019), Hill and Mejia-Mantilla (2017), Baez et al. (Forthcoming), and Cooper et al.
(2019). For context, see the thoughtful analysis aimed at practitioners by Hallegatte et al. (2016), and the
evocative reportage by Sengupta (2018).

2While a consensus exists on the need for a timely, transparent and objective framework — see, for example,
Alderman (2009), Barrett (2010), Clarke and Dercon (2016), Hill et al. (2019), Maxwell and Gelsdorf (2019),
and especially Lentz et al. (2019) — there is little agreement on its design or implementation. de Waal
(2018) argues that famines are rare and caused by conflict, which is tenuously related to weather events.
We examine episodes of food insecurity, rather than famines.

30ur focus here is on the empirical analysis, rather than the implementation details. The latter includes
a host of critical issues, including the nature of the support provided, and is outside of the scope of this
paper, but is arguably more important. Interested readers may choose to begin with Del Ninno and Mills
(2015) or Devereux et al. (2017).



non-monetary measures of child well-being. This is in contrast to the large poverty tar-
geting literature (e.g. Grosh and Baker (1995), Coady et al. (2004) and Brown et al. (2018))
that has traditionally focused on proxy-means tests that use poverty scores — proxies for
household income, consumption or wealth — or community-based assessments that use
subjective ranks.* Monetary measures of poverty, while objective, are especially noisy in
agrarian economies characterized by subsistence agriculture and volatile incomes (Deaton
and Zaidi (2002)).> In addition, adverse impacts on children are likely to have the most se-
rious long run consequences early in life. These impacts on children’s human capital have
been found to have long-run consequences on growth at both macro and micro levels (Al-
derman et al. (2006), Victora et al. (2008), and Maccini and Yang (2009)). Consequently,
we focus on internationally comparable measures of child malnourishment. However, as
we discuss below, non-monetary measures are also associated with significant measure-
ment errors. Therefore, we view our analysis as complementary to studies that focus on
monetary measures of poverty.

Third, we use remote-sensed data to automate our categorization of both harvest cy-
cles and drought shocks. Our measure of drought shocks — two to four successive below-
average 10-day rainfall spells during the growing season — while not typically used by
economists, is standard in the agronomy literature (e.g. Sivakumar (1992), Barron et al.
(2003)). Lentz et al. (2019) use a related measure — the length of the longest dry spell —
which is also commonly used in the agronomy literature, but is harder to interpret and
standardize across regions and countries with differing lengths of their respective grow-
ing seasons. We show that our simple measure is consistent with adverse impacts on
stunting in all five countries that we examine. Especially given the concerns around com-
parability and timeliness, and the endogeneity of growing season lengths to short-term
shocks (Sivakumar (1988)) and climate change (e.g. Linderholm (2006)), it is critical to use
measures of growing season disturbances that are robust and standard across different
countries in a region.

Fourth, we show that interpretable (white box) methods such as logistic regressions
and decision trees are comparable to, in terms of out-of-sample predictive accuracy, black

box machine learning methods such as random forests and gradient boosting. Further, we

*Community-Based Assessments are subjective and therefore susceptible to elite capture (Del Ninno and
Mills (2015)). However, they may be a useful source of local knowledge that is not observable or quan-
tifiable (Alatas et al. (2012), Karlan and Thuysbaert (2016)). Therefore, there is the potential to usefully
triangulate this local knowledge with other assessments, as well as more objective information (Premand
and Schnitzer (2018)). This perspective is also gaining currency in the humanitarian sector (Maxwell and
Gelsdorf (2019)).

°In addition, because food prices are particularly volatile in remote rural regions that are likely to be the
most affected by weather shocks (e.g. Brown and Kshirsagar (2015), Baffes et al. (2017), Hill and Fuje (2017),
and Baez et al. (Forthcoming)), spatial and temporal price adjustments may not be sufficiently granular to
adequately capture changes in the real values of household income and expenditure.
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show that conditional inference decision trees (Hothorn et al. (2006)) are almost as robust
(to the introduction of additional noise in the stunting measure) as logistic regressions
and random forests. In other contexts, decision trees are widely considered to be both less
robust to small perturbations of the data and more prone to over-fitting, with the attendant
poor out-of-sample performance (Friedman et al. (2001), Murphy (2012)).> While we show
that the relative disadvantages of using decision trees are less pronounced in our context,
their advantages are clear — traditional proxy-means tests based on regressions are harder
to interpret and more difficult to implement in the field.

Further, regression-based proxy-means tests that are augmented to include variables
that capture droughts, typically assume that droughts influence welfare in a (log) linear
manner (e.g. Del Ninno and Mills (2015), Hill et al. (2019)) or with one-level of interac-
tions (e.g. Dercon et al. (2005)). Regression-based approaches can, of course, involve com-
plicated sets of interactions (e.g. Hill and Porter (2016) and Pape and Wollburg (2019)).
However, the interpretation gets considerably more involved. We show that decision
trees, which involve 4-6 levels of interactions, but with much fewer variables, predict
child stunting with comparable out-of-sample accuracy.

A data-driven framework has the potential to complement expert panels, such as those
that set Integrated Food Security Phase Classification levels — the current global standard
(Maxwell and Gelsdorf (2019)). While USAID’s FEWS NET and the UN’s FAO and WFP
have achieved remarkable progress in making sophisticated remote-sensed detection and
analyses of weather anomalies publicly accessible, standard approaches to estimating the
human impacts of these anomalies are less mature (e.g. Lentz et al. (2019)). Further, expert
panels are not always immune to political influence and other sources of local and national
bias. This problem is particularly acute in those contexts in which the incentives of local,
national and international actors are misaligned (e.g. Alderman (2009), Clarke and Dercon
(2016)).

We conduct this analysis for five southern African countries — Malawi, Mozambique,
Tanzania, Zambia and Zimbabwe (Figure 1). We have six reasons for selecting these coun-
tries. First, all five countries have some segments of their rural populations engaged in
subsistence agriculture. Second, stunting rates, particularly for the rural populations, are
high in all five countries. More broadly, these countries have relatively low scores on
the Human Development Index (see Appendix Figure 2). Third, rural economies and
livelihoods in these countries may be characterized as primarily agrarian or agro-pastoral,
rather than pastoral. Consequently, harvest cycles determine seasonal patterns. Fourth, in

contrast to the countries closer to the equator, there is typically just one harvest cycle every

®These weaknesses are particularly relevant to decision trees that have small terminal nodes. The trees we
estimate typically have terminal nodes that contain more than a 30 children, and often more than a 100
children.



year in all sub-national areas of all five countries (Northern Tanzania is an exception). This
simplifies the analysis. Fifth, the countries border each other and are sufficiently similar
so that some pooled analysis — i.e. analysis that combines data from all five countries —
is reasonable. Sixth, unlike, for example Kenya and Ethiopia, drought-contingent target-
ing and adaptive safety nets had not been systematically implemented during the period
in which the surveys were administered.

The rest of the paper proceeds as follows. In addition to describing the main vari-
ables, the next section describes the methodology we use to estimate harvest cycles and
droughts. Section 3 provides estimates of the average impacts of droughts across the five
countries we study, and then shows that these impacts are more pronounced for the poor-
est households. Section 4 describes our targeting framework and provides estimates for
inclusion and exclusion errors for logistic regressions, decision trees, and decision tree en-
sembles (random forests and gradient boosted trees). We conclude by summarizing our

results and discussing future directions.

2 Measuring Shocks and Outcomes in Agrarian Contexts

2.1 Child Anthropometrics as a Proxy for Child Well-Being

The first two Sustainable Development Goals (SDGs) focus on ending poverty and elimi-
nating hunger across the world.” Cognizant of the limitations of defining poverty exclu-
sively in monetary terms (Sen (1999), Deaton (2016)), the first goal also targets poverty in
a broader sense — including non-monetary and dynamic measures. While goal 1.5 specif-
ically emphasizes the need to "build the resilience of the poor and those in vulnerable situations
and reduce their exposure and vulnerability to climate-related extreme events", precisely how this

target may be measured in practice remains unclear.

Closely related, the second goal concerns ending hunger and malnutrition. Objective
measures of hunger rely on caloric intake which may not be strongly correlated with nu-
trition. Therefore, Deaton (2010, pg. 41) recommends measuring anthropometrics, but
highlights a key data limitation.

The obvious alternative is to use the anthropometric measures directly. Here there has been
enormous progress, through the spread of the Demographic and Health Surveys...These sur-
veys are as close to a gold standard as we are going to get in this area, although the irregularity
of the DHS surveys makes it difficult to use them for monitoring, for example for assessing the

effects of the food price crisis on the heights and weights of children.

Our study may be viewed as an attempt to address this limitation by combining ex-
isting Demographic and Health Survey (DHS) data with remote-sensed information. The

https:/ /www.un.org/sustainabledevelopment/sustainable-development-goals/



DHS data are used to estimate the World Health Organization (WHO) measures of mal-
nourishment (WHO Multicentre Growth Reference Study Group and others (2006)).8 Male
and female growth curves and distributions of height/length -for-age, weight-for-age,
and weight-for-height, are estimated by the WHO using samples of 882 children (longitu-
dinal survey) and 6669 children (cross-section survey) from six countries (Brazil, Ghana,
India, Norway, Oman and the United States). The medians and standard deviations from
these distributions are used by the DHS to calculate z-scores for every child.® Children
under 5, with a z-score below -2 standard deviations (with respect to their age) for a given
metric are considered to be malnourished with respect to that metric.

The measurement of child anthropometrics is challenging and several caveats are worth
noting.!” First, it is assumed that children with similar rearing, health care, and exposure
to environmental hazards will grow in exactly the same manner. This, in turn, assumes
that ethnicity is not related to anthropometrics. For obvious reasons, this is complicated to
delve into, but remains an assumption, rather than an established empirical fact.!’ How-
ever, there is some reassuring evidence that differences (between African and Indian pop-
ulations) in anthropometrics that cannot be explained by income, may be explained by the
disease environment (Coffey et al. (2013)) and culture (Jayachandran and Pande (2017)).
Second, the measurement of a child’s age is challenging (Larsen et al. (2019)). Third, the
surveys are implemented by national statistical offices with differing degrees of expertise.
Taken together, these facts suggest that we should expect that any empirical analysis using
these measures will involve a relatively low signal-to-noise ratio.

Our focus here is on designing a prototype drought-contingent targeting system, rather
than providing a systematic analysis of the causes of stunting.!> However, it is worth not-
ing that other studies have found that stunting is not responsive to single-sector interven-
tions.!3 Multi-sectoral approaches that address food availability, health and sanitation are
associated with reductions in stunting rates (Skoufias et al. (2019)).

In this paper, we view the prevalence of stunting as a time-varying, but lagged, sig-

8We use a harmonized version of the DHS Surveys constructed by Boyle et al. (2019).

9In the case of stunting, this entails subtracting the WHO median height from the child’s height and then
dividing by the WHO standard deviation — all with reference to a particular age.

19Gee Assaf et al. (2015) for an analysis of measurement challenges and data quality concerns.

111f ethnicity does have a role to play in influencing anthropometrics, policies that target stunted children
will have hidden biases that favor some ethnicities over others.

12Qur results speak to concerns raised by Deaton and Cartwright (2018) regarding the causal attribution of
outcomes associated with interventions that are randomly implemented at different locations. We show
that weather shocks are frequent and impact stunting. Therefore, shocks that occur after randomization
may result in the misattribution of the impacts of interventions that aim to reduce child malnourishment.

13For example, using sub-national data from 59 countries, Headey and Palloni (2019) found no impact of
water, sanitation and hygiene variables on stunting.



nal of child deprivation — that may usefully, when combined with remote-sensed data,
inform the design of social protection and other government assistance. We do not, how-
ever, take a position regarding the precise nature of the support required to alleviate the
underlying deprivation(s). Further, a weather disturbance in an agrarian context may be
thought of as an additional deprivation (in the sense used by Sen (1999)), because it con-
strains choices and livelihood opportunities. Support triggered via an adaptive safety net
should therefore not be limited to maternal and child health, but instead involve sectors

most relevant to that location and country.

