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I. Introduction

The paucity of economically relevant city-level data can be a significant hindrance to

research on urbanization, especially in the context of less developed economies. Even in

the circumstances where the desired data are available, users of such data (researchers

and policy makers) may have to rely on small-scale surveys and coarse statistics. Such

data constraints make it difficult to measure important urban phenomena. They also

reduce the scope for economic analyses and policy design.

Over the past decade, cities have increasingly become a reservoir for billions of dig-

ital footprints that can be used to measure and assess mobility patterns with high time

frequency and high spatial resolution. Combined with new methods of analysis, includ-

ing artificial intelligence approaches (such as machine learning), this has led to a “big

data” revolution in transportation. Researchers, experts and policy makers are increas-

ingly exploring the wealth of mobility and city data from various sources—including

digital repositories from the public and private sectors, remote and in-situ sensors, mo-

bile phones, among others—to examine traffic flow, urban congestion and its economic,

social, and environmental externalities (e.g., pollution, health hazards, or accidents). In

the present review, we seek to examine how new data sources have stimulated innova-

tive approaches to measure and predict road traffic flows, and to assess the economic

and social costs of traffic externalities.

Our review of this emerging literature indicates that big data has a strong potential

to more accurately measure social costs in a variety of contexts, including in developing

countries where traditional transport data are lacking and where data “leapfrogging”

is occurring.1 In fact, unlike traditional household travel surveys alone, new sources

of data such as Google Maps, GPS traces and sensor networks can be used to track

individual travel demand patterns and estimate private and social trip costs, two im-

portant ingredients of a welfare analysis. They also make it possible to design policies

1 For a survey of big data uses in an urban context more broadly, see Glaeser et al. (2018).
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(e.g., Pigouvian pricing of externalities) and characterize their impacts. For example, call

detail records (CDR) from mobile phones have become a compelling and cost-effective

way to measure traffic flows and, combined with other data, can be used to assess the

links between congestion and other social, economic, and environmental outcomes (e.g.,

emissions measured from remote sensing or in situ devices).

These improvements in outcome measurements have generated new venues for re-

search, promising policy opportunities (e.g., the implementation of real-time traffic man-

agement systems) and, more generally, stimulated evidence-based policy designs. There

are, however, multifaceted challenges that are inherent to the collection and use of big

data, including technical barriers, privacy concerns, and political risks. It is also worth

mentioning that although big data makes it possible to have better measurements of phe-

nomena, track wider social and economic outcomes, and improve predictive modeling,

it does not automatically establish causal relationships. There is thus a space for eco-

nomic analysis to make use of big data in order to infer causality, in particular through

structural modeling or quasi-experimental designs.

The paper is structured as follows. In Section II, we present a taxonomy of new traffic

data sources and their potential for improving transportation studies. In Section III, we

examine the economics of traffic externalities in the age of big data, reviewing recent

empirical efforts to quantify welfare, productivity, and environmental costs. Section IV

acknowledges the potential of big data analytics to improve our understanding of these

externalities—through better measurement and accurate predictions—and, as a proof of

concept, proposes a simple application that measures the causal link of stay-at-home

orders on urban traffic congestion. Section V concludes with a discussion on policy

opportunities and challenges.
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II. Taxonomy of New Traffic Data Sources

It is useful to start by presenting a taxonomy of the different data sources used in

big data analyses. We distinguish (i) direct physical sensing (in situ or remotely) from

(ii) social media sources (so called human and social sensing) and (iii) urban sensing

(through information generated by transportation operators). This is presented below.

A. In-situ and Remote Sensing

The primary sources of data for traffic studies traditionally included standard data

collection efforts such as household traffic or commodity flow surveys, possibly com-

plemented with first-generation in-situ and remote sensing systems such as inductive

loops, overhead radar detectors, and static video cameras, among others. Recent devel-

opments in information and communication technology (ICT) have stimulated a prolif-

eration of new traffic data sources. These include new generations of road-side static

sensors such as LiDAR (Light Detection and Ranging), microwave radars, and acoustic

sensors which measure speed, noise and traffic flow on the road network. The rapid

penetration of mobile phone technology has also considerably lowered the costs of col-

lecting travel behavior data. For example, GPS, GSM, and Bluetooth are increasingly

used to generate real-time and reliable traffic volume data, travel speed and time, as

well as origin-destination flows (see, e.g., Mitchell, 2014). It is also possible to measure

mobility patterns from anonymized data extracted from call detail records (CDR).

Recently, the literature has also acknowledged the role of unmanned aerial vehicles

(UAV), including drones and unmanned High-Altitude Pseudo-Satellites (HAPS) in pro-

viding valuable data for traffic analysis (see, e.g., Barmpounakis et al., 2016; Khan et al.,

2017). Unlike static traffic monitoring systems and ground vehicles, UAVs can collect

high resolution mobility data at fine grained spatial and temporal scales. UAVs can

also perform data collection tasks similar to manned aerial vehicles while ensuring rela-
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tively higher safety, rapidity, and cost-effectiveness (Puri, 2005). They can be useful in a

wide range of monitoring and planning operations, including incident response, traffic

surveillance on roadways and intersections, parking lot monitoring, origin-destination

flow estimation, among other applications (Coifman et al., 2004; Puri, 2005). Like call

detail records from mobile phones, drones are increasingly filling data gaps inherent to

scarce or infrequently collected travel surveys.

