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While human mobility has important benefits for economic 
growth, it can generate negative externalities. This paper 
studies the effect of mobility on the spread of disease in a 
low-incidence setting when people do not internalize their 
risks to others. Using malaria as a case study and 15 billion 
mobile phone records across nine million SIM cards, this 
paper causally quantifies the relationship between travel 
and the spread of disease. The estimates indicate that an 

infected traveler contributes to 1.7 additional cases reported 
in the health facility at the traveler’s destination. This paper 
develops a simulation-based policy tool that uses mobile 
phone data to inform strategic targeting of travelers based 
on their origins and destinations. The simulations suggest 
that targeting informed by mobile phone data could reduce 
the caseload by 50 percent more than current strategies that 
rely only on previous incidence.

This paper is a product of the Development Impact Evaluation Group, Development Economics. It is part of a larger 
effort by the World Bank to provide open access to its research and make a contribution to development policy discussions 
around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The 
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1 Introduction

Increasing domestic and international mobility has magni�ed the devastating conse-

quences of infectious diseases: more than 11,000 deaths from Ebola, 440,000-1,300,000 cases

of Zika infections in 13 countries, and most recently, more than 125,048 infections and 4,613

deaths from COVID-191 across 117 countries ( Bogoch et al. 2016, WHO 2020a, WHO

2020b). Negative externalities from mobility are also relevant for long-standing diseases that

we are aiming to eliminate. For example, Venezuela, the �rst country certi�ed by the World

Health Organization (WHO) for eliminating malaria in its most populated areas in 1961, ex-

perienced a dramatic resurgence of the disease in 2016 in part due to migrant workers in the

mining region becoming sick, traveling home, and spreading the disease to their home villages

and cities (Casey 2016). This paper uses a case study of malaria in Senegal to demonstrate

how to harness big data to causally estimate the size of this externality of movement and

apply the results towards more e�ective policy targeting. The methods can be applied more

broadly to inform policies related to mitigating spread of infectious diseases.

The economics literature identi�es malaria eradication as having important impacts

on adult income and consumption (Bleakley 2010, Cutler et al. 2010, Venkataramani 2012),

real estate wealth (Hong 2011), longer term health including chronic disease and disability

(Hong 2013), test scores and educational attainment (Barofsky, Anekwe, and Chase 2015,

Lucas 2010, Venkataramani 2012).2 Ninety-nine countries have been certi�ed by the WHO as

malaria free; however, Sub-Saharan Africa, which accounted for 93% of all malaria deaths in

2018, has only had a single successful case of elimination (World Malaria Report 2019). While

previous work has studied malaria prevention/treatment in short-term settings, focusing on

the pricing of malaria interventions (Jessica Cohen and Dupas 2010, Jessica Cohen, Dupas,

and Schaner 2015, Dupas 2014, Laxminarayan et al. 2010, Tarozzi et al. 2014) as well as the

adoption of preventative or anti-malarial treatment (Adhvaryu 2014, Apouey, Picone, and

1Data as of March 12, 2020
2See Currie and Vogl (2013) and Apouey, Picone, and Wilde (2018) for summaries of the literature.
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Wilde 2018, Armand et al. 2017), research has not yet examined behavioral factors that may

contribute to the persistence and spread of malaria in the long-term.

This paper uses novel data to causally estimate a constraining factor for elimination:

the reintroduction of malaria into elimination zones by population movement. While this

phenomenon has been documented in at least 61 countries by the epidemiology literature,

this has not been done in a causal framework (Justin Cohen et al. 2012, Lu et al. 2014).

In this research, I quantify the negative externality of mobility empirically using a similar

setting in Senegal. This paper leverages policy simulations based on these estimates to

show how aggregated big data on individuals' geolocation can inform more cost-e�ective

targeting strategies to reduce transmission generated by population mobility, which would

be a complementary component of a campaign to successfully eliminate malaria.

The negative externality from travel is generated when people are unaware of their risks

to others because they do not know that they are disease vectors.3 Yet given the bene�ts

of travel, an information campaign is unlikely to cause people to internalize the externality

and choose not to travel to prevent infecting others. Measuring the size of the externality

and identifying those people that contribute the most can allow for targeted policies that

can help address this market failure.

The main challenge in estimating the size of the externality from mobility is that while

disease transmission may respond quickly to changes in migration patterns, existing survey

data that record these patterns are often infrequent or do not have coverage across a country.4

Therefore, the only strategy available to policymakers to address this externality is using

incidence in the previous year to identify where and who to target. This paper is able to

signi�cantly improve on this strategy by utilizing a new source of data to track population

3As will be described in more detail in the next section, the long incubation period for malaria allows
people to travel without knowing they are infected. Additionally, those in high malaria settings typically
develop immunity and do not experience malaria symptoms yet can infect mosquitoes when they travel to
low malaria settings.

4In Senegal, the main o�cial source of data on population movement is census data that only includes
long-term migration statistics every 10 years. There are other surveys that ask about commuting, such as
the Household Mobility Survey of Dakar (EMTASUD), but it is only for one point in time, it is focused only
on Dakar, and it was done in 2000 and in 2015).
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movement for a large number of people between health facility catchment areas at the daily

level. I leverage mobile phone metadata for 9.5 million SIM cards in Senegal in 2013 to

extract patterns of movement between di�erent areas from the approximate locations of 15

billion calls and texts. For each month and health facility area, I measure the number of

incoming travelers from other regions weighted by the incidence of malaria in these regions

and the length of time spent in the origin and destination to calculate "expected imported

malaria cases." I study an area of Senegal close to elimination to focus on reintroduction

e�ects. I use a panel data strategy to estimate the impact of imported incidence on total

malaria incidence in this low-malaria setting using a linear dynamic panel-data model and

controlling for time �xed e�ects. If infected travelers only lead to a malaria case being

detected in the destination rather than the origin of the traveler, but do not generate any

externality in the form of additional malaria cases, then a standard model would predict for

each expected imported case one more additional case reported in the destination. Instead,

I �nd that one additional expected imported case of malaria in a low malaria area leads to

1.7 cases of malaria reported, indicating an externality of .7 new cases.

Given that migration has numerous economic and social bene�ts, policymakers face

trade-o�s between economic growth and improving public health in designing policies to

reduce travel-linked malaria cases. This paper provides a useful framework for strategic

targeting of high-risk populations in low-incidence areas to reduce negative externalities from

travel with minimal interference to travel patterns. There are two categories of targeting

considered: (1) targeting high-risk travelers entering a low malaria area from a high malaria

area and (2) targeting all travelers in only speci�c areas of low-malaria regions that are

likely to receive many high-risk travelers.5 Within each type, I compare a strategy that

incorporates daily information on origins and destinations of travelers from mobile phone

data with strategies that only use information on incidence in the previous year that could be

implemented by the government in the absence of mobile phone data. The most cost-e�ective

5This paper does not focus on the type of targeting, but examples can include information campaigns
targeted to travelers via mobile phone and strategically setting up testing sites.
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strategy is to use mobile phone data and combine the two types of targeting. On average,

given the existing budget available for this type of activity, the cost- e�ective strategy using

mobile phone data performs over 50% better compared to the next best strategy that only

relies on incidence in the previous year.

My empirical design accounts for confounders correlated with movement. Using rainfall

proxies and month �xed e�ects, I control for seasons and holidays, which drive a large amount

of migration in Senegal. I also test that it is not an unobservable correlated with both

migration and malaria driving the results, but instead the combination of movement and

the malaria levels at origins and destinations. Additional checks show that the relationship

between imported incidence and malaria incidence is not driven by some other relationship

between origins and destinations as well as to ensure that the relationship holds only for

malaria and not for other health conditions. I also test the impact of future imported

incidence on malaria incidence in the current month and �nd no relationship.

This paper builds on previous health literature that has established travel as a risk

factor for contracting malaria, (Montalvo and Reynal-Querol 2007, Lynch et al. 2015, Osorio,

Todd, and Bradley 2004, Siri et al. 2010, Littrell et al. 2013), by estimating the size of the

causal impact from an expected imported case, which makes it possible to conduct policy

simulations and compare di�erent targeting strategies. Tatem et al. (2009) and Le Menach

et al. (2011) use three months of cell phone data to estimate the malaria importation rate

to Zanzibar using a static model that does not account for seasonality due to the limited

time frame of their mobile phone data. Similarly, Wesolowski, Eagle, et al. (2012), Enns

and Amuasi (2013), Chang et al. (2018) and Ihantamalala et al. (2018) among others, do

not incorporate seasonality in incidence and focus on identifying potential sources and sinks

based on travel patterns and annual malaria prevalence data. Yet Buckee, Tatem, and J.