2.2 Measuring Shocks to Crop Production

There is no consensus on the best approach to monitoring crop production in Sub-Saharan
Africa. At the same time, there is broad agreement on both the challenges and the relevant
sources of information. There are two related challenges to measuring crop production
in these data-constrained contexts (e.g. Burke and Lobell (2017), Jin et al. (2017)). First,
there is a dearth of information on actual crop yields, particularly for small-holder farmers
— farmers that constitute the majority of poor households. Second, without adequate
ground-truthing, analyses of high-resolution satellite data provide noisy predictions. This
is exacerbated by the fact that areas under crop production are constantly changing and
the mix of crops produced together is hard to classify across contexts. Consequently, it is
also challenging to transfer knowledge gained in a particular context to other locations.

Therefore, organizations charged with monitoring crop production in Sub-Saharan
Africa rely on remote-sensed information averaged at broader spatial scales (e.g. Funk et
al. (2019)) — traditionally focusing on vegetation (e.g. Becker-Reshef et al. (2010), Brown
(2014)) and rainfall (Funk et al. (2015)), both of which have longer time series than the
newer measures. Unlike rainfall, the Normalized Difference Vegetation Index (Tucker
(1979)) is a cumulative measure. With available ground data, as is the case in the United
States, remote-sensed vegetation anomalies can be calibrated to historic crop yields to
build models that provide accurate out-of-sample estimates (Johnson (2014)). However,
when ground data are scarce, vegetation indices cannot be properly calibrated and less
is known about the relationship with crop-productivity in particular contexts (Burke and
Lobell (2017)). Rainfall, during the growing season, is unambiguously correlated with
crop productivity. However, the influence of rainfall on yields depends on its timing and
distribution. Therefore, aggregating rainfall estimates over a growing season can be mis-
leading (Sivakumar (1992), Barron et al. (2003)).

Given these challenges, we employ the following strategy. First, we focus on shocks

at a particular spatial scale: a country’s first administrative level (Hijmans et al. (2019)) —



which we refer to as a province for the rest of this paper.'* Adverse weather events are
typically spatially correlated, and even expected long-run changes in weather patterns, in
Southern Africa and elsewhere, are expected to occur at broad spatial scales (e.g. Shon-
gwe et al. (2009)). This choice is consistent with interpreting our shocks as being those
that affect the entire local economy. Second we use Normalized Difference Vegetation In-
dices (NDVI) — averaged at the province x month level — to determine harvest cycles for
each province. Third, we use rainfall estimates, averaged for each province, to estimate
sequences of dry spells. In the rest of this section we describe our methodology and re-

sults in more detail.
A. Estimation of Harvest Cycles

The NDVI data were collected by the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor aboard the NASA polar orbiting satellite Terra from February 2000 to
April 2019. MODIS provided an NDVI estimate every eight days at an approximately
250 meter ground sample (pixel) resolution across the entire study area. To isolate the
NDVI signal to only those areas where crops are expected the time series was ‘masked’
by the Croplands and Cropland /Natural Vegetation Mosaic categories found within the
IGBP land cover classification (Loveland et al. (2000)). Next, to reduce potential pixel-level
noise (both in time and space) and simplify the modeling efforts, the measurements were
aggregated to monthly values at a 5 kilometer grid cell size. And finally, the values were
spatially and temporally averaged further to each province x month.

We identify harvest cycles — more specifically growing months, the month that a har-
vest starts, and the lean season — in the following algorithmic manner.!® First, we calcu-
late the percentage change in monthly NDVI. A month is labeled as a growing month if
the percent increase is greater than 20 percent. Second, the start of the harvest season is
defined as the first month in which the NDVI falls by at least 5 percent. Third, the lean
season is defined as the three months preceding the start of the harvest season.

For a graphical illustration of the use of monthly NDVI averages to estimate harvest
cycles, please refer to Figures A-la to A-le in the appendix. There are subtle differences in
harvest cycle patterns even within a country. For example, in Mozambique (Figure A-1b),
the South-Western province of Manica has a slightly earlier harvest cycle than the North-
Eastern province of Nampula. In Manica, the average November NDVI is greater than

4These are districts in Malawi, regions in Tanzania, and provinces in Mozambique, Zambia and Zimbabwe.

150ur purpose is to standardize these definitions so that they can be used to build an automated (i.e. rules-
based) definition of a drought shock. This is a prototype; in practice we could use NDVI data at more
disaggregate temporal frequencies, allow for differences in harvest cycles at more refined spatial scales,
and incorporate other data (e.g. soil moisture) into this algorithm.



its average for October, while for Nampula the two months are similar. Consistent with
this, NDVI peaks in March in Manica, while it peaks a month later in Nampula. Unlike
in temperate countries, tropical Africa has a green harvest and some local food insecurity
is alleviated just after the NDVI has reached its peak.'® More pronounced within-country
differences are evident closer to the equator. In Tanzania (Figure A 1-c), Kilimanjaro, in
the Northern Highlands, exhibits a bimodal pattern. In contrast, Iringa and Mbeya, in the
Southern Highlands, have unimodal harvest cycles.!”

We have chosen not to use deviations from NDVI averages as a measure of weather
disturbances. This is because NDVI deviations may reflect deviations in vegetation un-
related to food. However, it is essential to have a broad understanding of what harvest
cycles typically look like for each province, to more accurately estimate the impacts of
weather disturbances during a child’s birth season. In what follows, we use this under-
standing, along with rainfall data, to develop measures of drought shocks.

B. Identification of Dry Spells

A consensus is yet to emerge on best-practice approaches to measuring droughts (Tren-
berth et al. (2014)). Soil moisture, evapotranspiration and water levels are all important.
However, there are significant challenges to developing comprehensive measures for trop-
ical Sub-Saharan Africa and other data-scarce contexts. At the same time, there is little
disagreement that anomalous rainfall during the growing season adversely affects crop
productivity (Funk et al. (2019)). Consistent with our overall objective, here we develop a
simple and transparent approach to measuring droughts. Other than the use of the NDVI
to estimate harvest cycles, the only data we use are the CHIRPS Rainfall dataset (Funk et
al. (2015)).

Our algorithm involves the following steps. First, we calculate the average and stan-
dard deviations of total rainfall (in mm) for every 10-day period or decad in a given month
in any given province (i.e. decad x month x province).!® Second, we calculate the stan-
dardized anomalies for every decad x month x province x year. Third, we exclude all
decads that are not in the growing season. Fourth, we define a dry spell of length n for a
given decad, as having below average rainfall in that decad, as well as the n — 1 preceding

decads. In addition, at least half the decads in a dry spell are required to receive less than

16Expert, on the ground opinion (e.g. http://fews.net/southern-africa/mozambique) is broadly consistent
with these observations (scroll down to look at the seasonal calendars for South-Central and Northern
Mozambique).

17Gee, for example, http:/ /fews.net/east-africa/tanzania.

8The length of the last decad in a month adjusts so that it just covers the month. Consequently, decads may
be compared across years.



-0.5 standard deviations rainfall. Fifth, we define a harvest as being affected by drought if
the preceding growing season contains at least one dry spell.

Our measure is designed to capture the idea that large, but infrequent, amounts of
rainfall during a growing season may be consistent with close to average total rainfall
during a growing season, but will still cause stress and consequently engender below-
average harvests. In addition, this approach ensures that a dry spell is not characterized
by a sequence of decads with below-average rainfall, each of which is close to the average.

Sivakumar (1992) has previously employed a very similar approach. Instead of assum-
ing that, at least, half of the decads in a dry spell have a -0.5 standard deviation rainfall,
he sets a threshold in mm (and defines a shock for different definitions of the threshold).
Our approach is better suited to be used across regions in a country and across countries
because we employ standardized measures.

Table 1 describes the incidence of dry spells for the five countries we study. There
are differences across countries. Mozambique and Tanzania had the lowest incidences
of 1-decad and 2-decad dry spells. In Mozambique a 1-decad dry spell occurred only 55
percent of the time between 2001 and 2018, while a 2-decad dry spell occurred 43 percent
of the time. In contrast, Malawi exhibited the greatest occurrence of dry spells, with a
1-decad dry spell occurring 89 percent of the time and a 2-decad dry spell occurring 71
percent of the time. A 4-decad dry spell occurs rarely — less than 10 percent of the time
— in 3 of the countries. Therefore, we choose a 3-decad dry spell as our main measure of
drought.!

When a drought is defined as occurring during a growing season with a 3-decad dry
spell, 3 of the countries (Tanzania, Mozambique and Zimbabwe) experienced droughts 22
percent of the time between 2001 and 2018, while Zambia experienced droughts 32 percent
of the time, and once again Malawi is the outlier with droughts occurring 45 percent of
the time. Further, Mozambique and Malawi experienced greater incidences of droughts
in the last decade in comparison to the previous one.

In this section, we have explained our approach to, and rationale behind, measuring
child well-being and drought shocks in contexts in which data are scarce. In the next
section, we establish a causal relationship between droughts and child stunting, quantify
the average magnitudes of the drought impacts, and show that these impacts vary across
countries and households.

9In the appendix (Tables A3 and A4) we show that other lengths are also consistent with significant impacts
of droughts on stunting.
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3 Quantifying the Impact of a Drought on Stunting

3.1 Relationship between Droughts and Stunting

In what follows, we document two important characteristics of the relationship between
drought shocks and child stunting. First, we show that our measures of drought shocks
are causally related to stunting and other child malnourishment outcomes. Second, we
show that the average magnitudes of these impacts are comparable to the impacts asso-
ciated with differences in wealth status, as well as with differences in a mother’s literacy
level.?

It is possible that droughts occur more frequently in areas that are less developed and
that are characterized by a greater prevalence of child malnourishment. The most disag-
gregate spatial unit in the Demographic and Health Surveys (DHS) is the cluster. This is
a village or a small collection of villages. By employing cluster x month fixed effects, we
control for time-invariant influences at the cluster level (such as variation in remoteness,
local governance and social structures, and in agro-ecological factors such as altitude and
soil quality) interacted with the factors related to the month (harvest cycles, festivals, and
school calendars). The drought coefficients are identified by variation in the incidence of
shocks across years.

When we discuss controlling for month effects, we refer to the month that a child was
born. This is measured with error (Larsen et al. (2019)). In the appendix (see Tables Al and
A2), we show that our results are robust to removing children born at the start of the year
(January and February), the end of the year (November and December), children with
birth months corresponding to whole years, and including age and age? as explanatory
variables.

Table 2 describes results when child anthropometric outcomes are regressed against
droughts, with cluster x month fixed effects. The sample includes rural populations of
tive Southern African countries (Mozambique, Malawi, Tanzania, Zimbabwe and Zam-
bia). For the stunting regression, we control for 2,934 cluster x month fixed effects. As a
tirst-pass estimate of the magnitude of the impact of drought shocks on the likelihood of
stunting, it is useful to start with this basic set of regressions that uses wealth quintiles
as the only household-level controls (Equation 1). S;;; measures whether a child i born in

cluster c in year t is stunted at the time of measurement. D is a dummy variable that

20These are likely to be under-estimates. Responses to droughts — both systematic and ad-hoc — from
national governments, international organizations, and even large non-profits, may have mitigated the
impacts of previous shocks in all of the countries that we examine. In addition, there are other confound-
ing factors that we have not adjusted for — including those related to migration, and infant and child
mortality. As a robustness check, we exclude children whose families moved in the preceding 5 years be-
fore they were surveyed and show that our results are robust to this exclusion (Table A5). Further, wealth
is measured at the time of the survey and not at the time of the occurrence of a drought.
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captures whether a drought occurred in cluster ¢ during the growing months leading up
to the harvest season (t) that coincided with the child’s birth.?! D, (t11) is similar except it
refers to the year after the birth year. W; is a vector of four dummy variables indicating
whether the child was born in a household in one of the top four wealth quintiles (the
lowest wealth quintile is the contrast variable). The month of birth x cluster fixed effect is
captured by 0.,. « is the constant. The error is clustered at the cluster level.

