I. Introduction and Context

Country Context

Regional Setting

1. The development of the Central Asia South Asia Regional Electricity Market (CASAREM) is envisaged as a phased development of institutional arrangements and infrastructure to link Central Asia's surplus energy resources with South Asia's energy shortages and growing demand. CASAREM offers an opportunity to boost prosperity and alleviate poverty in all of the countries involved, particularly in some of the poorest parts of the world (such as Tajikistan, Afghanistan and Pakistan's border areas), and to contribute to stability and growth in Afghanistan.

2. The proposed CASA-1000 project will facilitate the first electricity trade of 1,300
megawatts (MW) of existing summertime hydropower surplus between the two regions, involving the Kyrgyz Republic and Tajikistan in Central Asia and Afghanistan and Pakistan in South Asia. Project preparation is advancing, building on guidance from the 4-country minister-level Inter-Governmental Council (IGC) with a Secretariat that was put in place in 2011 and through consultations with the 10-member Central Asian Regional Economic Cooperation (CAREC) program. The project is expected to consist of the construction and operation of transmission infrastructure in the four countries, associated technical assistance during implementation, and mechanisms for the sharing of benefits with communities along the transmission corridor. The project would contribute to alleviating power supply shortages in Pakistan and Afghanistan and would enhance revenues and economic prospects in the Kyrgyz Republic and Tajikistan.

Country Background

4. Kyrgyz Republic and Tajikistan inherited the well-developed infrastructure of the former Soviet Union, but are still recovering from the impacts of the breakup of established trade with other parts of the Soviet Union, including a rapid decline in living standards, social conflicts (such as the civil war in Tajikistan in the early 1990s, and violence in Kyrgyz Republic in 1990 and again in 2010). Both are also small, landlocked countries vulnerable to natural disasters and the influence of external economic conditions. Their gross national income (GNI) per capita is below US$1,000, the lowest among the Central Asian countries. However, given their location in the Tien Shan mountain range, they are endowed with abundant water resources and considerable hydropower potential. Since their independence, both countries have launched structural reforms aimed at transitioning toward market-based economies, and both countries have endeavored to improve their energy sectors. Both countries have a limited ability to realize their economic potential if they remain economically isolated and do not expand their options to address energy security challenges.

5. Afghanistan remains a country in conflict and is still extremely fragile. The country has weak state and civil society institutions and is faced with enormous development challenges. Despite the ongoing conflict and insecurity, there have been significant political achievements in the past decade, including two rounds of presidential and legislative elections coinciding with an emerging media and civil society. As a result of the ongoing conflict, Afghanistan has been receiving an extremely high level of foreign aid (estimated at US$15.7 billion in 2010), which is almost equivalent to the country’s GDP. This current level of aid is unlikely to be sustained after 2014 when the departure of international forces is expected; the Afghan economy needs sustainable sources of long-term inclusive growth, as the slowdown in aid will produce a drag on the overall economy at a time when growth is vitally needed to cope with fiscal and demographic pressures. Under reasonably optimistic scenarios, growth in Afghanistan is projected to fall from a 10-year average of over 9 percent to between 5 and 6 percent in 2013–18. Unemployment, already at 8 percent in 2009–10, is projected to rise just as the labor force is expanding by 300,000 new entrants per year. A well-functioning electricity sector is key to growth and job creation; new infrastructure and reliable electricity are essential.

6. Pakistan has important strategic endowments and development potential, yet it faces significant economic, governance, and security obstacles to achieving development outcomes. The country’s increasing working-age population presents the critical challenge of finding ways to provide adequate services and increase employment. Poverty levels have declined from 34.5 percent in 2001–02 to an estimated 17.2 percent in 2007–08. Persistent conflict in Pakistan’s border areas and security concerns throughout the country affect all aspects of life and seriously impede
development. As the country recovered from the 2008 global crisis, its GDP grew 3.8 percent in fiscal year 2009–10 (FY09–10). The 2010 floods, exacerbated by a hike in food and fuel prices, caused economic activity to slow to 2.4 percent in FY10–11. Growth has remained in the 3.5 percent range in FY11–12, well below the level needed to provide jobs for a growing population. More crucially, the availability of electricity is considered to be the main constraint to economic growth and industrial investment in Pakistan and ultimately, to shared prosperity.

