RESTRICTED For official use only Not for nublication UNN42 Vol. 3 REPORT TO THE PRESIDENT OF THE INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT AS ADMINISTRATOR OF THE INDUS BASIN DEVELOPMENT FUND STUDY OF THE WATER AND POWER RESOURCES OF WEST PAKISTAN VOLUME II Program for the Development of Irrigation and Agriculture Annexes Z. 1 - 3. 3 Prepared by a Group of the World Bank Staff Headed by Dr. P. Lieftinck July 28, 1967 Program for the Development of Irrigation and Agriculture in Nest Pakistan TABLE OF CONTENTS ANNEXES 2.1 1rjatercourse Studies 2.2 IACA Agricultural Zones and Estimated Production 2.3 Factors Affecting Cropping Intensities 3.1 IACA Estimates of Cost of Groundwater Mining 3.2 Sequential Analysis 3.3 Priorities for Groundwater Development I ANNEX 2.1 Page 1 Vuatercourse Studies Background At the time the Bank Group was setting up the working arrangements for the study (June 1964) the LIP consultants were already at an advanced stage with a Regional Survey of the Sind which was due to be completed in 1965. Included in the LIP survey were some 60 watercourse studies designed to obtain detailed basic data on farming conditions in the Sind. It was agreed with the Govern- ment 1/ that the Bank Groupts consultants would set up a similar (but smaller and shorter duration) arrangement in the Punjab so that the combined results would provide a fairly good coverage of the irrigated plains and reasonably sound basic data. This annexure contains in brief summary form some of the findings of the two sets of watercourse studies. Fuller details are given in the LIP Report 2/ and IACA's Comprehensive Report and Supporting Documents 3/ from which these notes have been extracted. A watercourse is the basic unit of the irrigation system and in these studies is defired as the area of land served by a fixed outlet from a canal or distributary. 4/ Farmers may live within the watercourse, or in a nearby vill- age, and often have land in more than one watercourse. It is the most suitable unit for studying on-farm irrigation practices. The objectives of the two studies were similar; namely, to determine at first-hand the present state of agricultural development, to provide basic and reliable data for the formula- tion of development plans and to obtain a base from which the progress of development schemes could be assessed. The main differences between the two sets of watercourse studies were in their size and duration. The LIP watercourse studies extended over some 18,170 acres in the Sind (representing 0.15 percent of the official CCA of the Region) and were conducted over four seasons. The IACA watercourse studies covered some 6,200 acres in the Punjab (0.03 percent of the CCA) with a partial coverage of a further 3,900 acres, and the period of study was less than two full seasons. The study areas in the Sind were chosen to represent each of the main geographical areas as well as the major canal commands. Within the twelve categories established, a stratified sampling technique was employed to select 60 watercourses for detailed study with an average size of about 300 acres. 1/ Irrigation and Agriculture Section paper: IA/l dated June 6, 1964. 2/ Lower Indus Report, Hunting Technical Services; Sir M. Macdonald & Ptnrs. 3/' IACA's Comprehensive Report, Volume 10, Annexure 14 and Supporting Documents. 4/ The irrigation system and its operation is more fully described in Chapter III of Volume II of the Bank Group's Report. ANNEX 2.1 Page 2 A different procedure was adopted by IACA in the Punjab. Ten represen- tative sample areas each covering 500 square miles were delineated. In each of these sample areas two watercourses, sited wherever possible at the head and tail sections of a distributary, were selected for detailed study. This provided 20 watercourses for detailed study with an average size of about 300 acres. "lithin the selected watercourses (60 in the Sind and 20 in the Punjab) detailed records were made of all farming activities. For the watercourses as a whole these were made weekly or fortnightly but within most watercourses one farm was selected on which daily records were made of all activities. These voluminous detailed records were analysed to provide information on all aspects of farming practice including water management, frequency and methods of culti- vation, physical inputs, yields, farm costs and some aspects of farm management. Some of the principle findings or observations emerging from these studies are set out below. Land: In the irrigated areas of both regions about three to four percent of the area is occupied by roads, canals, villages, etc., leaving available for agriculture about 96 to 97 percent of the gross area. In