Sict = &+ BoDct + B1Dc(111) + YWi + Oem + €ic (1)

Wealth quintiles are relative measures and cannot be compared across countries. How-
ever, after controlling for cluster fixed effects, they may be used to estimate the relation-
ship between wealth status and the likelihood of stunting for households in the same
cluster. Two points are worth noting. First, as expected, after controlling for geographic
and spatial factors, differences in wealth are associated with differences in child anthropo-
metric measures. When compared with the poorest quintile, every other quintile is signif-
icantly less likely to be stunted. Second, drought impacts are comparable to a household
falling from the second wealthiest quintile to the poorest quintile. On average (for the five
countries taken together), for stunting outcomes, the impact of a drought during a child’s
birth season (10 percentage points) is similar to the difference between being born to a
household in the poorest quintile instead of the second wealthiest quintile (8 percentage
points).

While these numbers are large, three important caveats need to be kept in mind. First,
there is limited variation in wealth status within a cluster. Second, the wealth quintiles
are constructed (c.f. Rutstein (2015)) in a manner that suggests that this DHS wealth index
is probably a very rough approximation of our idea of household wealth — in particular,
no attempt is made to account for differences in the quality and price of the underlying
assets, especially the two most important rural assets (land and livestock). Third, these
impacts are averages across countries. However, what we would like to stress is that the
magnitude of the impact of a drought on stunting is substantial, especially given that
droughts (based on our definition) occur more than a fifth of the time in all five countries.

Table 3, which reports results from Equation 2 below, uses a more complete set of
controls, including maternal biological factors M; — which include the mother’s height,
weight and age and the birth order and the birth interval —- as well as all the assets (A;)

that are used to construct wealth indices, instead of the quintiles of the wealth index.

Sict = a0+ ,BODct + ;Bch(t_H) + ,BmMi + ,BaAi + Ocm + €ic (2)

21 As discussed above, this varies by province, we use the cluster here to make the notation simpler.
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A poor harvest season at the time of a child’s birth (defined here as at least one 3-decad
dry spell during the preceding growing season) is associated with a 7 percentage point
increase in stunting. Forty-one percent of children under five, in this rural population,
are stunted. Therefore, on average, stunting rates are approximately 16 percent higher for
children born during a poor harvest year. If the poor harvest occurs in the year after a
child’s birth, it is associated with a 4 percentage point increase in stunting. The effects of a
drought on a child being underweight are also large. On average, 15.1 percent of children
in this population are underweight. A drought causes a 3 percentage point, or 20 percent
increase in the likelihood of a child being underweight.??

We also report results for wasting in Table 3, however, just 5.1 percent of the children
in this population are wasted, and we find no impact. A child could be stunted and un-
derweight and not wasted. 12.6 percent of the children are stunted and underweight. A
drought is associated with a 3 percentage point increase in children that are both stunted
and underweight. 45.2 percent of the children are malnourished based on any of the three
metrics. Droughts are associated with a 6 percentage point increase for this category.??

While employing cluster x month fixed effects provides evidence in favor of a causal re-
lationship between droughts and malnourishment outcomes, the method requires a child
to have at least one counter-part, meaning another child under 5 born in the same cluster
and month. For the stunting regressions, this approach forces us to eliminate almost a
third of our sample ( 31 percent) — 12,800 children out of 40,817 — leaving us with 28,017
observations. To increase our sample size, as well as connect our results to drought-
contingent targeting (discussed in the next section), we use province (0,) and year (6,)

fixed effects for our main regressions.

Table 4 describes results from estimating equation 3. Coefficients are estimated using
variation within provinces rather than within clusters. The magnitudes of the drought
impacts are comparable to those obtained from the more stringent specifications that use
cluster x month fixed effects. Similarly, they are quantitatively similar to the effects of
wealth on stunting. The adverse impact of a drought during the birth season ( 6 per-
centage points) is comparable to a child being born to a household in the poorest wealth
quintile instead of the middle wealth quintile (5 percentage points). These impacts are

22While it may appear that variables that have the greatest influence are the biological ones involving a
mother’s height and age, the mother’s height is correlated with wealth, even within a cluster. Therefore it
is difficult to separate biological and economic causes.

2 A child is stunted (underweight) if her/his height-for-age (weight-for-age) is two standard deviations
below the WHO median. A child is wasted if her/his weight-for-height is two standard deviations below
the WHO median.
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even larger for droughts that occur the year after a child’s birth. The impact of a drought
during the birth season is more muted for a child’s weight (measured at the time of the
survey), but it is still statistically significant. Being underweight is likely to be influenced
by more contemporaneous factors, while impacts on stunting are more lasting.

This method also allows us to estimate the impacts on a child being born during the
lean season. The impact, on stunting, of a child born during the lean season (3 percentage
points) is as consequential as the difference in a child being born into a household in
the poorest quintile instead of the second poorest quintile. Once again, the likelihood of
being underweight, if a child is born during the lean season, is muted (but still statistically
significant).

Table 5, comparable to Table 3, uses a full set of controls, but employs province and
survey year fixed effects (equation 4 below).

Sict = a+ BoDet + ,Bch(t—&—l) + BuM; + BaAi + ,Bpep + ,Bygy + €ic (4)

Once again, it is clear that the height of a child’s mother is a major influence on the likeli-
hood of a child being stunted, even after controlling for factors correlated with household
wealth and income. The magnitudes of the drought impacts are substantial, when com-
pared to the other factors. A child has a 4 percentage point greater likelihood of being
stunted if born during a poor harvest than a normal harvest. This is double the magni-
tude of the impact associated with having a mother that is not literate. A child born to a
partially literate or illiterate mother has a 2 percentage point greater likelihood of being
stunted (controlling for other wealth correlates). Similarly, other important deprivations
— such as not owning livestock and not treating drinking water — are comparable to
drought impacts.

Having established that average drought impacts are causal and significant, both in
terms of magnitudes and p-values, it is worth examining how these impacts may vary
across countries. This is possible because we can use variation in birth years. If we were
trying to understand drought impacts on the diversity of a child’s diet, for example, the
available data would limit us to exploiting cross-section variation.?* Given that weather
anomalies are spatially correlated, at different spatial scales, this would necessitate com-

bining data from several countries and regions.

3.2 Impacts across Countries

Droughts may exert differing stunting impacts in different countries, even in the case in

which all the countries are in the same region. First, countries have very different so-

24The DHS reports nutrition intake for children between 6 and 24 months at the time of the survey.
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cial protection, nutrition and food policies. Second, countries have different historical
relationships with international organizations that provide drought-contingent support.
Third, countries have different social structures, which result in differences in how soci-
eties help the most vulnerable diversify risks associated with shocks. In what follows, we
restrict our analysis to stunting outcomes, but it is worth keeping in mind that droughts
also impact a child’s weight.

Table 6a describes stunting impacts across the five countries, in a manner that is anal-
ogous to Table 3. Specifically, we begin with the first regression in Table 3 and repeat the
exercise for each of the five countries separately. With the exception of Malawi, the other
four countries exhibit drought impacts that are between 5 and 12 percentage points, all
of which are statistically significant. Zambia (12 percentage points) and Zimbabwe (11
percentage points) have the largest impacts. Mozambique is close to the average of the
five countries (7 percentage points), and Tanzania is the smallest (5 percent points), but
still large.?

In contrast, a drought during the birth season in Malawi is not associated with a greater
likelihood of stunting. We conjecture that there are three possible reasons for this. First,
our algorithm may not capture harvest cycles as accurately for Malawi. Second, Malawi
may have policies that protect children during the birth year, especially in drought years.
Third, Malawi also has recurring floods. Therefore, it is possible that the drought dummy
is being compared to both flood years and normal years. However, even in Malawi,
droughts do exert a large and significant impact on stunting (9 percentage points) if they
occur the season after a child is born.

Table 6b shows results for the same exercise in which a child’s Height for Age Z-Score
(HAZ, multiplied by 100) is the dependent variable. The results are very similar. On
average a drought during the birth season is associated with a 0.19 standard deviation
decrease in the height for age z score. Mozambique, Zambia and Zimbabwe have impacts
that are larger than the average and Tanzania and Malawi have impacts that are more
muted. But once again, even for height for age, the drought impacts (for either or both
the birth season or the season following the birth) are statistically significant for all five
countries, even after controlling for cluster x month fixed effects.

Taken together, the results in Tables 6a and 6b support the arguments we made above
regarding the causal attribution of the impact that drought shocks have on child stunting.
This is encouraging from the perspective of the design of an internationally comparable
drought-contingent system, because Tables 6a and 6b provide evidence in support of a

causal relationship for each of the five countries. Future work will need to repeat this

B All five countries show similar relationships between a mother’s height and stunting, as well as a child’s
age and stunting. This speaks to reasonable data quality standards across the surveys.
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exercise for other parts of the world. The Sahel region and the Horn of Africa are impor-
tant regions, that are different than the countries we have examined here, in terms of both

agro-ecology and governance.

3.3 Heterogeneous Impacts across Household Types

Given that budgets are limited, it would be very useful for interventions that aim to miti-
gate the impacts of droughts to be able to identify ex-ante (at a low-cost) children in house-
holds that are most likely to be affected. While this may seem straightforward, there are
both conceptual as well as measurement challenges involved. From a conceptual perspec-
tive, should interventions target children that are in the poorest households, or children
close to the stunting threshold, or children with profiles that have historically exhibited
the largest drought impacts??® If children that are close to the stunting threshold are also
more vulnerable to drought shocks, and in the poorest households, then supporting this
group of children would address all three concerns. However, as we show below, these
categories may not fully overlap.

From a measurement perspective, the set of surveys that capture child anthropomet-
rics, as well as monetary poverty measures, both of acceptable quality, is very small. The
DHS data on child anthropometrics are of reasonable quality, but the surveys do not have
any economic measures. We are left with using the wealth indices, which are imperfect,
for reasons discussed earlier.

Brown et al. (2017) show that around half of all undernourished children and under-
weight females, in their sample of 30 countries in Sub-Saharan Africa, are found in the top
three DHS wealth quintiles. They use this fact to infer that a large fraction of poor individ-
uals do not live in poor households, as defined by the wealth index. While this is certainly
plausible, in our view, at least part of what they attribute to intra-household inequality or
local health effects could merely reflect the error associated with measuring a household’s
wealth status.?” In any event, the facts they document, rather than their inferences regard-
ing those facts, are important for our purposes. Figure 2 (which excludes outliers) shows
that there is significant overlap in height for age z-scores across the five wealth quintiles
for all the five countries in our study. Consequently, the DHS wealth quintiles may not be
a good proxy for stunting.

Wealth quintiles are, however, the best available proxy for household wealth in the

26The incentives of policy makers and other organizations may be consistent with approaches that meet
particular targets, for example, a given reduction in stunting rates. However, the threshold of a negative
2 standard deviation difference from the median is not based on biology or economics.

?’The data that are needed to address these issues are not available. In the future, there may be surveys that
provide good quality measures of anthropometrics and economic variables.
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DHS data. Further, while they may not predict stunting accurately, the impact of a drought
may vary across wealth quintiles. Figure 3-a shows the distribution of HAZ scores for the
lowest quintile, contingent on a drought. Compare this with Figure 3-b, which shows the
drought-contingent HAZ distributions for the top four wealth quintiles. First, the density
close to the stunting threshold is higher for the lowest wealth quintile. Second, the shift
leftward appears to be more pronounced for the lowest wealth quintile. Tables 7 and 8
confirm this observation.