Trade Prospects

7. Energy Export Potential. The countries in Central Asia, with large energy resource potential relative to their domestic needs, have been pursuing energy export-led growth strategies since their independence in 1991. Kazakhstan, with its significant oil and gas resources, has been the most successful, followed by Turkmenistan and Uzbekistan. During the Soviet era, these resources were managed centrally on a regional basis. The hydropower resources in Kyrgyz Republic and Tajikistan were operated primarily as an irrigation system, and power generation was secondary and occurred primarily in summer months. At that time, energy systems were designed to reap the benefits of diverse energy sources that ranged from hydropower to coal and natural gas, resulting in regional energy exchanges between the various republics. Following the breakup of the Soviet Union, regional trade declined by 90 percent of the 1990s level, as the individual states began to focus on achieving a greater level of energy self-sufficiency. As a result, there has been an increase in seasonal mismatches of energy, with a large hydropower summer surplus leading to spillages of water with no electricity generation and a widening gap between demand and supply during the winter months. The hydro-rich countries have not been able to realize their potential, in part because of (a) the significant resources needed to develop the necessary electricity infrastructure; (b) limited regional cooperation; and (c) lack of clarity about the main electricity export market.

8. Import Options. The neighboring South Asia region, on the other hand, is energy deficient, is heavily dependent on imported, expensive energy (mainly oil), and is increasingly looking into lower-cost, cleaner energy imports to meet its rising demand driven. While reliance on domestic power generation capacity remains the cornerstone of each country’s sector policies, there is an increasing realization that electricity imports and trade can be a cost-effective and potentially secure means of reducing the demand-supply gap. In this regard, imports of existing summer surplus electricity from Central Asia offer a relatively low-cost means to both reduce current shortages and to develop and test the infrastructure and institutions which could then be expanded to meet future demand. Of particular note is the fact that Pakistan experiences a much larger deficit in the summer, when the hydro-rich Central Asian countries have substantial surplus generation. The economic linkages between the two regions would also contribute to a future stability that is rooted in these vested economic ties.

9. Planned Regional Initiatives. Various countries in South Asia and Central Asia have pursued a number of initiatives (including CASA-1000) as part of a broader ambition to create a regional energy market based largely on the export-import of either natural gas or electricity. For example, Turkmenistan, Uzbekistan, and Tajikistan are currently exporting electricity to Afghanistan in small quantities and hope to expand the trade market by generating power and exporting to South Asia, particularly Pakistan. The current generation from Turkmenistan and Uzbekistan is thermal-based, whereas in Tajikistan it is hydro-based.

10. Pakistan is also exploring various energy import opportunities that include a natural gas
pipeline with Iran and an electricity interconnection with India. Given the expected large shortfalls in electricity supply in both Pakistan and Afghanistan, more than one of these options are likely to be considered over time. Afghanistan's ADB-supported energy master plan suggested the option of using the Afghan grid to export power to Pakistan after meeting its own domestic demand; however, it is not yet clear how the domestic power system in Afghanistan would be adapted to cater to significant power trading from neighboring countries. Moreover, the Afghan grid would take several years to develop before it would be able to transmit a reasonable amount of power to Pakistan.

12. There is currently a missed opportunity for regional trade that can be met by the CASA-1000 project, laying the foundation for a future energy market between the South Asia and Central Asia regions. The project fits well in the space of current energy market prospects in the two regions and does not exclude other proposed regional initiatives, as there are complementarities between them. It is also the least capital intensive among the projects currently under consideration. Although CASA-1000 may be the furthest advanced and most economically viable today, it does not preclude future energy investments and trade expansion with other neighboring countries because it would be designed as an open access system.

13. The proposed CASA-1000 project will:
 • Set the stage for energy trade between Central and South Asia; it is critical that the first major step be taken if the existing potential for such trade is to be realized.
 • Establish Afghanistan's role as a viable transit country, leveraging a key comparative advantage and enhancing its growth prospects.
 • Ensure an additional and steady source of fiscal and power sector revenues to Tajikistan and the Kyrgyz Republic, two poor economies in Central Asia, which would help address the existing winter shortages. A dedicated system of the revenues utilization will be developed to ensure a fair, transparent, and targeted allocation of the funds.
 • Alleviate electricity shortages in Pakistan and Afghanistan during the peak summer season and/or reduce their dependence on costly oil-based generation.