the Punjab more than seven percent is also excluded, mainly because of salinity. The average culturable waste in the Sind was even higher at 19 percent. There were marked differences in land tenure between the Punjab and the Sind. The former is characterized by small land owners predominantly farming their own land. By contrast, the Sind had larger land owners generally farming the land by share cropping tenants. Soils: Chemical and physical analyses of the soils of the Punjab sug- gested that quality varied widely. An attempt was made to assess the effects of soil quality on yield by grouping soil types into four major categories. Yields associated with these showed that only the poorest class of soils gave consis- tently lower yields. Since the distinguishing characteristics were heavy tex- ture, marked salinity and alkalinity, it was concluded that these were important constraints. In the Punjab some degree of salinity was present in 77 percent of all soil profiles examined and 28 percent of the samples showed some degree of alkalinity. For the Sind, where less precise measurements were made, it was evident that salinity in its extreme form was a very serious constraint on production. It was also concluded that these constraints could be reduced under conditions of better watering and controlled water tables. Water: Cropping patterns in both regions were markedly influenced by the times during which canal supplies were available for irrigation, the major distinction being between perennial and non-perennial supplies. In the Punjab, some non-perennial canals supply water for short periods in winter. This, com- bined with the greater prevalence of fresh groundwater in the Punjab and its exploitation by tubewells and Persian wheels, tended to obscure the differences in the cropping on the perennial and non-perennial canals, which is very marked in the Sind. Comparisons between annual cropping intensities (though for dif- ferent agricultural years) indicated an overall average of 123 percent for the Punjab and only 88 percent for the Sind. The studies showed that there was a considerable range of intensities in the Punjab from 65 to 175 percent. ANNEX 2.1 Page 3 Both the Punjab and Sind investigations provided evidence of widespread underwatering. In the Punjab there was only limited evidence of higher yields resulting from higher applications of water alone. The Sind studies showed that increased water supply up to 20 inches in the case of wheat gave increased yield but, beyond this level, there was no further increase due to water alone, and yields actually declined. The general conclusion appeared to be that under prevailing conditions timing and regularity of supply is at least as important as the total amount of water. Physical distribution of water on all watercourses is frequently com- plicated and inefficient. The LIP group estimated for the Sind that adoption of a rectangular field layout plus better watercourse maintenance would make 17.5 percent more water available. In addition, the studies indicated that there was considerable tampering with and blocking of outlets, together with other irregu- lar practices. This was done mainly during the sowing season when there is a peak requirement for irrigation. The larger farmers frequently received addit- ional supplies and, conversely, the more numerous smaller farmers received a reduced supply and suffered accordingly. The hazard of irregular supply is always present. Because of the uncertain and short supply, farmers deliberately plan to underirrigate employing extensive rather than intensive practices. Labor: In both regions, the studies report hidden unemployment as well as seasonal underemployment of labor. There is a considerable reserve of labor available to meet the increased demands of higher cropping intensities, especially if the underutilized family labor is included. Livestock: Only a very small percentage of farmers had no working bullocks. In the Punjab the average cropped area per pair of bullocks was 12.5 acres. The comparable figure for the Sind was 16 acres. Between 20 and 50 percent of the annual cropped area was devoted to fodder crops in the Sind. The comparable area devoted to fodder in the Punjab was nearly 60 percent. Malnutri- tion amongst young and unproductive zebu cattle is prevalent in both regions. Stock density was higher in the Punjab at 505 animal units per thousand acres CCA compared with 379 in the Sind. The total annual amount of TDN fed to live- stock averaged over 3,800 lb. for the Punjab compared with little more than 3,000 lb. for the Sind. While it appeared that the feeding of productive animals was adequate, at least from the Punjab studies, there was inadequate