Metcalf (2017) point out that seasonal variation in biological factors related to climate and

seasonal population movements are important for many infectious diseases and failing to

account for seasonality could lead to misallocation of resources.
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While Wesolowski, Erbach-Schoenberg, et al. (2017) look at seasonality of movement

patterns across Kenya, Pakistan and Namibia, they only connect this theoretically to impact

on disease and do not study the relationship with incidence data. Papers that have combined

seasonal mobility data from mobile phones with seasonal disease incidence data, such as

Wesolowski, C. Metcalf, et al. (2015) for rubella and Wesolowski, Qureshi, et al. (2015) for

dengue, have not done so in a causal framework. This paper contributes to the existing

work by aiming to measure the causal relationship and size of the e�ect of imported malaria

using a linear dynamic panel-data model and controlling for time �xed e�ects. Therefore,

in addition to the two areas already identi�ed by the economics literature as necessary for

malaria reduction�pricing and adoption of preventative and treatment interventions�this

paper identi�es targeting of higher risk mobile populations as a third.

While this paper focuses on malaria elimination, it has implications for other diseases

whose spread has been associated with travel (Adda 2016, Oster 2012,Prothero 1977, Balcan

et al. 2009, Stuckler et al. 2011, Tam, Khan, and Legido-Quigley 2016). Since travel patterns

studied using cell phone data could lead to the transmission of any communicable disease, if

these data are obtained for other countries or for di�erent diseases, it is possible to replicate

the analysis using the methods developed in this paper. I demonstrate how new sources of

big data can be used to measure externalities associated with travel to develop more e�ective

targeting strategies that can be combined with pricing and adoption policies. This further

expands the use of big data for development in areas such as risk-sharing (Blumenstock,

Eagle, and Fafchamps 2016), measuring poverty (Blumenstock, Cadamuro, and On 2015,

Blumenstock 2016) and providing credit to the poor (Bjorkegren and Grissen 2018).

The paper begins by providing some background and describing the data. It then

goes on to model the link between malaria and population movement in section 3. Section

4 outlines the empirical results linking travel to malaria and section 5 examines the cost

e�ectiveness of di�erent policies. Some robustness checks are provided in section 6, and the

paper concludes with section 7.
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2 Background and Data

2.1 Malaria Characteristics

Malaria is an infectious disease that requires two hosts�humans and mosquitoes�in

order to spread. The malarial cycle for P. falciparum, the parasite causing 100 percent of

cases in Senegal, can take several weeks (World Malaria Report 2014). After an infected

individual is bit by a mosquito, there is an incubation period lasting around 9 days within

the mosquito (Killeen, A. Ross, and T. Smith 2006).6 If the mosquito survives the incubation

period, it can bite and infect a healthy individual, after which there is a second incubation

period within the human of around 15 days (D. L. Smith and McKenzie 2004, Hoshen and

Morse 2004). Symptoms will appear at the end of this period and the individual will become

infectious.7 Combining the two incubation periods, a secondary case will take around one

month to appear after a primary case.8

This paper focuses on the role of human behavior on spread of the disease.9 There

are two channels through which population movement can lead to spread of malaria in low-

malaria or elimination zones. The �rst is residents of these zones who travel to high malaria

areas and become infected when bit by infected mosquitoes. Since malaria symptoms do not

appear for around two weeks, the resident can travel home feeling healthy. Once at the home

location, the person can become symptomatic, as well as infect mosquitoes. These infected

mosquitoes can infect other individuals and pass on the disease. The second channel is

visitors or migrants that live in a high malaria area and travel to a low malaria area. Again,

at the beginning of their travel, these individuals might not exhibit symptoms, but can still

be carriers of the disease.Therefore if they are bit by a mosquito in the low malaria area,

they could infect that mosquito and it could in turn infect other individuals.

6The incubation period can vary, but two di�erent sites in Senegal had an average of 9 days.
7Unlike other malarial parasites, P. falciparum does not have the potential to lie dormant for months.
8Details on malaria transmission can be found in Doolan, Dobaño, and Baird 2009, D. L. Smith and

McKenzie 2004, Killeen, A. Ross, and T. Smith 2006, Wiser 2010.
9Average radius of travel for the mosquitoes that carry the malaria parasite in Senegal is only 1-2 km;

therefore, mosquito movement is not considered (Russell and Santiago 1934, Thomas, Cross, and Bøgh 2013).
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2.2 Health System and Malaria in Senegal

Senegal is geographically divided into 14 health regions, under which there are 76 health

districts. The main point of service for malaria cases is the health post. There are a total of

1,247 health posts in the country (PNLP, INFORM, LSHTM 2015). In addition, there are

rural health huts and community health workers that provide care for those living far from

a health post, and report the cases to the closest health post.

Since the establishment of the National Malaria Control Program (PNLP) in 1995, the

program has coordinated a variety of measures and policies that have led to a reduction in

deaths attributed to malaria from 12.93 per 100,000 people in 2000 to 8.26 in 2013 (PNLP,

INFORM, LSHTM 2015). Currently, the north of the country has very low incidence and is at

the level considered ready for elimination by the World Health Organization (1 case per 1000,

known as the pre-elimination phase). In contrast, the south still has a high case load, with

some districts as high as 270 cases per 1000.10 The heterogeneity can be partly attributed to

environmental factors because the rainy season is twice as long in the south as in the north,

which allows for mosquitoes to breed and spread the disease for longer. Nevertheless, the

mosquitoes required to spread the disease are also present in the low malaria areas (Ndiath

et al. 2012). Given the two distinct zones in the country, the Government of Senegal strives

to continue reducing the case load in the South, while aiming to eliminate it completely from

the North. As potentially infected individuals travel from the South to the North, though,

they can hinder elimination e�orts in the North.

2.3 Population Movement in Senegal

Senegal has large �ows of long term and permanent migration, with 27% of the popu-

lation recorded as an internal migrant in 2004 (P. D. Fall, Carretero, and M. Y. Sarr 2010).11

A large part of this migration is rural to urban due to irregularity of rainfall and degradation

10The Appendix contains a map of annual malaria incidence by district.
11This is comparable to the rest of Sub-Saharan Africa, where 50-80 percent of rural households were

estimated to have at least one migrant (Deshingkar and Grimm 2005).
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of the ecosystems that have impacted agricultural activity (P. D. Fall, Carretero, and M. Y.

Sarr 2010, Goldsmith, Gunjal, and Ndarishikanye 2004). In turn, this longer term migration

can lead to commuting patterns as people return home to visit family and friends or receive

visitors from home (Cho, Myers, and Leskovec 2011). Focusing on migrants in Dakar, A. S.

Fall (1998) �nds that 87% of male and 81% of female migrants visited their home areas, with

the majority of visits occurring for holidays, family ceremonies and religious festivals.

Detailed studies of the Jola ethnic group in several villages �nds that circular migration

plays an important role, with over 80% of unmarried Jola youth traveling to the cities in

October and then coming back before the rice harvest in June-July (Linares 2003). Broader

research on youth in Senegal has shown that more than half of the internal migration they

engage in is temporary and rural to rural or urban to urban (Herrera and Sahn 2013).

Additionally there are still pastoral groups that travel within a set territory(Adriansen 2008).

Understanding the movement patterns within Senegal is important for thinking through

potential confounding factors between movement and malaria. The majority of the literature

points to movement triggered by agricultural seasons as well as holidays. These factors and

their relationship to malaria incidence will be discussed in the model section.

In Senegal, 2% of the population are international migrants while only 1.2% of the

population emigrated from Senegal. Focusing on immigration into Senegal in 2013, only

0.23% of the population entered the country. While the paper focuses on the role of internal

migration, the potential impact of international migration will be discussed.

2.4 Malaria Data

Low-incidence areas close to elimination can experience the largest externality from

population mobility for three key reasons: (1) without these travelers the disease could be

reduced to zero and require lower government expenditures; (2) in high malaria areas, people

have usually built up an immunity to the disease; therefore, a traveler entering a high malaria

area is less likely to lead to a new infection even if he or she infects additional mosquitoes

8



in the area, while in a low malaria area immunity does not exist; and (3) the infection in

a low-malaria area is likely to be more severe due to the lack of exposure to the disease.

Therefore, I focus on the part of Senegal discussed earlier that is at a pre-elimination stage.

Within this area, I focus on �ve of the lowest malaria districts where data are disaggregated

at the health post level and available for every health post in these districts. Malaria data

are not available at this high spatial resolution for any of the other low malaria districts.

The data cover 117 health posts. The appendix provides a map of the �ve health districts,

which I subdivide into areas based on the location of the health posts and cell phone towers.

Health posts in close proximity were grouped together forming 36 health post catchment

areas.