B. Human and Social Sensing

In the digital era, virtual interactions on social media generate content or data (re-

ferred to as user generated content or UGC) on real-time trip experience, traffic con-

ditions, and travel time unreliability. Attempts to characterize travel patterns or detect

traffic anomalies, for instance, are relying on smartphone-compatible platforms such as

Twitter, Foursquare, Instagram, and other social media. A good example of this comes

from He et al. (2013) who examine the predictive power of travelers’ social media ac-

tivities in San Francisco and find a negative correlation between the intensity of tweets

and traffic volume. More importantly, while most existing models have a short-term

forecasting horizon, these authors show that tweet-based semantics can be exploited

to significantly improve longer-term traffic predictions. In the same vein, self-reported

positions on Foursquare and Instagram (Ribeiro et al., 2014), and traffic complaints on

Twitter (Georgiou et al., 2015) have also been shown to be highly correlated with traffic

congestion.

The sources of traffic obstruction can be analyzed using social sensing data describing

commuters’ reactions to real-time disruptive events. To do this, a social sensing software

scrutinizes a given social media platform, looking for keywords such as “traffic”, “con-

gestion”, “accident”, and “roadwork”, and extract useful information for real-time traffic

analysis. For example, Pan et al. (2013) combine human mobility data from GPS tracers

with social media data from Weibo (a Twitter-like social media in China) to characterize
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real-time traffic anomalies that arise from accidents, roadworks, and other disruptive

events. Similar approaches have been used to develop an intelligent interface platform

in Dublin (Daly et al., 2013) and a smartphone application in the United Kingdom (see

Hampson et al., 2017) that provide real-time information on traffic congestion sources.

In the case of the United Kingdom, a mobile application known as Twitraffic provides

real-time traffic information from users’ tweets. On average, Twitraffic is believed to de-

tect traffic incidents about 7.1 minutes before they are picked up by the UK government’s

highway agency data (Hampson et al., 2017).

C. Urban Sensing Technology

In addition to mobile and social sensors, credit cards, smart cards in public tran-

sit, retail scanners, and digital toll systems, are increasingly being used as “urban sen-

sors” (Blazquez and Domenech, 2018). Data generated through the urban sensors can be

used to measure broad patterns of urban mobility and to some extent traffic flows and

congestion.

Transponders at toll plazas can be used to measure personal and commercial vehicle

flows along a road segment (Kitchin, 2014), and eventually track variations in economic

activities. For example, Askitas and Zimmermann (2013) explore data from an electronic

toll collection system in Germany to generate a monthly Toll Index, which they use to

nowcast business cycles. Smart cards in public transit, such as SmarTrip in the Wash-

ington metropolitan area and Oyster in London, can be used to track individual travel

behavior, and generate useful information on economic and social outcomes. It is possi-

ble, for example, to characterize a cardholder’s commuting trajectory while generating

information on his/her place of residence and employment status by combining smart

cards with credit card data (Wang and Moriarty, 2018). Smart cards also allow for granu-

lar analyses of transport behavior. As an example, Tao et al. (2014) explore a large smart

card database to examine the spatial-temporal dynamics of Bus Rapid Transit (BRT) sys-
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tems in Brisbane, Australia. Comparing BRT-based trips with trips taken in non-BRT

urban public transit networks, the authors find that BRT-based trips exhibit significant

spatial heterogeneity and are markedly different from ordinary bus travel.

III. Traffic Flows and Externalities

The use of big data in economic analyses of transportation covers a variety of topics

that can broadly be categorized as (i) measures of health and environmental externalities

associated with congestion, (ii) economic effect of congestion (in terms of employment

and productivity) and (iii) welfare costs. We sequentially review these applications,

starting with welfare costs.

A. Welfare Costs

Traffic flows can entail several externalities (e.g., accidents, health effects, delays),

which are often directly related to or exacerbated by congestion. Congestion in cities

can have very large economic and social costs. In its 2015 Urban Mobility Scorecard

(UMS), for instance, the Texas Transportation Institute analyzes congestion in 471 urban

areas in the United States and finds that urban dwellers spent an extra 6.9 billion hours

in traffic and wasted 3.1 billion gallons of fuel (Schrank et al., 2015). Converting these

congestion-induced travel delays and fuel consumption into monetary values, the study

concludes that the total cost of urban traffic congestion in the United States represented

$US160 billion in 2014. In Cairo and Kuala Lumpur, two highly urbanized cities in the

developing world, congestion costs estimated using similar approaches reach up to 3.6

and 2.2 percent of national GDP, respectively (Zachau et al., 2015). These figures mostly

reflect the industry estimation standard in which the direct costs of congestion are com-

puted as the aggregate travel delay—including time unreliability—relative to a free-flow

benchmark. However, despite being widely referenced, economists are often skeptical
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about the economic rationale behind these measurements (Litman, 2013). Duranton and

Venables (2018) argue that the benchmark should not be the free-flow for three reasons:

(i) Attaining the same observed equilibrium flow without congestion may be a physi-

cally impossible counterfactual; (ii) Free flow may not be compatible with the observed

equilibrium demand for transport (which would increase given the absence of conges-

tion); and (iii) Optimality may actually require some level of congestion. In fact, from

an economic theory perspective, urban traffic congestion is better understood in terms

of demand and supply (Walters, 1961; Mohring, 1976).

