Child Anthropometry in Côte d'Ivoire

Estimates from Two Surveys, 1985 and 1986
LSMS Working Papers

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Living Standards Surveys in Developing Countries</td>
</tr>
<tr>
<td>2</td>
<td>Poverty and Living Standards in Asia: An Overview of the Main Results and Lessons of Selected Household Surveys</td>
</tr>
<tr>
<td>3</td>
<td>Measuring Levels of Living in Latin America: An Overview of Main Problems</td>
</tr>
<tr>
<td>5</td>
<td>Conducting Surveys in Developing Countries: Practical Problems and Experience in Brazil, Malaysia, and the Philippines</td>
</tr>
<tr>
<td>6</td>
<td>Household Survey Experience in Africa</td>
</tr>
<tr>
<td>7</td>
<td>Measurement of Welfare: Theory and Practical Guidelines</td>
</tr>
<tr>
<td>8</td>
<td>Employment Data for the Measurement of Living Standards</td>
</tr>
<tr>
<td>9</td>
<td>Income and Expenditure Surveys in Developing Countries: Sample Design and Execution</td>
</tr>
<tr>
<td>10</td>
<td>Reflections on the LSMS Group Meeting</td>
</tr>
<tr>
<td>11</td>
<td>Three Essays on a Sri Lanka Household Survey</td>
</tr>
<tr>
<td>12</td>
<td>The ECIEL Study of Household Income and Consumption in Urban Latin America: An Analytical History</td>
</tr>
<tr>
<td>13</td>
<td>Nutrition and Health Status Indicators: Suggestions for Surveys of the Standard of Living in Developing Countries</td>
</tr>
<tr>
<td>14</td>
<td>Child Schooling and the Measurement of Living Standards</td>
</tr>
<tr>
<td>15</td>
<td>Measuring Health as a Component of Living Standards</td>
</tr>
<tr>
<td>16</td>
<td>Procedures for Collecting and Analyzing Mortality Data in LSMS</td>
</tr>
<tr>
<td>17</td>
<td>The Labor Market and Social Accounting: A Framework of Data Presentation</td>
</tr>
<tr>
<td>18</td>
<td>Time Use Data and the Living Standards Measurement Study</td>
</tr>
<tr>
<td>19</td>
<td>The Conceptual Basis of Measures of Household Welfare and Their Implied Survey Data Requirements</td>
</tr>
<tr>
<td>20</td>
<td>Statistical Experimentation for Household Surveys: Two Case Studies of Hong Kong</td>
</tr>
<tr>
<td>21</td>
<td>The Collection of Price Data for the Measurement of Living Standards</td>
</tr>
<tr>
<td>22</td>
<td>Household Expenditure Surveys: Some Methodological Issues</td>
</tr>
<tr>
<td>23</td>
<td>Collecting Panel Data in Developing Countries: Does It Make Sense?</td>
</tr>
<tr>
<td>24</td>
<td>Measuring and Analyzing Levels of Living in Developing Countries: An Annotated Questionnaire</td>
</tr>
<tr>
<td>25</td>
<td>The Demand for Urban Housing in the Ivory Coast</td>
</tr>
<tr>
<td>26</td>
<td>The Côte d'Ivoire Living Standards Survey: Design and Implementation</td>
</tr>
<tr>
<td>27</td>
<td>The Role of Employment and Earnings in Analyzing Levels of Living: A General Methodology with Applications to Malaysia and Thailand</td>
</tr>
<tr>
<td>28</td>
<td>Analysis of Household Expenditures</td>
</tr>
<tr>
<td>29</td>
<td>The Distribution of Welfare in Côte d'Ivoire in 1985</td>
</tr>
<tr>
<td>30</td>
<td>Quality, Quantity, and Spatial Variation of Price: Estimating Price Elasticities from Cross-Sectional Data</td>
</tr>
<tr>
<td>31</td>
<td>Financing the Health Sector in Peru</td>
</tr>
<tr>
<td>32</td>
<td>Informal Sector, Labor Markets, and Returns to Education in Peru</td>
</tr>
<tr>
<td>33</td>
<td>Wage Determinants in Côte d'Ivoire</td>
</tr>
<tr>
<td>34</td>
<td>Guidelines for Adapting the LSMS Living Standards Questionnaires to Local Conditions</td>
</tr>
<tr>
<td>35</td>
<td>The Demand for Medical Care in Developing Countries: Quantity Rationing in Rural Côte d'Ivoire</td>
</tr>
</tbody>
</table>

(List continues on the inside back cover)
Child Anthropometry in Côte d'Ivoire

Estimates from Two Surveys, 1985 and 1986
The Living Standards Measurement Study

The Living Standards Measurement Study (LSMS) was established by the World Bank in 1980 to explore ways of improving the type and quality of household data collected by statistical offices in developing countries. Its goal is to foster increased use of household data as a basis for policy decisionmaking. Specifically, the LSMS is working to develop new methods to monitor progress in raising levels of living, to identify the consequences for households of past and proposed government policies, and to improve communications between survey statisticians, analysts, and policymakers.

The LSMS Working Paper series was started to disseminate intermediate products from the LSMS. Publications in the series include critical surveys covering different aspects of the LSMS data collection program and reports on improved methodologies for using Living Standards Survey (LSS) data. More recent publications recommend specific survey, questionnaire, and data processing designs, and demonstrate the breadth of policy analysis that can be carried out using LSS data.
Child Anthropometry in Côte d'Ivoire

Estimates from Two Surveys, 1985 and 1986

John Strauss
Kalpana Mehra

The World Bank
Washington, D.C.
ABSTRACT

Child heights, weights and weights given height are tabulated for the Côte d'Ivoire using the Living Standards Survey data for 1985 and 1986. The major finding is the low incidence of stunting (low height for age) relative to other West African nations. Important regional variation exists, but in the poorer Savanna region levels of stunting are still somewhat lower than in other rural areas of West Africa. Wasting (low weight given height) is more in line with other West African countries, but is far lower than found in South Asia.

Several patterns appear in bivariate relationships between certain household and community factors and the incidence of low height or weight. Parental education and height, and relationship of the child to the household head seem especially important.
TABLE OF CONTENTS

Introduction..1

Results...4
 Age...4
 Comparison of 1985 and 1986..11
 Urban-Rural Differences...15
 Cross-Tabulations..16
 Mother's Education...17
 Father's Education...17
 Per Capita Expenditure Decile..24
 Relationship to Head of Household...................................28
 Mother's Height..35
 Source of Drinking Water..35

Conclusions..48

References..49

Appendix: Mean Anthropometric Measurements......................51
 Table 1 Mean Anthropometric Measurements by Sex and Age Group..53
 Table 2 Mean Anthropometric Measurements of Children Under 10 years of Age by Region and Sex..............55
 Table 3 Mean Anthropometric Measurements by Region and Mother's Education.....................................57
 Table 4 Mean Anthropometric Measurements by Region and Father's Education.................................58
 Table 5 Mean Anthropometric Measurements by Region and Status in the Household.............................59
 Table 6 Mean Anthropometric Measurements by Region and Mother's Height.......................................60
 Table 7 Mean Anthropometric Measurements by Region and Father's Height...61
 Table 8 Mean Anthropometric Measurements by Region and Mother's Body Mass Index.........................62
 Table 9 Mean Anthropometric Measurements by Region and Source of Drinking Water........................63

LIST OF FIGURES

Figure 1A Distribution of NCHS Height-for-Age Standards by Age, Urban/Rural, 1985.................................5
Figure 1B Distribution of NCHS Height-for-Age Standards by Age, Urban/Rural, 1986...............................6
Figure 2A Distribution of NCHS Weight-for-Age Standards by Age, Urban/Rural, 1985...............................7
Figure 2B Distribution of NCHS Weight-for-Age Standards by Age, Urban/Rural, 1986

Figure 3A Distribution of NCHS Weight-for-Height Standards by Age Urban/Rural, 1985

Figure 3B Distribution of NCHS Weight-for-Height Standards by Age Urban/Rural, 1986

Figure 4 Distribution of NCHS Height-for-Age Standards by Region, 1985, 1986

Figure 5 Distribution of NCHS Weight-for-Age Standards by Region, 1985, 1986

Figure 6 Distribution of NCHS Weight-for-Height Standards by Region, 1985, 1986

Figure 7 Distribution of NCHS Height-for-Age Standards by Mother's Education, 1985, 1986

Figure 8 Distribution of NCHS Weight-for-Age Standards by Mother's Education, 1985, 1986

Figure 9 Distribution of NCHS Weight-for-Height Standards by Mother's Education, 1985, 1986

Figure 10 Distribution of NCHS Height-for-Age Standards by Father's Education, 1985, 1986

Figure 11 Distribution of NCHS Weight-for-Age Standards by Father's Education, 1985, 1986

Figure 12 Distribution of NCHS Weight-for-Height Standards by Father's Education, 1985, 1986

Figure 13A Average Height-for-Age by Per Capita Expenditure Deciles and Residence, 1985

Figure 13B Average Weight-for-Age by Per Capita Expenditure Deciles and Residence, 1985

Figure 13C Average Weight-for-Height Per Capita Expenditure Deciles and Residence, 1985