I use incidence data based on data collected from each health post on all new cases

in the reporting month.12 The use of incidence data is one thing that separates this paper

from some of the previous work that relies on endemicity data. The endemicity data are

gathered from parasite rate surveys in which a random subsample of the population is tested

for malaria parasites. When the malaria prevalence is very low, the likelihood of having

a positive case becomes very small. Therefore, when focusing on a low-malaria setting to

understand impact of mobility, incidence is a more reliable measure (Alegana et al. 2013,

J. M. Cohen et al. 2013).

PNLP's work has led to a system that provides high quality data on malaria incidence

across the country. In Senegal, if an individual feels sick, usually experiencing a fever, chills

and fatigue, she will go to the closest health post where she will be tested using a rapid

diagnostic test (RDT) due to her symptoms. If she tests positive, she will be provided with

medication for free to treat the disease. Therefore, all incidence data used in this paper

comes from suspected cases that have been tested and are positive for malaria based on the

test. For the rest of the country, these incidence data are available monthly at the health

12The data used to measure malaria incidence comes from the PNLP and PATH, a non-pro�t organization
working with the PNLP to �ght malaria in Senegal through its Malaria Control and Elimination Partnership
in Africa (MACEPA).
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Figure 1: Average Monthly Health post Catchment Area Malaria Incidence per 1000 and
Average Monthly Rainfall, Jan 2013-Dec 2015 by Health District

district level. These data are used to classify the risk of travelers based on their origin.

Monthly malaria incidence per 1000 people is averaged across health post catchment

areas within districts for three years in Figure 1. Districts on average have around 0.1

cases per 1000 people per month. The �gure overlays the monthly cumulative rainfall in

centimeters averaged across health post catchment areas.13 The comparison of cases and

rainfall demonstrates strong seasonality of malaria in Senegal and the close relationship

between rainfall and malaria, with the peak of cases annually occurring one to two months

after the peak in rainfall. I model this relationship in the analysis since rainfall can be

correlated with both malaria and population movement.

There are three main challenges that arise with using clinical data: incomplete data

reporting, presumptive diagnosis based on symptoms rather than testing and non-utilization

13Rainfall data are from the Climate Prediction Center (2016) Rainfall Estimator for Africa.
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of the public health system (Alegana et al. 2013). In the data only 12 out of 1,416 health

post-month observations are missing in 2013. In addition, 99% of suspected cases were

tested parasitologically in the �ve districts analyzed. Since both malaria cases and imported

cases are calculated based on case data, as long as utilization is relatively uniform across the

country, it should not bias results. Based on the DHS data for all the regions, a health facility

was visited for fever in children under age 5 in 46% of cases (ANSD and ICF International

2015). The standard deviation of this utilization across regions is 6.5 percentage points.

While in the main analysis, I assume uniform utilization, I include a robustness check where

cases are scaled by regional utilization in the DHS.

2.5 Population Movement Data

The data used to measure short term movement come from phone records made avail-

able by Sonatel and Orange in the context of the Data for Development Challenge (Montjoye

et al. 2014). The data come from the second phase of the Challenge and consist of 15 billion

call and text records for Senegal between January 1, 2013 and December 31, 2013 for all of

Sonatel's user base.14 The data contain information on all calls and texts made or received

by a SIM card, their time, date and location of the closest cell phone tower, which enables

tracking of SIMs in space as they make calls from di�erent tower locations. The data are

anonymized, with a random ID provided that makes it possible to track the same SIM over

time, but no identifying information on the individuals. On average there are 1,657 calls or

texts per ID during the year, and on average an ID has a call or text on 155 days.

Each tower is assigned a health district based on its GPS coordinates. I follow previous

literature to assign individuals a daily health district location based on the cell tower of the

last call or text of the day (Ruktanonchai et al. 2016). In instances where there are days with

no calls, I replicate Wesolowski, Eagle, et al. (2012) and assign the health district location

of the day closest to the one missing.15 A health district location is assigned to each SIM

14At this time it was not possible to obtain more recent data or data from other providers.
15The appendix includes a robustness check where observations with more than 14 days in a row missing
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for every day of the year.

Movement is de�ned as a change in location from one health district to another between

two consecutive days. The population is highly mobile, with over 80% of all Sonatel SIM

cards taking at least one trip and over a quarter million traveling on average on any given

day. On average annually per SIM there are 10 di�erent trips to almost �ve di�erent health

districts. In addition to assigning the towers within the study area to a health district, I

assign them to a health post catchment area based on their GPS location. Therefore, each

traveler entering one of the �ve health districts is assigned a speci�c health post catchment

area based on the last call or text of the day.16

Panel a of Figure 2 shows the average number of people entering a health post catch-

ment area each day as a percent of the population in that catchment area averaged across all

areas, along with vertical lines marking several religious holidays and important pilgrimages.

The movement patterns largely align with the holidays and pilgrimages, which supports the

�ndings in A. S. Fall (1998) that the majority of migrants to Dakar visit their home area

primarily for holidays, religious festivals and family ceremonies. On average for all the health

post catchment areas, around 3 percent of the population of that area enters on any given

day. The variation in percent of people entering can vary widely by health post catchment

area and date within a district (Panel B). For health post catchment areas where an impor-

tant religious leader resides, on certain religious holidays the number of people entering is

close to or over 50% of the population of the area. For other health posts, the beginning of

certain agricultural seasons or other holidays lead to large jumps in people entering. This

variation makes it possible to study the impact of people entering on malaria cases in these

areas that are otherwise geographically close together and very similar.

In 2013, Sonatel had slightly over 9.5 million unique phone numbers on its network while

the population of Senegal was 13.5 million.There are two sets of people that are potentially

excluded from the data and need to be accounted for�those without a phone and those with

are removed.
16Movements within a district between health post catchment areas are not counted.
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Figure 2: People Entering a Health Post Catchment Area as a Percent of the Population in
the Area

(a) Avg Across All Health Post Catchment Areas

(b) Health post Catchment Areas in Richard Toll

Notes: Red dash lines in panel (a) represent some important religious holidays and pilgrimages. The scale
in panel (b) is bounded at 20%, but for Diama Savoigne and Dabi Tiguette Djoudj, the value in January
goes up to around 50%.
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a phone but using a di�erent mobile provider. Based on the Listening to Senegal Survey

(LSS) done in 2014, 12.3% of adults age 18 and over never use a mobile phone. Sonatel is

one of three mobile phone providers. Based on the LSS, Sonatel is the main provider for 80%

of those surveyed with a cell phone, and 88% of those with a cell phone have a Sonatel SIM

card (Agence Nationale de la Statistique et de la Démographie - Ministére de l'Economie

2014). Therefore, only around 12% of adults with a SIM are excluded. Combining the two

types of missing adults, 77.2% of adults are represented in these data.

I conduct checks to see how representative the data are for the two types of users that

are not included�those without a SIM and those with a SIM from a di�erent provider.

I use the DHS survey to compare mobility patterns between women with and without a

cell phone in the household.17 There is no statistical di�erence in whether a trip longer

than a month was taken between those with and without a cell phone. The women with

a cell phone in the household have only a slightly higher average number of trips taken

in the last year. Using the LSS, I compare several indicators between people that have a

Sonatel SIM card and those that only have a SIM card from another provider. Based on

t-tests, there is no signi�cant di�erence between these categories of individuals based on

type of primary activity (p-value=0.344), sector of primary activity (p-value=0.863), source

of drinking water (p-value=0.868), non-food expenditures over past month(p-value=0.193),

and non-food expenditures over past 12 months(p-value=0.115). The third missing group

is children. If children travel, they are likely traveling with adults (though they might be

traveling less on average if they do not always travel every time an adult travels). Since

there is no data comparing the short term movement of adults and children in Senegal, I

use an across the board weight of 1.4 to represent the full population and to get an upper

bound on movement. The weighted data overestimates total movement and underestimates

the impact of each trip. Unweighted results are provided in the robustness section as an

upper bound on the e�ect size.

17The survey does not contain data on men.
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3 Empirical Model

The empirical speci�cation is derived from a model of malaria that is based on previous

models used in D. L. Smith and McKenzie (2004), Cosner et al. (2009) and Torres-Sorando

and Rodriguez (1997). Four key assumptions allow me to simplify the model so that incidence

in the current month is dependent on incidence in the last month using a linear functional

form. Expected imported cases enter as a linear additive term as in Torres-Sorando and

Rodriguez (1997). The model, assumptions and implications are described in detail in Ap-

pendix A. I start out estimating equation 1 using OLS, with imported incidence calculated

using equation 2:

xit = β1xit−1 + β2E(Iit) + αZit + γi + δt + εit (1)

E(Iit) =
1

Hit

∑
j 6=i

∑
pt∈j

Tip(xjtTjp) (2)

In this model, xit represents the incidence, or number of humans infected in location i at

time t per 1000 people in location i.18 Location i is one of the 36 health post catchment areas

and t is at the monthly level. The β1 parameter estimated tells us on average how many new

cases per 1000 are generated in the following month from cases in the current month. In

contrast to epidemiological models, where this parameter would be estimated separately for

each area, I want to causally estimate the secondary cases generated. Therefore, I estimate

an average e�ect across locations and time in order to be able to include health post area

�xed e�ects, γi and month �xed e�ects, δt. This allows me to control for malaria seasonality

and unobservable characteristics of a health post area that might impact incidence.