Table 7 starts with the regression reported in Table 5 (specification 1) and estimates
this regression for different sub-samples of wealth quintiles and countries. Since sample
sizes are limited, we group the second and third lowest quintiles and the wealthiest two
quintiles. For all the five countries taken together, the impacts are muted for the top two
wealth quintiles. The top two quintiles exhibit a 1 percentage point increase in stunt-
ing, considerably smaller than the 6 percentage points impact for the bottom quintile. In
Mozambique, Malawi (for the season after birth) and Tanzania, the differences in impacts
across wealth quintiles are large. The magnitudes of the drought impact for the lowest
quintile is more than double the impact for the wealthiest two quintiles. However, in
Zimbabwe and Zambia, the drought impacts are comparable across wealth quintiles.

It may be that in Tanzania, Malawi and Mozambique, children in the wealthier quin-
tiles have z-scores significantly above the stunting threshold, and are still vulnerable to
drought shocks, even though they do not fall below the threshold. Figure 2 shows that the
z-scores for children in the wealthiest quintile in these three countries are, in fact, lower
than the z-scores for the comparable children in Zambia and Zimbabwe. There are smaller
proportions of children in the wealthiest quintiles in Zambia and Zimbabwe below the -2
standard deviation cut-off.

Table 8, repeats the exercise reported in Table 7, except using height for age z-scores,
rather than stunting outcomes as the dependent variable. The results are very similar. In
Mozambique, Malawi (once again for the season after birth) and Tanzania, drought shocks
are associated with larger impacts for the poorest wealth quintile compared to the wealth-
iest. The results are most pronounced for Mozambique — a country with large differences
in agro-ecological conditions, wealth and connectivity. For the poorest quintile, a drought
shock in the birth season is associated with almost half a standard deviation lower z-score
(-0.465 standard deviations). In contrast, the wealthiest quintiles have no decline in z-
scores (a 0.041 standard deviation increase that is not significantly different from zero).
At the opposite extreme, in Zimbabwe, impacts are close to the national average (-0.29
standard deviations) regardless of wealth status.

We draw three conclusions from this exercise. First, although the data are noisy, we
show that poor harvests (either during the birth season or the following season) exert a

strong adverse impact on children born to households in the lowest wealth quintile in all
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tive countries. This holds true for both stunting as well as for height-for-age outcomes.
Second, in four of the countries (Tanzania, a food surplus country, is the exception), chil-
dren in households in the second and third lowest wealth quintile are also significantly
affected by droughts. Third, we show that for the top two quintiles, the impacts vary by
country. Mozambique, Tanzania and Malawi show considerably muted impacts, while
Zambia and Zimbabwe have impacts that are comparable across the DHS wealth quin-
tiles.?® Taken together, this suggests that while the impacts of droughts are most pro-
nounced for the lowest wealth quintile (which corresponds to what practitioners refer to
as the ultra-poor population), broader segments of the rural populations of all five coun-
tries are affected by droughts.

4 Pragmatic Drought-Contingent Targeting Strategy

While machine learning applications to early warning frameworks, and poverty targeting
more generally, hold considerable promise — particularly when timeliness and accuracy
are critical — the majority of these approaches are not interpretable. Our contribution here
is to emphasize the value of simple approaches in contexts that are both controversial and
uncertain. Baumol and Quandt (1964) provide a useful characterization of four necessary
attributes for optimally imperfect decisions: i) objectively measurable inputs and outputs;
ii) objectively communicable decision criteria and an absence of human judgment; iii) a
unique and deterministic mapping of inputs to decisions; and iv) decision algorithms that
involve inexpensive and verifiable calculations.

It is worth examining a poverty targeting framework from this perspective. McBride
and Nichols (2016) seminal application of machine learning to poverty targeting is the first
to use an approach that is explicitly designed to improve out-of-sample prediction. How-
ever, along with Sohnesen and Stender (2017), they employ a black-box random forest
methodology.?’

Mark Schreiner’s insightful and widely-used approach to designing proxy-means tests
(e.g. Schreiner (2007), Schreiner (2008)) emphasizes interpretability and ease-of-use, in
addition to out-of-sample performance. However, as Diamond et al. (2016) argue, his
approach is not based on well-understood statistical methods and, while it does well on

2These results may be complemented by surveys that contain more information on wealth, income and
consumption to better understand the reasons for these differences. For example, we are unable to sep-
arate the mechanisms through which drought shocks impact stunting. Possible channels involve crop
income, farm labor and market prices. Further, there are social and economic channels through which
shocks could be mitigated. In Zambia, different from the other countries, the mining industry provides a
critical source of income and employment for several local economies.

2 These exercises are done in the context of monetary poverty targeting, which involves a larger number of
explanatory variables and a higher signal-to-noise ratio than our context.
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average, its out-of-sample performance is less satisfactory for different parts of a country.
Kshirsagar et al. (2017) combine penalized (regularized) regressions with sub-sampling
(stability selection) to develop monetary poverty measurement tools that are both inter-
pretable and relevant across a diverse country. This is more useful for constructing mone-
tary poverty PMTs because there are a larger number of candidate explanatory variables.

In what follows, we train commonly used black box machine learning methods (Ran-
dom Forests and Gradient Boosting) and compare these with logistic regressions and de-
cision trees. The black box methods we use are among the most successful prediction
methods for tabular data (Friedman et al. (2001)). We train the models by optimizing
hyper-parameters based on the out-of-sample log-loss (cross-entropy) metric using 10-
fold cross-validation.3® We test these models using a validation data set that was not used
to train the model.

Table 9 summarizes results for the four predictions models. The results are similar for
all five countries. Logistic Regressions, Random Forests and Gradient Boosting have al-
most identical out-of-sample performance. In the context of monetary poverty, Caire and
Schreiner (2013) and Brown et al. (2018) argue that objective functions are flat for a range
of parameters around the optimum, and therefore more sophisticated prediction methods
may not improve the out-of-sample performance of a proxy-means test. With respect to
our particular context, the results summarized in Table 9 (and Table 10, discussed below)
provide unambiguous support for this hypothesis.®!

Table 9 shows that classification trees are only slightly less accurate than the other
methods.?? Interpreting differences in log-loss measures is less useful than directly es-
timating out-of-sample targeting errors. However, these errors cannot be summarized
by one number, and depend on a government’s (or an organization’s) budget. At one
extreme, a government may be able to afford to reach every child. In which case, the pro-
portion of poor children that are excluded from the intervention (i.e. the exclusion error)
will be zero. However, the proportion of non-poor children that are included in the inter-
vention (i.e. the inclusion error) will be 1. At the other extreme, if the government does
not reach a single child, the exclusion error will be 1 and the inclusion error will be zero.
Typically governments and organizations do not have the requisite budgets to reach every
single child.

The out-of sample targeting errors are estimated using these four steps. First, data on
children in the training set are used to build the model and children in the test set are then

39For our binary classification problem this is — 3 Y_[Silog(p;) + (1 — S;)log(1 — p;)]. Where S; is the dummy
capturing whether child i is stunted and p; is the predicted probability that the child is stunted.

31In the appendix we show that this is also true for predictions of height for age z-scores (see Table A7).

3In the appendix (Table A6) we show that this remains true even after introducing a zero mean and one
standard deviation noise term into the height-age z-scores for children in the training set.
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ranked based on the predicted (out-of-sample) probability of not being stunted. Second,
for a budget of b, a child is included if the percentile is less than b. Third, this inclusion
status is compared with the actual stunting dummy. Fourth, we calculate inclusion and
exclusion errors. This exercise is repeated for different budgets.

Table 10 reports out-of-sample inclusion and exclusion errors for different budgets - in
which 20, 30, 40, 50 and 60 percent of the children are reached. We draw three conclusions.
First, the results are almost identical for logistic regressions, boosting and random forests.
This is consistent with the almost identical log-loss measures. At the same time, the pre-
dictions from the three models are not perfectly correlated, with correlations typically
ranging from 0.85 to 0.95. This suggests the possibility of combining these into an ensem-
ble model that may improve out-of-sample predictive accuracy (Friedman et al. (2001)).
We do not pursue this direction in this paper, because our focus is on interpretability.

Second, the methods have explanatory power, although there are errors in exclusion
and inclusion. A PMT constructed using a logistic regression, with a budget consis-
tent with reaching 60 percent of the children, will exclude between 24 and 29 percent of
stunted children, while also including between 50 and 53 percent of non-stunted children.
Therefore, when combined with geographic targeting or a community-based assessment,
a quantitative framework designed using these methods will add substantial value to the
targeting of an intervention.

Third, and perhaps most usefully for a practitioner, decision trees have comparable
out-of-sample performance. Decision trees are easy to interpret and typically involve
fewer variables. As such, these trees provide data-driven rules of thumb that are free from
the cognitive biases typically associated with heuristics (Tversky and Kahneman (1974)).
Further, even compared to logistic regressions, they are much easier to implement in the
tield. However, practitioners would be limited to a certain number of budget choices,
because the predictions depend on the number of terminal nodes, and are therefore dis-
continuous.

For example, in Mozambique, a budget consistent with reaching 62 percent of the chil-
dren is consistent with excluding 26 percent of stunted children and including 52 percent
of non-stunted children (Table 10). This is comparable to a logistic regression used to
reach 60 percent of the children. However, if the government has a smaller budget, it
would need to reach just 28 percent of the households. The exclusion errors (63 vs 59) and
inclusion errors (21 vs 22) are comparable to a method informed by a logistic regression
that reaches 30 percent of the children.

Continuing with Mozambique, Figure 4 illustrates an example decision tree. Zones
(i.e. Provinces) 1-6 are in Central and Northern Mozambique.33 The tree in Figure 4

33These are Cabdo Delgado, Niassa, Nampula, Zambezia, Tete and Manica.
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shows that droughts most affect rural children who live in provinces in Northern and
Central Mozambique, are above 6 months old and have mothers under 5 ft. These are the
provinces that have a greater proportion of households engaged in subsistence agricul-
ture.

Figure 5, for rural Zambia, shows that geography is less important in predicting stunt-
ing. Once again, the most vulnerable children are above 6 months old. For children with
mothers who are of intermediate height ( between 5 ft and 5ft 3 inches), the drought im-
pacts depend on household assets. In the case of children born to tall mothers (i.e. above
5ft 3 inches in height), the likelihood of stunting is, in fact, high if the mother is under-
weight and lives in a house with a primitive roof.

Our objective here is to demonstrate that decision trees provide several advantages
over less interpretable and harder to implement targeting tools — at least in the context
that we have examined. In practice, considerably more work needs to go into incorporat-
ing local information, program contexts, and geographic data into the design of a target-
ing tool. We believe that incorporating objective and feasible targeting tools into program
design will allow resources to more efficiently reach their intended beneficiaries.

The shock-sensitive programs in both Kenya and Ethiopia do attempt to use designs
informed by regressions — although successful in serving the poor, these programs have

experienced challenges expanding and contracting in a state-contingent manner.3

5 Conclusions

We have constructed a prototype drought-contingent targeting framework that may be
used to inform the design of social safety nets in contexts in which data are scarce. To do
this we address three concerns. First, we have developed measures of drought shocks that
are simple, transparent and easy-to-communicate. Second, we have shown that droughts
have a large impact on stunting in Southern Africa — comparable, in size, to the effects
of mother’s illiteracy and in a fall to a lower wealth quintile. Third, we show that inter-
pretable methods such as decision trees and logistic regressions predict stunting as accu-
rately as black-box machine learning methods. Taken together, our analysis lends support
to the idea that a data-driven approach may contribute to the design of policies that miti-
gate the impact that climate change has on the world’s most vulnerable populations.