Figure 14A Distribution of NCHS Height-for-Age Standards by Status of Child in the Household, Urban/Rural, 1985

Figure 14B Distribution of NCHS Height-for-Age Standards by Status of Child in the Household, Urban/Rural, 1986

Figure 15A Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household, Urban/Rural, 1985

Figure 15B Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household, Urban/Rural, 1986

Figure 16A Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household, Urban/Rural, 1985

Figure 16B Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household, Urban/Rural, 1986

Figure 17A Distribution of NCHS Height-for-Age Standards by Height of Mother, Urban/Rural, 1985

Figure 17B Distribution of NCHS Height-for-Age Standards by Height of Mother, Urban/Rural, 1986
Figure 18A Distribution of NCHS Weight-for-Age Standards by Height of Mother, Urban/Rural, 1985.....................38
Figure 18B Distribution of NCHS Weight-for-Age Standards by Height of Mother, Urban/Rural, 1986......................39
Figure 19A Distribution of NCHS Weight-for-Height Standards by Height of Mother, Urban/Rural, 1985.........................40
Figure 19B Distribution of NCHS Weight-for-Height Standards by Height of Mother, Urban/Rural, 1986........................41
Figure 20A Distribution of NCHS Height-for-Age Standards by Source of Drinking Water, Urban/Rural, 1985..............42
Figure 20B Distribution of NCHS Height-for-Age Standards by Source of Drinking Water, Urban/Rural, 1986...............43
Figure 21A Distribution of NCHS Weight-for-Age Standards by Source of Drinking Water, Urban/Rural, 1985...............44
Figure 21B Distribution of NCHS Weight-for-Age Standards by Source of Drinking Water, Urban/Rural, 1986...............45
Figure 22A Distribution of NCHS Weight-for-Height Standards by Source of Drinking Water, Urban/Rural, 1985...............46
Figure 22B Distribution of NCHS Weight-for-Height Standards by Source of Drinking Water, Urban/Rural, 1986...............47
INTRODUCTION

Anthropometric measurements on children have been widely used as one indicator of health (for example, Martorell, 1982; Falkner and Tanner eds., 1986). In particular, height standardized for age is used as an indicator of longer run nutritional status, reflecting past outcomes; while weight given height is used as one indicator of shorter run status, (Waterlow et al., 1977). This report presents estimates of height-for-age, weight-for-height and weight-for-age for children under 10 years of age from the data for the Living Standards Surveys in 1985 and 1986 in Côte d'Ivoire. Weight-for-age, while it is a hybrid measure reflecting both past and current outcomes, it is nevertheless included to compare to other surveys. Height and weight measurements were taken in the Côte d'Ivoire Living Standards Survey (CILSS), conducted by the the Direction de la Statistique, Côte d'Ivoire, with assistance from the Living Standards Unit of the World Bank; (to date the survey has been conducted in three years, 1985, 1986 and 1987).

The report is organized into two parts: part one provides breakdowns by age, sex and region, of standardized height, weight and weight-for-height. Part two provides cross-tabulations with a variety of factors thought in the literature to influence these child anthropometric outcomes: such as parental education, parental height, household income, source of drinking water and mother's relationship to the child in the often extended household. These cross-tabulations have to be interpreted quite carefully since they represent bivariate relationships only. (A multivariate analysis is provided in Strauss, 1988).
In the analysis presented herein, heights and weights are standardized for age and sex, and weight-for-height is measured as weight standardized for height and sex; in all cases using National Center for Health Statistics (NCHS) standards (1976). The U.S. standards provide comparability with many other surveys, while not requiring that normative conclusions be reached regarding the severity of any shortfalls. The use of the NCHS standards is also motivated by evidence from a number of surveys (of non-East Asian populations) that pre-adolescent children from well nourished households have heights and weights close to the U.S. median, while substantial shortfalls exist for children from more poorly nourished households, (Habicht et al., 1974, Martorell and Habicht, 1986). The results of the analysis are presented in the Appendix with tables containing means and standard deviations, while frequency distributions are illustrated in figures in the main text. Cut-off points used in these figures correspond to World Health Organisation standards of stunting (90% of U.S. median height-for-age) and wasting (80% of U.S. median weight-for-height). The weight-for-age cutoffs correspond to the Gomez scale (less than 60%, 60-75%, 75-90% and greater than 90%). With a cut-off point based on so-called Z-scores\(^1\), using less than two Z-scores under NCHS standards results in somewhat higher incidences of stunting and wasting (Sahn, 1988). This reflects the fact that much of the distribution of standardized measurements falls in this range.

\(^1\) A Z-score is derived by subtracting the mean height (or weight) from the NCHS standards and dividing by the standard deviation of the NCHS distribution for that particular age-sex group.
The data are taken from a national probability sample of 1600 households each year, out of which 800 were reinterviewed in the second year, with 800 new households being added (see Ainsworth and Muñoz, 1986). The anthropometric measurements did not commence until past mid-way in 1985, resulting in only 636 households having measurements taken in 1985, although the full 1600 households were covered in 1986.

In Abidjan, low income households were underrepresented in the first two survey years, even though the sample was designed to be self-weighting. In order to correct for this, household weights for each of the two years were derived and used for the Abidjan calculations. However, these weighted averages were fairly close to the unweighted sample averages; the latter (unweighted) being the one which are reported in this paper.
RESULTS

Figures 1, 2 and 3 show the empirical frequency distributions in 1985 and 1986 for standardized height, weight and weight-for-height, respectively, broken down by age and rural or urban place of residence. Means and standard deviations are provided in Appendix, Table 1. The major finding is the remarkably low percentage of children with heights less than 90% of U.S. standards. Surveys in other sub-Saharan countries show stunting levels of 20 percent among pre-school children (Kumar, 1986; Svedberg, 1987), considerably higher than is found in the CILSS. On the other hand, the Côte d'Ivoire data show much greater stunting than in the reference U.S. population, where only 0.5 percent of two year old boys fall below 90% of median (Waterlow et al., 1977).

In weight-for-height, the proportion of children under 80 percent of the U.S. median (wasting) is more on par with what has been found in sub-Saharan Africa, which in general is low when compared to South Asia (Kumar, 1986).

Age

Despite the average findings, considerable variation in outcomes exists within the Côte d'Ivoire. In the figures, one can examine differences by age of child, by rural or urban residence, and by the survey year. As children grow older a general pattern exists of increases in the proportion in the lower tail of the distribution. The proportion below 90% of U.S. median height increases dramatically between one and two years, and increases further between two and four years, while declining at higher ages. For weight-for-height the proportion under 80% rises precipitously between one and two years, falling drastically as children age further.
Figure 1A

Distribution of NCHS Height-for-Age Standards by Age (Urban) 1985

Legend:
- LOW-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH

Distribution of NCHS Height-for-Age Standards by Age (Rural) 1985

Legend:
- LOW-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH
Figure 1B

Distribution of NCHS Height-for-Age Standards by Age (Urban)
1986

Legend
- LOW-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH

Distribution of NCHS Height-for-Age Standards by Age (Rural)
1986

Legend
- LOW-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH
Figure 2A

Distribution of NCHS Weight-for-Age Standards by Age
(Urban)

1985

Distribution of NCHS Weight-for-Age Standards by Age
(Rural)

1985
Figure 2B

Distribution of NCHS Weight-for-Age Standards by Age
(Urban)
1986

Legend
- Low-50%
- 60-75%
- 75-90%
- 90-105%
- 105-120%
- 120%-High

Distribution of NCHS Weight-for-Age Standards by Age
(Rural)
1986

Legend
- Low-50%
- 60-75%
- 75-90%
- 90-105%
- 105-120%
- 120%-High
Figure 3A

Distribution of NCHS Weight-for-Height Standards by Age (Urban)

1985

Legend
- LOW-50%
- 50-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH

Distribution of NCHS Weight-for-Height Standards by Age (Rural)

1985

Legend
- LOW-50%
- 50-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH
Figure 3B

Distribution of NCHS Weight-for-Height Standards by Age (Urban) 1986

Legend
- LOW-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH

Age Group
0-11 12-23 24-47 48-71 72-119

Distribution of NCHS Weight-for-Height Standards by Age (Rural) 1986

Legend
- LOW-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-HIGH

Age Group
0-11 12-23 24-47 48-71 72-119
These findings conform to a general pattern found in developing countries (see, for example, Martorell and Habicht, 1986) which may result from factors leading to nutritional stress around the time of weaning and/or the introduction of solid foods.

Comparison of 1985 and 1986

Comparing the two years data is complicated. The first year measurements were only taken in some of the sampling clusters resulting in a smaller sample size. The clusters were in principle assigned randomly for interviewing in different months of the year. Hence, the clusters covered by anthropometric measurements in the last five months of the 1985 should be a random subsample of the entire set. However, a random subset could give rise to differences if an unusual draw were obtained. To control for this, results were also obtained restricting households in 1986 to those residing in the 1985 clusters. These results are largely consistent with what is presented and are available upon request.

