Stock Markets, Growth, and Policy

Ross Levine

How stock markets can accelerate growth and how policy can affect that growth either directly (by altering investment incentives) or indirectly (by changing the incentives underlying the creation of financial contracts).
This paper — a product of the Macroeconomic Adjustment and Growth Division, Country Economics Department — is part of a larger effort in PRE to understand the role of financial markets in economic development. Copies are available free from the World Bank, 1818 H Street NW, Washington, DC 20433. Please contact Ross Levine, room N11-023, extension 39175 (33 pages).

To help explain the role of financial markets in economic development, Levine constructs an endogenous growth model in which a stock market emerges to allocate risk. The model explores how the stock market alters investment incentives in ways that change steady-state growth rates.

Levine demonstrates that stock markets can accelerate growth by (1) facilitating the ability to trade ownership of firms without disrupting the productive processes occurring within firms, and (2) allowing agents to diversify portfolios across firms.

Policy affects growth directly by altering investment incentives and indirectly by changing the incentives underlying the creation of financial contracts.
TABLE OF CONTENTS

I. The Basic Endogenous Growth Model ... 4
 A. Preferences and Technologies .. 4
 B. Non-Stock Market Economy: Trading, Equilibrium, and Growth 7

II. Stock Markets and Growth .. 11
 A. Stock Market Equilibrium .. 12
 B. The Growth Rate with a Stock Market 14

III. Tax Policy, The Stock Market, and Growth 16

IV. Conclusion ... 20

V. Appendix A ... 22
VI. Appendix B ... 24
VII. References ... 28
VII. Footnotes .. 30
IX. Figure 1 ... 33

Very helpful comments were received from Maria Carkovic, John Coleman, Mansoor Dailami, Alan Gelb, Ed Green, Dale Henderson, David Howard, Eric Leeper, Millard Long, and especially David Gordon.
STOCK MARKETS, GROWTH, AND POLICY

An extensive literature documents and discusses the role of financial markets in economic development.¹ In an exhaustive study of three dozen developed and developing countries over the period 1860-1963, Goldsmith (1969) provides evidence of a positive relationship between the ratio of financial institutions' assets to GNP and output per person. Goldsmith also presents data showing "that periods of more rapid economic growth have been accompanied, though not without exception, by an above-average rate of financial development." (p.48) In addition, Romer (1989), Barro (1989), and others have shown, using cross-country data sets that range from twenty to over one hundred years, that there exist startling differences in per capita output growth rates with no tendency for these growth rates to converge.² This paper helps explain these observations, which have not been previously reconciled within the context of a general equilibrium optimizing model.

Along with recent work by Bencivenga and Smith (1988), Greenwood and Jovanovic (1989), and Greenwald and Stigliz (1989), this paper constructs a model that links the financial system with the steady state growth rate of per capita output.³ Specifically, the model extends and links two literatures. The endogenous growth literature, associated with the work of Romer (1986, 1990) and Lucas (1988), constructs models in which agents make decisions that fully determine the economy's steady state growth rate. The financial structures literature, associated with the work of Townsend (1979), Diamond (1984), and Diamond and Dybvig (1983), constructs models in which financial contracts emerge as optimal responses to an economy's informational and risk characteristics. This paper constructs an endogenous growth model in which a stock market emerges to allocate risk and explores how the stock market alters investment incentives in ways that change steady state growth rates.
As in most of the endogenous growth literature, steady state per capita growth only occurs in this paper if agents make investment decisions that yield sufficiently high rates of human capital accumulation and technological progress. Human capital and technology are augmented in "firms", where groups of people invent, innovate, and produce together in a long-run process [Prescott and Boyd 1987]. Unique to this paper, there is an externality associated with physical capital in the creation of human capital; the average amount of capital maintained in a firm during the entire production process positively affects the human capital of each member independently of that individual's own investment. This externality implies that people who prematurely remove capital from firms reduce the rate of human capital accumulation of remaining members. Since growth is inextricably tied to human capital accumulation, premature capital liquidation retards economic growth.

This model has two characteristics that elicit the creation of financial contracts: liquidity risk and productivity risk. Productivity risk arises because firms are subject to productivity shocks in the final period of production. This productivity risk discourages risk averse investors from investing in firms. Stock markets allow individuals to invest in a large number of firms and diversify away idiosyncratic productivity shocks. Thus, stock markets can raise the fraction of resources devoted to human-capital-augmenting firms and, thereby, accelerate per capita growth.

A second feature of the model that encourages financial contracting is liquidity risk, which is created by the model's Diamond and Dybvig (1983) preference structure. Specifically, agents choose how much to invest in firms that take a long-time to produce and how much to invest in a less profitable but liquid asset that pays off quickly. The liquid asset does not augment human capital or technology and, therefore, does not contribute to growth. After making decisions, some individuals receive liquidity shocks and discover
that they want to consume their wealth before firms create new technologies, sell goods, and distribute profits. Even though the premature liquidation value of firm capital is small, agents receiving these privately observed shocks remove their capital from firms. Thus, the risk of receiving a liquidity shock may discourage firm investment. If liquidity shocks were publicly verifiable, standard insurance contracts would eliminate the liquidity risk faced by individuals. Since liquidity shocks are not publicly observable, alternative financial contracts may arise to mitigate liquidity risk.

Stock markets may emerge in this model to help agents cope with liquidity risk by allowing those entrepreneurs receiving liquidity shocks to sell their "shares" to other investors. Agents who do not receive a liquidity shock will want to purchase shares with liquid assets because firms enjoy a higher expected rate of return than liquid assets. One result is that capital is not prematurely removed from firms to satisfy short-run liquidity needs. Due to the externality in human capital production, remaining firm members enjoy a higher rate of human capital accumulation than they would in the absence of stock markets, and output grows faster. Furthermore, even without the externality, stock markets may encourage firm investment and growth by reducing the liquidity risk associated with firm investment.

Although Diamond and Dybvig (1983) argue that banks can reproduce the equilibrium that would exist if liquidity shocks were publicly observable, Jacklin (1987) shows that their solution is not incentive compatible unless severe restrictions are imposed on private transactions. This paper does not impose these trading restrictions. Although this paper's stock market equilibrium yields a lower level of expected utility than if each individual's liquidity shock were publicly verifiable, the stock market equilibrium reduces risk and improves welfare above that of the no-financial-market case.
The paper goes on to examine the implications of consumption, income, corporate, and capital gains taxes. The paper finds that direct or indirect taxes associated with stock market transactions reduce the fraction of resources devoted to firms, slow the rate of human capital accumulation, and retard per capita output growth. Thus, given different policies toward financial markets, this paper explains cross-country and intertemporal differences in growth rates; the inability of measured factor inputs to explain these differences; and the close association between the relative size of the financial market and economic growth.