Figure 1 provides a graphical illustration of the standard model of congestion (which

is generalizable to any type of traffic externality). The model focuses on the short run

when traffic capacity is fixed. The inverse demand curve D expresses the aggregated

flow or volume of travel demanded (x axis) as a function of trip cost in minutes per

kilometer, i.e. the inverse of speed (y axis). It reflects users’ willingness to pay for urban

travel. The marginal and average cost functions on the graph express how the time

costs of travel increases with traffic flow. Given congestion externalities, each marginal

user increases overall congestion, so that the marginal social cost (MSC) of travel is

greater than the average private cost (APC), as represented on Figure 1. The difference

between the MSC and the APC—i.e., the vertical distance separating the two curves—

is the marginal external congestion cost (MECC). It measures the reduced speed and

related delays that each individual user entering the traffic stream imposes on all other

travelers. The equilibrium volume of traffic, ve, corresponds to the intersection of the

curves D and APC, where the distance between the MSC and APC curves shows the

equilibrium MECC (see Figure 1). However, the optimal traffic flow, v∗, equates the

demand (curve D) and the marginal social cost (curve MSC). This optimum is achievable

through Pigouvian taxation equivalent to the congestion charge τ ∗. In the absence of

congestion pricing, the shaded area ABE measures the deadweight loss of congestion. It

is the true economic cost of traffic congestion.
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Figure 1: The Basic Model of Traffic Congestion

traffic flow

trip cost

d (demand)

τττ ∗

a

vvv∗ vvve
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msc (marginal social cost)

apc (average private cost)

Measuring the welfare loss associated with congestion is challenging given that stan-

dard travel surveys may not be available or have insufficient time and spatial coverage

that makes the inverse demand curve or the cost functions difficult to recover (Small

et al., 2007). Notable efforts include Walters (1961), Kraus et al. (1976), Keeler and Small

(1977), and Dewees (1979) in the US and Canada. The advent of new data sources (in

particular: Google Maps, traffic microwave sensors, and GPS) may thus offer promising

potential for overcoming these challenges, including in developing countries where data

leapfrogging could be occurring.

Akbar and Duranton (2017), for example, provide one of the first empirical attempts

that leverage big data to measure the deadweight loss of congestion. Combining a travel

survey with counterfactual trip information extracted from Google Maps, the authors

successfully recover supply and demand for road travel in Bogotá. In their empirical

setting, big data from Google Maps serves two main purposes. First, it provides infor-

mation on distance and real-time trip duration that overcome extensive data require-
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ments to estimate travel demand and supply. Second, counterfactual trip information

extracted from Google Maps allows comparison of similar trips under different traffic

scenarios, which helps attenuate endogeneity issues by breaking any correlation between

the dependent variable and the error term.2 The authors find a negligible welfare loss

associated with traffic congestion, estimated to be less than 1 percent of the daily wage

in Colombia. This result is consistent with mobility patterns in urban India, where the

examination of traffic data collected via Google Maps (Akbar et al., 2018) or smartphone

applications (Kreindler, 2018) also points to small welfare effects of congestion.

In a recent research, Yang et al. (2020) combine nearly 400 million real-time observa-

tions of speed and traffic volume data with a plausibly exogenous policy shock inducing

a variation in traffic congestion (driving restrictions based on the last digit of the license

plate number) to estimate the marginal external congestion cost in Beijing. Using traffic

microwave sensors, they collected real-time traffic flows at two-minute intervals for the

city’s major roads in 2014. The authors find that the marginal external congestion cost

can rise up to $0.30 per vehicle-km while the deadweight loss of road congestion repre-

sents about half percent of Beijing’s GDP. The authors find that this welfare loss would

increase about three fold if social and environmental externalities such as accidents and

air pollution were included in the calculation.

B. Mobility, Employment and Productivity

There is an established literature that uses traditional data (mainly travel surveys)

to analyze the reciprocal links between mobility and economic outcomes. For exam-

ple, Bhat and Koppelman (1993) use the Dutch Mobility Panel to show that employment

and household income have a significant influence on car ownership, trip generation,

2 Potential identification challenges may arise from trip selection and the simultaneous determination
of trip cost and flows. To overcome these issues, the authors combine a number of empirical strategies,
including controlling for weather shocks, enlarging the study area to multiple road segments, and consid-
ering several counterfactual time costs for similar trips under various scenarios.
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and mode choice. Looking at the reverse sense of causation (i.e., from traffic to economic

outcomes), several papers point to externalities from cars (mainly congestion) as a signif-

icant bottleneck for economic activities. There is empirical evidence for the US that con-

gestion hinders employment growth (Boarnet, 1997), lowers productivity (Fernald, 1999),

shrinks output growth (Hymel, 2009) and reduces income (Jin and Rafferty, 2017).3 The

economic effects of congestion are found to be stronger in vehicle-intensive industries

(e.g., manufacturing) relative to other industries, as documented for the US (Fernald,

1999) and the UK (Graham, 2007). These findings, however, have been challenged by a

recent study, which reexamines US metropolitan area data over 30 years, and concludes

that the impacts have been overestimated (Marshall and Dumbaugh, 2018).

By generating information on people, places, and activities at high spatial and tem-

poral scales, big data has the potential to shed light on the causes and consequences

of both mobility and congestion. Regarding the causes of congestion, a recent paper

exploits vehicle counts from aerial imagery to document the impact of ride-hail services

on congestion in New York City (Mangrum and Molnar, 2018). To our knowledge, the

productivity and employment consequences of congestion have not yet been assessed

using big data. As for mobility, several studies use big data to relate it to productivity

and employment outcomes. For example, Toole et al. (2015) use CDR data to study the

reciprocal links between employment status and individual mobility in two undisclosed

European countries. In the first country, the authors focus on the closure of a large man-

ufacturing firm and measure the reduction in the intra-urban mobility of laid-off workers

inferred from changes in geo-referenced mobile phone activity. Conversely, the authors

apply IA techniques in the second country to estimate aggregate unemployment rates

from individual users’ mobile phone behavior. Another study uses a gravity model to

relate commuting flows estimated with CDR data to within-city variations in wages and

productivity in Bangladesh and Sri Lanka (Kreindler and Miyauchi, 2017). It shows that

3 For surveys of the economic impacts of transportation, see Redding and Turner (2015) and Berg et al.
(2017) for the case of developing countries.
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mobility is negatively affected by strikes in Bangladesh, which reduces output growth

relative to a typical workday.