In Appendix Tables 1 and 2 it is apparent that mean values are close in the two survey years but the standard deviations are substantially higher in 1986. This increase in the measured spread of the distributions for height and weight-for-height is also apparent when comparing the Figures. Both sides of the distribution, not just the lower tails, are affected. However, examining the data by region (Figures 4-6) reveals that the increase has occurred primarily in Abidjan and in the East Forest. It is possible that the changes are real, but one should be quite cautious in drawing such an inference. It is also possible that the difference could result from random chance, the larger sample size in 1986 resulting in more extreme observations,
Figure 4

Distribution of NCHS Height-for-Age Standards by Region
1985

Legend
- Low-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-High

Distribution of NCHS Height-for-Age Standards by Region
1986

Legend
- Low-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-High
Figure 5

Distribution of NCHS Weight-for-Age Standards by Region
1985

Legend
- LOW-60%
- 60-75%
- 75-90%
- 90-105%
- 105-120%
- 120%-High

Distribution of NCHS Weight-for-Age Standards by Region
1986

Legend
- LOW-60%
- 60-75%
- 75-90%
- 90-105%
- 105-120%
- 120%-High
Figure 6

Distribution of NCHS Weight-for-Height Standards by Region
1985

Legend
- Low-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-High

Distribution of NCHS Weight-for-Height Standards by Region
1986

Legend
- Low-80%
- 80-90%
- 90-100%
- 100-110%
- 110-120%
- 120%-High
or it could be that in these two areas the anthropometrists were making more error ridden measurements in 1986.2/

Urban-Rural Differences

Children residing in rural areas tend to be smaller and lighter than those in urban areas. The differences in height persist, and even grow, as children age. This is consistent with height reflecting past outcomes. For weight-for-height, the differences are greatest for children under two years, narrowing after that age. In Figures 4-6, standardized measurements are further broken down by region. Urban Côte d'Ivoire is divided into Abidjan and the rest, while rural households are divided into the East Forest, West Forest or Savanna. A ranking of rural regions emerges: children living in the East Forest having the lowest incidence of stunting and wasting; followed by children in the West Forest and finally children in the Savanna. This regional ranking coincides with rankings in terms of income (see Glewwe, 1987).3/

2/ For a subsample of household members, measurements were taken twice, two weeks apart. For height, and to a somewhat lesser extent for weight, comparing these two measurements should give an indication of errors in measurement. An analysis of variance was estimated using individual level dummy variables. The standard error from that equation provides an estimate of measurement errors. These ANOVA's were run separately for 1985 and 1986 data, splitting the sample by different age groups of individuals and by different anthropometrists. The estimated standard errors are in general smaller for 1986 than for 1985. However, it is possible that contrary to instructions the anthropometrists were more frequently looking up the first measurements before they took the second, in 1986, thus destroying any independence between the two measurements, and resulting in a smaller estimated standard error in 1986.

3/ The regional differences in anthropometric outcomes are well explained by a combination of household level factors such as parental education and height, and by community level factors such as wage rates, quality of medical services and incidence of disease (see Strauss, 1988).
In Appendix Table 2, means and standard deviations of standardized measurements are provided. These are broken down by sex in addition to region. It is interesting to note that there is an absence of explicit signs of sex preference. This conforms with Deaton's (1988) finding for the effect of male and female children on the consumption of "adult" goods, and more generally with other anthropometric evidence from sub-Saharan Africa (Svedberg, 1987).

Cross-Tabulations

The following sections report a series of two-way classifications. These are designed to provide the underlying factors of variation in child anthropometric outcomes. Because they are only bivariate relationships, one must be quite cautious in drawing inferences. Strauss (1988) reports a multivariate analysis of the 1985 rural data, focusing on household and community determinants, which largely supports the conclusions below.4/

The factors considered are maternal and paternal education, decile of per capita household expenditure, relationship to household head, mother's height, and source of household drinking water. Parental education are natural variables to consider given their importance in generating income and in making choices which affect health and nutrition. This importance has been surveyed by Cochrane, Leslie and O'Hara (1982). Per capita household expenditure is a useful measure of long run income. Relationship to the head of household may be important in extended households, as found in Côte d'Ivoire, where polygyny and child fosterage are relatively common. Source of

household drinking water is also of interest. As mentioned, all these variables are correlated with each other and with other explanatory factors making inference somewhat hazardous, yet the results are still of interest.

Mother's Education (Figures 7 to 9)

The education variables have been divided into three categories for urban areas; none, some primary, and completed primary. In rural areas, the two positive schooling categories have been combined because so few mothers had completed primary school. In 1985, the expected negative relationship shows up between greater maternal education and standardized height, for both urban and rural areas (Figure 7). For weight-for-height the urban relationships are not so clear cut. For rural children in 1986 data, a negative relationship exists between mother's education and the proportion of children stunted or wasted which is similar to 1985, but for urban children this does not seem to be the case. Whether the lack of a negative relationship in urban areas is a result of better health infrastructure making maternal education less important, or stems from other facts, will have to be examined more carefully by multivariate analysis.

Father's Education (Figures 10 to 12)

The relationships appear to be different between the two years for father's education. In 1985, a monotonic negative relationship appears for both rural and urban areas, for both standardized height and weight-for-height. In the 1986 data, this relationship seems to break down for standardized height. No clear differences between rural and urban areas are apparent for either year, in contrast to maternal education.
Figure 7

Distribution of NCHS Height-for-Age Standards by Mother's Education

1985

Urban - None

Urban - Any Primary

Urban - Primary+

Rural - None

Rural - Some

1986

Urban - None

Urban - Any Primary

Urban - Primary+

Rural - None

Rural - Some
Figure 8

Distribution of NCHS Weight-for-Age Standards by Mother's Education

1985

Urban - None

Urban - Any Primary

Urban - Primary+

Rural - None

Rural - Some

Distribution of NCHS Weight-for-Age Standards by Mother's Education

1986

Urban - None

Urban - Any Primary

Urban - Primary+

Rural - None

Rural - Some
Figure 9

Distribution of NCHS Weight-for-Height Standards by Mother's Education

- 1985 - Urban - None
- 1985 - Urban - Any Primary
- 1985 - Urban - Primary+
- 1986 - Rural - None
- 1986 - Rural - Some

[Pie charts showing distribution by urban and rural areas, with education levels specified.

Legend:
- Low-80%
- 100-110%
- 80-90%
- 110-120%
- 90-100%
- 120%-High]
Figure 10

Distribution of NCHS Height-for-Age Standards by Father's Education

1985

1986

Urban - None

Urban - Any Primary

Urban - Primary+

Rural - None

Rural - Some
Figure 12

Distribution of NCHS Weight–for–Height Standards by Father's Education

Urban – None 1985

Urban – Any Primary

Urban – Primary+

Rural – None

Rural – Some

Distribution of NCHS Weight–for–Height Standards by Father's Education 1986

Urban – None

Urban – Any Primary

Urban – Primary+

Rural – None

Rural – Some
Per Capita Expenditure Decile

The 1985 per capita expenditure of each household was computed using imputations for housing in urban areas but not for rural households (see Glewwe, 1987). Deciles were created separately for urban and rural Côte d'Ivoire. Any relationships transparent in Figures 13A, 13B or 13C would seem to be at the extremes. For the top urban deciles height and weight-for-height are near U.S. median levels, consistent with evidence from a variety of anthropometric surveys (Martorell and Habicht, 1986). Likewise children from the lowest decile have significantly lower weights-for-heights (though not heights), than to other children. No patterns emerge in between the top and bottom deciles.
Figure 13A

Average Height-for-Age by Per Capita Expenditure Deciles and Residence

1985

Legend

Urban
Rural
Average Weight-for-Age by Per Capita Expenditure Deciles and Residence

1985

Legend

Urban
Rural
Figure 13C

Average Weight-for-Height by Per Capita Expenditure Deciles and Residence

1985

Legend

Urban
Rural
Relationship to Head of Household

Four categories are distinguished for this variable: (1) children whose mother's are the household head or senior wife of the head (this category will include children whose fathers are heads and have only one wife); (2) children whose mothers are junior wives of the household head; (3) children not of the head but whose parents reside in the household, and (4) children not having any parents in the household (foster children). Figures 14, 15 and 16 provide the results, which are broadly consistent over both years. Children whose parents include the household head have a lower incidence of stunting and wasting than children not of the head of household whose parents reside in the household. There is some tendency for children whose mothers are junior wives to fare worse than children of senior wives or of female household heads. Finally, and quite interestingly, foster children have lower incidences of both stunting and wasting than even the children of the head. This may be because healthier children are selected to be fostered out (and in) of households, but future analysis will have to find the exact reasons. This finding for Côte d'Ivoire is in contrast with more limited surveys in countries such as Sierra Leone (Bledsoe and Ewbank, 1987).
Figure 14A

Distribution of NCHS Height-for-Age Standards by Status of Child in the Household — Urban

1985

Distribution of NCHS Height-for-Age Standards by Status of Child in the Household — Rural

1985
Figure 14B

Distribution of NCHS Height-for-Age Standards by Status of Child in the Household - Urban

1986

- Child of Female Head or Senior Wife of Head
- Child of Junior Wife of Head
- Not of Head - Parents in Household
- Not of Head - Parents not in Household

Distribution of NCHS Height-for-Age Standards by Status of Child in the Household - Rural

1986

- Child of Female Head or Senior Wife of Head
- Child of Junior Wife of Head
- Not of Head - Parents in Household
- Not of Head - Parents not in Household
Figure 15A

Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household - Urban 1985

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household - Rural 1985

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Child of Female Head or Senior Wife of Head

<table>
<thead>
<tr>
<th>Status</th>
<th>Low-60%</th>
<th>90-105%</th>
<th>60-75%</th>
<th>105-120%</th>
<th>75-90%</th>
<th>120%-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of Female Head</td>
<td>35.9</td>
<td>4.3</td>
<td>21.6</td>
<td>2.6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Child of Junior Wife</td>
<td>37.7</td>
<td>18.9</td>
<td>19.8</td>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Figure 15B

Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household – Urban

1986

- Child of Female Head or Senior Wife of Head
- Child of Junior Wife of Head
- Not of Head – Parents in Household
- Not of Head – Parents not in Household

Distribution of NCHS Weight-for-Age Standards by Status of Child in the Household – Rural

1986

- Child of Female Head or Senior Wife of Head
- Child of Junior Wife of Head
- Not of Head – Parents in Household
- Not of Head – Parents not in Household
Figure 16A

Distribution of NCHS Weight-for-Height Standards by Status of Child in the Household — Urban 1985

Child of Female Head or Senior Wife of Head

Child of Junior Wife of Head

Not of Head – Parents in Household

Not of Head – Parents not in Household

Distribution of NCHS Weight-for-Height Standards by Status of Child in the Household — Rural 1985

Child of Female Head or Senior Wife of Head

Child of Junior Wife of Head

Not of Head – Parents in Household

Not of Head – Parents not in Household
Figure 16B
Distribution of NCHS Weight-for-Height Standards by Status of Child in the Household - Urban 1986
Child of Female Head or Senior Wife of Head

Not of Head - Parents in Household

Child of Junior Wife of Head

Not of Head - Parents not in Household

Distribution of NCHS Weight-for-Height Standards by Status of Child in the Household - Rural 1986
Child of Female Head or Senior Wife of Head

Not of Head - Parents in Household

Child of Junior Wife of Head

Not of Head - Parents not in Household
Mother's Height (Figures 17 to 19)

Height of a child's parents will certainly affect that of the child. This is borne out in Figure 17, where mothers' heights are categorized according to whether they are above median U.S. heights for 18 years old (greater than 164 cms) or whether they are less than one standard deviation (158-164 cms calculated using NCHS data), between one and two standard deviations (152-158 cms) or less than two standard deviations (152 cms) under U.S. adult median height. Some of the smallest mothers will include those as young as 13 or 14 years. As is clear from Figure 17, there is a strong bivariate relationship between maternal and child height. This is not purely genetic as shorter mothers may be very young, have less education and other unobservable human capital. For weight-for-height (Figure 19) no clear-cut relationship exists. This may indicate that the non-genetic effect of height is small.

Source of Drinking Water (Figures 20 to 22)

Five (rainy season) sources are distinguished: piped water, well with a pump, well without a pump, outside (rain, rivers, lakes, etc.) and other. In rural areas a clear distinction in the 1985 data between sources exists. Children in households having piped water are less likely to be stunted or wasted than others. The differences between non-piped water sources is less dramatic. In the 1986 data even the difference between piped and non-piped sources in rural areas is diminished. In urban areas having piped water does not seem to be associated with any advantages. Of course, having access to piped water in rural areas probably means residence in a larger town having consequently better health and educational facilities, and, quite possibly, parents with more education and income.
Figure 17A

Distribution of NCHS Height-for-Age Standards by Height of Mother – Urban

138-152 cms

152-158 cms

158-164 cms

164-178 cms

1985

Distribution of NCHS Height-for-Age Standards by Height of Mother – Rural

138-152 cms

152-158 cms

158-164 cms

164-178 cms

1985
Figure 17B

Distribution of NCHS Height-for-Age Standards by Height of Mother - Urban

1986

- 37 -

Distribution of NCHS Height-for-Age Standards by Height of Mother - Rural

1986
Figure 18A

Distribution of NCHS Weight-for-Age Standards by Height of Mother - Urban

1985

- 138-152 cms
- 158-164 cms
- 164-178 cms

Distribution of NCHS Weight-for-Age Standards by Height of Mother - Rural

1985

- 138-152 cms
- 158-164 cms
- 164-178 cms
Figure 19A

Distribution of NCHS Weight-for-Height Standards by Height of Mother - Urban

<table>
<thead>
<tr>
<th>Height Range</th>
<th>1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>138-152 cms</td>
<td>11.2</td>
</tr>
<tr>
<td>152-158 cms</td>
<td>12.2</td>
</tr>
<tr>
<td>158-164 cms</td>
<td>21.2</td>
</tr>
<tr>
<td>164-178 cms</td>
<td>37.3</td>
</tr>
</tbody>
</table>

Distribution of NCHS Weight-for-Height Standards by Height of Mother - Rural

<table>
<thead>
<tr>
<th>Height Range</th>
<th>1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>138-152 cms</td>
<td>21.2</td>
</tr>
<tr>
<td>152-158 cms</td>
<td>17.3</td>
</tr>
<tr>
<td>158-164 cms</td>
<td>4.7</td>
</tr>
<tr>
<td>164-178 cms</td>
<td>33.2</td>
</tr>
</tbody>
</table>
Figure 19B

Distribution of NCHS Weight-for-Height Standards by Height of Mother - Urban

138-152 cms

152-158 cms

158-164 cms

164-178 cms

1986

Distribution of NCHS Weight-for-Height Standards by Height of Mother - Rural

138-152 cms

152-158 cms

158-164 cms

164-178 cms

1986
Figure 20A

Distribution of NCHS Height-for-Age Standards by Source of Drinking Water – Urban

1985

Distribution of NCHS Height-for-Age Standards by Source of Drinking Water – Rural

1985
Figure 20B

Distribution of NCHS Height-for-Age Standards by Source of Drinking Water - Urban

1986

Distribution of NCHS Height-for-Age Standards by Source of Drinking Water - Rural
Figure 21A

Distribution of NCHS Weight-for-Age Standards by Source of Drinking Water – Urban

1985

Distribution of NCHS Weight-for-Age Standards by Source of Drinking Water – Rural

1985
Figure 21B

Distribution of NCHS Weight-for-Age Standards by Source of Drinking Water - Urban

1986

Distribution of NCHS Weight-for-Age Standards by Source of Drinking Water - Rural

1986
Figure 22A

Distribution of NCHS Weight-for-Height Standards by Source of Drinking Water - Urban

1985

- Piped
- Well with no Pump
- Outside

Distribution of NCHS Weight-for-Height Standards by Source of Drinking Water - Rural

1985

- Piped
- Well with Pump
- Well with no Pump
- Outside
- Other
Figure 22B

Distribution of NCHS Weight-for-Height Standards by Source of Drinking Water - Urban

1986

Distribution of NCHS Weight-for-Height Standards by Source of Drinking Water - Rural

1986
CONCLUSIONS

The major finding from the CILSS in both years is the very low incidence (for Sub-Saharan Africa) of stunting (low height-for-age). The prevalence of low weight given height (wasting) is more in line with other African nations, but is substantially below the levels found in South Asia. Rural areas have a greater prevalence of both stunting and wasting than do urban areas, and the northern Savanna area has the highest incidence of low height and weight-for-height.

Several patterns appear in bivariate relationships between certain household and community factors and the incidence of low height or weight. Parental education and height, and relationship of the child to the household head seem especially important. Since these are bivariate relationships one must take care not to over interpret these results. A full multivariate analysis of the rural data from 1985 can be found in Strauss, 1988.
REFERENCES

APPENDIX: MEAN ANTHROPOMETRIC MEASUREMENTS
Table 1: Mean Anthropometric Measurements by Sex and Age Group, 1985

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Sex</th>
<th>N</th>
<th>Height (cms)</th>
<th>Standardized Height-for-Age</th>
<th>Weight (kgs)</th>
<th>Standardized Weight-for-Age</th>
<th>Standardized Weight-for-Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>1667</td>
<td>102.0</td>
<td>98.8</td>
<td>16.7</td>
<td>95.9</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>823</td>
<td>101.7</td>
<td>98.5</td>
<td>16.7</td>
<td>95.0</td>
<td>97.3</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>844</td>
<td>102.4</td>
<td>99.1</td>
<td>16.7</td>
<td>96.0</td>
<td>97.6</td>
</tr>
<tr>
<td>0 - 11</td>
<td>All</td>
<td>170</td>
<td>64.4</td>
<td>100.7</td>
<td>6.7</td>
<td>100.6</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>92</td>
<td>65.5</td>
<td>100.8</td>
<td>7.0</td>
<td>100.8</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>78</td>
<td>63.1</td>
<td>100.6</td>
<td>6.3</td>
<td>100.4</td>
<td>97.8</td>
</tr>
<tr>
<td>12 - 23</td>
<td>All</td>
<td>146</td>
<td>78.3</td>
<td>98.6</td>
<td>9.8</td>
<td>91.3</td>
<td>94.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>77</td>
<td>78.5</td>
<td>97.5</td>
<td>10.1</td>
<td>90.9</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>69</td>
<td>78.1</td>
<td>99.8</td>
<td>9.5</td>
<td>91.7</td>
<td>92.7</td>
</tr>
<tr>
<td>24 - 47</td>
<td>All</td>
<td>353</td>
<td>89.5</td>
<td>97.6</td>
<td>12.7</td>
<td>93.2</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>172</td>
<td>89.8</td>
<td>97.1</td>
<td>12.8</td>
<td>92.0</td>
<td>97.1</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>181</td>
<td>89.3</td>
<td>98.0</td>
<td>12.5</td>
<td>94.4</td>
<td>97.9</td>
</tr>
<tr>
<td>48 - 71</td>
<td>All</td>
<td>342</td>
<td>104.8</td>
<td>98.3</td>
<td>16.5</td>
<td>94.5</td>
<td>96.9</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>170</td>
<td>105.7</td>
<td>98.2</td>
<td>16.9</td>
<td>93.9</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>172</td>
<td>103.8</td>
<td>98.4</td>
<td>16.1</td>
<td>95.0</td>
<td>97.1</td>
</tr>
<tr>
<td>72 - 119</td>
<td>All</td>
<td>656</td>
<td>122.4</td>
<td>99.3</td>
<td>23.1</td>
<td>97.8</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>312</td>
<td>122</td>
<td>99.9</td>
<td>23.1</td>
<td>96.5</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>344</td>
<td>122.3</td>
<td>99.5</td>
<td>23.1</td>
<td>99.0</td>
<td>98.7</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation. Standards used are from NCHS (1976).
Table 1: (Continued)