I. The Basic Endogenous Growth Model

This section presents an endogenous growth model without financial markets. The model uses the Diamond and Dybvig (1983) structure of preferences to create liquidity risk, and also includes productivity shocks that create production risk. Later sections study the effects of stock markets and policy.

I.A. Preferences and Technologies

The economy consists of an infinite sequence of three period lived generations with the same countable infinity of agents born each period. Young agents are identical with utility functions

\[u(c_1, c_2, c_3) = \frac{[c_2 + \phi c_3]^{-\gamma}}{\gamma}, \quad \text{where } \gamma > 0, \]

\(\gamma \) is the coefficient of relative risk aversion, and \(c_i \) is age \(i \) consumption. Since there is no utility from age one consumption, all income is saved. Thus, the financial system and policy cannot alter the savings rate.
The aren-t-specific, privately observed random variable \(\phi \) becomes known at the start of the second period of life, and is distributed

\[
\begin{align*}
\phi = 0 & \quad \text{with probability} \quad 1 - \pi \\
\phi = 1 & \quad \text{with probability} \quad \pi.
\end{align*}
\]

The preference structure implies a "desire for liquidity" because agents want to consume their wealth at age two if \(\phi = 0 \). Since each agent's "type" (\(\phi \)) is unknown at age one, there is "liquidity risk." But, there is no aggregate liquidity risk: \((1 - \pi)\) of each generation are type 0 and \(\pi \) are type 1. Since types are not publicly observable, insurance contracts tied to the observation of each agent's type cannot eliminate private liquidity risk.

Young agents are endowed with one unit of labor that is inelastically supplied to firms. Agents born in period \(t \) work, receive wage \(w_t \), and make investment allocation decisions.

There are two production opportunities. The first is a liquid "storage" technology. Investment of one good at \(t \) yields \(n > 0 \) goods at \(t+1 \) or \(t+2 \). The second production technology involves the risky and illiquid activity of forming and investing in "firms" that have a higher expected return than the liquid technology. In a two-stage, two-period process, consumption goods are produced using capital, labor, and human capital. Human capital is non-tradable and represents the knowledge and skills embodied in individuals.

In the first stage of firm production, individuals augment human capital. This takes period \(t+1 \) and some of period \(t+2 \), so that only age three agents have human capital. Each individual's accumulation of human capital depends positively on (1) his interactions with others [Lucas 1988]; (2) the amount of resources invested by the individual [Rebelo 1988; and King and Rebelo 1988]; and (3) the average amount of capital invested and maintained in the firm for
two periods. Letting q equal the fraction of age one income (w_t) invested in the firm by an agent born in t, his human capital (h) is

\begin{equation}
 h_{t+2} = H\tilde{W}_{t+2}^\delta (q_w t)^\varepsilon, \quad 1 < \delta, \varepsilon < 0,
\end{equation}

where H is a constant, $q_w t$ is the resources invested by the agent, and \tilde{W}_{t+2} is the average quantity of resources maintained in the firm between t and $t+2$:

$$
 \tilde{W}_{t+2} = (1 - z^i) (\tilde{q}_w t) / \pi,
$$

where z^i is the average fraction of resources removed from firms at $t+1$, $\tilde{q}_w t$ is the average quantity of resources per entrepreneur invested at t, and π is the fraction of initial members remaining at $t+2$. The externality associated with physical capital in the creation of human capital may arise for a number of reasons. First, there may be a public good externality associated with firm resources. Second, a member who benefits from his own investment will influence the human capital of others via group interactions. Finally, resources invested by one member may allow him to interact more with others, so that the human capital of other members rises independently of their own investments.

In the second stage of firm production, age three firm members with human capital - "entrepreneurs" - hire age one workers and produce goods (y):

\begin{equation}
 y_{t+2} = \tilde{\eta}_{t+2} h_{t+2} L_{t+2}^{1-\theta}, \quad 0 < \theta < 1,
\end{equation}

where L_{t+2} is age one labor units hired per entrepreneur in $t+2$ and $\tilde{\eta}_t$ is a firm specific productivity shock with an expected value of one. h_{t+2} is the level of human capital per entrepreneur at $t+2$. Firm investment is illiquid. An investor who prematurely liquidates firm capital at $t+1$ receives a very low return of x goods per investment, where $0 < x < n$.

The labor market is competitive, and labor is supplied inelastically. Age one labor is paid a wage rate equal to its expected marginal product.

\[
(5) \quad w_{t+2} = (1-\theta)h_{t+2}L_t^{-\theta}.
\]

Therefore, the return to each age three entrepreneur in firm \(j \) is

\[
(6) \quad r_{t+2}^j = \left[\eta_{t+2} + \theta - 1 \right] h_{t+2}L_t^{-\theta} = \left[\eta_{t+2} + \theta - 1 \right] \tilde{w}_t L_t^{-\theta}(q w_t) \epsilon.
\]

Human capital (\(h \)) positively influences production, the wage rate, and the return to entrepreneurs.

I.B. Non-Stock Market Economy: Trading, Equilibrium, and Growth

Agents born at \(t \) work during \(t \), receive wage \(w_t \), and choose to invest the proportion \(q \) in firm \(j \), placing the remaining resources in the safe, liquid asset. At age two, type 0 agents consume their stored goods \([(1-q)w_t n]\) plus the premature liquidation value of their firm investment \([xqw_t]\). They regret having invested in firms. Since all type 0 agents remove their firm resources at \(t+1 \), the average amount of capital maintained in firms for two periods, \(\tilde{U}_{t+2} \), is lower than if no resources were removed prematurely.

At age \(t+2 \), type 1 agents do not liquidate firm capital. In fact, type 1 agents wish they had invested more in the firm because the expected return is higher than the liquid asset. At age three, type 1 agents complete the human capital accumulation stage of firm production. They hire age one labor, produce goods given a productivity shock, pay labor, and distribute profits based on initial investments. Thus, type 1 agents consume their stored goods \([(1-q)w_t n]\) plus the profits from the firm in which they invested \(r_{t+2}^j \).
Thus, a representative agent born at \(t \) solves the problem

\[
\max_{q} \mathbb{E}_{\tilde{\eta}} \left[- (1-\pi)[q v_{t} x + (1-q) w_{t} n] - \frac{\pi[(\tilde{\eta}+\theta-1)\tilde{H}^{\tilde{\eta}}\tilde{\psi}\tilde{t}^{2} + (1-q) w_{t} n]}{\gamma} \right]
\]

where \(\mathbb{E}_{\tilde{\eta}} \) is the expected value operator with respect to the distribution on \(\tilde{\eta} \).