C. Health and Environmental Externalities

Transport involves various social and environmental externalities, including road ac-

cidents, air and noise pollution, and associated emotional stress and health issues. Car

accidents and related injuries have been found to increase with traffic density (Bauern-

schuster et al., 2017), leading to higher automobile insurance premia (Edlin and Karaca-

Mandic, 2006). The health effects of transport-induced pollution—mainly from nitrogen

oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOC), particulate

matter (PM), and unburned hydrocarbons—are well documented in the literature. These

effects include cardiovascular and pulmonary problems (Bauernschuster et al., 2017), low

birth weight, prematurity and increasing risks of infant mortality (Currie and Walker,

2011; Knittel et al., 2016). These health effects, in turn, may have economic implications.

Empirical evidence from London (Duffy and McGoldrick, 1990) and Los Angeles (Evans

and Carrère, 1991) suggests that exposure to highly congested traffic increases the level

of psychological stress, which may negatively affect task performance (Stokols et al.,

1978) and proofreading abilities (Schaeffer et al., 1988). In contrast to these findings,

however, a recent study using a large sample of driving instances from the American

Time Use Survey (ATUS) finds that congestion during rush hour commuting has little

impact on happiness, sadness, stress, and fatigue.

With the rise of big data, the opportunity to better understand congestion-induced

social and environmental externalities has drastically improved. Traffic emissions can

now be tracked with more precision using urban sensors in combination with crowd-

generated points of interest (Thakuriah et al., 2017). For example, Nyhan et al. (2016) an-

alyze GPS data from a taxi fleet of over 15,000 vehicles in Singapore to estimate emissions

from different sources of pollutants at high spatial resolution and temporal scale. Gately
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et al. (2017) use a similar approach to estimate traffic emissions in the Boston metropoli-

tan area. Their results suggest that only 10 percent of the road network accounts for 70

percent of traffic- related air pollution. Linking emissions data with privacy-preserving

medical records can provide even better insights into the impacts of emissions on a vari-

ety of health outcomes (see, e.g., Kho et al., 2015). Reports or complaints about conges-

tion or traffic-related incidents can also be tracked using social media data (Hasan et al.,

2013). Combining traffic data from the California Department of Transportation with

Twitter data, Georgiou et al. (2015) find a strong correlation between users’ complaints

and the severity of traffic congestion. Using Twitter data, Wang et al. (2015) estimate

aggregate congestion in Chicago with about 80 percent accuracy.

IV. Combining Big Data and Economic Approaches for Prediction

Finally, an important trend in the big data literature is that it is not only used for past

and real time measurement of phenomena, but increasingly used to make predictions.

The predictive capability of big data analytics can be useful to construct credible coun-

terfactual for causal inference using observational studies. In this section, we briefly

review traffic flow prediction attempts that make use of big data, and detail how big

data techniques can incorporate economic insights to evaluate the causal effect of driv-

ing restriction policies on traffic congestion.

A. Big Data, Machine Learning, and Econometrics

Transportation experts can rely on big data to generate accurate and timely informa-

tion for traffic flow prediction, a crucial step for improving real-time traffic management

and mitigating urban congestion (Lv et al., 2015; Chen et al., 2017). Traffic flow predic-

tion usually begins with mining vast amounts of unstructured locational data extracted

from physical and social sensing technologies. The data are then analyzed through

12



various standard statistical methods and machine learning techniques to detect traffic

patterns and to build predictive models of those patterns. The performance of the un-

derlying algorithms varies in many ways that reflect in part their ability to account for

network-wide heterogeneity and spatiotemporal relations while maximizing in-sample

and out-of-sample prediction (Einav and Levin, 2014a; Lv et al., 2015; Ma et al., 2017).

Comparative studies between big data analytics and traditional statistical methods to

predict traffic flows point to the superiority of the big data approach which can better

account for non-linear relations (Lv et al., 2015; Ma et al., 2017).

Big data analytics and predictive modeling are also increasingly influencing urban

management and congestion mitigation efforts (Hampson et al., 2017). The city of Tokyo,

for instance, has partnered with a private firm to develop a smartphone compatible app,

Zenryoku Annai!, that analyzes nearly 360 million observations every second to gener-

ate real-time information on the shortest and least-congested travel routes. A similar

intelligent transport system (ITS) in Denmark, Copenhagen Connecting, was implemented

to promote transport sustainability through real-time digital traffic control and weather

adaptation options. Di Lorenzo et al. (2016) use data from Abidjan, Côte d’Ivoire to de-

velop a CDR-based intelligent platform, AllBoard, which provides local authorities with

real-time visualization and a public transit optimization system.

Unlike most machine learning specialists, who tend to focus primarily on predictive

modeling from robust data correlations, economists are also concerned with establishing

causality between variables. Formally, an econometric model seeking to identify the

causal impact of traffic conditions Ci on a given outcome Yi (e.g., health, employment,

firm productivity, economic growth, pollution, etc.) for observation i (household, firm,

road segment or network, city, metropolitan area, county, country, etc.) can be expressed

as:

Yi = β0 + β1Ci + X
′
iγ + εi, (1)
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where Xi is a set of relevant exogenous variables whose effects are described by parame-

ter γ, β0 is the intercept, and εi is the idiosyncratic error term. The parameter of interest

is β1, which captures the impact of a change in congestion Ci on the outcome of interest

Yi.

The principal challenge in estimating equation 1 is the potential endogeneity of traf-

fic conditions. Examples of such endogeneity issues may arise from the non-random

supply of transport services or the spatial sorting of users of the transport system. For

instance, although congestion may affect economic growth there can be a reverse causal-

ity whereby growth induces greater demand for transportation. Traditionally, the em-

pirical economics literature has relied on instrumental variables approaches or natural

or quasi-natural experiments to address these potential endogeneity issues (see, e.g.,

Hymel, 2009; Sweet, 2014). By facilitating access to new data sources, improving the

measurement of relevant variables (including those that were previously unobservable),

big data has the potential to attenuate some of the endogeneity biases through reduced

measurement errors and better controls (Einav and Levin, 2014b; Glaeser et al., 2018),

but does not solve all endogeneity issues.