I use the mobile phone data to calculate expected imported malaria cases entering and

divide them by the population of the area they enter, Hit, to calculate the expected imported

incidence, E(Iit). The likelihood of an infected case entering depends on the origin of an

18Population is based on the known population of each health facility catchment area. The appendix
includes a robustness check where the annual population is adjusted monthly using the number of people
entering and leaving each month based on the mobile phone data.
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individual, how long the person spent there and the length of time in the destination. I make

two assertions:

1. The likelihood a person, pt, is infected is based on the fraction of the month spent in

the origin district j, Tjp, and the monthly incidence rate in j, xjt

2. The contribution of an imported case to a new location is calculated as a fraction of

time spent in the destination location i, Tip

The contribution of person pt, who enters i from j at time t, to imported cases is calculated

based on the incidence of the origin district and the length of time spent in origin district

j and destination health post catchment area i. Only up to 15 days in the origin and up

to 15 days in the destination are considered since the human incubation period is 15 days.

Therefore, Tip is the proportion of 15 days pt spends in i after entering i and Tjp is the

proportion of the month up to 15 days that pt spent in j with monthly malaria incidence xjt

in month t.19

Due to the complicated nature of the imported incidence variable, I break down what

explains the variation in this variable. Imported incidence combines information on travelers,

the incidence where they are coming from, the timing in the destination and the origin,

and the population in the destination. Based on a partial R2 of .44 the month explains

a large portion of the variation, while .33 of the variation is explained by the health post

catchment area. Jointly, they explain about half of the variation (R2 of 0.56), implying that

the other half of the variation in the variable of interest is coming from a combination of

the month and the location receiving imported cases. This shows how the identi�cation

comes from the unique combination of detailed data on travelers and the incidence in the

origin. The matrix Zit includes zero, one and two lags of rainfall, which capture both the

agricultural seasons that could in�uence movement and changes in malaria incidence due to

19I use the detailed knowledge of the timing from the mobile phone data to factor in how many of the 15
days were in month t and how many in month t − 1 and use the incidence both in month xjt and xjt−1 to
determine the probability the person is infected.
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environmental factors. Additional functional forms of rainfall were also tested but did not

signi�cantly change the analysis; therefore, a linear functional form was used for rainfall.20

εit represents idiosyncratic shocks. I cluster errors at the health post catchment area level

to account for the fact that errors are correlated within panels.21 The main coe�cients of

interest are β1 and β2, which represent the number of secondary cases generated by infected

travelers and the number of primary malaria cases imported by infected travelers.

3.1 Identi�cation

For my identi�cation to be correct, it is necessary that within a health post catchment

area over time, any idiosyncratic shocks in malaria incidence are not correlated with expected

imported malaria incidence. Agricultural seasons and holidays are the two major reasons

for travel. Agricultural seasons are correlated with rainfall, and additionally, rainfall could

a�ect the conditions for travel (quality of roads). I control for this potential confounder by

including rainfall covariates in my speci�cation.

It is also possible that holidays, which increase population movement, could a�ect

malaria. People might spend more time outside during the holidays and be exposed to

mosquitoes. I address this potential threat to identi�cation using a placebo test where I

scale travelers by average monthly incidence in the country rather than by the incidence of

their origin. I also examine the relationship between past and future imported cases and

current malaria.

Finally, the dynamic panel model with a relatively short panel of 12 time periods

could introduce a bias if the error term is mechanically correlated with the lagged dependent

variable on the right hand side (Nickell 1981). I study this by comparing the �xed e�ects

model with a random e�ects model. Given the results of this comparison, the preferred

speci�cation used is an augmented version of the Arellano-Bond Generalized Method of

Moments estimator designed to address situations with �small T, large N� panels.

20The appendix includes results with these di�erent speci�cations.
21I include a robustness check with spatial and panel autocorrelated standard errors.
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4 Results

4.1 Quantifying the E�ect of Imported Cases

Each imported case of malaria is associated with 1.23 cases of malaria in the current

period and 0.330 cases in the next period based on the �xed e�ects model (Column 1 of Table

1). This speci�cation assumes the externality from locally generated and imported cases will

be the same. I explicitly test this by including lagged imported incidence along with lagged

non-imported incidence (Column 2). The coe�cient on lagged imported incidence is not

signi�cantly di�erent from the coe�cient on lagged local incidence, which implies that there

is no di�erential e�ect between lagged imported and lagged local incidence.

I estimate a random e�ects model to test if there could be a dynamic panel bias due

to the inclusion of �xed e�ects with a relatively short panel (Column 3 of Table 1). The

coe�cient on imported incidence is smaller, while the coe�cient on lagged incidence is larger.

In using random e�ects, though, I am no longer controlling for time-invariant characteristics

of the health post areas that could be correlated with both imported incidence and malaria

incidence. I include several characteristics of the health facility areas, including population

density, a dummy for urban areas, and a dummy for health facility areas that are not along

the border of the country (Column 4). Including these covariates, the coe�cient on imported

incidence is bigger and closer to the coe�cient from the �xed e�ects model.

A Hausman test comparing the two models �nds they are signi�cantly di�erent. Given

each model has potential to be biased, since the �xed e�ects model might have some dynamic

panel bias while the random e�ects model might have omitted variable bias, I use an Arellano-

Bond speci�cation (Column 5 of Table 1). Based on this model, for each imported case of

malaria per 1000, there are 1.09 cases per 1000 reported. In addition, for each lagged case

per 1000, there is an additional 0.563 of a case generated the following month. This also

represents the negative externality of an imported case the previous month.

The epidemiological model that the empirical speci�cation is based on leads to several
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Table 1: E�ect of Imported Malaria Incidence

(1) (2) (3) (4) (5)
Fixed Fixed Random Random Arellano
E�ects E�ects E�ects E�ects Bond

Imported Incidence 1.230** 1.175** 0.793** 0.864** 1.094***
(0.452) (0.476) (0.398) (0.381) (0.357)

Lag Incidence 0.330*** 0.434*** 0.418*** 0.563***
(0.0509) (0.0579) (0.0552) (0.129)

Lag Imported Incidence 0.449*
(0.231)

Lag Non-imported Incidence 0.340***
(0.0571)

Rain in cm 0.00639 0.00592 0.00348 0.00449 -0.000654
(0.00934) (0.0102) (0.00904) (0.00853) (0.00790)

Lag Rain in cm 0.0292 0.0294 0.0294* 0.0300* 0.0269
(0.0189) (0.0188) (0.0177) (0.0177) (0.0181)

Lag 2 Rain in cm 0.0381** 0.0372** 0.0376*** 0.0382*** 0.0319**
(0.0158) (0.0155) (0.0138) (0.0141) (0.0156)

Constant -0.0381 -0.0396 -0.0487** -0.0621** -0.0688**
(0.0294) (0.0317) (0.0237) (0.0264) (0.0290)

Month FE Yes Yes Yes Yes Yes
Health Post Area Controls No No No Yes No
Health Post x Month Obs 432 396 432 432 432
R-squared 0.509 0.512

Hausman Test Comparing Column 1 and Column 4 p-value=0.0083

Testing Predictions

Test Lag Imported =Lag Non-Imported p-value=0.650
Test Imported=1 p-value=0.792
Test Lag Incidence=0.273 p-value=0.0247
Test Imported + Lag Incidence=1 p-value=0.0428

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Column 4 includes controls for health post area population density, a dummy for
urban health post areas and a dummy for non-border health post areas.
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testable predictions. Results are at the bottom of Table 1. The model implies that each

imported case per capita should contribute a case per capita to the incidence in the des-

tination in the month entered. With a p-value of 0.79 on the Wald test, the coe�cient is

not signi�cantly di�erent from 1. Additionally, the β1 parameter estimated represents the

expected number of humans infected per infected human per day if transmission e�ciency

were perfect, C, times the actual transmission e�ciencies from infected mosquitoes to hu-

mans and humans to mosquitoes, b and c. Using estimates drawn from the epidemiology

literature, an average monthly value of 0.273 is expected for bcC.22 I �nd that the coe�cient

is signi�cantly di�erent and larger, implying that the parameters estimated by the epidemi-

ological model would underestimate the externality. Finally, to measure whether there is

an externality beyond a case being detected in one location versus another location due to

travel, I test whether the sum of imported incidence and lag incidence is equal to 1. Their

sum is signi�cantly di�erent from 1 at the .05 level.

I simulate a baseline scenario based on the preferred model using Arellano-Bond and

compare it to the actual data. I draw values for the parameters of the model from their

estimated distributions, which are estimated using a bootstrap where I resample observations

in the data 10,000 times. I use these draws to calculate an incidence path for the year

and average paths across 500 draws. In Figure 3 panel a, I average across health post

areas by district and compare to actual incidence. Similarly, I simulate incidence under the

assumption that there is no imported incidence. Panel b of Figure 3 compares the results

of this simulation to the baseline simulation. Imported incidence represents a substantial

portion of the malaria incidence, especially for Richard Toll and Saint-Louis. On average

annually per health post, travel represents 41% of the incidence.