Since only \(\pi \) of a generation become entrepreneurs and \(L_{t} \) is age one labor per entrepreneur, \(L_{t} = 1/\pi \). Also, in this economy, all type 0 agents prematurely remove firm capital so that \(\tilde{\alpha}^{f} = 1-\pi \). Thus, in equilibrium,

\[
(8) \quad L_{t}^{1-\theta} = \pi^{2} - 1 = \varphi, \quad \text{and} \quad \tilde{w}_{t} = (1-\tilde{\alpha}^{f})(\tilde{q}\tilde{w}_{t})/\pi = w_{t} q.
\]

The first order condition after substituting (8) and assuming \(\varepsilon + \delta = 1 \) is\(^{10}\)

\[
(9) \quad \frac{(1-\pi)[x - n]}{[x q + n(1-q)]^{1+\gamma}} + \pi \mathbb{E}_{\tilde{\eta}} \left[\frac{[(\tilde{\eta}+\theta-1)\tilde{H}\tilde{\psi} - n]}{[(\tilde{\eta}+\theta-1)\tilde{H}\tilde{\psi}q + n(1-q)]^{1+\gamma}} \right] = 0.
\]

The first term in (9) is the increment to utility if \(q \) is marginally increased given that the agent is type 0; the second term is the expected increment to utility if \(q \) is marginally increased given that the agent is type 1. There is a solution to (9) where \(0 \leq q \leq 1 \) if \(\pi \varepsilon \theta \tilde{H} \tilde{\psi} > n > x > 0 \), and \(x \) can be set close to zero. This condition merely requires that the expected return from firm investment is greater than the return to liquid assets which in turn is greater than the premature liquidation value of firm capital.\(^{11}\)
Assume that $\pi \epsilon \theta H \psi > n > x > 0$ and use the standard decomposition on (9),

\[
(10) \quad \frac{(1-\pi)(x-n)}{xq + n(1-q)} + \pi \frac{[\epsilon \theta H \psi - n]}{[\theta H \psi q + n(1-q)]^{1+\gamma}} + \\
\pi \text{Cov} \left[\left(\tilde{\eta} \theta -1 \right) \epsilon \theta H \psi - n \right], \frac{1}{[\tilde{\eta} \theta -1 \theta H \psi q + n(1-q)]^{1+\gamma}} = 0.
\]

The covariance term is contingent on the agent being type 1 - the covariance between the expected return to marginally increasing firm investment and the marginal utility of consumption. This covariance is always negative.

To examine the factors determining the portfolio decision (q) first assume that the productivity shock has zero variance ($\eta^j = 1$ for all j), which implies that the covariance term in (10) is zero, and solve for q.

\[
(11) \quad q = n \lambda = \frac{n(\lambda - 1)}{(R-n) + \lambda(n-x)}, \quad \frac{1}{(1-\pi)(n-x)}, \quad \text{where} \quad \lambda = \frac{\pi(\epsilon R-n)}{(1-\pi)(n-x)};
\]

The fraction of resources allocated to firms depends positively on the share of output going to entrepreneurs (θ), the rate of human capital accumulation (H), labor per entrepreneur (ψ), the liquidation value of firm investment (x), the probability of being type 1 (π), and the fraction of marginal returns internalized by individuals (ϵ). Finally, the greater the degree of relative risk aversion (γ), the lower is the amount invested in firms.

Now let the variance of the productivity shock be greater than zero, so that the covariance term in (10) is negative, not zero. Note that the summation of the first two terms in (10) varies inversely with q. Therefore, if the variance of $\tilde{\eta}$ increases, the absolute value of the covariance term
increases, so that \(q \) must fall to satisfy condition (10). The economic implication of this finding is intuitively appealing: the variance of the productivity shock discourages risk averse investors from investing in firms. Consequently, a market that allows investors to diversify risk will induce individuals to invest more in firms.

The two period equilibrium growth rate of this economy is:

\[g_y = \frac{y_{t+2} - h_{t+2}/h_t}{y_t} = \frac{\hat{\delta} \varepsilon (q^0 y_t)^e}{h_t} \]

Substituting equilibrium values and letting \(\rho = (1-\theta)\pi^\theta \),

\[(12) \quad g_y = H([1-\theta]\pi^\theta) q = H\rho = H\rho \left[\frac{n(\lambda-1)}{(R-n) + \lambda(n-x)} \right] \]

Per capita growth is inextricably linked to human capital accumulation: the faster the rate of human capital accumulation, the faster is the growth rate of per capita output. In general, \(g_y \) may be greater or less than one so that growth may be positive or negative.

Three points are worth noting here. First, since the aggregate savings rate is trivially set to one, only the form of savings \((q) \) and the efficiency with which resources are employed \((\hat{\delta}) \) can alter growth. Second, since \(1-\pi \) of the population are type 0, they prematurely remove their capital from firms. This lowers firm efficiency by reducing the rate of human capital accumulation of remaining firm members which slows economic growth. Thus, an institution or market that helps minimize the liquidation of capital will increase firm efficiency and may also encourage firm investment. Finally, productivity risk retards economic growth by reducing the fraction of
resources allocated to firms. A financial arrangement that allows agents to diversify against productivity shocks will raise \(q \) and accelerate growth.

II. **Stock Markets and Growth**

Liquidity risk and productivity risk create incentives for the formation of stock markets. Productivity risk lowers welfare and discourages agents from investing in firms. Stock markets allow investors to invest in a large number of firms and diversify away idiosyncratic productivity shocks. This raises welfare, the fraction of resources invested in firms, and the economy's steady state growth rate. In addition, liquidity risk also tends to lower welfare and firm investment. At the beginning of period two, the liquidity shock is revealed. Those who value period three consumption (type 1's) want to buy more shares while those receiving liquidity shocks (type 0's) want to consume their wealth at age two. In the previous section, there was no mechanism by which heterogeneous agents could trade, so that type 0 agents prematurely withdrew capital from firms to the detriment of remaining firm members. With a "stock market", however, agents can conduct mutually and socially beneficial transactions. In principle, ownership trading in response to liquidity shocks could occur strictly within firms even when types are not publicly observable. Public stock markets, however, provide a standardized mechanism for satisfying liquidity requirements, and stock markets allow individuals to hold diversified portfolios.

Stock markets affect growth in two ways. The first involves firm efficiency and depends on the externality in human capital production. Stock markets increase firm efficiency by eliminating the premature withdrawal of capital from firms. This accelerates the growth rate of human capital and per capita output. The second way stock markets can affect growth is to raise the
fraction of resources devoted to firms. This does not necessarily depend on externalities. By increasing the liquidity of firm investment, reducing productivity risk, and improving firm efficiency, stock markets encourage firm investment. This stimulates human capital production and growth.