knowledge of TDN requirements for work animals. Even the higher figure of 3,800 lb. TDN above obscures the fact that the protein constituent fluctuates widely and is often low for extended periods, and it has been concluded that this is an important cause of delayed maturity in livestock. At present no attempt is made to conserve such protein rich fodder as berseem, and while working bullocks and cows in milk are presumed to be adequately fed, grazing stock or dry cows receive little supple- mentary rations and are forced to subsist on a low plane of nutrition based mainly on grazing and browsing. Very few farms were larger than the 80-acres holding deemed to be required in the Punjab to make tractor power in place of draft animals wcrthwhile. (The corresponding figure of 60 acres given from the Sind study is surprising in the light of current cropping intensities.) In their conclusions on the nutrition of work animals, IACA has pointed out that more intensive study is needed on the whole problem of work animals, their work output and feed requirements. ANNEX 2.1 Page 4 Fertilizers: The LIP group carried out numerous fertilizer trials on the main crops of the Sind. In most cases the trials were superimposed on actual farmers' fields. These were selected for uniformity of crop cover and therefore tended to reflect better than average farmers on better than average land and with favorable water conditions. Nevertheless, widespread underwatering was recorded. Average response of wheat, based on more than one hundredd experi- ments conducted on lighter textured soils, showed that nitrogen at 40 lb. per acre without phosphate gave a 27 percent increase over the control yield of 16.9 maunds per acre. The increase with 200 lb. of single super-phosphate added was 34 percent, a result similar to the long-term average obtained by the West Pakistan Department of Agriculture. Results on the heavier textured soils were less conclusive and yields without fertilizer were considerably lower at 5.5 maunds per acre. There were indications that higher dressings than 40 lbs of N would be optimal. Evidence for yield response of rice to fertilizers indicated that the best results were obtained when this was applied at transplanting. Unfortunately to get the best results from this top-dressing demands complete water control and fields to be drained prior to application. This condition could not generally be fulfilled in the Sind. The failure of cotton, as grown under present conditions, to respond to fertilizer was ascribed mainly to low plant populations. These in turn were said to be a reflection of the farmer's reaction to the hazardous water supply situation and to inadequate plant protection measures. Information from the Punjab study was less direct since no formal experiments other than those of the Rapid Soil Fertility Testing Scheme were available. These indicated that 40 lb. nitrogen and 200 lb. single super- phosphate led to a yield increase of about 40 percent. Fertilizer usage was reported to be common throughout the Punjab watercourses. Unfortunately, IACA was unable to relate yields directly to fertilizer applications. They pointed out that from field observation, farmers appeared to be aware of the benefits of fertilizers especially when the amount of water was adequate with regularity of supply. Improved Seed: The Punjab study indicated that farmers on all but one of the twenty watercourses purchased seed of the desirable American-type cotton, thus indicating that provided the quality of seed was good and supplies were available, there should be no difficulty in introducing better varieties. In the case of rice also, the advantages of pure seed of recommended varieties has long been recognized. The supply is inadequate. Efforts to overcome the short- age of good seed have led to adulteration and abuses with consequent disrepute of the seed. The studies also showed that a number of recommended wheat varieties bred in Pakistan are being grown in the Punjab watercourses. The best yielding of these require abundant water and rich soils or artificial fertilizer to achieve potential yields of the order of 56 maunds per acre. In practice, far- mers have made wider use of a lower yield potential variety which is described as being suited to average fertility and irrigation conditions and this variety accounts for 36 percent of the total wheat acreage on the watercourses. HaiirX 2.1 Page 5 In its conclusions, IACA noted that while new varieties are readily accepted by the larger farmers, the majority of farmers are content to wait until seed becomes freely available as a result of local multiplication during which time they will have been able to assess its