22Based on Vercruysse, Jancloes, and Van de Velden (1983) the average daily vectorial capacity in Senegal,
C, is 1.13. Based on Gething et al. (2011), average transmission from infected humans to mosquitoes, c, is
0.161. The transmission from mosquitoes to humans, b, is 0.05 based on the linear model in D. L. Smith,
Drakeley, et al. 2010. This gives an average daily value of 0.0091, or a monthly value of 0.273 for bcC.
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Figure 3: Predicted, Predicted without Imported Cases and Actual Incidence Averaged
Across Health post Areas by District

(a) Goodness of Fit

(b) E�ect of Travelers

Notes: The orange dash lines represent the monthly predicted malaria incidence averaged across health post
areas within a district. This was calculated based on values for the parameters of the model drawn from their
distributions. I conducted 500 replications and used the mean monthly incidence value per health post area.
Panel a compares the predicted values to the actual malaria incidence, where the solid green line is actual
incidence averaged across health posts within a district. In panel b, the predicted incidence is compared to a
scenario where no cases were imported by travelers, shown in dashed blue lines. Incidence with 0 imported
cases was calculated using the same 500 replications for parameter values, but imported cases were set to 0.
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4.2 Mechanism Evidence

I now provide some additional evidence of the causal impact of imported incidence on

total incidence. Figure 4 shows coe�cients from a regression of malaria incidence on two lags

and two leads of imported incidence, along with location and time �xed e�ects and rainfall

controls. Malaria incidence two months earlier and one month earlier has no relationship with

imported cases in the current period. Malaria incidence in the current period and one month

later are associated with imported incidence, as both of those coe�cients jump. Imported

incidence does not seem to have a signi�cant impact on incidence two months later.23 Since

the sample size is much smaller after including the leads and lags, the standard errors are

larger. Nevertheless, the trend in the size of the coe�cient still demonstrates that future

imported incidence does not drive current malaria incidence.

I conduct several placebo tests to refute potential alternative explanations and compare

them to the main speci�cation (Table 2). One alternative explanation is that imported

incidence is correlated with periods of higher travel such as religious holidays, and these

holidays could also be positively correlated with malaria for reasons unrelated to travel.

During religious holidays people might spend more time outside and are more likely to be

bit by mosquitoes. To test this, rather than using the incidence of the location a person is

coming from to calculate their probability of importing malaria, I use the average monthly

incidence across all health districts. In this way, the location of where travelers enter from

no longer a�ects the variable, only the travel patterns do. There is no relationship between

this alternative variable and malaria incidence (Column 2, Table 2).

It is possible that only the incidence of the origin matters. For example, if the origin

of travelers has a similar incidence to the destination, the variable of interest may capture

this correlation between origin and destination irrespective of travel. To test this, I calculate

expected imported incidence based on the incidence of the origins. Rather than separately

23I would not expect a persistent e�ect of imported cases two months out because the malaria season
when the necessary mosquito vector is present in these areas is very short, lasting only around 3 months;
therefore, there is not enough time for tertiary cases to develop due to the month long incubation periods.

22



Figure 4: Estimated Impact of Future, Current and Past Expected Imported Malaria Inci-
dence

Notes: The �gure was constructed based on a regression of current malaria incidence on imported incidence
of malaria two months later, one month later, currently, last month and two months ago, controlling for time
and location �xed e�ects and rainfall covariates and clustering errors at the health post area level.
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Table 2: Placebo Tests

(1) (2) (3) (4) (5)
Baseline Travel Scaled Avg Travel Travel Scaled E�ect on
Model by Avg Scaled by by Non-Malarial Non-Malarial

Monthly Incid Monthly Incid Case Incid Case Incid

Imported Incidence 1.094*** 0.0290 0.00118 0.323 27.14
(0.357) (0.0566) (0.0579) (0.337) (25.09)

Lag Incidence 0.563*** 0.588*** 0.588*** 0.574*** 0.202*
(0.129) (0.130) (0.130) (0.144) (0.116)

Rain in cm -0.000654 -0.00530 -0.00538 0.0444 -0.605
(0.00790) (0.00741) (0.00733) (0.0560) (0.843)

Lag Rain in cm 0.0269 0.0290 0.0288 0.0595 -0.198
(0.0181) (0.0179) (0.0176) (0.0564) (0.640)

Lag 2 Rain in cm 0.0319** 0.0382** 0.0381** 0.0542 -1.340**
(0.0156) (0.0160) (0.0161) (0.0399) (0.559)

Constant -0.140 -0.389 -0.375 0 0
(0.161) (0.269) (0.263) (0) (0)

Month FE Yes Yes Yes Yes Yes
Health Post x Month Obs 432 432 432 432 432

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Augmented version of the Arellano-Bond Generalized Method of Moments estimator used in all speci�cations. Columns
2-4 show regressions where imported incidence has been constructed in an alternative way that does not incorporate both
incidence in the origin and the timing of the particular traveler. In Column 5, the dependent variable is non-malarial disease
incidence while imported malaria incidence is calculated as is done in the baseline speci�cation.
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calculating a probability for each person using the length of travel, I use the average

number of travelers, and average time spent in place of origin and destination.24 When

imported incidence is calculated for an average number of travelers per destination/origin

pair, there is no longer a relationship between this variable and malaria incidence (Column 3,

Table 2). These two tests demonstrate that the interaction of location, number of travelers

and time spent is necessary for the signi�cant relationship with malaria incidence.

I test that the e�ect is only seen for malaria incidence and is not just a re�ection of a re-

lationship between migrants and consultations at a health post. I use a variable for imported

health caseload other than malaria. This variable is based on number of consultations at a

health post, including all consultations with a nurse, all maternity consultations (excluding

pre-natal) and all post-natal consultations. Any cases of malaria or fever are removed from

the total, and the variable is scaled by the population of the health post area. This variable

has no relationship with malaria incidence in the location where people enter (Column 4). I

also use the original imported malaria incidence variable as the regressor, but I change the

dependent variable to be non-malarial caseload as proportion of population, and I use lagged

caseload instead of lagged malaria incidence. Imported malaria incidence does not have a

relationship with non-malarial caseload (Column 5).

5 Policy Targeting Strategies

I study e�ective allocation of resources to mitigate the negative externality of travel

quanti�ed in the previous section. I �rst describe some of the existing policies implemented

in Senegal towards travelers. Then, I conduct simulations to demonstrate the e�ectiveness

of strategically targeted policies.

24Average number of travelers was calculated based on total number of travelers and number of unique
origin destination pairs in a given month.
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5.1 Malaria Policies Toward Travelers

The NGO PATH has speci�cally focused on reducing imported cases in the district

Richard Toll. They have used volunteers in the community to alert health workers to the

arrival of new travelers. Health workers track down these travelers and ask to test them using

an RDT, and treat those that test positive. Based on 2015 data provided by the Richard

Toll Health District Director, 3,609 people were identi�ed as travelers, of these 3,386 were

tested and 10 tested positive for malaria. In 2015, there were a total of 186 imported cases;

therefore, this strategy was only able to detect 5% of imported cases.25

A more systematic policy to target travelers was implemented in one health post in

Richard Toll, which is privately run by the Senegalese Sugar Company (CSS) for its workers

and their families. CSS hires over 3000 migrant workers every year to help with the sugar

harvest. Malaria was a large burden for the company, causing lower productivity, high

absenteeism, and high spending on pharmaceuticals to treat it (Djibo and Ndiaye 2013). In

late 2011, the CSS implemented a new mandatory policy for all seasonal workers: testing

every worker at the beginning of the season using an RDT, treating anyone testing positive,

and providing workers and their families with bednets and information. There was a drastic

decrease in cases after the implementation of this policy, with case numbers at zero or close

to zero after the policy (Figure 5). Data on two types of schistosomiasis among workers

at the CSS show no drop in those diseases after late 2011, demonstrating that the drop in

malaria cannot be attributed to an overall improvement in the health care facility. This

closely mirrors the outcomes measured by Dillon, Friedman, and Serneels (2014), who �nd

that a policy o�ering testing and malaria treatment for workers at a sugarcane plantation in

Nigeria leads to a 10% increase in earnings due to increased labor supply and productivity.

A strategy to decrease malaria cases that could be harnessed for targeting travelers

is proactive community treatment (ProACT) implemented by trained home care providers

(HCPs). The pilot of this intervention consisted of HCPs going door-to-door weekly to

25Data on imported cases is based on surveys conducted in Richard Toll.
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Figure 5: E�ect on Malaria Cases of a Policy Targeting Migrant Workers at the Senegalese
Sugar Company

Notes: The �gure shows number of cases of malaria and two types of schistosomiases seen at the health
post of the Senegalese Sugar Company. The red vertical line marks the timing of when a new policy was
implemented by the company that tested every migrant worker for malaria and treated those that tested
positive. Data was provided by the CSS.
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every household in a village, checking for individuals with symptoms. Compared to villages

that did not receive ProACT, the odds of symptomatic malaria were 30 times lower in the

intervention villages (Linn et al. 2015). This type of policy could be applied to areas that

receive travelers during the weeks when the most expected infections enter.