14. In May 2006, a ministerial-level conference was held in Islamabad with Kyrgyz Republic and Tajikistan (future exporters) and Afghanistan and Pakistan (future importers), at which the countries collectively declared their intention to pursue electricity trade opportunities. This was followed by another conference in October 2006 in Dushanbe, where the four governments signed the first inter-governmental memorandum of understanding in which they committed to pursue the development of the first phase of CASAREM—that is, to establish the necessary transmission and trading infrastructure and systems to enable a trade of roughly 1,300 MW of electricity between Central Asia and South Asia, or CASA-1000. The countries then entered into an inter-governmental agreement in August 2008 and set up an Inter-Governmental Council (IGC) to steer the development of the project.

15. The four countries have intensified their cooperation since then and, together with partner international financial institutions (IFIs) and bilateral donors, have conducted the required analytical work for establishing the technical, economic, environmental, social, and commercial feasibility of the CASA-1000 transmission infrastructure. On September 16, 2013 the four countries signed an IGC resolution defining the key commercial principles and project structure.

Sectoral and Institutional Context
South Asia

17. The South Asia region faces tremendous energy challenges. More than 400 million people still remain without access to modern electricity services in what are the most conflict-affected regions of the world. Data based on a major national household-level survey carried out and compiled in the European Union’s “National Risk and Vulnerability Assessment in Afghanistan 2007/08” indicate that only about 20 percent of the population has access to grid electricity. Afghanistan, as a fragile and conflict-affected state, requires significant support to build up its infrastructure services in a sustainable manner, including the provision of affordable electricity to its population. In Pakistan, electricity shortages routinely occur in the summer amid increasing heat waves with temperatures regularly over 40 degrees Celsius (over 110 degrees Fahrenheit) causing socio-economic disruption in the country.

18. A recent report on jobs and employment in South Asia cited the availability of reliable electricity as one of the most binding constraints facing all types of urban, formal firms, which generally have the highest productivity and the highest-paid jobs. Furthermore, the severity of the electricity constraint on all types of firms reflects the large gap between demand for and supply of power in the region. Closing this gap requires a substantial increase in investment, which in turn requires that power sector reforms be sustained and deepened. Both Afghanistan and Pakistan rely heavily for power generation on fuel oil imports, which in recent years have been increasing, causing financial distress to an already challenged sector.

19. Afghanistan. Although Afghanistan has recently begun rehabilitating its power sector after two decades of conflict, it is clear that many more years will be required before this sector will be able to function adequately and meet the country’s demand for electricity. In the meantime, demand is growing rapidly. The lack of access to electricity for a significant portion of the population continues to hamper economic growth and raises doubts about the country’s future ability to provide this key service, especially during the transition from decades of conflict.

20. The government’s medium-term outlook for the sector focuses on: enhancing energy security through the rehabilitation of clean and low-cost major hydro plants, which is currently underway; adding local resources based on more generation capacity to meet unmet and future demand (coal-based power plants associated with mining activities); expanding small and medium hydro plants; and starting work on one or two large hydro plants based on the optimized development of water resources. In addition, the government places strategic importance on tapping into surplus power from neighboring Central Asian countries, which would also enhance its prospects as a safe transit country and increase revenues from potential transit fees for sales to Pakistan and other neighbors.

21. Pakistan. Pakistan faces an ongoing energy crisis marred by long periods of load shedding and power cuts. These are largely attributable to, among other factors, weak sector governance, inefficiencies in the distribution system, and the high cost of supply. The sector is governed by a regulator and relies on a single national transmission company (NTC), namely the National Transmission and Despatch Company (NTDC), and nine different distribution companies (DISCOs), as well as a vertically integrated utility serving the city of Karachi (Karachi Electricity Supply Corporation, KESC) for the provision of services to consumers. The Central Power Purchase Agency (CPPA) acts as an agent for NTDC with a mandate to procure each unit of electricity
produced from different sources and sell it to the DISCOs and other bulk consumers. The performance and capacity of the DISCOs varies significantly. In 2012, the total installed generation capacity was about 22,800 MW; however, a significant portion of this capacity is not being fully utilized and the available capacity is closer to 14,000 MW, and no significant additional capacity has been added for many years. In a country of 180 million that is one of the most urbanized in the region, the demand for energy continues to grow. Between 2004 and 2009, electricity consumption grew by 22 percent while the supply remained practically stagnant. From 2010 to 2012, Pakistan made a serious effort to deal with the electricity crises through investing in the domestic expansion of hydropower (1,410 additional MWs from an already constructed tunnel on the existing Tarbela Dam), improving the efficiency of the natural gas distribution system, and pursuing import opportunities for electricity/gas from Central Asia, Iran, and India.