merits. Cultivation Methods: Seedbed preparation was found to be one of the most important factors affecting germination and subsequent early development of grain. Because the soils of Nffest Pakistan generally have poor structure, this aspect of cultivation is of great importance. Unfortunately, no general- ized description of requirements to secure good seedbed conditions could be given. Consistently high yields of wheat were obtained only by those farmers who devoted considerable attention to seedbed preparation. Other cultivation practices were shown to be of great importance in the Sind. Higher yields both for wheat and cotton were obtained with increased numbers of ploughings, smoothing and good standards of levelling. The magnitude of the differences due to cultivation practices was impressive. For wheat, yield differences varied from nine to fifteen maunds per acre and cotton from six to twelve maunds according to the number of ploughings from one to seven. Even allowing for some interaction effects which could be attributed to other factors, these results iiidicate that agronomic practices reflecting management rather than physical inputs have great effects on Yields. Plant Population: Farmers on the Punjab watercourses were well aware of the relationship between plant population and yield of certain crops. But because of their expectation of shortage of irrigation water, they were gener- ally cautious about increasing plant density. Even the highest plant popula- tions recorded both for wheat and cotton were low by standards in other parts of the world. Averages for cotton in the Sind of 11,300 plants per acre and for the Punjab of 10,000 set a low limit to yield under existing conditions. The Sind study also showed for cotton that economic returns from the use of fertilizer and pesticide inputs, were not likely to be obtained unless plant populations exceeded 16,000 plants per acre. Credit: The situation regarding credit requirements was compiled from a sample of farmers from each of the 20 watercourses in the Punjab. Nearly 64 percent of the 460 farmers in the sample were found to be in debt. Of the indebtedness, which averaged Rs. 30 per acre, about 60 percent was estimated to be incurred in the interests of farming. No direct relationship between debt and farm size class was evident although it was observed that in the tenant group the debt per farmer was highest in the 0-5 acre class and lowest in the size class of 25 acres or more. Owners and owner/tenants generally had lower indebtedness than tenants. Furthermore, owner farmers with holdings of 15 or more acres in the Punjab were found to be capable of generating savings. The general conclusion was that while there appeared to be an adequate supply of short-term credit available for working capital or purchase of small implements under present conditions, there was a shortage of medium-term and long-term credit for effecting major improvements such as land reclamation, drainage, installation of tubewells, etc. Short-term credit was generally obtained from non-institutional sources. Better facilities for obtaining medium- and long- term credit should be made more readily available to farmers. ANNEX 2.1 Page 6 The official sources of credit were reported to be too difficult for the smaller farmers and more particularly sharecropping tenants to use. The difficulties to be overcome and the procedure involved before a loan could be obtained were too great. Where the Cooperative Bank was well established, it proved to be a popular source of credit. It was concluded that the establish- ment of more Cooperative Banks should be encouraged to provide medium- and long-term credit. Yields: Both the Sind and Punjab studies indicated that given present agricultural practices the attainment of high yields is a relatively slow process even when good management is employed. Earlier discussion indicates the complex- ity of constraints which operate both in the Punjab and in the Sind. In general terms there was no identifiable situation on the watercourses which was unequivocally associated with high yields. Clearly, water is a generally limiting factor, and the farmers' response has been to adopt what seems to be a limited and rational system of underwatering. There were enough tubewells in the Punjab watercourses to provide a considerable range of water availability but, except in the case of wheat, IACA was unable to show that the watercourses with better water availability had better yields. These findings go some way towards explaining the reasons for the widespread practice of underwatering. It is evident that within limits spreading a limited amount of water over a wider area gives a higher production than