Finally, just as mobile phones can be used to measure aggregate movement patterns to

improve targeting, they could also be used more directly for the targeting. Mobile phones

are always linked to a tower if they are turned on; therefore, the provider knows as soon as

an individual changes towers. An innocuous policy could be to allow users to opt into an

information program that sends a targeted text message as soon as someone that has opted

into the program changes location from a high malaria tower to a low malaria tower. The

message could recommend and provide an incentive to get tested at the closest clinic for free.

Text messaging has been used by the Ministry of Health in Senegal for providing information

on diabetes, and other studies have found that SMS technology can be e�ective in changing

behavior (Senegal Ministry of Health 2016, Aker and Ksoll 2019, Ksoll et al. 2014, Fischer

et al. 2016). Mobile phones could be used for more controversial policies such as targeting

mandatory quarantine. There are important ethical concerns in how new technology is used,

and the severity and risk of the disease may a�ect the strategies that are considered.

5.2 Targeting Simulations

The policies in the previous section serve as examples, but I focus the simulations on

how a policy should be targeted, rather than the particular policy. If there were no targeting

and instead the policy were to test every single traveler coming into the 5 pre-elimination

districts that are the focus here, it would mean testing 6,956,197 travelers in 2013 based

on the scaled mobile phone data. If each traveler were successfully tested so that all travel

cases of malaria were found, treated, and secondary infections were prevented, it would mean

663 cases treated or prevented, representing around 44% of total cases in this area. Even

just taking the cost of an RDT to test each person ($0.50), without adding any other costs
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associated with such an intervention, it amounts to around $5,300 per case. Compared to a

typical benchmark for cost-e�ectiveness of $150, targeting all travelers would be 35 times as

costly. Therefore, if a policy were to target travelers, only a subset should be targeted.

There are two ways that a policy can be targeted: (1) it can target certain destination

areas for travelers or (2) it can target travelers from speci�c origin areas. For both cases there

are two sets of costs: (1) �xed cost, which consists of training community health workers,

health post nurses, and district health supervisors in investigation of travel cases as well

as costs for weekly electronic data transmission; and (2) variable cost, which are the costs

associated with investigating and treating travelers.26 I use the Fiscal Year 2015 Malaria

Operational Plan for Senegal for the policy simulations. Based on this plan, $400,000 was

allocated for case investigation and targeting individuals in districts with incidence less than

5/1000. Given there were 19 such districts in 2015, I assigned the funding proportional to

district population in order to assign an amount to the �ve districts that are part of the

simulation. This leads to $127,850 dedicated to the �ve low malaria districts studied here.

I assume an even split between �xed and variable costs. To calculate the variable cost per

person, I use the information available from Richard Toll where 3,609 people were targeted

in 2015. Variable funding for that district of $10,286 leads to a per person cost of $2.85.

The �rst type of targeting focuses on destination areas. Given some set of resources R

meant to target travelers, those resources can either be distributed across all health facili-

ties or they can be concentrated in a smaller set of facilities in certain areas and in certain

months. The most naive method for targeting would be to randomly select health facility

areas and months and target all travelers in the areas/months randomly selected. This is in

e�ect equivalent to not targeting. In practice this would never be done since at minimum

policymakers know when malaria is most prevalent and would not target travelers during

months the country is e�ectively malaria-free. Therefore, a second strategy would be to tar-

get randomly certain health areas during the months of high malaria prevalence �rst (August

26For simplicity, I assume the variable cost scales proportionally with the number of travelers.
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to December) and then during the low malaria prevalence months. With the information

available at hand, policymakers could do even better in targeting by using information from

the previous year. They know which health facility areas/months had the highest level of

malaria in the previous year and can target health facility areas in months according to their

ordering the previous year.

The cell phone data allow for even more e�ective targeting. The piece of information

currently not available to policymakers is the number of travelers entering an area from

any given other district in the country. The cell phone data provide this information and

combined with the incidence from 2012, it makes it possible to estimate which health facility

areas are most at risk from travelers in certain months. This can be especially e�ective

because travel choices are not random. There are often high movement corridors between

certain communities in a country. Therefore, it is likely that there are pockets that will be

more a�ected by travelers coming from high malaria areas than other parts of the district.

By focusing on the pockets of areas most a�ected by travelers from high malaria settings,

limited resources can be spent more e�ectively training health professionals and tracking

travelers only in these areas.

Figure 6 demonstrates the full cost curves, from a strategy where only one health

district area-month is treated, all the way up to all health district area-months being treated.

The bene�t at each point is calculated based on the earlier model to calculate the total

primary and secondary cases attributed to travelers. I assume that all travelers are targeted,

but only 94% of them agree to take the test and contribute to the bene�t from targeting.27

Depending on the resources available to the government, it is possible to determine for any

given budget how many cases would be treated or averted depending on the targeting strategy

chosen. Looking across the entire distribution in the top panel, the targeted strategy based

on information from mobile phones is consistently the most cost- e�ective one. Across the

whole distribution, the cell phone data based targeting policy performs 11.15% better on

27This is based on data from Richard Toll where 3,386 out of 3,609 targeted travelers agreed to be tested.
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average compared to the next best policy of using information on incidence from the year

before. Zooming in on the part of the distribution up to $400,000, the amount spent on this

type of program, the cell phone data targeted policy performs over 300% better on average

(Panel b, Figure 6).

The second type of targeting focuses on travelers from particular origin areas. This is

more di�cult in terms of implementation because it requires the ability to identify travelers

coming from speci�c areas, but has the potential of being more cost-e�ective since resources

are focused on the highest risk travelers. I base the targeting strategies on the district the

individuals are coming from and the month in which they are traveling. Therefore, if a

district-month is chosen as receiving targeting, then every person traveling from that dis-

trict to the pre-elimination area in that month would be treated with the policy. I assume

again that 94% of targeted travelers are tested based on the experience in Richard Toll.

Four strategies are again compared: (1) the implausible one of the government randomly

choosing district-months (non-targeting); (2) the government choosing district-months ran-

domly within the malarial season and then during the rest of the year; (3) the government

using monthly malaria incidence in the prior year to order the district-months from those

with the highest to the lowest incidence; and (4) a cost-bene�t value is calculated for each

district-month based on the number of travelers and the variable cost and uses incidence

from the previous year to calculate the total impact of the imported cases (the bene�t).

Panel a of Figure 7 shows the cost curves for these four strategies zoomed in on the

relevant budget of $400,000. Note that the cost starts at $63,928, which is the total �xed cost

for all the facilities in the �ve districts, since it is assumed that training and preparations

are done across all health facility areas but only particular travelers are targeted across these

areas. Using the cell phone data to inform targeting leads to higher cost e�ectiveness than

the next best strategy based on the government using incidence from the previous year to

target travelers from speci�c locations. In particular, at a budget of $400,000 it performs

27% better on average. Panel b compares targeting of speci�c travelers entering all �ve
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Figure 6: Targeting Areas: Cost and Bene�t Under Di�erent Strategies

(a) Full Cost Curve

(b) Cost Curve Zoomed in on Less than $400,000

Notes: The panels show four di�erent strategies for targeting travelers. Each symbol represents a health
facility area-month. Targeting a speci�c health facility area-month means targeting all travelers entering
that health facility area in that month. The strategies lay out which health facility area-months are targeted
�rst. The cost is calculated based on a variable cost of $2.85 per traveler and a �xed cost of $63,928 split
proportionally between health facility areas based on population and number of facilities. The bene�t is
based on the parameters of the model to calculate the number of primary and secondary cases generated by
travelers from each district in each month and summed for all travelers in a given health facility area month.
It is assumed that only 94% of those targeted are successfully tested.
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low malaria districts (type 2) to targeting all travelers that enter only speci�c health post

catchment areas in those �ve districts (type 1), using the cell phone data for both. Targeting

speci�c travelers rather than only areas is 257% more e�ective with a budget of $400,000.

The previous scenarios consider either targeting particular travelers or targeting par-

ticular areas, but it is possible to combine the two types of targeting to target particular

travelers going to particular areas in certain months. This would not be possible without

the cell phone data, which provides extremely granular information on spatial movement of

individuals across time so that we know how many travelers enter a speci�c area in a given

month and this can be used to calculate the cost of targeting each of these travelers and the

bene�t of quickly identifying and treating any cases they may have brought through travel.

Figure 8 shows the cost curve in this scenario where travelers from a particular district to

a particular health facility area are targeted in a speci�c month.28 This curve is compared

to the previous curves of just targeting travelers, just targeting areas, and also the best

strategy without using cell phone data of targeting travelers based on incidence in 2012.

Targeting both travelers and areas leads to 52% better performance on average compared

to the non-cell phone data strategy when focusing on a budget of under $400,000. Using

cell phone data for targeting both travelers and areas compared to just targeting travelers is

19% more e�ective on average with a budget under $400,000.