For economists, the valued-added of big data also lies in the ability to explore a

wider range of outcomes usually absent in traditional data sets. The often near-universal

coverage of big data also opens up new avenues to examine the heterogeneous and

distributional effects of transport conditions and policies.

B. Application: The Congestion Impact of the Covid-19 Lockdown

As an illustration, we examine traffic data constructed from publicly available infor-

mation on Google Maps to estimate the congestion effect of mobility restriction policies

during the Sars-Cov-2 pandemic.4 We rely on the Bayesian Structural Time Series (BSTS)

4 Mobility restriction policies are part of so-called non-pharmaceutical interventions (NPI) in response
to the Covid-19 pandemic. They have been implemented at various geographical levels globally and are
commonly referred to as stay-at-home orders or lockdowns.
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model, a state-space model that can be used to construct counterfactuals from observa-

tional data in time series settings (Varian, 2014; Brodersen et al., 2015). Applying the

BSTS to the traffic data, we compare actual congestion outcomes with an estimate of

what would have been observed in the absence of a lockdown and infer the causal impact

of the restriction policy on congestion. We focus on Bogotá, New Delhi, New York City,

and Paris, four highly congested metropolitan areas that enforced stringent lockdown

policies to curb the spread of Covid-19.

B.1. Measuring Traffic Congestion

Our data set comes from trafficindex.org, a website that uses the Google Maps traffic

layers to compile time series observations on traffic congestion. Google Live Traffic

Information, the underlying data source, reports high resolution traffic conditions from

anonymized users of a smartphone-enabled application. The layers are based on a four-

color scheme that characterizes the traffic status in real-time on a given road segment.

More specifically, the color green indicates relatively free-flow traffic conditions while

dark red denotes highly congested traffic. Orange and red, the two intermediate colors,

correspond to medium and near-heavy congestion, respectively.

According to the website, the images of each road segment for both the entire city and

the city center only were queried every 20 minutes, 24 hours per day, using the Google

Maps Application Programming Interface.5 Then, using the pixel-level information on

of these images, the website computes a daily Traffic Congestion Index (TCI) at each

level of aggregation (city center or entire city) as:

TCI =
3

∑
k=0

kpk, (2)

5 We had similar images queried for Paris from Google Maps and compared them to a sample of
data sets from the website covering the same period. No major discrepancies between the two series were
found.
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where pk is the percentage of total pixels in each location with color k, with k equal

to 0 for green, 1 for orange, 2 for red, and 3 for dark red, respectively. To obtain the

daily congestion index, we compute the index for every hour and take the average over

24 hours. By construction, the figure varies between 0 and 300, where 0 indicates a

free-flow traffic condition and 300 a highly congested condition. We interpret the traffic

congestion index (TCI) as a measure of aggregate delay from free-flow speed.6

We use and construct the daily congestion index over the period from March 20, 2019

to May 19, 2020 for several major cities with varying degrees of Covid-19 lockdowns.

These include Paris and New York City, subject to strict lockdown measures starting on

March 17 and March 20, 2020, respectively. We also include Bogotá and New Delhi, both

of which started to enforce strict Covid-19 lockdown policies on March 25, 2020. We

use the traffic conditions in Hong Kong SAR, China, a city that did not implement any

Covid-19 lockdown measure, as our main control series for modeling the counterfactual

scenarios for Bogotá, New Delhi, New York City, and Paris. Alternatively, in addition

to using the TCI of Hong Kong SAR, we also use the TCI from cities such as Cairo,

Sofia, Stockholm, and Tokyo that opted for relatively softer lockdown measures. Finally,

we enrich our control traffic congestion index time series with city-level information on

precipitation and temperature from Menne et al. (2012a,b). In what follows, we focus on

core cities only. The methodology is, of course, replicable to measures of congestion at

the greater metropolitan area level.

6 Dasgupta et al. (2020) use the same underlying information from Google Maps to calculate the
average speed within a city. Their approach, however, requires estimating a city-specific correspondence
between speeds and colors and assuming that the correspondence is stable over time and over different
locations in the city. It overlooks the fact that free flow may occur at low speeds in the presence of
speed limitations, which are common in urban contexts. In contrast, the TCI focuses on the severity of
delays while making it possible to aggregate the information over the whole network even when free-flow
conditions might involve different speeds in different parts of the network.
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B.2. Bayesian Structural Time Series

To estimate the causal impact of the Covid-19 lockdowns on traffic congestion in

sample of selected cities, we use a time-varying-parameter (state-space) model known

as Bayesian Structural Time Series (BSTS). As in Brodersen et al. (2015), we formally

represent the BSTS model in the following block of equations:

yt = µt + τt + βT xt + εt

µt = µt−1 + δt−1 + ut

δt = δt−1 + vt

τt = −
S−1

∑
s=1

τt−s +wt,

(3)

where εt ∼ N (0, σ2
t ) and ηt ∼ N (0, Qt) are error terms independent of all other un-

knowns, with ηt = (ut,vt,wt) containing independent components of a Gaussian white

noise.

The model in equation 3 links the observed traffic congestion index time series yt to

three components: a local linear trend component µt, a seasonal component τt, and a

regression component βT xt, where xt is a vector of TCI of cities in the control group as

well as other controls (such as temperature and precipitation). The second equation of

the model displays the current level of the local linear trend µt, which depends on its

previous level µt−1 and its expected increase between t− 1 and t—hence the term δt−1.

The latter is often thought of as the slope of the linear trend at time t− 1 and may obey

a random walk as specified in the third equation of the model (Scott and Varian, 2014).