22. While the challenges in the energy sector are multifaceted, the newly-elected government has indicated its plans to tackle the deficit through an expansion of power generation and a more efficient use of its natural resources and energy imports from neighboring countries. Pakistan is endowed with hydropower resources (mainly on the Indus River) as well as some natural gas reserves. However, current gas supplies are not sufficient to meet the energy demand, especially from household consumption and industry. There is limited availability of gas for power generation, and the dual fuel plants are mostly run on expensive oil. While the generation expansion would mainly rely on hydropower, the country would still face significant shortages in the short and medium term, given the long gestation and high cost of hydropower construction and startup. This has led to the need to explore the import of electricity.

Central Asia

23. In contrast to South Asia, the Central Asian countries involved in this project, Tajikistan and Kyrgyz Republic, rely almost entirely (over 90 percent) on hydropower to meet their energy needs. Most of the assets in the electricity sector were inherited from the Soviet era and need investments in rehabilitation and/or replacement. Both the countries and their development partners recognize the importance of rehabilitation investments, as they are the backbone of the domestic power supplies and the economy.

24. The natural hydrology driven by snow melts results in heavy water flows during the summer and significantly reduced flows during the winter. The rivers used for hydroelectric generation are transboundary, and Tajikistan and Kyrgyz Republic maintain an agreed level of water outflows in the summers for the irrigation needs of the downstream riparian countries. The water released in the summer is used for the generation of electricity up to the level of domestic demand and for export, and the rest is spilled without passing through turbines. Tajikistan and Kyrgyz Republic thus face the problem of surplus power in the summer months and perennial power shortages in the winter months. The combination of low tariffs, poor governance and under-maintenance of energy assets causes a severe disruption to the economy and affects the productivity and well-being of the population as a whole. With relatively low-cost surplus electricity available in the country, the governments would be able to generate much-needed revenues that could help finance fuel resources or additional generation capacity and other energy-efficiency programs as a means of dealing with their winter energy crises in the medium to long term.

25. Kyrgyz Republic. Over 90 percent of electricity in the country is produced by the Naryn hydroelectric cascade, which is regulated by the Toktogul reservoir with a storage capacity of 19
billion cubic meters (bcm), enabling multiyear regulation of the cascade operation. The inflows into the cascade are highest during the summer period as a result of snow melts, leading to a surplus of unused electricity and the spillage of water due to the need to maintain the downstream flows and, at times, to the reservoir’s limited storage capacity. Electricity is exported during the summer to Kazakhstan based on yearly negotiations, but the price levels are relatively low and the amount is uncertain.

26. During the winter, when electricity demand is high to meet heating needs and the water inflows are not sufficient to meet the peak demand, there are often four to six hours of load shedding. As a short-term measure to deal with its energy deficits in the winter, Kyrgyz Republic has been exporting its summer surplus of electricity to neighboring countries, such as Kazakhstan, in exchange for fuel supplies from coal and gas. The sector suffers from large losses (in excess of 30 percent of net generation), very low electricity tariffs (less than US$0.02/kWh), and suboptimal contractual arrangements. In recent years, there has been a strategic focus on implementing critical investments to improve the viability of the power sector and respond to the energy needs of the country in the medium to long term. The major cause for the lack of investments has been the poor financial health of the energy sector, due mainly to very low level of tariffs (the lowest in the Europe and Central Asia region) and under-performance of the utilities. Since 2011, Kyrgyz Republic has been testing a transparent method to separate accounting of the revenues, whereby all revenues from electricity exports are deposited in a separate escrow account and can be spent for specific purposes only, such as import of fuel for winter needs. Use of these revenues would be monitored by an independent committee that would include representatives of civil society to ensure full transparency. Furthermore, all funds flows and balances are posted on the Ministry’s and utilities’ websites.