concentrating that amount of water on a small area. Where farming intensities are high and sufficient water to include a leaching element is applied to the kharif crop, this practice is justified. But if farming intensities are low and insufficient water is applied in kharif to remove salt accumulated in rabi, continued underwatering would lead to a progressive decline in crop yields. IACA has summarized the situation as one in which multiple limita- tions are acting together, amongst them are general underwatering, deficiency of nitrogen, widespread salinity, for some crops damaging pests, a difficulty in obtaining good seedbeds, broadcasting rather than line sowing of crops and groundwater levels too high. All of these factors have been investigated by the research stations, usually as single variables, sometimes in restricted combinations, and often under conditions better than those found on the watercourses. There is no doubt that additional water supplies lead quickly to increased production, but on the evidence of the watercourse studies IACA believes that the increase comes very largely from increased cropped area and only very secondarily from increased yields. In a situation where underwatering is general practice it would be surprising if other limitations were not also effective, particularly since one limitation, salinity, should be rapidly improved by improved watering. Uhile the use of fertilizer was fairly common on the watercourses, IACA was unable to show any uniform or striking response. Nevertheless it states there is, in general, in West Pakistan much stronger evidence for the response to nitrogen than for the response to water. It seems possible that yield increases should be associated with fertilizer combined with water -- in ANNEX 2.1 Page 7 that order -- and limited by other constraints. If this analysis is correct, there is no single input which should be expected to give dramatic increases in yields, and it is not by any means clear which inputs should receive prior- ity. The weight of the evidence seems to favor fertilizers followed by water. There is a strong case for multiple factor experiments covering fertilizers, water delta, seedbed preparation, plant population, pest and disease control and variety. The current thinking that additional water followed by fertil- izer and other inputs is a fully confirmed order of priorities may have to be re-examined. Management and Extension Services: Management at farm level as illus- trated by the farmers skillful allocation of limited resources appears to be adequate at the present time and with present inputs. To overcome the con- straints on the factors involved in production would eventually need a complex series of new inputs. As this is attempted, there would be a need for more sophisticated management. The extension service should recognize this need in advance and begin to strengthen its farm management advice in conjunction with other specialists. This role of the extension services should be recognized as of paramount importance. The complexity and variability of the farming problems call for exceptional skill on the part of extension officers. IACA considers that identification of constraints under different situations calls for skills which are rare in the present services and since these only develop slowly, their absence may act as a constraint on development. The surveys indicated that farmers are receptive of advice. From the rapidity of the response to tubewell water, the readiness to change crop- ping patterns, the awareness that new varieties may be better than old ones, the acceptance of fertilizers and the general skill in using resources, IACA has concluded that conservatism and resistance to change, should not be considered to be crippling constraints. ASNNEX 2.2 Page 1 Analysis of IACAts Production Projections by Agricultural Zones in the Canal Commanded Areas A. Analysis of Growth of Agricultural Output by Zones For purposes of assessing agricultural conditions and making projec- tions, IACA grouped the canal irrigated lands having similar crop distribution into nine agricultural zones (see Map 2). Except for Zone I, Peshawar Vale, all are in the Indus Plains. The nine zones and the canal commands they included were as follows: Agricultural Zone Canal Commands Included 2/ Zone I - Peshawar Vale Upper Swat, Lower Swat, Kabul River and Warsak High Level. Zone II - Punjab Rice Area Upper Chenab, Marala Ravi, Upper Jhelum, Ravi Dipalpur, Dipalpur above B.S., nor- thern tips of Lower Chenab, Bari Doab, Dipalpur below B.S. Zone III - Punjab Cotton Area Lower Jhelum, Lower Chenab, Lower Bari Doab, Dipalpur below B.S., Pakpattan, Sidhnai, Haveli, Mailsi, Bahawal, Fordwah