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Sex</th>
<th>N</th>
<th>Height (cms)</th>
<th>Standardized Height-for-Age</th>
<th>Weight (kgs)</th>
<th>Standardized Weight-for-Age</th>
<th>Standardized Weight-for-Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>3892</td>
<td>102.4</td>
<td>(22.1)</td>
<td>17.1</td>
<td>97.1</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1994</td>
<td>103.0</td>
<td>(21.6)</td>
<td>17.3</td>
<td>96.3</td>
<td>98.5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1898</td>
<td>101.7</td>
<td>(22.6)</td>
<td>16.8</td>
<td>98.0</td>
<td>98.7</td>
</tr>
<tr>
<td>0 - 11</td>
<td>All</td>
<td>435</td>
<td>64.6</td>
<td>(8.1)</td>
<td>6.7</td>
<td>100.6</td>
<td>100.6</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>220</td>
<td>65.1</td>
<td>(8.3)</td>
<td>6.8</td>
<td>100.0</td>
<td>97.2</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>215</td>
<td>65.6</td>
<td>(7.8)</td>
<td>6.5</td>
<td>101.2</td>
<td>99.1</td>
</tr>
<tr>
<td>12 - 23</td>
<td>All</td>
<td>333</td>
<td>77.7</td>
<td>(6.2)</td>
<td>9.7</td>
<td>90.6</td>
<td>95.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>154</td>
<td>78.5</td>
<td>(6.4)</td>
<td>10.0</td>
<td>89.8</td>
<td>95.3</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>179</td>
<td>77.0</td>
<td>(7.8)</td>
<td>9.4</td>
<td>91.3</td>
<td>95.0</td>
</tr>
<tr>
<td>24 - 47</td>
<td>All</td>
<td>768</td>
<td>90.0</td>
<td>(7.6)</td>
<td>13.0</td>
<td>94.3</td>
<td>99.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>387</td>
<td>90.7</td>
<td>(7.7)</td>
<td>13.2</td>
<td>94.0</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>381</td>
<td>89.3</td>
<td>(7.4)</td>
<td>12.7</td>
<td>94.5</td>
<td>99.6</td>
</tr>
<tr>
<td>48 - 71</td>
<td>All</td>
<td>786</td>
<td>104.7</td>
<td>(8.1)</td>
<td>17.0</td>
<td>97.6</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>425</td>
<td>104.9</td>
<td>(8.3)</td>
<td>17.2</td>
<td>96.4</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>361</td>
<td>104.6</td>
<td>(7.8)</td>
<td>16.7</td>
<td>99.1</td>
<td>100.0</td>
</tr>
<tr>
<td>72 - 119</td>
<td>All</td>
<td>1570</td>
<td>123.0</td>
<td>(9.7)</td>
<td>23.5</td>
<td>98.7</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>808</td>
<td>122.8</td>
<td>(9.4)</td>
<td>23.6</td>
<td>97.5</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>762</td>
<td>123.1</td>
<td>(9.9)</td>
<td>23.5</td>
<td>99.9</td>
<td>98.5</td>
</tr>
</tbody>
</table>

Note: The number parenthesis is the standard deviation.
Table 2: Mean Anthropometric Measurements of Children Under 10 Years of Age by Region and Sex, 1985

<table>
<thead>
<tr>
<th>Region</th>
<th>Sex</th>
<th>N</th>
<th>Height (cms)</th>
<th>Standardized Height-for-Age</th>
<th>Weight (kgs)</th>
<th>Standardized Weight-for-Age</th>
<th>Standardized Weight-for-Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>All</td>
<td>679</td>
<td>102.8</td>
<td>99.2 (5.5)</td>
<td>16.9 (6.7)</td>
<td>97.0 (15.1)</td>
<td>97.7 (9.2)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>317</td>
<td>102.2</td>
<td>98.8 (5.7)</td>
<td>16.8 (6.6)</td>
<td>95.8 (14.3)</td>
<td>97.4 (8.2)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>362</td>
<td>103.2</td>
<td>99.6 (5.4)</td>
<td>17.0 (6.9)</td>
<td>98.0 (15.1)</td>
<td>97.9 (10.0)</td>
</tr>
<tr>
<td>Abidjan</td>
<td>All</td>
<td>283</td>
<td>103.1</td>
<td>99.7 (5.3)</td>
<td>17.0 (7.0)</td>
<td>97.7 (15.4)</td>
<td>97.4 (9.4)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>132</td>
<td>97.0</td>
<td>99.3 (5.2)</td>
<td>16.9 (6.9)</td>
<td>96.8 (14.7)</td>
<td>97.0 (8.0)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>151</td>
<td>103.7</td>
<td>100.0 (5.4)</td>
<td>17.2 (7.0)</td>
<td>98.5 (16.0)</td>
<td>97.7 (10.4)</td>
</tr>
<tr>
<td>Other Cities</td>
<td>All</td>
<td>396</td>
<td>102.5</td>
<td>98.9 (5.7)</td>
<td>16.9 (6.6)</td>
<td>96.4 (14.8)</td>
<td>97.9 (9.1)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>185</td>
<td>102.2</td>
<td>98.4 (6.0)</td>
<td>16.8 (6.4)</td>
<td>95.0 (14.1)</td>
<td>97.6 (8.4)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>211</td>
<td>102.9</td>
<td>99.3 (5.4)</td>
<td>17.0 (6.8)</td>
<td>97.7 (15.4)</td>
<td>98.1 (9.7)</td>
</tr>
<tr>
<td>Rural</td>
<td>All</td>
<td>988</td>
<td>101.5</td>
<td>98.5 (6.4)</td>
<td>16.5 (6.8)</td>
<td>95.1 (16.6)</td>
<td>97.3 (9.7)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>506</td>
<td>101.3</td>
<td>98.3 (7.0)</td>
<td>16.6 (6.6)</td>
<td>94.5 (16.0)</td>
<td>97.3 (9.9)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>482</td>
<td>101.7</td>
<td>98.7 (6.8)</td>
<td>16.5 (6.6)</td>
<td>95.8 (16.0)</td>
<td>97.3 (9.5)</td>
</tr>
<tr>
<td>East Forest</td>
<td>All</td>
<td>407</td>
<td>102.9</td>
<td>99.1 (7.1)</td>
<td>17.0 (7.0)</td>
<td>97.0 (17.1)</td>
<td>98.2 (9.6)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>201</td>
<td>102.7</td>
<td>99.2 (7.1)</td>
<td>17.1 (7.0)</td>
<td>96.9 (17.7)</td>
<td>97.9 (11.6)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>206</td>
<td>103.1</td>
<td>99.0 (6.7)</td>
<td>16.9 (6.6)</td>
<td>97.0 (16.5)</td>
<td>96.6 (10.1)</td>
</tr>
<tr>
<td>West Forest</td>
<td>All</td>
<td>244</td>
<td>100.5</td>
<td>98.1 (7.4)</td>
<td>16.1 (6.7)</td>
<td>93.1 (16.7)</td>
<td>96.6 (10.8)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>141</td>
<td>101.6</td>
<td>98.1 (7.1)</td>
<td>16.6 (7.0)</td>
<td>92.9 (17.7)</td>
<td>96.5 (11.6)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>103</td>
<td>98.8</td>
<td>98.2 (7.2)</td>
<td>16.3 (6.2)</td>
<td>93.5 (16.0)</td>
<td>96.7 (9.7)</td>
</tr>
<tr>
<td>Savannah</td>
<td>All</td>
<td>337</td>
<td>100.6</td>
<td>98.1 (7.2)</td>
<td>16.3 (6.2)</td>
<td>94.3 (16.0)</td>
<td>96.9 (9.7)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>164</td>
<td>99.2</td>
<td>97.3 (7.3)</td>
<td>15.9 (7.1)</td>
<td>92.9 (17.1)</td>
<td>97.3 (9.0)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>173</td>
<td>101.9</td>
<td>98.8 (7.5)</td>
<td>16.6 (7.7)</td>
<td>95.7 (18.5)</td>
<td>96.4 (8.7)</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation. Standards used are from NCHS (1976).
<table>
<thead>
<tr>
<th>Region</th>
<th>Sex</th>
<th>N</th>
<th>Height (cms)</th>
<th>Standardized Height-for-Age</th>
<th>Weight (kgs)</th>
<th>Standardized Weight-for-Age</th>
<th>Standardized Weight-for-Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>All</td>
<td>1593</td>
<td>104.1</td>
<td>98.7</td>
<td>17.3</td>
<td>97.2</td>
<td>97.0</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>780</td>
<td>103.7</td>
<td>99.2</td>
<td>17.2</td>
<td>95.7</td>
<td>97.0</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>813</td>
<td>104.4</td>
<td>100.3</td>
<td>17.3</td>
<td>98.5</td>
<td>96.9</td>
</tr>
<tr>
<td>Abidjan</td>
<td>All</td>
<td>633</td>
<td>103.7</td>
<td>100.2</td>
<td>16.8</td>
<td>96.1</td>
<td>95.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>299</td>
<td>104.0</td>
<td>100.2</td>
<td>16.9</td>
<td>95.6</td>
<td>95.3</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>334</td>
<td>103.4</td>
<td>100.3</td>
<td>16.6</td>
<td>96.5</td>
<td>95.3</td>
</tr>
<tr>
<td>Other Cities</td>
<td>All</td>
<td>960</td>
<td>104.3</td>
<td>99.4</td>
<td>17.6</td>
<td>97.9</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>481</td>
<td>103.6</td>
<td>98.6</td>
<td>17.4</td>
<td>95.8</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>479</td>
<td>105.1</td>
<td>100.2</td>
<td>17.8</td>
<td>100.0</td>
<td>98.1</td>
</tr>
<tr>
<td>Rural</td>
<td>All</td>
<td>2299</td>
<td>101.2</td>
<td>98.3</td>
<td>16.9</td>
<td>97.1</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1214</td>
<td>102.5</td>
<td>98.2</td>
<td>17.3</td>
<td>96.6</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1085</td>
<td>99.7</td>
<td>98.4</td>
<td>16.4</td>
<td>97.6</td>
<td>100.1</td>
</tr>
<tr>
<td>East Forest</td>
<td>All</td>
<td>1021</td>
<td>102.3</td>
<td>98.4</td>
<td>16.9</td>
<td>95.5</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>557</td>
<td>103.3</td>
<td>98.4</td>
<td>17.3</td>
<td>95.3</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>464</td>
<td>101.2</td>
<td>98.5</td>
<td>16.5</td>
<td>95.9</td>
<td>98.4</td>
</tr>
<tr>
<td>West Forest</td>
<td>All</td>
<td>548</td>
<td>100.8</td>
<td>98.7</td>
<td>17.4</td>
<td>101.8</td>
<td>103.8</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>280</td>
<td>102.0</td>
<td>98.5</td>
<td>17.7</td>
<td>100.3</td>
<td>102.5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>268</td>
<td>99.5</td>
<td>98.8</td>
<td>17.2</td>
<td>103.4</td>
<td>105.2</td>
</tr>
<tr>
<td>Savannah</td>
<td>All</td>
<td>730</td>
<td>99.9</td>
<td>97.9</td>
<td>16.5</td>
<td>95.7</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>377</td>
<td>101.8</td>
<td>97.7</td>
<td>17.3</td>
<td>95.9</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>353</td>
<td>97.9</td>
<td>98.0</td>
<td>15.6</td>
<td>95.5</td>
<td>98.5</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 3: Mean Anthropometric Measurements by Region and Mother's Education (Children Under 10 years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td>None (N)</td>
<td>Primary (N)</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>97.5 (15.2)</td>
<td>95.3 (14.3)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>99.4 (5.6)</td>
<td>98.6 (5.3)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>97.8 (9.2)</td>
<td>97.5 (8.1)</td>
</tr>
<tr>
<td>N</td>
<td>459</td>
<td>136</td>
</tr>
</tbody>
</table>