27. Tajikistan. Similar to Kyrgyz Republic, Tajikistan relies almost exclusively on hydropower (96 percent of its 4,750 MW of installed capacity) to meet its electricity needs. With the Vakhsh cascade following the same hydrological patterns as the Naryn River, the same pattern of summer surplus and winter shortages exists, except the Nurek reservoir storage capacity is much smaller and the water spillages in summer thus even larger. As one of the poorest countries in Central Asia, poverty alleviation is at the center of the country’s development challenges. The Government’s recent Poverty Reduction Strategy Paper (PRSP) for 2010–12 underscored the essential role of the infrastructure sector in achieving the objectives of poverty reduction and growth. In particular, the energy sector was identified as a priority, given its significant development impact and potential. The power sector is managed mainly by Barki Tojik, a state-owned enterprise. Some of the key issues facing the sector are: (i) the financial viability of Barki Tojik, which carries a sizable cash deficit—about 2 percent of GDP for 2010; (ii) the seasonal mismatch between electricity supply and demand, contributing to economic losses and hardship for the population, with winter power shortages leading to 12–18 hours of load shedding during winter months outside of the capital city of Dushanbe; (iii) the increasing liability of the payments to independent power producers (IPPs) for electricity that cannot be commercially utilized during the summer months in the absence of export opportunities; and (iv) the country’s overall limited management capacity in key operational areas of the power sector.

Relationship to CAS
28. The proposed CASA-1000 project contributes to key strategic outcomes outlined in the Country Assistance/Partnership Strategies (CAS/CPS) of all four participating countries. By investing in the CASA-1000 project, the exporting countries would be able to utilize an available
asset base to drive their export potential during the summer period and earn revenue for their economies.

29. In the case of Tajikistan, the project clearly responds to the expected result of improving the reliability and efficiency of electricity and gas services, increasing the energy export potential (Objective II of the Tajikistan CPS FY10–13), and reducing the negative impact of the crisis on poverty and vulnerability by maintaining fiscal stability and access to critical public services (Objective I of the CPS). The project would also support emphasis on growth and essential reconstruction and rehabilitation needs by generating valuable export revenues, an area of focus in the Kyrgyz Republic Interim Strategy Note (FY13–17).

30. The CASA-1000 project is explicitly mentioned in both the Pakistan CPS (FY10–13) and Afghanistan Interim Strategy Note (FY12–14) as an area of engagement for the Bank, specifically as it relates to regional cooperation. The Bank’s focus in Afghanistan is on enhancing its growth prospects and supporting promising areas for regional cooperation, thereby building on Afghanistan’s traditional connection to its neighbors in trade and transit, energy, and water management. Inclusive growth and jobs are of paramount importance to the country, and insufficient energy is noted as a constraint to enterprise development. The government target over the medium term is for electricity supply to reach at least 65 percent of households and 90 percent of nonresidential establishments in major urban areas, and at least 25 percent of households in rural areas.

II. Proposed Development Objective(s)

Proposed Development Objective(s) (From PCN)

The objective of the project is to create the conditions for sustainable electricity trade between the Central Asia countries of Tajikistan and Kyrgyz Republic and the South Asian countries of Afghanistan and Pakistan, in order to alleviate power supply shortages in the South Asian countries and enhance sector and budget revenues in the Central Asian countries.

Key Results (From PCN)

1. Sustainability. Commercial framework agreements as well as construction and operation contracts for electricity trade have been signed and implemented between the four countries, and benefit-sharing schemes for inclusive growth have been developed and are being implemented.

2. Infrastructure development. Transmission infrastructure allowing electricity trade between the two regions has been established and is functional.

3. Institutional development. The capacity of participating countries’ institutions and utilities has been strengthened, enabling them to undertake large cross-border infrastructure projects, negotiate and implement technical and commercial agreements, and develop markets and system planning.

III. Preliminary Description

Concept Description

The proposed project would be comprised of the following two components:

Component 1: Construction of transmission infrastructure in the four countries consisting of:
• A High Voltage Direct Current (HVDC) transmission system, including a 500 kilovolt (kV) line with a capacity of 1,300 MW from Sangtuda to Peshawar via Kabul (750 kilometers); 1,300 MW alternating current to direct current (AC-DC) converter station in Sangtuda, a 1,300 MW DC-AC converter station in Peshawar; and a 300 MW DC-AC converter station in Kabul;

• A High Voltage Alternate Current (HVAC) 500 kV line from Datka to Khujand (477 kilometers) to transfer the surplus power from the Kyrgyz Republic to Tajikistan; and the 500 kV line from Regar to Sangtuda to strengthen Tajikistan’s grid network.

Component 2: Support for project implementation and technical assistance (TA) required by the four countries to the project implementing agencies, namely the National Transmission and Despatch Company (Pakistan), the Open Joint Stock Holding Company (OJSHC) Barki Tojik (Tajikistan), Da Afghanistan Breshna Sherkat (Afghanistan), and the Joint Stock Company (JSC) National Electric Grid of Kyrgyzstan (Kyrgyz Republic). Areas where support would be needed include the provision of third-party monitoring and supervision of consultants during construction, the design of benefit-sharing schemes, among other areas.