II.A. Stock Market Equilibrium

Stock market transactions occur in the first part of each period. Age one agents form firms and sell shares - claims on t+2 profits. Agents invest in a large number of firms to diversify against productivity shocks. At the beginning of t+1, agents learn their types. The resulting heterogeneity creates an incentive for stock transactions. Agents who do not value age three consumption will sell shares as long as they receive a price at least equal to the liquidation value of firm capital (x). Agents who value period three consumption will purchase more shares as long as the price in terms of stored goods is less than one.

Letting P equal the period two stock market price of claims to period three goods, a rational expectations equilibrium involves: (i) finding agents' optimal consumption/investment decisions in period two, given P and period one investment decisions; (ii) finding a P that clears the market in period two, given period one investment decisions; (iii) finding the optimal period one investment decision, given P; and (iv) requiring period one market clearing.

Using "s" to distinguish the stock market economy from the financially autarkic economy, a preliminary result will help characterize the equilibrium.

Proposition 1: In an economy with a stock market, if εR^s > n > x, then (i) no firm resources are prematurely liquidated; and (ii) all stored goods are consumed by type 0 agents.

Proof: See Appendix A. Note R^s = θΨθx^s.
The condition for Proposition 1 to hold, $\varepsilon \pi R^S > n > x$, has already been assumed, and the implications for violating the condition are discussed in footnote 11).

Given Proposition 1, type 0 agents consume their stored goods $[(1-q^S)nw_t]$ plus the stock market value of their claims to period $t+2$ firm produced goods, i.e., the value of their firm stock $[\theta \psi H(\tilde{w}_{t+2}^S)^{\delta}(q^S w_t)^{\varepsilon}]$. Type 1 agents consume their initial share of firm output $[\theta \psi H(\tilde{w}_{t+2}^S)^{\delta}(q^S w_t)^{\varepsilon}]$ plus the additional share of firm output that they purchase on the stock market with stored goods $[(1-q^S)nw_t]$ in $t+1$.

Assuming that agents hold diversified portfolios, agents solve

$$
(13) \quad \max_{q^s} \left\{ \frac{1-\pi}{\gamma} \left[(1-q^S)nw_t + \theta \psi H(\tilde{w}_{t+2}^S)^{\delta}(q^S w_t)^{\varepsilon} \right]^{\gamma} - \left\{ \frac{n}{\gamma} \left[\theta \psi H(\tilde{w}_{t+2}^S)^{\delta}(\tilde{q}^S w_t)^{\varepsilon} + \frac{(1-q^S)nw_t}{p} \right]^{\gamma} \right.
$$

As Proposition 1 establishes, no firm capital is liquidated; thus, $(1-\dot{q}^l) = 1$, so that $\tilde{w}_{t+2}^S = w_t \tilde{q}^s / \pi$.

Solving (13) and using these equilibrium conditions yields

$$
(14) \quad \varepsilon \pi R^S P = n.
$$

Now, conjecture that $P = \frac{(1-\tilde{q}^s)n}{(1-\pi)R^S q^s}$, substitute into (14) and solve for q^s,

$$
(15) \quad q^s = \frac{\varepsilon \pi}{1-\pi+\varepsilon}.
$$
The period one investment decision does not depend on risk aversion because individuals face a fixed, linear price for claims on period three goods. A change in q by any individual does not affect stock prices.\footnote{14}

In comparing the investment decision in an economy with a stock market (15) with that of a non-stock market economy (11), there are parameterizations such that without a stock market there is no investment in firms, but the mere addition of stock markets changes incentives sufficiently so that individuals invest in firms. Since firm investment permits human capital creation and growth, financial policies that prohibit the formation of capital markets may severely discourage technological progress and economic development.

II.B. The Growth Rate with a Stock Market

The (two period) equilibrium growth rate is

\[
(16) \quad g_y^s = \frac{H^{\gamma} \rho q^s}{1 - \pi + \epsilon \pi}.
\]

In comparing the growth rate of the stock market economy with that of the non-stock market economy, there are two channels through which stock markets influence growth. First, stock markets increase firm efficiency. Even if the investment decisions, q and q^s, are equal, the stock market economy will grow faster than the non-stock market economy because stock markets eliminate the premature liquidation of firm capital. Instead of liquidating capital, agents that receive liquidity shocks sell their shares to agents that value period three consumption. Consequently, more capital is maintained in firms for two periods which accelerates the rate of human capital accumulation. Formally, the externality associated with capital in
the production of human capital, \(\hat{W} \), rises from \(q_w \) in the non-stock market economy to \(q_w/\pi \) in the stock market economy.

The second way in which stock markets influence growth is by increasing the fraction of resources allocated to firms. As equations (13) and (16) demonstrate, the higher the proportion of the economy's resources invested in firms the faster will be the steady state growth rate. If agents are sufficiently risk averse, the proportion of resources devoted to firms is higher with a stock market (\(q^S > q \)). By allowing agents to diversify productivity risk, stock markets encourage risk averse agents to invest more in firms. In addition, stock markets reduce the liquidity risk associated with firm investment: agents that receive liquidity shocks can sell their shares for more than the liquidation value of firm capital. Finally, by increasing firm efficiency, stock markets raise the return on firm investment. Thus, the emergence of stock markets to manage productivity and liquidity risk accelerates growth by attracting resources to socially productive firms.

Since the savings rate is fixed at one in this model, stock markets may only promote growth by increasing the productivity of firms or improving the allocation of resources. This coincides with the World Bank's (1989) finding of a positive relationship between the efficiency of investment - the change in GNP divided by investment - and the relative size of the financial system but little relationship between financial markets and savings rates.
III. Tax Policy, The Stock Market, and Growth

The source of growth in this model is human capital creation. Since the rate of human capital accumulation is positively related to the quantity of resources invested and maintained in firms, public policies that lower investment in firms, ceteris paribus, lower per capita growth rates. Therefore, either a reduction in the fraction of an economy's resources devoted to human capital augmenting firms or a reduction in the total quantity of resources available for investment will lower the economy's growth rate.

This section formally verifies this intuition by examining the implications of four marginal taxes: a consumption tax (r^c), a tax on wage earnings (r^w), a corporate or firm tax (r^f), and a capital gains tax (r^g), which taxes stock market transactions at rate r^g. The taxes alter equations (1), (5), and (6). Using logarithmic preferences to simplify derivations,

\begin{align}
(1') \quad u(c_1, c_2, c_3) &= \ln[(1-r^c)c_2 + \phi(1-r^c)c_3 + T], \quad T \text{ is government transfers}, \\
(5') \quad w_{t+2} &= (1-r^f)(1-r^w)(1-\theta) \pi^\theta h_{t+2}, \quad 15 \\
(6') \quad r_{t+2}^f &= (1-r^f)[\eta_{t+2}^{\frac{1}{\theta}} + \tau - 1] h_{t+2}^{1-\theta}.
\end{align}

Individuals have no influence over government transfers, and the government does not invest.