1986

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td>None (N)</td>
<td>Primary (N)</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>96.9 (16.9)</td>
<td>96.7 (15.9)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>99.8 (6.8)</td>
<td>98.9 (6.5)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>96.4 (10.4)</td>
<td>98.3 (11.7)</td>
</tr>
<tr>
<td>N</td>
<td>942</td>
<td>358</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 4: Mean Anthropometric Measurements by Region and Fathers' Education (Children Under 10 Years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None Primary</td>
<td>Primary+</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>96.4 96.6 97.7</td>
<td>95.1 95.2</td>
</tr>
<tr>
<td></td>
<td>(15.0) (17.5) (13.2)</td>
<td>(17.2) (14.0)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>98.9 99.3 99.4</td>
<td>98.5 98.3</td>
</tr>
<tr>
<td></td>
<td>(5.6) (6.4) (4.6)</td>
<td>(7.2) (6.0)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>97.7 96.5 98.5</td>
<td>97.0 98.2</td>
</tr>
<tr>
<td></td>
<td>(9.2) (8.5) (9.6)</td>
<td>(9.4) (10.8)</td>
</tr>
<tr>
<td>N</td>
<td>345 113 193</td>
<td>718 257</td>
</tr>
</tbody>
</table>

1986

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None Primary</td>
<td>Primary+</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>97.1 96.2 97.8</td>
<td>97.3 96.7</td>
</tr>
<tr>
<td></td>
<td>(16.9) (16.3) (15.7)</td>
<td>(18.6) (17.6)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>99.9 99.5 99.7</td>
<td>98.4 98.2</td>
</tr>
<tr>
<td></td>
<td>(7.1) (6.3) (6.3)</td>
<td>(7.2) (6.8)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>96.6 96.2 97.8</td>
<td>99.7 100.0</td>
</tr>
<tr>
<td></td>
<td>(10.9) (9.4) (10.7)</td>
<td>(11.9) (12.6)</td>
</tr>
<tr>
<td>N</td>
<td>712 238 590</td>
<td>1606 664</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 5: Mean Anthropometric Measurements by Region and Status in the Household (Children Under 10 Years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>URBAN</th>
<th>RURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Child of Child of</td>
<td>Not Child of Not Child of</td>
</tr>
<tr>
<td></td>
<td>Female Head Female Head</td>
<td>Parents Parents</td>
</tr>
<tr>
<td></td>
<td>or Senior Wife of Male Head</td>
<td>or Senior Wife of Male Head</td>
</tr>
<tr>
<td></td>
<td>Wife of Male Head</td>
<td>Parents in Household</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>97.7 (14.7)</td>
<td>95.7 (16.3)</td>
</tr>
<tr>
<td></td>
<td>95.9 (13.9)</td>
<td>98.0 (15.6)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>99.6 (5.2)</td>
<td>99.0 (6.3)</td>
</tr>
<tr>
<td></td>
<td>98.7 (5.1)</td>
<td>99.2 (5.8)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>97.8 (9.7)</td>
<td>96.3 (9.1)</td>
</tr>
<tr>
<td></td>
<td>97.6 (8.2)</td>
<td>99.0 (9.0)</td>
</tr>
<tr>
<td>N</td>
<td>292</td>
<td>141</td>
</tr>
</tbody>
</table>

1986

<table>
<thead>
<tr>
<th></th>
<th>URBAN</th>
<th>RURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Child of Child of</td>
<td>Not Child of Not Child of</td>
</tr>
<tr>
<td></td>
<td>Female Head Female Head</td>
<td>Parents Parents</td>
</tr>
<tr>
<td></td>
<td>or Senior Wife of Male Head</td>
<td>or Senior Wife of Male Head</td>
</tr>
<tr>
<td></td>
<td>Wife of Male Head</td>
<td>Parents in Household</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>97.7 (16.1)</td>
<td>96.6 (14.8)</td>
</tr>
<tr>
<td></td>
<td>95.5 (14.7)</td>
<td>99.4 (19.6)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>99.9 (6.7)</td>
<td>99.5 (6.7)</td>
</tr>
<tr>
<td></td>
<td>99.2 (6.3)</td>
<td>100.0 (7.0)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>96.9 (11.0)</td>
<td>97.2 (11.4)</td>
</tr>
<tr>
<td></td>
<td>96.1 (9.6)</td>
<td>97.9 (8.9)</td>
</tr>
<tr>
<td>N</td>
<td>822</td>
<td>260</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 6: Mean Anthropometric Measurement by Region and Mother's Height (Children Under 10 Years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th></th>
<th>Rural</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>91.2 (11.8)</td>
<td>94.1 (13.6)</td>
<td>98.9 (16.5)</td>
<td>99.6 (4.7)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>96.7 (4.9)</td>
<td>98.2 (5.2)</td>
<td>99.9 (5.7)</td>
<td>100.9 (5.5)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>96.9 (7.7)</td>
<td>97.1 (9.0)</td>
<td>98.3 (10.0)</td>
<td>96.8 (8.9)</td>
</tr>
<tr>
<td>N</td>
<td>42</td>
<td>192</td>
<td>185</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1986</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight-for-Age</td>
<td>92.4 (14.8)</td>
<td>95.1 (14.4)</td>
<td>97.4 (15.2)</td>
<td>99.0 (17.2)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>96.5 (5.9)</td>
<td>98.8 (6.1)</td>
<td>100.0 (6.3)</td>
<td>101.5 (7.4)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>98.7 (12.1)</td>
<td>97.0 (10.5)</td>
<td>97.0 (10.7)</td>
<td>95.6 (11.6)</td>
</tr>
<tr>
<td>N</td>
<td>107</td>
<td>419</td>
<td>481</td>
<td>246</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 7: Mean Anthropometric Measurements by Region and Father's Height (Children Under 10 Years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140-164 cms.</td>
<td>164-170 cms.</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140-164 cms.</td>
<td>164-170 cms.</td>
</tr>
<tr>
<td></td>
<td>91.9</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>(12.8)</td>
<td>(13.2)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.0</td>
<td>98.7</td>
</tr>
<tr>
<td></td>
<td>(4.8)</td>
<td>(4.6)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94.9</td>
<td>97.7</td>
</tr>
<tr>
<td></td>
<td>(8.7)</td>
<td>(9.4)</td>
</tr>
<tr>
<td>N</td>
<td>65</td>
<td>171</td>
</tr>
</tbody>
</table>