Please note that the financing table included in this document presents indicative amounts and any commitment from potential financiers would be subjected to formal review and approval by each institution. Financing for the project is expected to be from multiple sources including the World Bank, Islamic Development Bank and other bilateral agencies from countries such as the US (USAID, State Department) or the UK (DFID) who have been supporting the preparation of CASA-1000 and continue to do so.

IV. Safeguard Policies that might apply

<table>
<thead>
<tr>
<th>Safeguard Policies Triggered by the Project</th>
<th>Yes</th>
<th>No</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Assessment OP/BP 4.01</td>
<td>✖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Habitats OP/BP 4.04</td>
<td>✖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forests OP/BP 4.36</td>
<td>✖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest Management OP 4.09</td>
<td></td>
<td>✖</td>
<td></td>
</tr>
<tr>
<td>Physical Cultural Resources OP/BP 4.11</td>
<td></td>
<td>✖</td>
<td></td>
</tr>
<tr>
<td>Indigenous Peoples OP/BP 4.10</td>
<td></td>
<td>✖</td>
<td></td>
</tr>
<tr>
<td>Involuntary Resettlement OP/BP 4.12</td>
<td>✖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety of Dams OP/BP 4.37</td>
<td></td>
<td>✖</td>
<td></td>
</tr>
<tr>
<td>Projects on International Waterways OP/BP 7.50</td>
<td></td>
<td>✖</td>
<td></td>
</tr>
<tr>
<td>Projects in Disputed Areas OP/BP 7.60</td>
<td></td>
<td>✖</td>
<td></td>
</tr>
</tbody>
</table>

V. Financing (in USD Million)

<table>
<thead>
<tr>
<th>Total Project Cost:</th>
<th>1000.00</th>
<th>Total Bank Financing:</th>
<th>510.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financing Gap:</td>
<td>180.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financing Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORROWER/RECIPIENT</td>
<td>0.00</td>
</tr>
<tr>
<td>International Development Association (IDA)</td>
<td>145.00</td>
</tr>
<tr>
<td></td>
<td>Amount</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>IDA Grant</td>
<td>365.00</td>
</tr>
<tr>
<td>Islamic Development Bank</td>
<td>280.00</td>
</tr>
<tr>
<td>Bilateral Agencies (unidentified)</td>
<td>30.00</td>
</tr>
<tr>
<td>Total</td>
<td>820.00</td>
</tr>
</tbody>
</table>

VI. Contact point

World Bank

Contact: Sunil Kumar Khosla
Title: Lead Energy Specialist
Tel: 473-4011
Email: skhosla1@worldbank.org

Borrower/Client/Recipient

Name: Islamic Republic of Afghanistan
Contact: Dr. Mustafa Mastoor
Title: Deputy Minister of Finance
Tel: 0093202102838
Email: mmmastoor@yahoo.com

Name: Ministry of Energy and Industry, Tajikistan
Contact: Pulod Mukhitidnov
Title: First Deputy Minister
Tel:
Email:

Name: Islamic Republic of Pakistan
Contact: Mr. Saif Ullah Chattha
Title: Secretary
Tel: 92-51-9211852
Email: secretary@mowp.gov.pk

Name: Kyrgyz Republic
Contact: Mirlan Baigonchokov
Title: Deputy Minister
Tel: 996312664036
Email: m.baigonchokov@min.fin.kg

Implementing Agencies

Name: Da Afghanistan Breshna Sherkat
Contact: Eng. Shekeeb Nessar
Title: Chief Operations Officer
Tel: 0093700294722
Email: shekeeb.nessar@dabs.af
Name: National Electric Grid of Kyrgyzstan
Contact: Mr. Taalaibek Ibraev
Title: Deputy General Director
Tel: 996312661001
Email: nesk@elcat.kg

Name: Barki Tajik
Contact: Mr. Ali Nazarov
Title: Chairman
Tel: (992-372) 358-766; 560-0713
Email: elrpbt@gmail.com

Name: National Transmission and Despatch Company (NTDC)
Contact: Mr. Muhammad Zia-ur-Rehman
Title: Managing Director
Tel: 924299202229
Email: ceo@ntdc.com.pk

VII. For more information contact:
The InfoShop
The World Bank
1818 H Street, NW
Washington, D.C. 20433
Telephone: (202) 458-4500
Fax: (202) 522-1500
Web: http://www.worldbank.org/infoshop