Given the revised structure, Proposition 1 becomes:

Proposition 2: if $(1-r^g)(1-r^f) \in \mathbb{R}^+ > n > x$, then

(i) no firm resources are prematurely liquidated; and
(ii) all stored goods are consumed by type 0 agents.

Proof: Straightforward given the proof to Proposition 1 in Appendix A.
Intuitively, the proposition indicates that, as long as the tax system does not alter the model's structure, no firm capital is prematurely liquidated, and all liquid assets are "paid" to agents that do not value period three consumption in exchange for their claims to period three goods.

Assuming that agents hold diversified portfolios, agents solve

\[
\text{(17)} \quad \max_q \left\{ \frac{1}{\gamma} \right\} \ln \left[(1-r^c)(1-q)n\nu_t + (1-r^c)(1-r^f)(1-r^q)\nu_t^2 + (1-r^c)(1-q)n\nu_t \right] - \left(\frac{\pi}{\gamma} \right) \ln \left[(1-r^c)(1-r^f)\nu_t^2 + (1-r^c)(1-q)n\nu_t \right].
\]

The first order condition after substituting the equilibrium conditions is

\[
\text{(20)} \quad \frac{(1-r^q)(1-r^f)\nu_t^2 - n}{(1-q)n + (1-r^q)(1-r^f)\nu_t^2} = \frac{\pi[n - (1-r^f)\nu_t]}{(1-q)n + (1-r^f)\nu_t^2}.
\]

The first policy result is immediate. Since the consumption tax does not appear in the first order condition, it does not affect investment decisions or the economy's growth rate. This occurs because the consumption tax affects all elements of utility equally. If leisure were valued but not taxed, or partially taxed, then a rise in the consumption tax would induce a substitution into leisure and a reduction in growth.
Now, conjecture that \(P = \frac{(1-q^s)\pi}{(1-\rho)(1-\pi)R^s q^s} \) and solve for \(q \):

\[
q^{sr} = \left(\frac{\pi/(1-\pi)}{[\pi/(1-\pi)][1-\pi+(1-\rho)] + (1-\rho)\pi} \right)
\]

where the superscript "sr" signifies the stock market economy with taxes.

The per capita growth rate is

\[
g_y^{sr} = h_{t+2}/h_t - (1-\rho)(1-\rho)H\pi\delta q^{sr}.
\]

Equation (20) indicates that wage and corporate taxes lower growth by reducing the quantity of resources available for future production. Since wages equal savings, a wage tax is a direct tax on investable resources. Since all wages are not saved, this model exaggerates the effect of a wage tax on growth. Similarly, the corporate tax shifts back the demand curve for labor and reduces the equilibrium wage rate, lowering investment. If the corporate tax is large enough, firm investment and growth will end.

Capital gains taxes, or in this model taxes on stock market transactions, also affect per capita growth rates. The capital gains tax may be broadly interpreted as official regulations and impediments to financial market transactions as well as direct taxation of stock market activities. These "taxes" do not directly lower the quantity of investable resources. Rather, capital gains taxes alter resource allocation by reducing the expected after-tax re-sale value of firm stock. This reduces the fraction of resources invested in firms and the economy's steady state growth rate. Thus, cross-country differences in financial market policies may help explain the observed differences in per capita growth rates. If the impediments to capital market
transactions are large enough to cause financial dis-intermediation, the economy returns to the slower growth equilibrium of financial autarky.

The relative size of the financial system as a fraction of gross domestic product is a commonly used measure of the significance of the financial system. In the current model, this may be approximated by taking the ratio of stock market transactions of generation t (transactions in t+1) to the output generated by generation t (production in t+2). For example, with an economy with only a corporate tax, this ratio is \((1-\tau)(1-r^F)\theta\). Since the growth rate of this economy is \(g^y = (1-r^F)H\rho q^y\) and \(q^y\) is independent of \(r^F\), the relative size of the financial system will be positively correlated with the economy's growth rate.

The model has many avenues through which public policy can positively influence welfare. For example, the government could perform the revenue neutral policy of raising consumption taxes and reducing corporate taxes. This would reduce distortions, increase the allocation of resources to firms, and speed the economy's growth rate. One could also study the growth effects of specific types of public expenditures as in Barro (1990).

In this model, one can ask: which marginal tax reduction induces the greatest improvement in growth? Appendix B shows that the wage and corporate taxes are more potent than the capital gains tax when evaluated at small marginal tax rates. Since the corporate and wage taxes are taxes on savings, their effects are probably exaggerated. Therefore, this result should not be taken too seriously but instead stimulate further inquiry in to the relationship between policy, financial markets, and growth.
IV. Conclusion

This paper addressed the question: how does trading of financial assets and public policy affect economic growth? The paper examines a model in which liquidity and productivity risk elicit the creation of a stock market and studies how the resulting stock market changes the incentives of investors in ways that alter steady state growth rates. In particular, stock markets accelerate growth by (1) facilitating the ability to trade ownership of firms without disrupting the productive processes occurring within firms; and (2) allowing investors to hold diversified portfolios. Public policy in this model influences growth directly by altering investment incentives and indirectly by affecting the functioning of financial markets in ways that alter investment incentives. Thus, within the context of a simple model, this paper helps explain the documented relationship between financial development, long-run growth, and policy. Unfortunately, there is no channel in this model through which economic growth can stimulate changes in financial markets.

In the model, growth only occurs if society invests and maintains a sufficient amount of capital in firms that in the process of production augment human capital and technology. The more resources allocated to firms, the more rapid is economic growth. An externality in firm production implies that the economy grows faster when investors do not prematurely liquidate firm capital to satisfy short-run liquidity needs. Thus, financial arrangements that encourage firm investment or eliminate the premature removal of firm capital accelerate the steady state growth rate of per capita output.

Stock markets arise in this model to help agents manage liquidity and productivity risk, and, in so doing, stock markets accelerate growth. In the absence of financial markets, firm specific productivity shocks may discourage risk averse investors from investing in firms. Stock markets, however, allow
individuals to invest in a large number of firms and diversify against idiosyncratic firm shocks. This raises the fraction of resources allocated to firms, expedites human capital accumulation, and promotes economic growth.

Without stock markets, liquidity shocks not only discourage firm investment, they also reduce firm productivity. Liquidity shocks force some agents to remove capital from firms prematurely and receive a low return. Premature capital liquidation lowers firm productivity, and the possibility of receiving a low liquidation return discourages firm investment. Stock markets allow those agents plagued by liquidity shocks to sell their stock to other investors for more than the liquidation value of their firm capital. Thus, stock markets can accelerate growth directly by increasing firm productivity and indirectly by encouraging firm investment.