We have focused on one particular spatial scale — a first administrative level (or

province or region). Weather disturbances occur at different spatial scales. At one extreme,

34While several studies have documented the positive impacts of Ethiopia’s Productive Safety Net Pro-
gramme (e.g. Gilligan et al. (2009)), we are not aware of a study documenting its impacts on shock miti-
gation. Further, Berhane et al. (2017) find that the program did not improve child nutrition outcomes —
although there are no controls for weather events or other shocks.
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shocks may occur at the household or village level. At another, shocks may occur at a na-
tional or region level. A better understanding of the impacts of shocks at different spatial
scales requires knowledge of how food markets operate. Weather disturbances in areas
that are connected to national and international markets may have a much more muted
impact compared to disturbances that occur in remote rural areas.?® Further, weather dis-
turbances in food-surplus areas may engender food scarcity in other parts of a country.
A drought-contingent targeting framework needs to incorporate this information.

While the data we have used in this study are freely available, collecting these data
requires substantial public investment and capacity. Our overarching objective is to lever-
age nationally representative, comparable and publicly available data to construct frame-
works that are transparent and straight-forward to communicate. We believe that these
are essential prerequisites to designing shock-sensitive government systems that are both
credible and sustainable.

%See, for example, Baffes et al. (2017), Hill and Fuje (2017), and Baez et al. (Forthcoming).

36Baffes and Kshirsagar (forthcoming) develop a quantitative approach to understanding market systems in
Tanzania — in particular, they identify markets that are the main suppliers of maize and rice, and markets
from which demand shocks originate.
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Table 1: The Frequency of Droughts by Country and Decade

Average Incidence of Dry Spells

Period 1Decad 2Decads 3 Decads 4 Decads 5 Decads
Mozambique
2001-2009 0.52 0.39 0.16 0.07 0.04
2010-2018 0.61 0.50 0.32 0.13 0.00
2001-2018 0.55 0.43 0.22 0.09 0.03
Malawi
2001-2009 0.85 0.64 0.39 0.20 0.15
2010-2018 0.95 0.82 0.54 0.23 0.10
2001-2018 0.89 0.71 0.45 0.21 0.13
Tanzania
2001-2009 0.60 0.49 0.26 0.09 0.05
2010-2018 0.52 0.35 0.16 0.06 0.01
2001-2018 0.57 0.43 0.22 0.07 0.04
Zambia
2001-2009 0.71 0.58 0.32 0.11 0.03
2010-2018 0.78 0.61 0.31 0.20 0.09
2001-2018 0.74 0.59 0.32 0.14 0.06
Zimbabwe
2001-2009 0.61 0.41 0.20 0.03 0.01
2010-2018 0.79 0.61 0.25 0.11 0.01
2001-2018 0.68 0.49 0.22 0.06 0.01

Notes: A dry spell is defined as below average rainfall (for that province x decad) for every
decad in the sequence, with at least half the decads having less than -0.5 standard deviations
of rainfall.
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Table 2: Drought Impacts on Child Anthropometrics
OLS with Cluster x Month Fixed Effects and Wealth Quintile Controls

@™ @) @) (4) ©)
VARIABLES Stunted Underweight  Wasted Stunted & Underwt Any
Drought: Birth Season 0.10%** 0.04*** 0.00 0.04*** 0.09***
[8.16] [4.01] [0.01] [5.11] [7.20]
Drought: Season after Birth 0.10%** 0.01 -0.03*** 0.03*** 0.07***
[7.41] [1.26] [-4.39] [3.14] [5.00]
Second Poorest -0.03** -0.03** -0.01 -0.02** -0.04***
[-2.31] [-2.55] [-0.90] [-2.12] [-2.99]
Middle -0.03** -0.05*** -0.01 -0.04*** -0.04***
[-2.20] [-4.16] [-0.81] [-3.72] [-2.63]
Second Richest -0.08*** -0.07%** -0.01* -0.07%** -0.09%**
[-4.46] [-5.22] [-1.69] [-5.25] [-4.97]
Richest Quintile -0.14%** -0.08*** -0.01 -0.07*** -0.14***
[-4.16] [-4.04] [-0.54] [-4.11] [-4.03]
Constant 0.39%** 0.17*** 0.06*** 0.14*** 0.45%**
[41.12] [24.47] [15.17] [21.39] [46.53]
Observations 28,162 28,144 28,062 28,162 28,162
R-squared 0.43 0.40 0.40 0.40 0.42

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions

employ cluster x month fixed effects. The weights used are person weights adjusted for the national populations. All

regressions use all available data on rural households from 5 Southern African countries (Mozambique, Malawi,

Tanzania, Zambia and Zimbabwe). All metrics are based on children being measured below -2 standard deviation

thresholds. 41.0 percent of the children are stunted, 15.1 percent are underweight, 5.1 percent are wasted, 12.6 percent

are stunted and underweight, and 45.2 percent are malnourished based on any of the three metrics.
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Table 3: Drought Impacts on Child Anthropometrics (OLS with Cluster x Month Fixed Effects)

Q) ) ®) 4) ©)
Stunted &
VARIABLES Stunted  Underweight Wasted Underwt Any
Drought: Birth Season 0.07*** 0.03*** 0.00 0.03*** 0.06***
[5.43] [2.95] [0.40] [3.96] [4.52]
Drought: Season after Birth 0.04*** 0.01 -0.01 0.02* 0.03**
[3.07] [0.57] [-1.28] [1.77] [2.43]
Mother ht between 152 and 160 cm 0.13*** 0.06*** 0.01** 0.06%** 0.13***
[10.75] [7.79] [2.39] [7.97] [10.83]
Mother ht below 152 cm 0.25%** 0.13*** 0.01* 0.12%%* 0.24%**
[17.56] [11.00] [1.86] [11.53] [16.94]
Mother under 19 yrs 0.05*** 0.03* -0.01 0.02* 0.05**
[2.72] [1.87] [-0.76] [1.83] [2.46]
Age:7-24 months 0.19*** 0.06*** -0.01 0.07*** 0.17%**
[11.98] [5.32] [-1.01] [6.44] [10.62]
Age:25-59 months 0.23*** 0.05*** -0.05%** 0.07*** 0.18***
[15.38] [4.67] [-5.86] [6.82] [12.27]
No Livestock 0.03*** 0.00 0.00 0.01 0.02*
[2.77] [0.33] [0.26] [1.19] [1.85]
Does not treat water 0.03** 0.01 -0.01 0.01 0.02*
[2.18] [0.88] [-1.62] [1.55] [1.78]
Mother underweight 0.04** 0.10*** 0.03*** 0.08*** 0.07***
[2.19] [5.97] [3.00] [5.73] [3.79]
Mother able to read part of sentence 0.01 -0.01 -0.01 -0.01 0.00
[0.70] [-0.91] [-1.30] [-0.96] [0.23]
Mother cannot read at all/Unknown 0.01 0.01 0.01** 0.00 0.02
[0.69] [1.00] [2.14] [0.10] [1.51]
Constant -0.09** -0.14%* 0.06*** -0.16*** -0.02
[-2.25] [-5.26] [3.34] [-6.65] [-0.59]
Observations 28,017 28,152 27,987 30,057 30,057
R-squared 0.46 0.42 0.41 0.42 0.45

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ cluster x month fixed effects. The weights used are person weights adjusted for the national populations. All
regressions use all available data on rural households from 5 Southern African countries (Mozambique, Malawi,
Tanzania, Zambia and Zimbabwe). Additional controls are for roof, floor and wall quality, cooking fuel, employment
in agriculture, source of water, type of toilet, ownership of radio, tv, bicyles, refridgerators, cars, trucks, birth order,
birth interval, gender of child and the gender of the household head. All metrics are based on children being
measured below -2 standard deviation thresholds. 41.0 percent of the children are stunted, 15.1 percent are
underweight, 5.1 percent are wasted, 12.6 percent are stunted and underweight, and 45.2 percent are malnourished
based on any of the three metrics.
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Table 4: Drought Impacts on Child Anthropometrics
OLS with Province and Year of Survey Fixed Effects and Wealth Quintile Controls

@ @) ®) (4) ®)
Stunted &
VARIABLES Stunted Underweight Wasted Underwt Any
Drought: Birth Season 0.06%** 0.02%** -0.00 0.02%** 0.06***
[7.64] [3.40] [-0.39] [4.16] [7.19]
Drought: Season after Birth 0.10%** 0.01** -0.02%** 0.02%** 0.08***
[10.66] [2.07] [-4.50] [3.67] [8.77]
Lean Season 0.03*** 0.01%** -0.00 0.02%** 0.03***
[5.05] [2.80] [-1.27] [3.21] [4.44]
Second Poorest -0.03*** -0.03%** -0.01%** -0.03*** -0.04***
[-3.73] [-4.21] [-3.33] [-3.90] [-4.61]
Middle -0.05*** -0.05%** -0.01%* -0.05*** -0.06***
[-5.02] [-7.02] [-2.44] [-6.71] [-5.84]
Second Richest -0.10%** -0.08*** -0.02%** -0.07*** -0.11%**
[-8.79] [-9.61] [-4.01] [-9.76] [-9.72]
Richest Quintile -0.16%** -0.10%** -0.03*** -0.09%** -0.18***
[-8.81] [-8.89] [-4.30] [-8.36] [-9.67]
Constant 0.38*** 0.12%** 0.05*** 0.10%** 0.41%**
[9.98] [6.34] [3.52] [5.48] [11.15]
Observations 40,977 40,961 40,870 40,977 40,977
R-squared 0.04 0.02 0.01 0.02 0.04

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ province and year of survey fixed effects. The weights used are person weights adjusted for the national
populations. All regressions use data on rural households from 5 Southern African countries (Mozambique, Malawi,
Tanzania, Zambia and Zimbabwe). All metrics are based on children being measured below -2 standard deviation
thresholds. 41.0 percent of the children are stunted, 15.1 percent are underweight, 5.1 percent are wasted, 12.6 percent
are stunted and underweight, and 45.2 percent are malnourished based on any of the three metrics.
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Table 5: Drought Impacts on Child Anthropometrics
OLS with Province and Year of Survey Fixed Effects and Full Set of Controls

1 2) 3) 4) ()
Stunted &
VARIABLES Stunted Underweight Wasted Underwt Any
3 Decad Dry Spell: Birth Season 0.04*** 0.01* -0.00 0.017*** 0.04***
[4.53] [1.95] [-0.20] [2.64] [4.43]
3 Decad Dry Spell: Season after Birth 0.04*** 0.00 -0.00 0.01 0.04***
[4.33] [0.29] [-0.23] [0.86] [4.00]
Mother ht between 152 and 160 cm 0.12%** 0.05*** 0.01*** 0.05%** 0.12%**
[16.21] [10.26] [2.63] [10.98] [15.99]
Mother ht below 152 cm 0.25%** 0.11%** 0.01*** 0.11%* 0.25%**
[25.99] [14.26] [2.84] [15.32] [25.46]
Mother under 19 yrs 0.05%** 0.01 -0.00 0.02% 0.05%**
[4.28] [1.57] [-0.84] [1.77] [3.76]
Age:7-24 months 0.21%** 0.07*** -0.01 0.07*** 0.18***
[21.23] [9.54] [-1.39] [10.44] [17.40]
Age:25-59 months 0.25%** 0.06*** -0.05%** 0.08*** 0.19***
[26.35] [8.65] [-8.91] [11.91] [19.52]
Lean Season 0.03%** 0.01** -0.00 0.01** 0.02%**
[3.94] [2.24] [-0.87] [2.55] [3.60]
No Livestock 0.02** 0.00 0.00 0.00 0.02**
[2.53] [0.53] [0.83] [0.69] [2.35]
Does not treat water 0.02** 0.01* 0.00 0.01* 0.02%**
[2.51] [1.93] [1.05] [1.87] [2.78]
Mother Underweight 0.07*** 0.17*** 0.03*** 0.09*** 0.09***
[5.80] [9.76] [4.39] [8.85] [7.39]
No Car, Motor, Fridge 0.04*** 0.03%** 0.01** 0.02%** 0.05***
[3.56] [3.96] [2.43] [3.17] [4.47]
Mother able to read only part of sentence 0.02 0.01 0.00 0.01 0.02
[1.46] [0.82] [0.19] [0.87] [1.56]
Mother cannot read at all/Unknown 0.027%** 0.02%** 0.01** 0.01*** 0.03***
[2.90] [2.74] [1.99] [2.64] [3.46]
Constant -0.03 -0.07** 0.05%** -0.08*** 0.04
[-0.74] [-2.16] [2.93] [-2.66] [1.00]
Observations 40,817 40,802 40,714 40,817 40,817
R-squared 0.10 0.05 0.03 0.05 0.09