There are two important limitations in conducting this type of targeting. The �rst is

related to potential risk of targeting areas based on movement information from a previous

year, given that population movement patterns may change drastically from one year to

the next. Other research that has used cell phone data for several years in Namibia �nds

very consistent short term movement patterns across three years (Milusheva et al. 2017,

Wesolowski, Erbach-Schoenberg, et al. 2017 ). Additionally, if short term movement matrices

from cell phone data were made available to policymakers on an ongoing basis, it would be

possible to adjust targeting in real time as information becomes available.

28The �xed cost of an area is added when the �rst set of travelers in a month is treated in that area.
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Figure 7: Targeting Travelers: Cost and Bene�t Under Di�erent Strategies

(a) Cost Curve Zoomed in on Less than $400,000

(b) Comparing Targeting Travelers and Targeting Areas

Notes: Panel (a) shows four di�erent strategies for targeting travelers. Each symbol represents a district-
month. Targeting a speci�c district-month means targeting all travelers entering the �ve low malaria districts
from that district in that month. The strategies lay out which district-months are targeted �rst. Panel
(b) compares targeting of speci�c travelers entering all �ve low malaria districts to targeting all travelers
that enter only speci�c health post catchment areas in those �ve districts, using the cell phone data for
both. The cost is calculated based on a variable cost of $2.85 per traveler and a �xed cost of $63,928 split
proportionally between health facility areas based on population and number of facilities. The bene�t is
based on the parameters of the model to calculate the number of primary and secondary cases generated by
travelers from each district in each month and summed for all travelers in a given health facility area month.
It is assumed that only 94% of those targeted are successfully tested.
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Figure 8: Targeting Both Travelers and Areas Compared to Di�erent Strategies

Notes: A scenario where travelers from a particular district to a particular health facility area are targeted
in a speci�c month is compared to previous scenarios of targeting particular health facility areas, targeting
travelers from particular districts, and the best-case scenario if no cell phone data is available of targeting
travelers based on the incidence of districts in the previous year.

The second limitation relates to representativeness and who may be missed through

these targeting strategies (Blumenstock 2018). The movement patterns of the lowest income

are likely missing from these data due to lack of a mobile phone. Therefore, this type of

targeting may miss marginalized areas that may experience importation of malaria from

very low income groups that are not captured in the movement patterns. If mobile phone

data targeting strategies are implemented by policymakers, it could lead to marginalized

pockets of malaria in the elimination zones due to lack of targeting to the areas receiving

the lowest income travelers. Luckily, elimination zones have in place surveillance systems at

health facilities that track malaria cases that come to the facility. Thus, it will be possible

to analyze the data for outlier health facilities that do not experience a decrease in malaria

after the targeting strategies are implemented.

Up to now, high malaria districts from where cases are imported have not been dis-

cussed. If malaria were reduced signi�cantly in those districts, it would automatically reduce

importation. The assumption is that while strategic targeting is done in the low-malaria

zones, in the high-malaria districts, a package of interventions aimed at reducing the burden

of the disease is maintained. This is in line with the WHO strategy for malaria elimination.
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6 Robustness Checks

I do several robustness checks to test the main speci�cation (Table 3). Column 2 uses

an estimate of imported incidence without weighting the mobility data to be representative

of the full population. This assumes that the only movement in the country is the movement

in the Sonatel data, which would be an underestimate. Weighting the data represents an

upper bound for the level of movement. The actual movement that occurs, and therefore,

imported incidence, is then somewhere in between these lower and upper bounds. Thus the

real e�ect should also lie between these upper and lower bounds of 2.1 and 1.7. In addition

to weighting the movement, Column 3 scales both imported incidence and total incidence

by health post utilization at the region level. The results are similar and not signi�cantly

di�erent from the results in the main speci�cation (Column 1). Utilization is relatively

uniform throughout the country; therefore, incorporating utilization does not signi�cantly

change the results. I rerun the speci�cation using Conley standard errors that account for

spatial autocorrelation and serial autocorrelation over time (Column 4) (Hsiang 2010).29 The

results remain signi�cant.

In Column 5, I use net imported incidence, subtracting expected infected travelers leav-

ing the health post catchment area. Both the coe�cients on imported and lagged imported

do not change signi�cantly and they remain signi�cant. Results from additional robustness

checks are available in Appendix B. These include (1) using cases rather than incidence;

(2) adjusting the population that incidence is based on by the number of people entering

and leaving the area each month; (3) loosening the assumption that the susceptible popula-

tion is equal to 1 and scaling lagged incidence by a calculated susceptible population; and

(4) restricting the movements included in calculating imported incidence by removing any

movement where the SIM card had no calls or texts for more than two weeks before or after.

One limitation of the mobile phone data is that it only includes mobility within Senegal

and cannot incorporate international migration. Immigrants coming in from high malaria

29I use a 30km cuto� for the spatial correlation and two lags for the autocorrelation.
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Table 3: Robustness Checks

(1) (2) (3) (4) (5)
Baseline Unweighted Scaled by Spatial and Net
Model Utilization Autocorrelation SE Imported

Imported Incidence 1.094*** 1.563*** 1.294*** 1.230*** 1.217***
(0.357) (0.509) (0.449) (0.326) (0.384)

Lag Incidence 0.563*** 0.563*** 0.567*** 0.330*** 0.561***
(0.129) (0.129) (0.128) (0.0543) (0.130)

Rain in cm -0.000654 -0.000654 -0.00119 0.00640 -0.000852
(0.00790) (0.00790) (0.0206) (0.00863) (0.00788)

Lag Rain in cm 0.0269 0.0269 0.0703 0.0292* 0.0258
(0.0181) (0.0181) (0.0466) (0.0167) (0.0180)

Lag 2 Rain in cm 0.0319** 0.0319** 0.0812** 0.0380** 0.0318**
(0.0156) (0.0156) (0.0398) (0.0150) (0.0156)

Constant -0.0688** -0.0688** -0.181** -0.0663**
(0.0290) (0.0290) (0.0756) (0.0288)

Health Post x Month Obs 432 432 432 432 432
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Augmented version of the Arellano-Bond Generalized Method of Moments estimator used in all speci�cations except
for Column 4. In Column 4, I use Conley standard errors, which account for spatial autocorrelation and serial autocorrelation
over time, but do not cluster at the health post catchment area level. In Column 2, I do not weight movement observations
to scale up to the full population of Senegal. In Column 3, I scale the expected imported incidence and total incidence by the
utilization of the region based on DHS data. In Column 5, I calculate net imported incidence by subtracting out the expected
cases leaving a health facility area divided by the population of the area.
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countries as well as emigrants returning and visiting family from high malaria settings

could both impact malaria incidence. There are detailed case data available from Richard Toll

district where each case was investigated and travel information was included on the infected

individual based on survey data. Out of 161 cases, there are 9 cases where the traveler was

from outside of Senegal, or only 5.59% of cases. The small impact of international migration

likely arises from the fact that while some of Senegal's neighbors such as Mali have a higher

malaria incidence (89 cases per 1000), the only international border near the pre-elimination

districts studied here is Mauritania, which has a lower incidence rate than northern Senegal

of only 0.4 cases per 1000. Nevertheless, future work could try to incorporate the impact of

international travelers.

7 Conclusion

The paper quanti�es the negative externality of population movement on disease inci-

dence and reversing gains in elimination in Senegal, and it proposes a cost-e�ective targeting

strategy. This type of study is made possible by new big data collected by telecommunica-

tions companies making the measurement of short term movement possible and the initiative

taken by the Ministry of Health to collect surveillance data on a monthly level for each health

post. These data made it possible to study how short term movement into low-malaria areas

increases incidence. The study �nds that for each imported case of malaria per 1000, there

are around 1.7 cases of malaria per 1000 reported at health post areas in the pre-elimination

districts. Using these �ndings, I calculate that implementing a policy in certain destination

areas and targeting travelers from the most cost-e�ective districts during particular months

results in the largest drop in cases (over 50% as many cases treated or averted as compared

to the next best strategy). To our knowledge, this is the �rst study to evaluate the cost

e�ectiveness of di�erent types of targeting schemes for malaria directed at travelers.

While the work here focuses on malaria, it is possible to implement this type of model
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for other infectious diseases such as in�uenza, Ebola, Zika or Coronavirus. As cell phone

usage has become prevalent throughout the developing world and cell phone providers are

beginning to understand how the data they collect can be used by policymakers to imple-

ment better policies, measuring short term movement becomes easier. The collection and

integration of high frequency data on infectious diseases then makes it possible to study these

models that help policymakers better target interventions, and then document their impact.

This could help countries lower the disease burden from existing infectious diseases and

prevent epidemics of new diseases, leading to bene�cial economic and social consequences.
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A Additional Tables and Figures

Figure A.1: Annual Malaria Incidence in Senegal in 2013

Notes: Data come from tested and con�rmed cases at the health district level compiled by the National
Malaria Control Program.