Sadiqia, Qaim, Panjnad Abbasia. Zone IV - Punjab Development Paharpur, Thal, D.G. Khan, Rangpur, Area Muzzafargarh. Zone V - Sind Cotton Area Ghotki, Khairpur, Rohri, Nara. Zone VI - Gudu and Sukkur Northwest and Dadu. Perennial Rice Area Zone VII - Gudu and Sukkur Begari Sind, Desert, Pat, Khirtar, Non-Perennial Rice Rice. Area Zone VIII - Ghulam Mohammed- Pinyari, Fuleli, Kalri Baghar Feeder. Non-Pereunihi --Rice Area Zone IX - Ghulam--o1iammod Tando Bago, Gaja, Ochito, Kalri Pumps. Perennia-lz Aiea 1/ The distribution of-CCA and cropped acres is given on page 28, Volume II of the Bank Groupts Report. ;a±iJiX 2.2 Page 2 IACA based its estimation of 1965 cropping patterns and cropping inten- sities for all canal commands on data supplied by the Irrigation Department, the Bureau of Statistics, the 1960 Census and a paper by Ghulam Mohammed..7 For the Sind, data compiled by the LIP consultants were used. These data are not intended to represent the agricultural situation on any one farm, but to provide an average picture of a specific region. Within such a region, variations in cropping patterns, intensities and prevailing level of production reflect differences due to climate, soils, water supply, tenancy, farm size, use of inputs and husbandry practices, markets and processing facil- ities. Differences in cropping patterns and intensities are, however, generally more pronounced between rather than within agricultural zones because of the greater influence of some of the above factors as well as the respective stage of development. The more important crops grown during the kharif and rabi seasons in the respective zones are given in Table 1 below together with the percentages of land they occupied in each of the seasons. Throughout this annex, both the kharif and the rabi seasonal cropped acreages take into account the perennial crops, i.e., perennials are counted twice. 1/ Private Tubewell Development and Cropping Patterns in West Pakistan "Research Report No. 28", Pakistan Institute of Development Economics, March 1965. TABLE 1 Proportion of Cropped Area Under Major Crops During Kharif and Rabi Seasons for the Nine Agricultural Zones (per cent) Kharif Rabi Oilseeds 17 Gram Zone Rice Cotton Maize Millet Fodder Sugar Wheat Pulses Fodder Sugar I. Peshawar Vale 47 5 26 53 11 26 II. Punjab Rice Area 49 U 14 9 63 7 20 8 III. Punjab Cotton Area 38 20 13- 55 11 20 10 IV. Punjab Development Area 19 32 23 6 66 19 10 4 V. Sind Cotton Area 49 20 5 47 30 12 5 VI. Gudu and Sukkur Rice Area 76 6 2 41 29 26 2 (perennial) VII. Gudu and Sukkur Rice Area 86 7 31 40 29 (non-perennial) VIII. Ghulam Mohammed Rice Area 94 2 22 54 19 (non-perennial) IX. Ghulam Mohammed Rice Area 2 32 31 5 24 42 13 18 27 (perennial) 1/ Oilseeds in northern zones, gram and pulses increase southwards. 2/ Although in the rice area, the zone influenced by sugar mill at Tandojam. CD ANNEX 2.2 Page 4 The zonal cropping characteristics are distinctive. Thus in Zone 1, the Peshawar Vale, the main emphasis is on food crops rather than cash crops. Nearly 50 percent of the cropped acreage in kharif is under maize and more than 50 percent of the rabi acreage is under wheat. The greater part of the sugar- cane is grown in Zones I and IX. Rice occupies 55 percent of the kharif cropped area in Zone II, the Punjab Rice Area, and even more in the Sind Rice Areas of Zones VI to VIII. Cotton, similarly, dominates the Punjab Cotton Area, Zone III, and the Sind Cotton Area, Zone V, but in these, as in other zones, the important position occupied by wheat is clearly shown. It is noteworthy that the areas under oil seeds, gram and pulses begin to increase at the expense of wheat from the Punjab southwards reflecting the increasing uncertainties of rabi water supplies. The high proportion of millet grown during kharif in the Punjab Development Area (Zone IV), is an indication of the farmers' preoccupation with subsistence rather than cash crops at a com- paratively early stage of development. Seasonal and annual cropping intensities and cropped acreages of the agricultural zones for 1965, and those projected by IACA for reference years, are given at Table 2. TABLE 2 CCA, Cropped Acres and Cropping Intensities for the Nine Agricultural Zones (Acres in million: intensity per cent) Zones I II nIi IV Total V VI VII VIII Ix Total Basin Punjab Sind Total CCA 0.7 3.1 13.0 3.6 19.7 5.2 1.0 1.4 1.0 0.3 8.9 29.3 Reference Years 1965- Kharif Annuals 44.5 43.4 38.2 22.7 36.2 38.8 46.0 79.0 80.8 21.0 50.0 40.6 Rabi 1t 45.0 53.0 49.0 37.2 47.5 39.5 55.1 57.8 21.2 18.8 41.4 45.6 Perennials 22.7 5.5 7.2 2.0 6.0 4.6 2.3 0.4 1.0 7.1 3.4 5.6 Total Intensity (%) 135 107 102 64 96 87 106 138 104 54 98 97 Cropped Acreage 0.9 3.3 