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions

employ province and survey year fixed effects. Refer to the Table 3 notes for all other details.
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Table 6a: Drought Impacts on Child Stunting (OLS with Cluster x Month Fixed Effects)

@™ ) ®3) (4) ©) (6)
VARIABLES All Mozambique Malawi Zimbabwe Tanzania Zambia
Drought: Birth Season 0.07*** 0.07*** -0.03 0.11*** 0.05*** 0.12***
[5.43] [2.64] [-0.87] [4.08] [2.59] [4.96]
Drought: Season after Birth 0.04*** 0.02 0.09*** 0.04 0.04* 0.05**
[3.07] [0.47] [2.62] [1.21] [1.84] [2.01]
Mother ht between 152 and 160 cm 0.13*** 0.13*** 0.13*** 0.11*** 0.14*** 0.09***
[10.75] [4.66] [3.81] [5.40] [7.57] [4.12]
Mother ht below 152 cm 0.25%** 0.24*** 0.29*** 0.25%** 0.27*** 0.21%**
[17.56] [7.45] [7.49] [7.19] [12.08] [7.44]
Mother under 19 yrs 0.05*** -0.00 -0.02 0.05 0.08** 0.02
[2.72] [-0.12] [-0.45] [1.30] [2.45] [0.68]
Age:7-24 months 0.19%** 0.15%** 0.14%** 0.18*** 0.18*** 0.25%**
[11.98] [3.95] [2.63] [5.82] [7.33] [8.35]
Age:25-59 months 0.23*** 0.19*** 0.18*** 0.23*** 0.24*** 0.22%**
[15.38] [5.34] [4.13] [8.39] [10.51] [7.06]
No Livestock 0.03*** -0.01 0.02 -0.04* 0.06*** 0.07***
[2.77] [-0.37] [0.58] [-1.74] [2.67] [2.90]
Does not treat water 0.03** 0.02 0.00 0.06* 0.03** 0.00
[2.18] [0.44] [0.00] [1.77] [1.98] [0.14]
Mother underweight 0.04** 0.11** 0.06 0.07* 0.01 0.06*
[2.19] [2.43] [1.11] [1.71] [0.36] [1.78]
Mother able to read part of sentence 0.01 0.04 0.01 -0.00 -0.01 0.05
[0.70] [0.78] [0.20] [-0.08] [-0.23] [1.43]
Mother cannot read at all/Unknown 0.01 0.03 0.05 0.04 -0.00 0.01
[0.69] [1.04] [1.43] [1.16] [-0.03] [0.57]
Constant -0.09** -0.00 -0.22% -0.16* -0.12* 0.02
[-2.25] [-0.01] [-1.65] [-1.86] [-1.95] [0.26]
Observations 28,017 5,002 3,618 4,400 9,358 5,639
R-squared 0.46 0.44 0.52 0.47 0.47 0.46

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ cluster x month fixed effects. The weights used are person weights adjusted for the national populations. The
first regression is the same as the first regression in table 3. Additional controls are for roof, floor and wall quality,
cooking fuel, employment in agriculture, source of water, type of toilet, ownership of radio, tv, bicyles,
refridgerators, cars, trucks, birth order, birth interval, gender of child and the gender of the household head. All
metrics are based on children being measured below -2 standard deviation thresholds.
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Table 6b: Drought Impacts on Child HAZ*100 (OLS with Cluster x Month Fixed Effects)

) @) ®) ) ©) (6)
All Mozambique Malawi Zimbabwe Tanzania Zambia
Drought: Birth Season -19.83%** -33.31%** 8.89 -24.82%** -13.59** -28.70***
[-5.13] [-3.81] [0.96] [-2.80] [-2.18] [-3.80]
Drought: Season after Birth -10.63** 5.88 -21.51** -13.75 -11.29* -21.15%**
[-2.57] [0.48] [-2.15] [-1.55] [-1.79] [-2.59]
Mother ht between 152 and 160 cm -39.77°%%* -39.95%** -37.50%** -40.78*** -42.847* -30.06***
[-11.33] [-3.95] [-3.69] [-7.35] [-8.13] [-4.33]
Mother ht below 152 cm -75.07%** -64.73*** -79.33%** -82.95%** -81.98*** -69.08***
[-17.79] [-5.69] [-7.08] [-8.28] [-13.29] [-7.65]
Mother under 19 yrs -21.58*** -10.72 -14.01 -8.80 -30.48*** -6.58
[-3.85] [-0.84] [-1.00] [-0.81] [-3.33] [-0.59]
Age:7-24 months -80.25%** -60.92%* -47 247%* -95.17%*** -80.60*** -106.15***
[-15.05] [-4.41] [-3.13] [-8.95] [-10.32] [-9.73]
Age:25-59 months -104.15** -88.39%** -77.60%** -119.63**  -106.90** -112.55***
[-20.02] [-6.72] [-5.78] [-12.35] [-13.87] [-10.68]
No Livestock -5.55 0.21 -8.17 10.40 -1.99 -20.15%**
[-1.43] [0.03] [-0.87] [1.40] [-0.25] [-2.76]
Does not treat water -4.07 -1.38 1.87 -22.23** -4.64 2.66
[-1.16] [-0.08] [0.22] [-2.46] [-1.02] [0.32]
Mother underweight -14.36*** -35.45** -15.26 -12.08 -8.95 -13.31
[-2.72] [-2.47] [-1.10] [-0.86] [-1.13] [-1.53]
Mother able to read part of sentence 1.04 -7.36 -1.27 -4.08 10.68 -13.25
[0.20] [-0.54] [-0.08] [-0.42] [1.31] [-1.18]
Mother cannot read at all/Unknown -0.15 -6.33 -18.93* 3.45 4.48 -6.06
[-0.04] [-0.64] [-1.84] [0.27] [0.90] [-0.96]
Constant 29.17** 22.04 9.21 29.49 48.16** -8.48
[2.52] [0.69] [0.27] [1.17] [2.64] [-0.33]
Observations 28,017 5,002 3,618 4,400 9,358 5,639
R-squared 0.49 0.47 0.56 0.51 0.49 0.48

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions

employ cluster x month fixed effects. The weights used are person weights adjusted for the national populations. The

first regression is the same as the first regression in table 3. Additional controls are for roof, floor and wall quality,

cooking fuel, employment in agriculture, source of water, type of toilet, ownership of radio, tv, bicyles,

refridgerators, cars, trucks, birth order, birth interval, gender of child and the gender of the household head. All

metrics are based on children being measured below -2 standard deviation thresholds.
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Table 7: Drought Impacts on Child Stunting by Country and Wealth Status
OLS with Province and Year of Survey Fixed Effects and Full Set of Controls

Probability of Stunting (OLS with Province and Survey Year FE)

All Mozambique Malawi Zimbabwe Tanzania Zambia
Lowest (Poorest) Wealth Quintile
Drought: Birth Season 0.06*** 0.11** -0.00 0.12%** 0.06** 0.09***
[4.79] [2.46] [-0.07] [3.58] [2.34] [3.65]
Drought: Season after Birth 0.04*** 0.07 0.07** 0.04 0.07** 0.00
[2.97] [1.32] [2.34] [1.20] [2.58] [0.13]
Observations 11,605 1,517 1,941 2,179 3,302 2,666

Second and Third Wealth Quintiles

Drought: Birth Season 0.04*** 0.08*** -0.00 0.09*** -0.02 0.11***
[3.70] [2.84] [-0.25] [3.50] [-1.16] [5.13]
Drought: Season after Birth 0.04*** 0.04 0.06*** 0.03 0.02 0.09°%**
[4.04] [1.09] [3.07] [1.27] [0.80] [3.55]
Observations 20,895 3,238 4,097 3,282 6,328 3,950

Fourth and Richest Wealth Quintile

Drought: Birth Season 0.01 -0.01 -0.02 0.10%* -0.00 -0.00
[0.31] [-0.17] [-0.93] [2.05] [-0.03] [-0.08]
Drought: Season after Birth 0.03 0.04 0.03 -0.02 -0.01 0.14**
[1.51] [0.70] [1.24] [-0.39] [-0.29] [2.24]

Observations 8,317 1,601 2,338 877 2,859 642

Full Sample: All Wealth Quintiles

Drought: Birth Season 0.04%* 0.08*** -0.01 0.10%** 0.01 0.10%**
[4.53] [3.32] [-0.80] [5.33] [0.57] [6.56]
Drought: Season after Birth 0.04*** 0.05* 0.06*** 0.03 0.03* 0.07***
[4.33] [1.74] [3.97] [1.38] [1.89] [3.95]
Observations 40,817 6,356 8,376 6,338 12,489 7,258

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. This table uses the
first specification in Table 5 and applies it different countries and wealth quintiles. Refer to the notes in Table 3 for all
the other details.
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Table 8: Drought Impacts on Child Height-Age Z-Score* 100 by Country and Wealth Status
OLS with Province and Year of Survey Fixed Effects and Full Set of Controls

Height-Age Z-Score*100 (OLS with Province and Survey Year FE)

All Mozambique Malawi Zimbabwe Tanzania Zambia
Lowest (Poorest) Wealth Quintile
Drought: Birth Season -19.62%** -46.55*** -1.27 -28.23*** -11.33 -25.00%**
[-4.63] [-3.33] [-0.13] [-2.71] [-1.54] [-3.18]
Drought: Season after Birth -13.06*** -28.49** -24.93*** -16.91 -17.60%*** -0.81
[-3.32] [-2.03] [-2.67] [-1.61] [-2.64] [-0.10]
Observations 11,605 1,517 1,941 2,179 3,302 2,666
Second and Third Wealth Quintiles
Drought: Birth Season -10.927%** -29.02%** 6.07 -28.427** 5.05 -28.70%**
[-3.46] [-3.50] [0.95] [-3.59] [0.90] [-3.97]
Drought: Season after Birth -6.72%* 7.66 -18.96*** -3.80 1.40 -23.08***
[-1.96] [0.58] [-3.06] [-0.54] [0.23] [-3.26]
Observations 20,895 3,238 4,097 3,282 6,328 3,950
Fourth and Richest Wealth Quintile
Drought: Birth Season 0.42 415 12.55% -35.32** -2.92 2.72
[0.08] [0.25] [1.72] [-2.32] [-0.32] [0.15]
Drought: Season after Birth -14.40%** -17.93 -15.38* -6.48 -11.66 -35.52%
[-2.76] [-1.02] [-1.91] [-0.44] [-1.22] [-1.80]
Observations 8,317 1,601 2,338 877 2,859 642
Full Sample: All Wealth Quintiles
Drought: Birth Season -10.73*** -31.29%** 6.62 -29.02%** -0.75 -27.75%**
[-4.22] [-4.09] [1.49] [-5.28] [-0.18] [-5.54]
Drought: Season after Birth -9.08*** -6.59 -19.23%** -7.31 -6.39 -18.34**
[-3.50] [-0.70] [-4.31] [-1.33] [-1.46] [-3.38]
Observations 40,817 6,356 8,376 6,338 12,489 7,258

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. This table uses the
same specification as Table 7, except the dependent variable is the height-age Z-score.
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Table 9: A Comparision of Out-of Sample Predictive Accuracy of Different Methods

Method Optimal Hyper-Parameter Values (via cross-validation) Log-Loss
Mozambique
Logistic Regression None 0.640
Conditional Inference Decision Trees Level of Significance = 0.95 0.653
Random Forest Min. Node Size = 200, Number of Var Tried = 6 0.642
Gradient Boosted Trees eta=0.05, max depth =3, num rounds = 150, min child wt =20 0.643
Malawi
Logistic Regression None 0.635
Conditional Inference Decision Trees Level of Significance = 0.90 0.646
Random Forest Min. Node Size = 200, Number of Var Tried = 9 0.636
Gradient Boosted Trees eta=0.05, max depth =2, num rounds = 300, min child wt = 60 0.633
Zimbabwe
Logistic Regression None 0.592
Conditional Inference Decision Trees Level of Significance = 0.95 0.597
Random Forest Min. Node Size = 300 , Number of Var Tried = 10 0.592
Gradient Boosted Trees eta=0.05, max depth =2, num rounds = 150, min child wt = 10 0.591
Tanzania
Logistic Regression None 0.616
Conditional Inference Decision Trees Level of Significance = 0.95 0.644
Random Forest Min. Node Size = 150, Number of Var Tried = 8 0.617
Gradient Boosted Trees eta=0.4, max depth = 1, num rounds = 300, min child wt =20 0.616
Zambia
Logistic Regression None 0.645
Conditional Inference Decision Trees Level of Significance = 0.90 0.655
Random Forest Min. Node Size = 100, Number of Var Tried = 5 0.640
Gradient Boosted Trees eta=0.1, max depth = 2, num rounds = 100, min child wt =10 0.644

Notes: The models were trained on 70 percent of each set of surveys and tested on the remaining 30 percent.