The paper shows that taxing or impeding financial market activity lowers per capita growth rates. If we take policies toward financial markets as given exogenously, policy can explain the three stylized facts discussed in the Introduction. That is, different policies toward financial markets can lead to vastly different long-run per capita growth rates; they can lead to these differences without relying on variations in capital and labor; and these policy differences will induce the observed positive correlation between financial market activity and growth.
Appendix A

This appendix proves proposition 1, derives \hat{W} in the stock market economy, and demonstrates that individuals voluntarily relinquish the option of prematurely liquidating firm capital if a stock market exists.

At age 2 each agent has a claim to $\pi \psi H_{t+2}^f(qw)\epsilon$ units of period 3 goods given period 1 decisions. He can turn these claims into xqw period 2 consumption goods. Recall that $\pi \psi H_{t+2}^f(qw)\epsilon > xqw$.

The period 2 supply and demand curves for claims to period 3 goods demonstrate that a rational expectations equilibrium implies that no firm resources are prematurely removed. If $P > 1$, all agents sell claims on period 3 goods. At $P = 1$, type 1 agents are indifferent between selling or not selling claims to period 3 goods. Set $P = x/[\pi \psi H_{t+2}^f(qw)\epsilon - 1]$. At $P < P < 1$, type 1 agents do not sell claims to period 3 goods while type 0 agents sell all their claims. If $P = P$, type 0 agents are indifferent between liquidating firm investment and selling their claims to period 3 goods. And, for $P < P$, type 0 agents liquidate their stake in the firm; there is no supply of claims to period 3 consumption goods. This gives rise to the period 2 stock market supply curve for period 3 consumption goods depicted in Figure 1 as \hat{abcdef}.

The demand curve for period 3 goods is given in Figure 1 as $\hat{ABCD}EF$. At $P > 1$, no agent relinquishes period 2 goods for period 3 goods. At $P = 1$, type 1 agents are indifferent between consuming their stored goods in period 2 or purchasing period 3 goods. At $P < P < 1$, type 1 agents use stored goods to purchase period 3 goods. At $P = P$, type 1 agents not only want to purchase period 3 goods with stored goods but are also indifferent between liquidating firm capital and purchasing period 3 goods via the stock market. Finally, at $P < P$, type 1 agents want to use stored goods and the liquidation value of firm capital to purchase period 3 goods in the stock market.
A rational expectations equilibrium does not exist at \(P > 1 \) or \(P < P \). At \(P < P \), everyone liquidates investment in all firms. Also, \(P < P \) implies that all agents store more goods in period 1.\(^{18}\) If everyone stores more goods, the demand curve shifts out and the supply curve shifts back so that the intersection occurs on the \(\mathcal{CD} \) part of the demand curve and the \(\mathcal{cd} \) part of the supply curve. This implies that no capital is liquidated \((\alpha^1 = 0)\), and \(\hat{\omega} = (\hat{q}/\pi)\delta \). The relevant supply curve is vertical at \((1-\pi)\Sigma R^\delta q\); therefore, individuals voluntarily relinquish the option of liquidating firm capital.

If \(P > 1 \), everyone increases period 1 firm investment.\(^{19}\) Such a \(P \) is not a rational expectations equilibrium. The altered investment decision causes the demand and supply curves to shift until an intersection occurs on \(\mathcal{CD} \) and \(\mathcal{cd} \). Thus, all stored goods are consumed by type 0 agents \((\alpha^n = 1)\).

Thus, if \(\phi \psi \pi^\delta > n > x \), a rational expectations equilibrium can only occur on the \(\mathcal{CD} \) part of the demand curve and the \(\mathcal{cd} \) part of the supply curve; all of the goods stored in period 1 are consumed by type 0 agents, and no physical investment in the firms is removed prematurely.
Appendix B

This appendix (1) derives the investment decision in a stock market economy and taxes that satisfies the rational expectations equilibrium conditions; (2) derives the effect of a marginal change in the capital gains tax on investment and growth; and (3) demonstrates that a marginal reduction in the wage or corporate taxes has a more positive impact on growth than a marginal reduction in the capital gains tax.

A. Derivation of q^*

The maximization problem is given by equation (17) in the text:

\[\max_{q} \left(\frac{1-\pi}{\gamma} \right) \ln \left[(1-r) \left(1-q \right)^{\eta} w_{t} + (1-\pi)(1-r^c)(1-r^g)P \psi \Delta \mu_{t+2} + (q^* \epsilon)^{\pi} \right] \]

The first order condition after substituting the equilibrium conditions is

\[(18) \quad \frac{(1-\pi)(1-r^g)(1-r^f)P \pi R^S - n}{(1-q)n + (1-r^g)(1-r^f)P \pi R^S q} = \frac{\pi[n - (1-r^f)P \pi R^S]}{(1-q)n + (1-r^f)P \pi R^S q}. \]

Conjecture that $P = \frac{(1-q)\pi n}{(1-\pi)(1-\pi)R^S q}$ and solve for q. Substituting,

\[(B1) \quad \frac{(1-\pi)(1-r^g)\pi(1-q)/(1-\pi)q - 1}{[(1-q) + (1-r^g)\pi(1-q)/1-\pi]} = \frac{\pi[1 - \epsilon \pi(1-q)/(1-\pi)q]}{[\pi(1-q)/(1-\pi) + (1-q)]} \]
Simplifying yields

(B2) \[
\frac{(1-\pi) \left((1-r^g)\epsilon \pi (1-q) - (1-\pi)q \right)}{[1 - \pi + (1-r^g)\pi]} = \pi [(1-\pi)q - \epsilon \pi (1-q)],
\]
and

(B3) \[
\frac{q \left[(1 - \pi + (1-r^g)\epsilon \pi) + (1-r^g)\epsilon \pi \right]}{q \left[(1 - \pi + \epsilon \pi) - \epsilon \pi \right]} = \frac{\pi}{(1-\pi)} [1 - \pi + (1-r^g)\pi].
\]

Now, let:

\[
a = 1 - \pi + \epsilon \pi, \quad A = \epsilon \pi,
\]

\[
b = 1 - \pi + (1-r^g)\epsilon \pi, \quad B = (1-r^g)\epsilon \pi, \quad \text{and} \quad C = 1 - \pi + (1-r^g)\pi, \quad \text{so that}
\]

(B4) \[
\frac{qb + B}{qa - A} = \frac{\pi C}{1-\pi}
\]

where \(a > b, A > B, a > A, \) and \(b > B. \)

Finally, solving for \(q \) yields equation (19) in the text:

(B21) \[
q = \frac{\pi AC + B}{1-\pi}.
\]

B. The Effects of the Capital Gains Tax

Note that

(B5) \[
\frac{\partial A}{\partial r^g} = \frac{\partial a}{\partial r^g} = 0, \quad \frac{\partial B}{\partial r^g} = \frac{\partial b}{\partial r^g} = -A, \quad \text{and} \quad \frac{\partial C}{\partial r^g} = -\pi [1 - \pi + (1-r^g)\pi] < 0.
\]
Therefore,

\[
\frac{\partial q_{sr}}{\partial r^G} = \left(\frac{\pi}{1-\pi} \right)^2 \left[\left(\frac{\pi}{1-\pi} \right) aC - A \right] \left[\left(\frac{\pi}{1-\pi} \right) aC + b \right] - \left[\left(\frac{\pi}{1-\pi} \right) aC - A \right] \left[\left(\frac{\pi}{1-\pi} \right) A - C \right] D
\]

where \(D = \left[\left(\frac{\pi}{1-\pi} \right) aC + b \right]^2 \).