The local linear trend model is useful for short-term predictions as it is relatively flexible

to account for variations in the local context (Brodersen et al., 2015). The fourth equation

of the model depicts the joint contribution of the number of seasons S to the observed

congestion index data yt. We set S = 7 to capture the day-of-week effect in the daily

traffic congestion index series. Thus, the seasonal component is incorporated as a set of
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day-of-week dummy variables such that the total seasonal effect equals zero over a full

cycle of 7 days.

For estimating the causal effect of the Covid-19 lockdowns in our sample of cities, the

regression component is crucial. It allows us to construct counterfactual predictions of

the daily traffic congestion index series from a synthetic control using traffic conditions

from a city or a combination of cities that did not face Covid-19 lockdown measures

(untreated cities). Unlike the local trend and seasonal sub-models, the observed traffic

congestion index series from the pool of untreated cities allows us to capture the variance

in traffic conditions in the treated cities. In this application, we primarily use Hong Kong

SAR as a relevant untreated candidate city for two reasons other than data availability.

First, Hong Kong SAR did not implement a Covid-19 lockdown over the entire period

of the analysis. Second, and more importantly, it is implausible that traffic conditions in

Hong Kong SAR are affected by the effects of lockdown-related changes in our sample of

treated cities (Bogotá, New Delhi, New York City, and Paris), an important assumption

for causal inference in the BSTS setting.

Using the natural logarithm of the traffic congestion index data from Paris before

the lockdown—i.e. between March 20, 2019 and March 17, 2020—we show in figure

2 the contribution to the BSTS model of the trend, seasonal, and regression compo-

nents, respectively. There is clearly a daily pattern in the congestion data characterized

by significantly more variation in the seasonal component relative to both the trend

and regression components. With substantially fewer variation than in the regression

component, the local trend exhibits a few instances of major reduction in congestion,

especially around summer and other national holidays (e.g., Armistice day), followed by

relatively short-lived episodes of increased traffic congestion. Note that in addition to

the traffic congestion index for Hong Kong SAR, the covariates in the regression compo-

nent include precipitation and the natural logarithm of temperature. These two control

time series are also unlikely to be themselves affected by the lockdown policy in the
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Figure 2: Contribution of the Trend, Seasonal, and Regression Components (Paris)

short-term.

Another distinctive feature of the Bayesian structural time series model is the integra-

tion of a variable selection mechanism, known as spike-and-slab technique, in the regres-

sion sub-model. This is a two-step procedure that involves: (i) evaluating the probability

that a given covariate is selected in the model (spike) and; (ii) shrinking the non-zero

coefficients towards prior expectations (slab). In the case of many potential covariates,

the spike-and-slab prior provides a powerful way of incorporating uncertainties about

which variables to include based on their relative contribution to the prediction model.

This is useful for reducing the complexity of the model in order to avoid overfitting, a

recurrent problem in the big data literature.7 However, it is worth acknowledging that

overfitting is unlikely to be an issue in our application, given the limited number of

covariates.

7 For a technical discussion of the spike-and-slab approach, see the papers by Scott and Varian (2014)
and Brodersen et al. (2015).
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B.3. Causal Impact of the Covid-19 Lockdown on Congestion

After the World Health Organization (WHO) declared Covid-19 a global pandemic

on March 11, 2020, many countries implemented restrictive policies of various degrees

(stringent vs. lenient) and scope (national or subnational) to prevent further spread

of the virus. These include, among others, social distancing, quarantine, isolation and

community containment measures. As early as March 17, 2020, the French government

banned all non-essential trips and required people leaving their homes for essential

journeys to remain within a 1-km perimeter for up to 1 hour while carrying a signed

and dated exception form. The initial 15-day stay-at-home order was later extended

until May 5, 2020. The governor of New York, where the number of Covid-19 infections

and deaths had drastically increased meanwhile followed suit and ordered that all non-

essential businesses be shutdown on March 20, 2020. Both Colombia and India enforced

similar countrywide stringent lockdown actions starting on March 25, 2020.

Using the above Bayesian structural time series model, we estimate the causal effect of

the Covid-19 lockdown policies on traffic congestion in Bogotá, New Delhi, New York

City, and Paris. All four metropolitan areas are consistently ranked among the most

congested cities in the world. For example, Bogotá topped the Inrix rank of the world

most congested cities in 2019, with drivers loosing on average the equivalent of 7 days

and 23 hours a year (Reed, 2019).8 Traffic congestion in New York City, the fourth most

congested place in the United States according to Inrix, cost the city about $US11 billion

in 2019. In Paris, a typical driver lost about 165 hours a year due to traffic congestion,

making the city the 7th most congested in the world in 2019. Similarly, New Delhi

was ranked the 8th most congested city of the world, according to the 2019 TomTom

traffic congestion index. Together, while congestion remains a pressing policy challenge

in these cities, existing policies are either politically difficult to adopt (e.g., congestion

pricing) or have yet to deliver on their promises.

8 Inrix ranks cities according to the number of hours spent in congestion (see www.inrix.com).
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Result 1: Using Only Hong Kong SAR as Control City.

We begin by estimating the causal impact of a strict lockdown policy on traffic conges-

tion in Bogotá, New Delhi, New York City, and Paris. We use traffic conditions in Hong

Kong SAR as well as daily temperature and precipitation data for the relevant treated

cities as well as for the control series. The control covariates of the regression sub-model

in the BSTS are unlikely to be directly affected by the Covid-19 restriction policies in

the treated cities, as Hong Kong SAR did not implement any lockdown measure and

Covid-19 cannot plausibly explain short-term variations in the weather variables.

As shown in both Figure 3 and Panel A of Table 1, we find that Covid-19 lockdown

policies drastically reduced daily traffic congestion—as measured by the logarithm of

the traffic congestion index—in each of the four selected cities that implemented strict

stay-at-home orders during the pandemic. Overall, the BSTS model fits very well the

trajectory of the traffic congestion index during the pre-lockdown period in all cities.