The hyper-parameters were optimized using 10-fold cross-validation (log-loss metric). The table reports the optimized

(i.e. minimum) log-loss for each model. The hyperparameter candidate sets are as follows. Conditional Inference Decision

Trees: Bonferroni level of significance ( 0.90, 0.95). Random Forests ( R package Ranger): minimum node size (50, 100, 150, 200, 250,
300, 350), number of variables tried at each node (4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14), and number of trees (1000). Gradient Boosted Trees
(R package Xgboost): shrinkage (0.05, 0.1, 0.2, 0.3, 0.4), max depth (1, 2, 3, 4), number of rounds (50, 100, 150, 200, 250, 300) and min.
child weight (10, 20, 30, 40, 50, 60).
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Table 10: Out-of Sample Inclusion and Exclusion Targeting Errors

Classification Trees Logistic Regression Random Forest Boosted Trees

Incl. Excl. Budget | Incl. Excl. Budget | Incl. Excl. Budget | Incl. Excl. Budget

Mozambique

021 0.63 0.28 013 071 0.20 013 0.71 0.20 013 071 0.20
021 0.63 0.28 022  0.59 0.30 022 0.59 0.30 0.21  0.58 0.30
021 0.63 0.28 030 047 0.40 030 047 0.40 030 046 0.40
052 026 0.62 039 035 0.50 039 0.36 0.50 039 035 0.50
0.52  0.26 0.62 0.50 0.27 0.60 0.50 0.27 0.60 0.51 0.28 0.60

Malawi

013 0.76 0.18 013  0.70 0.20 013  0.70 0.20 0.13  0.69 0.20
0.16  0.68 0.23 021 057 0.30 021 057 0.30 021 057 0.30
032 047 0.41 030 046 0.40 031 046 0.40 030 046 0.40
039 038 0.49 0.40 0.36 0.50 041 0.36 0.50 0.40 0.36 0.50
0.43 0.34 0.53 0.51 0.27 0.60 0.50 0.26 0.60 0.50 0.26 0.60

Zimbabwe

019 0.67 0.23 0.15 0.69 0.20 015 0.70 0.20 015 0.68 0.20
019 0.67 0.23 024 057 0.30 024 0.58 0.30 024 0.57 0.30
035 042 0.43 033 045 0.40 034 046 0.40 033 046 0.40

040 0.38 0.47 043 0.34 0.50 043 034 0.50 043 034 0.50

040 0.38 0.47 053 024 0.60 053 0.25 0.60 053 0.25 0.60

Tanzania

0.07 0.84 0.10 0.06 0.83 0.10 0.06 0.83 0.10 0.06 0.83 0.10
015 071 0.20 0.13  0.69 0.20 0.13  0.69 0.20 0.13  0.69 0.20
0.27 0.53 0.35 022 056 0.30 021 0.56 0.30 022 057 0.30
036 043 0.44 030 0.44 0.40 031 045 0.40 030 044 0.40
042 0.35 0.51 040 0.34 0.50 040 034 0.50 040 0.34 0.50

0.48 0.30 0.56 0.50 0.24 0.60 0.51 0.25 0.60 0.51 0.25 0.60

Zambia

015 0.74 0.19 014 072 0.20 014 072 0.20 015 0.72 0.20
028 057 0.34 023 0.59 0.30 0.23  0.60 0.30 0.23 0.60 0.30
0.28 057 0.34 032 048 0.40 032 049 0.40 032 049 0.40
028 057 0.34 042 0.39 0.50 042 0.39 0.50 043 040 0.50

0.60 0.23 0.67 052 0.29 0.60 052  0.28 0.60 0.53  0.29 0.60
Notes: The table reports inclusion and exclusion out-of-sample errors based on the optimal models from Table 9.
Inclusion errors are defined as the proportion of non-stunted children labelled as being stunted. Exclusion errors are
defined as the proportion of stunted children labelled as being non-stunted. The budget is the proportion of total children
reached. The assumption is that every child is either given some fixed amount of support or is not provided anything.
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Figure 1

Geographic Scope of the Analysis
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Figure 2
Height-Age Z-Score*100 Distributions Across Wealth Quintiles
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Figure 3-a
Drought-Contingent Height-Age Distributions: Lowest Wealth Quintile
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Figure 3-b
Drought-Contingent Height-Age Distributions: Top 4 Wealth Quintiles
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Figure 4: Probability of Child Stunting in Rural Mozambique
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Figure 5: Probability of Child Stunting in Rural Zambia
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APPENDIX

Table Al: Drought Impacts on Child Anthropometrics (Compare with Table 3 in the Main Text)

Robustness Check for Child Age Mismeasurement:

Excluded Children: a) Born in Jan/Feb/Nov/Dec b) 12, 24, 36, 48 months old, Includes Child Age/Change Age Sq.
OLS with Cluster x Month Fixed Effects and Full Controls

@ 2) ®) ) ®)
Stunted &
VARIABLES Stunted Underweight Wasted Underwt Any
Drought: Birth Season 0.05*** 0.03*** 0.01 0.04*** 0.06***
[3.26] [2.96] [1.29] [4.19] [4.83]
Drought: Season after Birth 0.00 -0.00 -0.01 0.01 0.01
[0.01] [-0.14] [-0.97] [0.59] [0.55]
Mother ht between 152 and 160 cm 0.12%** 0.07*** 0.01* 0.05*** 0.11%**
[7.95] [6.77] [1.80] [6.98] [9.02]
Mother ht below 152 cm 0.26%** 0.13*** 0.01 0.11%** 0.23***
[14.29] [9.14] [1.15] [9.49] [14.39]
Mother under 19 yrs 0.06** 0.03* -0.01 0.02 0.04**
[2.56] [1.94] [-0.43] [1.26] [2.20]
Child Age 0.02%** 0.00*** -0.00*** 0.00*** 0.01***
[16.51] [3.18] [-3.50] [7.20] [17.11]
Child Age Squared -0.00%** -0.00%** 0.00** -0.00%** -0.00%**
[-15.25] [-3.10] [2.17] [-10.47] [-25.41]
No Livestock 0.03** 0.00 0.00 0.01 0.03**
[2.08] [0.13] [0.24] [0.83] [2.10]
Does not treat water 0.04** 0.01 -0.01* 0.02* 0.02*
[2.42] [1.19] [-1.88] [1.93] [1.69]
Mother Underweight 0.03 0.09%** 0.03** 0.06*** 0.07***
[1.64] [4.76] [2.28] [4.46] [3.92]
Mother able to read part of sentence 0.03 -0.00 -0.01 0.00 0.02
[1.23] [-0.13] [-0.72] [0.32] [0.98]
Mother cannot read at all/Unknown -0.00 0.01 0.01* 0.00 0.01
[-0.15] [0.86] [1.91] [0.09] [1.03]
Constant -0.15%* -0.13%** 0.07*** -0.12%** 0.02
[-3.20] [-4.06] [3.10] [-4.69] [0.56]
Observations 18,408 18,488 18,372 23,460 23,460
R-squared 0.47 0.42 0.40 0.41 0.48

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ cluster x month fixed effects. The weights used are person weights adjusted for the national populations. All
regressions use all available data on rural households from 5 Southern African countries (Mozambique, Malawi,
Tanzania, Zambia and Zimbabwe). Additional controls are for roof, floor and wall quality, cooking fuel, employment
in agriculture, source of water, type of toilet, ownership of radio, tv, bicyles, refridgerators, cars, trucks, birth order,
birth interval, gender of child and the gender of the household head.
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Table A2: Drought Impacts on Child Anthropometrics (Compare with Table 5 in the Main Text)
Robustness Check for Child Age Mismeasurement:

Excluded Children: a) Born in Jan/Feb/Nov/Dec b) 12, 24, 36, 48 months old, Includes Child Age/Change Age Sq.
OLS with Province and Year of Survey Fixed Effects and Full Set of Controls

1) 2) 3) 4) )
Stunted &
VARIABLES Stunted Underweight Wasted Underwt Any
3 Decad Dry Spell: Birth Season 0.03*** 0.02%* 0.01 0.02%** 0.05%**
[2.99] [2.34] [1.20] [3.24] [5.49]
3 Decad Dry Spell: Season after Birth 0.01 -0.00 -0.00 0.00 0.03%**
[1.09] [-0.27] [-0.01] [0.17] [2.80]
Mother ht between 152 and 160 cm 0.11%** 0.05%** 0.01* 0.04*** 0.10%**
[12.42] [8.22] [1.79] [8.90] [12.62]
Mother ht below 152 cm 0.25%** 0.17%** 0.01** 0.09*** 0.21%**
[21.53] [11.68] [2.15] [12.40] [20.42]
Mother under 19 yrs 0.05%** 0.01 -0.01 0.01 0.03**
[3.06] [1.24] [-0.74] [1.14] [2.53]
Child Age 0.02%** 0.00*** -0.00%** 0.00*** 0.01***
[26.10] [6.42] [-5.49] [12.86] [24.76]
Child Age Squared -0.00%** -0.00%** 0.00*** -0.00%** -0.00%**
[-23.20] [-4.50] [3.20] [-17.90] [-37.67]
Lean Season 0.04*** 0.01* -0.00 0.01* 0.03***
[4.19] [1.75] [-1.12] [1.82] [3.17]
No Livestock 0.02** 0.01 0.01 0.01 0.02%**
[2.52] [0.96] [1.46] [1.06] [2.89]
Does not treat water 0.02%* 0.01* 0.00 0.01* 0.02**
[1.97] [1.82] [1.22] [1.69] [2.51]
Mother Underweight 0.07*** 0.10*** 0.02%** 0.08*** 0.08%**
[5.10] [7.90] [2.63] [7.32] [6.44]
No Car, Motor, Fridge 0.04*** 0.03*** 0.00 0.02** 0.04***
[2.63] [2.86] [0.71] [2.15] [3.05]
Mother able to read only part of sentence 0.03** 0.02 0.00 0.01 0.03**
[2.18] [1.42] [0.37] [1.51] [2.20]
Mother cannot read at all/Unknown 0.03*** 0.02%** 0.01** 0.02%** 0.03%**
[3.10] [2.96] [2.09] [2.84] [3.70]
Constant -0.19*** -0.13%** 0.05** -0.13*** -0.04
[-3.91] [-4.45] [2.00] [-5.65] [-1.00]
Observations 26,912 26,993 26,878 31,977 31,977
R-squared 0.12 0.05 0.03 0.06 0.16