To sign this derivative consider the numerator of (B6) which equals

\[
\left(\frac{\pi}{1-\pi} \right) \frac{\partial C}{\partial r^G} [Ab - aB] - \left(\frac{\pi}{1-\pi} \right) AC[a - A] - A[b - B].
\]

Since \(a > A \) and \(b > B \), the last two terms of (B7) are negative. Recall that \(\frac{\partial C}{\partial r^G} < 0 \). If \(Ab - aB > 0 \), then the first term is negative and \(\frac{\partial q}{\partial r^G} \) is negative.

\[
Ab - aB = \epsilon \pi \left[(1-\pi + (1-r^G)\epsilon \pi) - (1-r^G)(1-\pi + \epsilon \pi) \right]
\]

\[
= \epsilon \pi \left[(1-\pi) + (1-r^G)\epsilon \pi - (1-r^G)(1-\pi) - (1-r^G)\epsilon \pi \right]
\]

\[
= \epsilon \pi (1-\pi)r^G > 0,
\]

so that \(\frac{\partial q}{\partial r^G} < 0 \), which necessarily implies that \(\frac{\partial g_{sr}}{\partial r^G} < 0 \).

C. Tax Rate Comparison

Now compare the growth effects of marginally altering the wage, corporate, and capital gains tax at low marginal tax rates. In particular, evaluate \(\frac{\partial g_{sr}}{\partial r^G} \), \(\frac{\partial g_{sr}}{\partial r^F} \), \(\frac{\partial g_{sr}}{\partial r^W} \), \(\frac{\partial g_{sr}}{\partial r^F} \), \(\frac{\partial g_{sr}}{\partial r^W} \), \(\frac{\partial g_{sr}}{\partial r^G} \), \(\frac{\partial g_{sr}}{\partial r^F} \), \(\frac{\partial g_{sr}}{\partial r^W} \), \(\frac{\partial g_{sr}}{\partial r^G} \), \(\frac{\partial g_{sr}}{\partial r^F} \), \(\frac{\partial g_{sr}}{\partial r^W} \), \(\frac{\partial g_{sr}}{\partial r^G} \).
First note that \(\frac{\partial g^{sr}}{\partial r^F} \bigg|_{r=w-r^F, g=0} = \frac{\partial g^{sr}}{\partial r^g} \bigg|_{r=w-r^F, g=0} = -H_\pi \delta \rho q \bigg|_{r=w-r^F, g=0} \),

substituting for \(q \bigg|_{r=w-r^F, g=0} \) yields

\[
\text{(B8)} \quad \frac{\partial g^{sr}}{\partial r^F} \bigg|_{r=w-r^F, g=0} = \frac{\partial g^{sr}}{\partial r^g} \bigg|_{r=w-r^F, g=0} = -H_\pi \delta \rho \varepsilon \pi \frac{1-\pi+\varepsilon \pi}{1-\pi+\varepsilon \pi}.
\]

Now consider \(\frac{\partial g^{sr}}{\partial r^g} \bigg|_{r=w-r^F, g=0} = -H_\pi \delta \rho q \frac{\partial q^{sr}}{\partial r^g} \bigg|_{r=w-r^F, g=0} \). Noting that

\[
\frac{\partial C}{\partial r^g} \bigg|_{r=w-r^F, g=0} = -\pi (1+\gamma) \quad \text{and} \quad C \bigg|_{r=w-r^F, g=0} = 1,
\]

it is easy to show that

\[
\text{(B9)} \quad \frac{\partial g^{sr}}{\partial r^g} \bigg|_{r=w-r^F, g=0} = -H_\pi \delta \rho \varepsilon \pi (1-\pi)^2 \frac{1}{(1-\pi+\varepsilon \pi)^2}.
\]

Now compare (B8) with (B9). Since \(1 > \frac{(1-\pi)^2}{(1-\pi+\varepsilon \pi)} \),

\[
\text{Abs} \frac{\partial g^{sr}}{\partial r^w} \bigg|_{r=w-r^F, g=0} = \text{Abs} \frac{\partial g^{sr}}{\partial r^F} \bigg|_{r=w-r^F, g=0} > \text{Abs} \frac{\partial g^{sr}}{\partial r^g} \bigg|_{r=w-r^F, g=0},
\]

so that a marginal decrease in the wage or corporate tax has a larger positive impact on growth than a marginal decrease in the capital gains tax.
References

Footnotes

4. The literature typically uses the terms "technology" and "human capital" interchangeably. Romer (1990), however, distinguishes technology - the instructions for combining raw materials into goods - from human capital - the ability to follow instructions and create new instructions. I assume that legal or technical considerations imply that newly invented technologies are only useful to the firms that create those new technologies. Thus, using Romer (1990)'s terminology, firm created technology is perfectly excludable and therefore economically indistinguishable from rival goods such as human capital.

5. In particular, banks that offer the type of returns suggested by Diamond and Dybvig (1983) could not coexist with stock markets.

6. This is proven in Levine (1990). Within the Diamond and Dybvig (1983) model, Levine (1990) evaluates and ranks by the level of expected utility the equilibrium allocation of resources produced under various financial structures, e.g., stock markets, banks, mutual funds, and various trading restrictions.

7. Formally, for each firm indexed by j, η_j^j is drawn from the distribution
function $G(\eta^1)$ on a compact interval $[\eta, \tilde{\eta}]$, where $\eta > 1 - \theta$, and where $E[\eta] = \int \eta dG(\eta) = 1$.

8. To focus on the role of technology and human capital in development, this paper abstracts from physical factor accumulation in consumption goods production. Nevertheless, capital is pivotal in human capital creation, and the model can be easily extended to include capital resources in the production of consumption goods without altering the results, e.g., think of h as a composite human/physical capital good. Interestingly, Maddison (1987) finds that changes in measurable factor inputs such as capital and labor are able to account for considerably less than half of the observed growth rates in per capita output over the past one hundred years.

9. In terms of the standard neoclassical growth model, h_{t+2} is "technology." In contrast to the standard growth model, technology in this model is the result of the decisions of maximizing agents.