Figure A.2: Senegal Health Districts and Location of Health Posts in the North Used in the
Analysis

Notes: The �ve very low malaria health districts used in the analysis are subdivided into
health post catchment areas that group health posts and mobile phone towers together.



Table A1: Using Di�erent Rainfall Speci�cations

(1) (2) (3) (4) (5) (6)
Baseline No Rain Only 1 Month Only 2 Months Quadratic Functional Logged

Lags Lagged Rain Lagged Rain Form of Rain Rain

Imported Incidence 1.094*** 1.313*** 1.338*** 1.203*** 1.087*** 1.284***
(0.357) (0.416) (0.407) (0.354) (0.414) (0.452)

Lag Incidence 0.563*** 0.597*** 0.598*** 0.563*** 0.510*** 0.658***
(0.129) (0.125) (0.123) (0.135) (0.138) (0.133)

Rain in cm -0.000654 -0.00846 -0.000416
(0.00790) (0.00845) (0.0315)

Lag Rain in cm 0.0269 0.0170 -0.0602
(0.0181) (0.0169) (0.0518)

Lag 2 Rain in cm 0.0319** 0.0228 -0.0395
(0.0156) (0.0142) (0.0469)

(Rain in cm)2 -0.000200
(0.00174)

Lag (Rain in cm)2 0.00429
(0.00299)

Lag 2 (Rain in cm)2 0.00369
(0.00274)

Log Rain in cm -0.0117
(0.0125)

Lag Log Rain in cm -0.0232
(0.0204)

Lag 2 Log Rain in cm 0.0224**
(0.0111)

Constant -0.0688** -0.0532** -0.0686** -0.0555** -0.00706 -0.0379
(0.0290) (0.0237) (0.0301) (0.0222) (0.0269) (0.0308)

Health Post x Month Obs 432 432 432 432 432 283
Month FE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Augmented version of the Arellano-Bond Generalized Method of Moments estimator used in all speci�cations.



Table A2: Robustness Checks

(1) (2) (3) (4) (5)
Scale by Restrict

Baseline Cases Adjusted Pop Susceptible Pop Phone Data

Imported Incidence/Cases 1.094*** 1.077*** 1.070*** 1.091*** 1.495**
(0.357) (0.191) (0.376) (0.349) (0.601)

Lag Incidence/Lag Cases 0.563*** 0.684*** 0.619*** 0.625*** 0.575***
(0.129) (0.157) (0.0716) (0.0867) (0.128)

Rain in cm -0.000654 -0.273 0.000636 -0.000471 -0.00140
(0.00790) (0.191) (0.00822) (0.00811) (0.00792)

Lag Rain in cm 0.0269 0.188 0.0243 0.0268 0.0262
(0.0181) (0.639) (0.0178) (0.0183) (0.0181)

Lag 2 Rain in cm 0.0319** 0.860* 0.0322** 0.0306** 0.0315**
(0.0156) (0.507) (0.0148) (0.0150) (0.0152)

Constant -0.0688** -1.579 -0.415 -0.142 -0.0719**
(0.0290) (1.199) (0.264) (0.164) (0.0298)

Month FE Yes Yes Yes Yes Yes
Health Post x Month Obs 432 396 432 432 432

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Augmented version of the Arellano-Bond Generalized Method of Moments estimator used in all speci�cations. In Column
2, I use cases rather than cases per 1000 people. In Column 3, the population of the health post catchment area is adjusted
monthly by the number of people entering and exiting based on the mobile phone data scaled by a factor of .7 to account for
the population not represented by these data. In Column 4, lag incidence is scaled by the percent of population susceptible to
malaria. In Column 5, movements are restricted to those where the SIM card had a call or a text within 14 days of when the
movement is counted.



B Model of Malaria

Due to the two-host system, malaria is modeled using two di�erential equations to
describe the dynamics of infected humans and infected mosquitoes. These were �rst modeled
by R. Ross (1910) and then expanded by Macdonald et al. (1957). The model used in this
paper is a Ross-Macdonald type model based on models used in D. L. Smith and McKenzie
(2004), Cosner et al. (2009) and Torres-Sorando and Rodriguez (1997). There are two state
variables and the model is usually expressed in continuous time, although here, I will present
it in discrete time. The state variables are yit, the fraction of mosquitoes infected in location
i at time t and xit, the fraction of humans infected in location i at time t.

In the model extension here that includes the impact of population movement, cases can
either be generated locally in location i or imported from any other location j into i, Ii. As
modeled by Torres-Sorando and Rodriguez (1997), imported cases enter the model linearly.
Local cases in location i are generated based on the susceptible population and several
biological parameters. The susceptible population, Sit−w, is the fraction of the population
that is susceptible to malaria at time t−w, where w is the total parasite incubation period.
The other parameters are the transmission e�ciencies from infected mosquitoes to humans
and humans to mosquitoes, bit−w and cit, the number of bites on humans per mosquito, ait−w
and the ratio of mosquitoes to humans, mit−w. The change in the number of infected humans
and mosquitoes is described by:

yit − yit−w = ait−wcit−wxit−w(e
−µit−wτit−w − yit−w)− µit−wyit−w (3)

xit − xit−w = mit−wait−wbit−wyit−wSit−w + Iit − rixit−w (4)

where µit is the mortality rate of mosquitoes and τit is the incubation period from the time
a mosquito becomes infected until it is infectious. The parameter ri is the recovery rate of
humans. I make four assumptions arising from the epidemiology literature based on modeling
the system in a low malaria setting:

1. The total parasite incubation time is one month based on the malaria cycle.

2. The mosquito population is at the steady state since mosquito populations have a
relatively rapid turnover 30

3. All malaria cases in month t are treated immediately and recover in month t.31

4. Based on D. L. Smith and McKenzie (2004), when the proportion of infected hu-
mans is small, the number of infectious bites received per day by a human (known as

the entomological inoculation rate, taking the form EIRit =
mita

2
itcite

−µitτitxit
µit+aitcitxit

) can be
approximated by citCitxit, where Cit is the expected number of humans infected per
infected human per day, assuming perfect transmission e�ciency (bit = cit = 1), known
as the vectorial capacity. The assumption applies because the analysis is conducted

30According to the CDC, adult female mosquitoes, which spread malaria, do not live more than 1-2 weeks
in nature (Center for Disease Control 2015).

31The incidence data in the analysis is based on diagnosed cases, which are provided with free antimalarial
treatment upon diagnosis. The literature shows that within a few days of treatment the majority of parasites
are eliminated (Nosten and Nicholas J White 2007, N. White 1997).



in a low malaria setting. Figure B.1 provides evidence that the assumption holds for
these data.

Based on assumption 1, I set w = 1. Based on assumption 2, I solve equation 3 for the
quasi-equilibrium proportion of infectious mosquitoes as has been done in D. L. Smith and
McKenzie 2004 and Ruktanonchai et al. 2016:

yit−1 =
ait−1cit−1xit−1e

−µit−1τit−1

µit−1 + ait−1cit−1xit−1
(5)

Assumption 3 implies the recovery rate, ri, is equal to one since all infected individuals
recover within the same month. This allows me to focus on new cases of malaria in month t.
Since immunity does not develop in low incidence areas, anyone who is not currently infected
is susceptible to the disease, which implies that the susceptible population is 1 if everyone
recovers. Rewriting equation 4 to incorporate the implications of assumptions 1-3:

xit − xit−1 =
a2it−1bit−1cit−1mit−1e

−µit−1τit−1xit−1
µit−1 + ait−1cit−1xit−1

+ Iit − xit−1 (6)

Based on assumption 4, equation 6 can be rewritten as:

xit = bit−1EIRit−1 + Iit
= bit−1cit−1Cit−1xit−1 + Iit

Assumption 4 is important because by rewriting EIRit−1 as cit−1Cit−1xit−1, I explicitly incor-
porate the impact of the incidence last month, xit−1, on the incidence in the current month
using a linear functional form, which helps me approximately estimate the secondary cases
generated this month by cases last month. It is then possible to estimate this model using
OLS as described in the main text of the paper.



Figure B.1: Testing the Approximation of the Entomological Innoculation Rate in Assump-
tion 4

Notes: For each health post area in each month, the entomological inoculation rate is calculated as is the
vectorial capacity times transmission to mosquitoes times incidence (cCx). Based on Assumption 4, in low
malaria districts it should be possible to approximate EIR with cCx. In the scatter plot, this means the
points should be along the 45 degree line, which is shown in red. The graph shows that for the districts
analyzed here, the assumption holds. The EIR and cCx were estimated using values from the literature
for the various biological malaria parameters. Based on Gething et al. (2011), average transmission from
infected humans to mosquitoes, c, is 0.161. The incubation period, τ , is 9 days (Killeen, A. Ross, and T.
Smith 2006) and the bites on humans per mosquito, a, is 0.3 (Ruktanonchai et al. 2016). Average mosquito
lifespan of 12.5 is used.
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