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ province and survey year fixed effects. Refer to the Table 3 (in the main text) notes for all other details.
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Table A3: Drought Impacts on Child Anthropometrics (Compare with Table 3 (1) in the Main Text)
Robustness to the Definition of a Dry Spell : Length 2 Decads, 3 Decads (as in main Text), 4 Decads and 5 Decads
OLS with Cluster x Month Fixed Effects and Full Controls

@ @) ®) 4)
VARIABLES Likelihood of Stunting
2 Decad Dry Spell: Birth Season 0.04***
[2.87]
2 Decad Dry Spell: Season after Birth 0.07***
[5.38]
3 Decad Dry Spell: Birth Season 0.07**
[5.43]
3 Decad Dry Spell: Season after Birth 0.04***
[3.07]
4 Decad Dry Spell: Birth Season 0.05**
[2.57]
4 Decad Dry Spell: Season after Birth 0.03
[1.61]
5 Decad Dry Spell: Birth Season 0.02
[0.95]
5 Decad Dry Spell: Season after Birth 0.04
[1.43]
Constant -0.10%* -0.09** -0.08** -0.08**
[-2.47] [-2.25] [-2.12] [-2.10]
Observations 28,017 28,017 28,017 28,017
R-squared 0.46 0.46 0.46 0.46

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ cluster x month fixed effects. Refer to the Table 3 (in the main text) notes for all other details.
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Table A4: Drought Impacts on Child Anthropometrics (Compare with Table 5 (1) in the Main Text)
Robustness to the Definition of a Dry Spell : Length 2 Decads, 3 Decads (as in main Text), 4 Decads and 5 Decads
OLS with Province and Survey Year Fixed Effects and Full Controls

(1) @) 3) 4)
VARIABLES Likelihood of Stunting
2 Decad Dry Spell: Birth Season 0.02***
[2.60]
2 Decad Dry Spell: Season after Birth 0.06***
[6.84]
3 Decad Dry Spell: Birth Season 0.04***
[4.53]
3 Decad Dry Spell: Season after Birth 0.04***
[4.33]
4 Decad Dry Spell: Birth Season 0.03**
[2.24]
4 Decad Dry Spell: Season after Birth 0.04***
[3.02]
5 Decad Dry Spell: Birth Season 0.02
[1.25]
5 Decad Dry Spell: Season after Birth 0.04**
[2.27]
Constant -0.03 -0.03 -0.01 -0.01
[-0.66] [-0.74] [-0.24] [-0.21]
Observations 40,817 40,817 40,817 40,817
R-squared 0.10 0.10 0.10 0.10

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions
employ province and survey year fixed effects. Refer to the Table 3 (in the main text) notes for all other details.
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Table A5: Drought Impacts on Child Stunting (OLS with Cluster x Month Fixed Effects)

Compare with Table 6a in the Main Text

Robustness Test: Omitted children in households that moved residence within the last 6 years

M @ 3) ) 5) (6)
All Mozambique = Malawi Zimbabwe  Tanzania Zambia
Drought: Birth Season 0.07%** 0.07%** -0.05 0.13%** 0.06™* 0.14**
[4.96] [2.64] [-1.14] [4.07] [2.53] [4.15]
Drought: Season after Birth 0.03** 0.02 0.10** 0.02 0.03 0.05
[2.15] [0.47] [2.32] [0.47] [1.16] [1.39]
Mother ht between 152 and 160 cm 0.13*** 0.13*** 0.13*** 0.10*** 0.14*** 0.09***
[9.13] [4.66] [3.27] [4.73] [6.53] [3.22]
Mother ht below 152 cm 0.25%** 0.24*** 0.27*** 0.25*** 0.28*** 0.19***
[14.79] [7.45] [5.31] [6.45] [10.44] [4.97]
Mother under 19 yrs 0.06** -0.00 -0.03 0.02 0.10%** -0.02
[2.48] [-0.12] [-0.45] [0.48] [2.67] [-0.27]
Age:7-24 months 0.17%** 0.15%** 0.09 0.16*** 0.17*** 0.17***
[8.99] [3.95] [1.47] [4.57] [6.15] [4.09]
Age:25-59 months 0.27%** 0.19%** 0.13** 0.271*** 0.23*** 0.13***
[12.07] [5.34] [2.40] [6.75] [8.90] [2.99]
No Livestock 0.01 -0.01 0.02 -0.06* 0.02 0.05
[0.78] [-0.37] [0.40] [-1.93] [0.75] [1.59]
Does not treat water 0.03** 0.02 -0.02 0.03 0.04* 0.01
[2.01] [0.44] [-0.60] [0.89] [1.87] [0.29]
Mother underweight 0.05** 0.11** 0.03 0.10** 0.02 0.08*
[2.34] [2.43] [0.52] [2.19] [0.65] [1.86]
Mother able to read part of sentence 0.00 0.04 0.06 0.02 -0.01 0.04
[0.24] [0.78] [0.92] [0.39] [-0.44] [0.92]
Mother cannot read at all/Unknown 0.00 0.03 0.03 0.03 -0.01 0.05
[0.17] [1.04] [0.63] [0.72] [-0.69] [1.59]
Constant -0.06 -0.00 -0.17 -0.16 -0.11 0.15
[-1.26] [-0.01] [-1.08] [-1.51] [-1.46] [1.30]
Observations 21,951 5,002 2,486 3,379 7,857 3,227
R-squared 0.47 0.44 0.52 0.49 0.48 0.50

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the DHS cluster level. All regresssions

employ cluster x month fixed effects. The weights used are person weights adjusted for the national populations. The

first regression is the same as the first regression in table 3. Additional controls are for roof, floor and wall quality,

cooking fuel, employment in agriculture, source of water, type of toilet, ownership of radio, tv, bicyles,

refridgerators, cars, trucks, birth order, birth interval, gender of child and the gender of the household head. All

metrics are based on children being measured below -2 standard deviation thresholds.
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Table A6: A Comparision of Out-of Sample Predictive Accuracy (Compare with Table 9)

We introduce additive noise (drawn from a 0 mean and 1 standard deviation normal distribution) into the Height-for-Age
standardized measure for the training set. This results in 22.6 percent of the stunted households classified as not stunted and
18.2 percent of the non-stunted households classified as stunted.

Method Optimal Hyper-Parameter Values (via cross-validation) Log-Loss
Mozambique
Logistic Regression None 0.640
Conditional Inference Decision Trees Level of Significance = 0.95 0.653
Random Forest Min. Node Size =200, Number of Var Tried = 6 0.642
Gradient Boosted Trees eta=0.05, max depth =3, num rounds = 150, min child wt =20 0.643
Malawi
Logistic Regression None 0.635
Conditional Inference Decision Trees Level of Significance = 0.90 0.646
Random Forest Min. Node Size = 200, Number of Var Tried = 9 0.636
Gradient Boosted Trees eta=0.05, max depth =2, num rounds = 300, min child wt = 60 0.633
Zimbabwe
Logistic Regression None 0.592
Conditional Inference Decision Trees Level of Significance = 0.95 0.597
Random Forest Min. Node Size =300, Number of Var Tried = 10 0.592
Gradient Boosted Trees eta =0.05, max depth =2, num rounds = 150, min child wt = 10 0.591
Tanzania
Logistic Regression None 0.616
Conditional Inference Decision Trees Level of Significance = 0.95 0.644
Random Forest Min. Node Size = 150 , Number of Var Tried = 8 0.617
Gradient Boosted Trees eta=0.4, max depth = 1, num rounds = 300, min child wt =20 0.616
Zambia
Logistic Regression None 0.645
Conditional Inference Decision Trees Level of Significance = 0.90 0.655
Random Forest Min. Node Size = 100, Number of Var Tried = 5 0.640
Gradient Boosted Trees eta=0.1, max depth = 2, num rounds = 100, min child wt =10 0.644

Notes: The models were trained on 70 percent of each set of surveys and tested on the remaining 30 percent.

The hyper-parameters were optimized using 10-fold cross-validation (log-loss metric). The table reports the optimized

(i.e. minimum) log-loss for each model. The hyperparameter candidate sets are as follows. Conditional Inference Decision

Trees: Bonferroni level of significance ( 0.90, 0.95). Random Forests ( R package Ranger): minimum node size (50, 100, 150, 200, 250,
300, 350), number of variables tried at each node (4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14), and number of trees (1000). Gradient Boosted Trees
(R package Xgboost): shrinkage (0.05, 0.1, 0.2, 0.3, 0.4), max depth (1, 2, 3, 4), number of rounds (50, 100, 150, 200, 250, 300) and min.
child weight (10, 20, 30, 40, 50, 60).
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Table A7: A Comparision of Out-of Sample Predictive Accuracy (Compare with Table 9)
Robustness Test: We use the HAZ score instead of the stunted dummy as the target (predicted) variable

Method Optimal Hyper-Parameter Values (via cross-validation) RMSE
Mozambique
Linear Regression None 147.9
Conditional Inference Decision Trees Level of Significance = 0.90 149.6
Random Forest Min. Node Size = 100 , Number of Var Tried = 7 147.4
Gradient Boosted Trees eta=0.05, max depth =3, num rounds = 200, min child wt =30 148.3
Malawi
Linear Regression None 137.0
Conditional Inference Decision Trees Level of Significance = 0.95 138.4
Random Forest Min. Node Size =200 , Number of Var Tried = 9 136.6
Gradient Boosted Trees eta=0.05, max depth =2, num rounds = 300, min child wt =50 136.8
Zimbabwe
Linear Regression None 139.4
Conditional Inference Decision Trees Level of Significance = 0.9 140.1
Random Forest Min. Node Size = 25 , Number of Var Tried = 5 139.4
Gradient Boosted Trees eta =0.3, max depth =1, num rounds = 150, min child wt = 60 139.3
Tanzania
Linear Regression None 127.9
Conditional Inference Decision Trees Level of Significance = 0.95 130.4
Random Forest Min. Node Size = 50 , Number of Var Tried = 5 127.9
Gradient Boosted Trees eta =0.4, max depth = 1, num rounds = 200, min child wt =50 128.1
Zambia
Linear Regression None 154.8
Conditional Inference Decision Trees Level of Significance = 0.90 155.7
Random Forest Min. Node Size = 100, Number of Var Tried = 6 154.6
Gradient Boosted Trees eta=0.1, max depth = 2, num rounds = 300, min child wt = 10 154.4

Notes: The models were trained on 70 percent of each set of surveys and tested on the remaining 30 percent.

The hyper-parameters were optimized using 10-fold cross-validation (RMSE metric). The table reports the optimized

(i.e. minimum) RMSE for each model. The hyperparameter candidate sets are as follows. Conditional Inference Decision

Trees: Bonferroni level of significance ( 0.90, 0.95). Random Forests ( R package Ranger): minimum node size (50, 100, 150, 200, 250,
300, 350), number of variables tried at each node (4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14), and number of trees (1000). Gradient Boosted Trees
(R package Xgboost): shrinkage (0.05, 0.1, 0.2, 0.3, 0.4), max depth (1, 2, 3, 4), number of rounds (50, 100, 150, 200, 250, 300) and min.
child weight (10, 20, 30, 40, 50, 60).
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Appendix Figure 1a
Harvest Cycles Across Districts: Malawi
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Appendix Figure 1b

Harvest Cycles Across Provinces: Mozambique
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Appendix Figure 1c
Harvest Cycles Across Regions: Tanzania
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Appendix Figure 1d
Harvest Cycles Across Provinces: Zambia
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Appendix Figure 1e

Harvest Cycles Across Provinces: Zimbabwe
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Appendix Figure 2

HDI Comparisons in the Broader African Context
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