10. Steady state per capita growth can occur as long as $\epsilon + \delta > 1$. Making this an equality allows one to solve for a closed form solution.

11. If the return from liquid assets is higher than the expected return from firms, then there would be no firm investment. If, on the other hand, the liquidation value of firm capital is higher than the return from liquid assets, then no agent invests in liquid assets. Thus, if $\pi\epsilon\hat{\theta}H_{\hat{w}} > \eta > x$ does not hold, a relatively uninteresting corner solution results.

12. The term ϵ arises because agents do not internalize fully the effects of investing in firms [see: equation 3]. This model incorporates the notion that individuals perceive diminishing marginal returns to firm investment. If instead individuals see themselves as buying a share of final firm output proportional to their own investments, then the return to firm investment is $H\delta\hat{\theta}H_{t+2}(q\hat{w}/\hat{q}\hat{w})$. The results under this specification can be obtained from this paper by setting ϵ to 1.
13. This \(P \) and \(q^S \) represent a rational expectations equilibrium. Appendix A finds optimal period two decisions given \(P \) and \(q^S \), and shows the set of \(P \)'s that clear the period two market. Given \(q^S \), \(P = n/eR^S \), which is consistent with period two optimization and market clearing as described in Appendix A. The investment decision, \(q^S \), is optimal from the solution to (13), and \(q^S \) obviously clears the market in period one. Also, note that with a stock market, agents voluntarily relinquish their ability to liquidate firm investment; there is a vertical supply curve of shares [see: Appendix A].

14. Banks, however, that pool and invest the savings of individuals recognize that alterations in \(q \) change stock prices. [Levine 1990].

15. Equation (5') is obtained by an entrepreneur choosing \(L_t \) to maximize
\[
(1-r^f)h_t L_t^{1-\theta} - w^b_t L_t, \quad \text{where} \quad w^b_t \text{ is the wage rate before labor pays taxes.}
\]

16. Appendix B derives (21). Furthermore, it is trivial to verify that this is a rational expectations equilibrium given the definition in Section II.

17. Appendix B shows this formally.

18. Since \(n > x \): those receiving \(\phi = 0 \) would have preferred to store more goods; those receiving \(\phi = 1 \) would have preferred to store more goods because then they would have more period 2 goods with which to purchase period 3 goods at \(P \). Since all agents would increase the proportion of stored resources if they expect \(P < P \), such a \(P \) is not a rational expectations equilibrium.

19. Consider, for example, \(P = 1 \). At this price, everyone simply maximizes claims on period 2 or period 3 goods. A marginal increase in the proportion of period 1 wealth allocated to the firm increases claims to period 2 or period 3 goods (at \(P = 1 \)) by \(\epsilon \pi \psi \pi^{\delta} h_{t+2} q_{t}^{x-1} \), which in equilibrium equals \(\epsilon \pi \psi \pi^{\delta} w_{t} q_{t}^{x-1} \), and lowers them by \(n w_{t} \). It follows that, if \(\epsilon \pi \psi \pi^{\delta} > n \), then at \(P > 1 \), all agents will increase the proportion of their period 1 wealth invested in the firm.
Figure 1.
Stock Market Equilibrium

Demand for Period 3 Goods: ABCDEF
Supply of Period 3 Goods: abcde
PRE Working Paper Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Contact for paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPS469 Modeling Economic Behavior in Peru’s Informal Urban Retail Sector</td>
<td>J. Barry Smith, Morton Stelner</td>
<td>August 1990</td>
<td>M. Abundo 36820</td>
</tr>
<tr>
<td>WPS470 What Do Alternative Measures of Comparative Advantage Reveal About the Composition of Developing Countries’ Exports?</td>
<td>Alexander J. Yeats</td>
<td>August 1993</td>
<td>J. Epps 33710</td>
</tr>
<tr>
<td>WPS471 The Determinants of Farm Investment and Residential Construction in Post-Reform China</td>
<td>Gershon Feder, Lawrence J. Lau, Justin Lin, Xiaopeng Luo</td>
<td>August 1990</td>
<td>C. Spooner 30464</td>
</tr>
<tr>
<td>WPS472 Gains in the Education of Peruvian Women, 1940 to 1980</td>
<td>Elizabeth M. King, Rosemary Bellew</td>
<td>August 1990</td>
<td>C. Cristobal 33640</td>
</tr>
<tr>
<td>WPS473 Adjustment, Investment, and the Real Exchange Rate in Developing Countries</td>
<td>Riccardo Faini, Jaime de Melo</td>
<td>August 1990</td>
<td>R. Sugui 37951</td>
</tr>
<tr>
<td>WPS475 Does Divestiture Matter? A Framework for Learning from Experience</td>
<td>Ahmed Galal</td>
<td>August 1990</td>
<td>G. Orraca-Tetteh 37646</td>
</tr>
<tr>
<td>WPS476 Health Insurance in Sub-Saharan Africa: A Survey and Analysis</td>
<td>Ronald J. Vogel</td>
<td>August 1990</td>
<td>K. Brown 35073</td>
</tr>
<tr>
<td>WPS477 Private Participation in the Delivery of Guinea’s Water Supply Services</td>
<td>Thelma A. Triche</td>
<td>August 1990</td>
<td>M. Dhokai 39970</td>
</tr>
<tr>
<td>WPS479 Conversion Factors: A Discussion of Alternate Rates and Corresponding Weights</td>
<td>Michael Hee</td>
<td>August 1990</td>
<td>E. Zamora 33706</td>
</tr>
<tr>
<td>WPS480 An Evaluation of Neutral Trade Policy Incentives Under Increasing Returns to Scale</td>
<td>Jaime de Melo, David Roland-Holst</td>
<td>August 1990</td>
<td>R. Sugui 37951</td>
</tr>
<tr>
<td>WPS481 The Effects of Trade Reforms on Scale and Technical Efficiency: New Evidence from Chile</td>
<td>James Tybout, Jaime de Melo, Vittorio Corbo</td>
<td>August 1990</td>
<td>R. Sugui 37951</td>
</tr>
<tr>
<td>WPS482 Membership in the CFA Zone: Odyssean Journey or Trojan Horse?</td>
<td>Shantanayan Devarajan, Jaime de Melo</td>
<td>August 1990</td>
<td>R. Sugui 37951</td>
</tr>
<tr>
<td>Title</td>
<td>Author</td>
<td>Date</td>
<td>Contact for paper</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>WPS483 An Evaluation of the Main Elements in the Leading Proposals to Phase Out the Multi-Fibre Arrangement</td>
<td>Refik Erzan Paula Holmes</td>
<td>August 1990</td>
<td>G. Iogon 33732</td>
</tr>
</tbody>
</table>