For example, the synthetic control series using Hong Kong SAR and the weather series

did a remarkable performance of picking up nearly all episodes of spike and dip of the

pre-lockdown traffic conditions, especially in New Delhi and Paris (Figure 3).

There is also an unambiguous divergence between observed traffic conditions and the

counterfactual predictions following the implementation of the Covid-19 lockdown poli-

cies, with much less traffic congestion in the post-lockdown period. More specifically, as

shown in Panel A of Table 1, the lockdown-induced reduction in the traffic congestion

index varies between 68% and 81% in comparison to a counterfactual business-as-usual

scenario in the treated cities. Bogotá and Paris exhibit the largest decline in relative con-

gestion with 81% and 79.5%, respectively, followed by New Delhi (-77%) and New York

City (-68%). These estimated causal effects are substantial and statistically significant,

according to the 95% posterior confidence interval reported in brackets, which excludes

0 for all treated cities. Furthermore, the probability of obtaining this effect by chance

is very small (the one-sided tail-area probability p-value is less than 0.01 for all cities),
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Figure 3: The Congestion Impact of the Covid-19 Lockdown Policy

Notes: Causal effect of the Covid-19 lockdowns on traffic congestion in Bogotá, New Delhi, New York City, and Paris. For each city:
(i) the upper panel shows the time series of the logarithm of the traffic congestion index; and (ii) the lower panel shows the daily
incremental impact of the lockdown measure on congestion captured by the difference between the predicted counterfactual and the
actual measure of congestion.

another evidence of the statistically significance of the estimated causal effect of travel

restriction on congestion.

Result 2: Adding Other Control Cities to Hong-Kong SAR, China

As the global Covid-19 pandemic unfolded, other national and subnational govern-

ment units opted for alternative restrictive measures without imposing strict stay-at-

home orders. These alternative policy actions involved the implementation of large-scale
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Table 1: The Causal Impact of Covid-19 Lockdown on Traffic Congestion

Bogotá New Delhi New York Paris

A. Result 1
Actual 0.593 0.767 0.721 0.486

Prediction 3.118 3.337 2.235 2.367

(0.120) (0.117) (0.206) (0.399)
Relative effect -80.99% -77.00% -67.76% -79.48%
95% CI [-89%, -74%] [-84%, -70%] [-85%, -50%] [-114%, -47%]
Tail-area probability 0.001 0.001 0.003 0.001

B. Result 2
Actual 0.593 0.767 0.721 0.486

Prediction 2.787 3.344 2.208 2.158

(0.116) (0.085) (0.103) (0.405)
Relative effect -78.74% -77.05% -67.35% -77.49%
95% CI [-87%, -71%] [-82%, -72%] [-76%, -58%] [-116%, -41%]
Tail-area probability 0.001 0.001 0.001 0.001

Notes: The table shows the effect of the Covid-19 lockdowns on traffic congestion in Bogotá, New Delhi, New York City, and Paris.
For each city, we report the BSTS model using: (A) traffic conditions in Hong Kong and weather in treated cities as the synthetic
control series; and (B) traffic condition in Hong Kong, Cairo, Sofia, Stockholm, and Tokyo as the synthetic control series.

social distancing, mandatory face mask-wearing measures, or state of emergency. Using

a sample of cities for which we have the required data, we augment our initial list of

synthetic control series—i.e. weather conditions in treated cities and congestion in Hong

Kong SAR—with traffic congestion data from Cairo, Sofia, Stockholm, and Tokyo, all of

which enforced some form of relatively flexible and less constraining lockdown policies.

Like in the case of Hong Kong SAR, we do not expect traffic restrictions in the treated

cities to directly influence traffic conditions in these cities. However, unlike Hong Kong

SAR, people in these cities might have responded to the softer lockdown measures by

changing their travel behavior in the midst of the Covid-19 outbreak. But this is un-

likely to occur exactly the day when the strict lockdown measures where enforced in the

treated cities.

We show in Figure 4 the posterior inclusion probability of the synthetic control series

in the regression sub-model of the Bayesian Structural Time Series model. For Bogotá,

the covariates with a probability of inclusion exceeding 0.05 are traffic conditions in

Stockholm (with an inclusion probability of 1), Cairo (0.79), Hong Kong SAR (0.46),
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Tokyo (0.05), and the temperature in the city (0.11). For New Delhi, traffic conditions

in Cairo (1) and the city temperature (0.06) are the only predictors with an inclusion

probability above 0.05. It is worth noting that temperature in New Delhi is negatively

correlated with traffic congestion. As for traffic conditions in Stockholm and Sofia, they

are very good predictors of traffic congestion in Paris and New York City, as they both

exhibit inclusion probabilities over 0.85. Temperature is positively correlated to traffic

conditions in New York City and exhibits an inclusion probability in the BSTS model of

0.95.

Figure 4: Posterior Inclusion Probabilities

Notes: These graphs show the posterior inclusion probabilities for the predictors of the traffic congestion index for
Bogotá, New Delhi, New York City, and Paris. White bars indicate positive coefficients while black bars show negative
coefficients.

As shown in Panel B of Table 1, we find large differences between the observed traffic

congestion and the model predictions of what would have happened without strict Covid-19

lockdown measures in the four cities in our study. In terms of relative effects, the lock-
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down policies reduced traffic congestion by about 79% in Bogotá, 77% in New Delhi,

67% in New York City, and 77% in Paris. These relative changes in traffic congestion due

to the lockdown measures are similar in magnitude to those from the previous analysis.