1986

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140-164 cms.</td>
<td>164-170 cms.</td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.2</td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td>(15.0)</td>
<td>(15.4)</td>
</tr>
<tr>
<td>Height-for-Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.1</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td>(6.8)</td>
<td>(6.8)</td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.4</td>
<td>97.2</td>
</tr>
<tr>
<td></td>
<td>(11.0)</td>
<td>(10.7)</td>
</tr>
<tr>
<td>N</td>
<td>168</td>
<td>397</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 8: Mean Anthropometric Measurements by Region and Mother's Body Mass Index (Children Under 10 Years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 19</td>
<td>19-21</td>
</tr>
<tr>
<td>Weight-for Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.0)</td>
<td>(14.7)</td>
</tr>
<tr>
<td>Height-for Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.4)</td>
<td>(6.0)</td>
</tr>
<tr>
<td>Weight-for Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.0)</td>
<td>(8.0)</td>
</tr>
<tr>
<td>N</td>
<td>27</td>
<td>83</td>
</tr>
</tbody>
</table>

1986

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 19</td>
<td>19-21</td>
</tr>
<tr>
<td>Weight-for Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11.4)</td>
<td>(13.9)</td>
</tr>
<tr>
<td>Height-for Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(6.5)</td>
</tr>
<tr>
<td>Weight-for Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.0)</td>
<td>(9.9)</td>
</tr>
<tr>
<td>N</td>
<td>94</td>
<td>186</td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Table 9: Mean Anthropomorphic Measurements by Region and Source of Drinking Water (Children of 10 Years of Age), 1985

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piped</td>
<td>Well with no Pump</td>
<td>Piped</td>
<td>Well with Pump</td>
<td>Well with no Pump</td>
<td>Outside</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>97.1 (15.3)</td>
<td>96.3 (14.7)</td>
<td>100.5 (17.4)</td>
<td>95.6 (16.8)</td>
<td>93.8 (15.9)</td>
<td>93.9 (16.3)</td>
<td>98.6 (15.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>99.3 (5.5)</td>
<td>98.9 (5.7)</td>
<td>100.3 (7.1)</td>
<td>98.4 (7.4)</td>
<td>97.9 (6.4)</td>
<td>98.5 (6.9)</td>
<td>101.5 (7.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>97.5 (9.1)</td>
<td>97.9 (9.4)</td>
<td>99.0 (8.7)</td>
<td>98.0 (10.3)</td>
<td>97.2 (9.8)</td>
<td>96.0 (9.3)</td>
<td>96.8 (6.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>475</td>
<td>196</td>
<td>104</td>
<td>305</td>
<td>308</td>
<td>260</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1986

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piped</td>
<td>Well with Pump</td>
<td>Well with no Pump</td>
<td>Piped</td>
<td>Well with Pump</td>
<td>Well with no Pump</td>
<td>Outside</td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight-for-Age</td>
<td>97.2 (16.3)</td>
<td>99.8 (14.0)</td>
<td>96.9 (16.6)</td>
<td>97.8 (14.7)</td>
<td>96.6 (19.8)</td>
<td>98.2 (17.2)</td>
<td>95.9 (18.0)</td>
<td>104.9 (9.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height-for-Age</td>
<td>100.0 (6.8)</td>
<td>100.5 (6.1)</td>
<td>99.1 (6.3)</td>
<td>98.8 (6.2)</td>
<td>97.9 (7.2)</td>
<td>99.0 (7.0)</td>
<td>97.8 (7.2)</td>
<td>104.2 (5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight-for-Height</td>
<td>96.7 (10.9)</td>
<td>98.2 (10.8)</td>
<td>97.6 (9.5)</td>
<td>100.2 (11.3)</td>
<td>99.8 (12.7)</td>
<td>99.7 (11.8)</td>
<td>99.6 (11.7)</td>
<td>96.5 (8.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1117</td>
<td>17</td>
<td>429</td>
<td>179</td>
<td>882</td>
<td>733</td>
<td>498</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The number in parenthesis is the standard deviation.
Distributors of World Bank Publications

ARGENTINA
Carlos Hach, SRL
Cabeza Guerra
Florida 165, 6th floor-502 4001/460
333 Buenos Aires

AUSTRALIA, PAPUA NEW GUINEA,
NEW ZEALAND, VANUATU,
AND WESTERN SAMOA
D. A. Books & Journals
11-12 Station Street
Mitcham 3122
Victoria

AUSTRIA
Grcord & Co.
Graub. 31
A-1011 Wien

BAHRAIN
Bahrain Research and Consultancy
Associates Ltd.
P.O. Box 2210
Manama Town 317

BANGLADESH
Micro Industries Development
Assistance Society (MIDAS)
House No. 55, Road No. 25
Dhakondi 8/A, Area
Dhaka 1060

BELGIUM
Publications des Nations Unies
Av. du Roi 202
1040 Bruxelles

BRAZIL
Publicacis Tecnica Internacional Ltda.
Rue Pepeu Carbonel, 209
01429-Sao Paulo, SP

CANADA
Le Diffuseur
C.P. 85, 1210 B rue Ama”pe
Beauharnois, Quebec
1046 55

CHINA
China Financial & Economic Publishing
House
2 Da Po Ri Dong Jie
Beijing

COLOMBIA
Interca Ltda.
Apartado Aereo 34270
Rigado D.B.

COSTA RICA
Libreria Tropea
Calle 11-33
Av. Fernandez Guall
San Jose

COTE D’IVOIRE
Centre d’Edition et de Diffusion
Abebafrica (CERD)
04 BP 381
Abidjan 04

CYPRUS
McKee Information Services
P.O. Box 1106
Nicosia

DENMARK
Samfundslitteratur
Rosmonten All 15
DK-4002 Frederiksberg C

DOMINICAN REPUBLIC
Ediciones Taller, C. por A.
Santo Domingo 209
Apartado Postal 2190
Santo Domingo

EL SALVADOR
Panora
Avenida Manuel Berjano Armas 83200
Edificio USA, 3rd. Piso
San Salvador

EGYPT, ARAB REPUBLIC OF
Al Amana
Al Qasr Street
Cairo

The Middle East Observer
8 Chepman Street
Cairo

FINLAND
Alekkainen Yhdyskunta
P.O. Box 128
SF-00101
Helsinki 10

FRANCE
World Bank Publications
66, avenue d’Iena
75345 Paris

GERMANY, FEDERAL REPUBLIC OF
UNO-Verein
Papendorff Allee 56
D-5300 Bonn 1

GREECE
KEME
24, Amygdalou Street Plantaion
Athens 11635

GUATEMALA
Libreria Poales Santa
Calle Cultural Padre Santa
11 Calle 6-50 area 1
Contry City

HUNGARY
Kolesar
P.O. Box 136
1309 Budapest 92

INDIA
Allied Publishers Private Ltd.
751 Mool Road
Matunga - 400 022

Bancroft House
15 J.J. Hitland Marg
Bandra East
-400 068

13/14 Arod Ali Road
New Delhi - 110 002

17 Chitraranjan Avenue
Calcutta - 700 021

Jaydeva Hotel Building
15 Main Road C.DTO Ghat Road
Bangalore - 560 009

3-5-1129 Khagda Cross Road
Hyderabad - 500 007

Ftresha Park, 2nd Floor
Navratna Bagh, Navrangpura
Ahmedabad - 360 003

Patricia House
15-A Ashok Marg
Lajpat Nagar - 2nd Floor

INDONESIA
P. Indira Ltd.
Jl. Sen Rayangi 37
Jakarta Pusat
P.O. Box 181

IRELAND
ITDC Publishers
13 North Frederick Street
Dublin 1

ITALY
Lime Commercializzazione Sannio SPA
Via Benedicti Pontari, 120/1
Casina Postoche 332
10155 Florence

JAPAN
Eastern Book Service
2F, 14-9,3-Chome, Bukuro-ku 113
Tokyo

KENYA
Africa Book Service (E.A.) Ltd.
P.O. Box 8324
Nairobi

KOREA, REPUBLIC OF
Pan Korea Book Corporation
P.O. Box 101, Korongchunam
Seoul

KUWAIT
MISR Information Services
P.O. Box 5645

MALAYSIA
University of Malaysia Cooperative
Bookshop, Limited
P.O. Box 1137, Jalan Pantai Selat Kuala Lumpur

MEXICO
INFOTEL
Apartado Postal 22-880
16460 Tlaya, Mexico D.F.