Furthermore, these causal effects are large and statistically different from zero, with their

95% confidence intervals that almost perfectly overlap the 95% confidence intervals of

the previous results. Put differently, the use of traffic conditions in cities with lenient

lockdown measures as additional synthetic controls, did not significantly affect the pre-

vious analysis using only Hong Kong SAR as the control city. In sum, increasing the

number of cities contributing to the synthetic control series did not affect the robustness

of the initial finding that mobility restriction policies reduced traffic congestion.

Result 3: Placebo Analysis.

Figure 5: Placebo Test using Hong Kong SAR

Notes: Placebo test of a causal effect of the Covid-19 lockdown on traffic congestion in Hong Kong SAR. We consider two hypothetical
treatment dates: (i) March 17, 2020 (left panel); and (ii) March 25, 2020 (right panel).
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The above findings suggest that strict lockdown measures led to a significant re-

duction in traffic congestion. If this were truly the case only in the context of cities

that enforced stringent lockdown policies, there should be no congestion effect in Hong

Kong SAR, a city that avoided a lockdown. To examine this hypothesis, we use the cities

of Cairo, Sofia, Stockholm, and Tokyo to construct a synthetic control series of traffic

congestion that we compare to the observed traffic congestion index for Hong Kong

SAR.9 As shown in Figure 5, we find no significant effect of a strict lockdown policy on

congestion in Hong Kong SAR. This finding is robust to the use of various hypothetical

enforcement periods. More specifically, we find an overall 1.8% (1.04%) reduction in

traffic congestion with a 95% confidence interval of [-8%, +11%] ([-7%, +9%]) when the

hypothetical treatment date is set to March 17, 2020 (March 25, 2020). Regardless of the

treatment date, these effects are quite small and statistically insignificant.

Together, we have documented a causal relationship between travel restriction poli-

cies during the Covid-19 crisis and traffic congestion in cities within the context of both

developed and developing countries. Our findings are robust to the use of alternative

cities with more or less lenient lockdown measures as synthetic control series. Moreover,

as expected, we find no effect of lockdown on traffic congestion in Hong Kong SAR, a city

which refrained from enforcing a stay-at-home order. These results suggest that policies

that incentivize teleworking may effectively complement existing efforts to reduce traffic

congestion and associated externalities. However, the overall economic impact would

have to account for the reduction in transport activities and whether telecommuting can

efficiently substitute for on-site work.

9 Although, we also use temperature (in log) as an additional control covariate, we did not include a
precipitation series due to data unavailability.
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V. Discussion and Conclusion

Big data is increasingly generating attractive opportunities for multi-sectoral collab-

orations involving government agencies, the private sector, and research institutions.

Collectively, these actors are working to identify, organize, and harness the potential of

large-scale administrative or private sector data. For developing countries, this techno-

logical progress offers an opportunity to leapfrog from the scarcity of traditional house-

hold travel surveys—deemed to be costly and often inappropriately administered—to

high dimensional and cost-effective big data resources. For instance, call detail records

(CDR) are increasingly used as reliable alternatives to conventional travel surveys, either

exclusively (Alexander et al., 2015; Çolak et al., 2015) or in combination with other data

sources (Wang et al., 2012; Jiang et al., 2013; Iqbal et al., 2014; Widhalm et al., 2015).

The quest for better understanding the causes and consequences of mobility and

congestion arising from traffic flows, or reflecting locational behaviors of individuals or

firms, has generated promising prospects for policy design. The availability of large-

scale data sets at high spatial and temporal resolution is useful to detect and predict

mobility patterns and associated externalities. It also supports transport research and

enables policy makers to assess the welfare impacts of their interventions, through var-

ious channels including the reduction of travel delays, accidents and pollution and the

stimulation of output and labor productivity. Planners can capitalize on the predictive

modeling techniques inherent to big data analytics to improve real-time traffic manage-

ment and provide their constituents with accurate information on congestion, alterna-

tive routes, and multimodal transportation options. Big data may also help design the

transition towards more energy-efficient transportation systems by providing real-time

behavioral responses (via geocoded social media sensors) to congestion externalities. To

illustrate this point, Wang and Moriarty (2018) present a smartphone-based personal

travel assistant (PTA) which estimates the energy cost of an individual trip in Beijing,

taking into account traffic conditions and modal choice.
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Despite the potential benefits of using locational data with near-universal coverage

to inform urban and transportation policies, there are challenges inherent to the big

data revolution. One important challenge is the technical expertise required to extract

millions of pieces of information from heterogeneous sources and process unstructured

data sets into operational decision-making inputs. Another crucial challenge for gener-

ating and manipulating big data for transportation analyses relates to the preservation

of privacy and confidentiality. Given their geo-referenced nature and the possibility to

extract them without users’ formal consent, urban and social sensing data as well as

other user-generated content (UGC) can significantly compromise individual privacy. A

combination of technical and regulatory approaches has been explored to address these

issues without compromising the social and economic benefits. For example, Thakuriah

et al. (2017) describe a number of technological solutions, including Privacy Enhanc-

ing Technologies (PET), synthetic data, and Trusted Third Party (TTP) mechanisms, that

are relevant for privacy preservation. Many organizations and countries have already

adapted their personal data protection framework and guidelines to the necessity to reap

the benefits of big data while protecting privacy (International Transport Forum, 2015).

In most developing countries, the prospect of big data technology adoption in trans-

portation remains slow to materialize. Possible reasons for the low take-up may stem

from the lack of in-house data analytics expertise, low storage capacity for increasingly

large data sets, as well as limited collaboration between state agencies, research cen-

ters, and the private sector. There are also political economy considerations arising from

the coordination failures among the relevant actors and institutions, both in the data

mining process and the design of the legal and regulatory environment. Despite these

challenges, the penetration of mobile technology at a high pace across different demo-

graphic groups in developing countries may open new opportunities for sustainable

transportation policies.
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