MOROCCO
Societe d’Etudes Marketing Marocain
12 rue Moulay, 84 d’Achich
Casablanca

NETHERLANDS
KoBo-Publicatie b.v.
P.O. Box 14
7240 LA Lechas

NEW ZEALAND
Hills Library and Information Service
Private Bag
New Market
Auckland

NIGERIA
University Press Limited
Three Empire Building Jidewa
Private Mail Bag, 5009
Ibadan

NORWAY
Narvesen
Bernt Jernevann vei 2
P.O. Box 6035, Blindern
NO-0026 Oslo 6

OMAN
MDMS Information Services
P.O. Box 1413, Sultan Qaboos Airport
Muscat

PAKISTAN
Mira Bank Agency
65, Shahrah-e-Qasim-a-Aham
P.O. Box No. 729
Lahore 3

PERU
Editorial Desarrollo SA
Apartado 1217-1 Lima

PHILIPPINES
National Book Store
791 Real Avenue
P.O. Box 8389

Metrosa

POLAND
ORFAN
Polska Urzad Nauki
02-013 Warszawa

PORTUGAL
Livraria Portugal
Rua da Cem 70-74
1200 Lisbon

SAUDI ARABIA
QATAR
Jari Book Store
P.O. Box 2196
Riyadh 11401

MEFMS Information Services
Banco estrangeiro
Al Asia Street
Al Doha Center
Free Floor
P.O. Box 7158
Riyadh

Hog Abdulah Attnes Building
King Sholom Street
P.O. Box 2699
Deirman

35, Mohammed Hassan Awan Street
Jeddah

SINGAPORE, THAILAND,
MYANMAR,
BRUNEI
Information Publications
Private, Ltd.
52-66, Le Th, Po-Po Industrial
Bldg.
24 North Industrial Road
Singapore 1953

SOUTH AFRICA, BOTSWANA
For single issues
Oxford University Press Southern
Africa
P.O. Box 1141
Cape Town 8000

For subscription orders:
International Subscription Service
P.O. Box 61095
Cape Town

1060/3

SOUTH AFRICA
For single issues
Oxford University Press Southern
Africa
P.O. Box 1141
Cape Town 8000

For subscription orders:
International Subscription Service
P.O. Box 61095
Cape Town

SPAIN
Mundi-Prensa Libros S.A.
Cantillo 70
28013 Madrid

Libreria International AIDOS
Calle de Castell, 300
28000 Barcelona

SRI LANKA AND THE MALDIVES
Lake House, Workshop
P.O. Box 344
15, Sir Chittaranjan A. Gardner
Mawatha Colombo 2

SWEDEN
For single titles
Ponve Ydahstongetag
Regeringsgatan 12, Box 11256
112 82 Stockholm

For subscription orders:
Wenger-Williams AB
Box 20064
S-104 25 Stockholm

SWITZERLAND
For single titles
Liberar La Ebre
Av. Cornar 4
Case postale 361
CH 1211 Genf 11

For subscription orders:
Liberar La Ebre
Case postale 3311
CH 1212 Lausanne

TAIWAN
University of Press
P.O. Box 35094
Dari Selatan

THAILAND
Central Station Store
304 Silom Road
Bangkok

TURKEY
Hav Cagda, A.S.
Istanbul Caddesi No. 469
Bozya
ISLAM

UGANDA
Uganda Workshop
P.O. Box 7415
Kampala

UNITED ARAB EMIRATES
MINA Gulf Co.
P.O. Box 8207
Sharjah

UNITED KINGDOM
Mirobook Ltd.
P.O. Box 3
Aber, Hampshire GU34 3PC
England

URUGUAY
Instituto Nacional del Libro
San Jose 1116
Montevideo

VENEZUELA
Libreria de Eisa
Apdo. 8333
Caracas 1000

YUGOSLAVIA
Jugoslovenska Kdza
YU-11002 Belgrad Trg Republike

ZAMBIA
Longman Zambia
P.O. Box 97125, SouthEastern
Harare

Zimbabwe
Instituto Nacional del Libro
San Jose 1116
Montevideo
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Labor Market Activity in Côte d'Ivoire and Peru</td>
</tr>
<tr>
<td>37</td>
<td>Health Care Financing and the Demand for Medical Care</td>
</tr>
<tr>
<td>38</td>
<td>Wage Determinants and School Attainment among Men in Peru</td>
</tr>
<tr>
<td>39</td>
<td>The Allocation of Goods within the Household: Adults, Children, and Gender</td>
</tr>
<tr>
<td>40</td>
<td>The Effects of Household and Community Characteristics on the Nutrition of Preschool Children: Evidence from Rural Côte d'Ivoire</td>
</tr>
<tr>
<td>41</td>
<td>Public-Private Sector Wage Differentials in Peru, 1985–86</td>
</tr>
<tr>
<td>42</td>
<td>The Distribution of Welfare in Peru in 1985–86</td>
</tr>
<tr>
<td>43</td>
<td>Profits from Self-Employment: A Case Study of Côte d'Ivoire</td>
</tr>
<tr>
<td>44</td>
<td>The Living Standards Survey and Price Policy Reform: A Study of Cocoa and Coffee Production in Côte d'Ivoire</td>
</tr>
<tr>
<td>45</td>
<td>Measuring the Willingness to Pay for Social Services in Developing Countries</td>
</tr>
<tr>
<td>46</td>
<td>Nonagricultural Family Enterprises in Côte d'Ivoire: A Descriptive Analysis</td>
</tr>
<tr>
<td>47</td>
<td>The Poor during Adjustment: A Case Study of Côte d'Ivoire</td>
</tr>
<tr>
<td>48</td>
<td>Confronting Poverty in Developing Countries: Definitions, Information, and Policies</td>
</tr>
<tr>
<td>49</td>
<td>Sample Designs for the Living Standards Surveys in Ghana and Mauritania/Plans de sondage pour les enquêtes sur le niveau de vie au Ghana et en Mauritanie</td>
</tr>
<tr>
<td>50</td>
<td>Food Subsidies: A Case Study of Price Reform in Morocco (also in French, 50F)</td>
</tr>
<tr>
<td>51</td>
<td>Child Anthropometry in Côte d'Ivoire: Estimates from Two Surveys, 1985 and 1986</td>
</tr>
<tr>
<td>52</td>
<td>Public-Private Sector Wage Comparisons and Moonlighting in Developing Countries: Evidence from Côte d'Ivoire and Peru</td>
</tr>
<tr>
<td>53</td>
<td>Socioeconomic Determinants of Fertility in Côte d'Ivoire</td>
</tr>
<tr>
<td>54</td>
<td>The Willingness to Pay for Education in Developing Countries: Evidence from Rural Peru</td>
</tr>
<tr>
<td>55</td>
<td>Rigidité des salaires: Données microéconomiques et macroéconomiques sur l'ajustement du marché du travail dans le secteur moderne (in French only)</td>
</tr>
<tr>
<td>56</td>
<td>The Poor in Latin America during Adjustment: A Case Study of Peru</td>
</tr>
<tr>
<td>57</td>
<td>The Substitutability of Public and Private Health Care for the Treatment of Children in Pakistan</td>
</tr>
<tr>
<td>58</td>
<td>Identifying the Poor: Is “Headship” a Useful Concept?</td>
</tr>
<tr>
<td>59</td>
<td>Labor Market Performance as a Determinant of Migration</td>
</tr>
<tr>
<td>60</td>
<td>The Relative Effectiveness of Private and Public Schools: Evidence from Two Developing Countries</td>
</tr>
<tr>
<td>61</td>
<td>Large Sample Distribution of Several Inequality Measures: With Application to Côte d'Ivoire</td>
</tr>
<tr>
<td>62</td>
<td>Testing for Significance of Poverty Differences: With Application to Côte d'Ivoire</td>
</tr>
<tr>
<td>63</td>
<td>Poverty and Economic Growth: With Application to Côte d'Ivoire</td>
</tr>
<tr>
<td>64</td>
<td>Education and Earnings in Peru's Informal Nonfarm Family Enterprises</td>
</tr>
<tr>
<td>65</td>
<td>Formal and Informal Sector Wage Determination in Urban Low-Income Neighborhoods in Pakistan</td>
</tr>
<tr>
<td>67</td>
<td>Does Education Pay in the Labor Market? The Labor Force Participation, Occupation, and Earnings of Peruvian Women</td>
</tr>
<tr>
<td>68</td>
<td>The Composition and Distribution of Income in Côte d'Ivoire</td>
</tr>
<tr>
<td>69</td>
<td>Price Elasticities from Survey Data: Extensions and Indonesian Results</td>
</tr>
</tbody>
</table>