13.2 2.3 18.8 4.5 1.1 1.9 1.1 0.2 8.7 28.4 1975 Kharif Annuals 43.3 54.1 43.2 30.2 42.5 39.6 44.9 83.3 81.6 18.2 51.1 45.1 Rabi 140.9 62.8 58.9 49.1 57.7 51.4 61.1 -58.4 23.1 21.6 49.4 54.8 Perennials 23.6 8.2 7.1 3.7 6.6 5.8 2.5 - - 14.1 4.1 6.3 Total Intensity (%) 131 - 133 116 87 113 103 111 142 105 68 109 112 Cropped Acreage 0.9 4.1 15.1 3.1 22.3 5.3 1.1 2.0 1.1 0.2 9.6 32.9 1985 Kharif Annuals 51.3 62.1 49.6 46.4 51.0 45.4 55.9 73.0 63.4 19.8 52.1 51.3 Rabi tt 51.7 67.4 58.6 71.6 62.4 65.5 67.1 53.7 33.5 34.1 59.2 61.1 Perennials 25.2 10.0 8.8 5.8 8.4 8.9 4.7 - - 18.9 6.4 8.2 Total Intensity (%) 153 150 126 130 130 129 132 127 1/ 97 1/ 92 124 129 Cropped Acreage 1.1 4.6 16.3 4.6 25.5 6.7 1.3 1.8- 1.0' 0.3 11.1 37.7 2000 Kharif Annuals 59.1 66.6 67.3 60.7 66.0 62.3 64.2 91.0 95.0 37.3 69.8 67.0 Rabi n 59.0 63.8 61.9 73.9 64.4 62.7 70.8 60.0 35.0 39.5 59.3 62.7 Perennials 27.3 9.8 10.4 7.7 9.8 12.5 7.5 - - 41.6 2/ 9.5 10.1 Total Intensity (%) 173 150 150 150 150 150 150 151 130 160 148 150 Cropped Acreage 1.2 4.6 19.5 5.4 29.5 7.8 1.5 2.1 1.3 0.5 13.2 43.9 I/ Reduction reflects conversion to full delta equivalent. 2/ Mainly sugar cane. m ANNEX 2.2 Page 6 Real cropping intensity in each season will be the sum of the area under annual crops plus the area under perennials. Thus for Zone 1, the actual kharif intensity for 1965 was 67.2 percent and that for rabi was 67.7 percent, giving the annual cropping intensity of 135 percent. This high intensity results from both large acreages under sugarcane and fruit, as well as to favorable water supplies. Low rabi intensities for Zones IV, V and VIII reflect the unreliability of rabi supplies mentioned earlier. Even with the large sugarcane acreage in Zone IX, the low rabi acreage suggests that peren- nial water supplies are not uniformly distributed throughout the zone. IACA considers that the ultimate attainment of 150 percent cropping intensity would result from additional water supplies associated with other inputs in all zones except VIII for which rabi supplies would continue to be unreliable. The present and ultimate patterns shown in Table 2 reflect the proposals to use water mainly for the cash crops, cotton and rice, as well as on fodder crops. Thus in Zone 1, by 1975 IACA projects a reduced acreage con- sistent with the delivery capacity for full delta irrigation. This would reduce both the maize and wheat acreages. After 1975, however, there is a rapid increase in intensity ultimately reaching over 170 percent. IACA also expects a rapid increase in cropping intensity in the Punjab Rice Area (II) which should achieve 133 percent by 1975 and 150 percent by 1985. The expansion for other zones, between 1975 and 1985, is the result of raising the irrigation application to full delta by 1985 for the quite considerable pro- portion of cropped land which would continue to be underirrigated up to 1975. Rates at which desired intensities are achieved would vary between zones, especially where underlying groundwater is highly saline. Proportions of area with perennial surface water supply, effective precipitation and percent of area with good underlying groundwater for the nine zones are given in Table 3. ANNEX 2.2 Page 7 TABLE 3 CCA, Effective Precipitation, Percent of Area With Perennial Supply and Percent of Area With Usable Groundwater for Nine Zones % of % of Average Area With Area dith CCA Effec. Perennial Fresh Zone and Canal Commands '000 acres Prec. ft. Water Supply Groundwater I. Vale of Peshawar 687 0.84 100 85 II. Punjab Rice Area 3,113 1.08 51 82 III. Punjab Cotton Area 13,020 o.44 68 55 IV. Punjab Development Area 3,617 0.37 45 56 V. Sind Cotton Area 5,218 0.13 87 25 VI. Gudu and Sukkur Rice Area (perennial) 1,027 0.08 95 15 VII. Gudu and Sukkur Rice 1/ Area (Non-perennial) 1,L412- 0.08 - 25 VIII. Ghulam Mohammed Rice 2 Area (Non-perennial) 1,056-' 0.17 - IX. Ghulum Mohammed Rice 2/ Area (perennial) 267- 0.17 100 1/ 75 percent of CCA underlain by groundwater 2,000 ppm TDS or greater. 2/ Entire area underlain by groundwater 2,000 ppm TDS or greater. The magnitude of some of the agricultural problems is illustrated by Zone VIII. Besides having no perennial water supplies, this zone is also underlain with groundwater having TDS of the order of 2,000 or more ppm. The table also illustrates the advantage which the Punjab Zones II and III enjoy over the Sind. Not only are they nearer the source of water, but both perennial surface water availability and the quality of underlying groundwater are generally better. Moreover, effective precipitation is appreciably higher for the Punjab than for the more arid Sind region. To examine IACA's growth of agricultural production, its projections for reference years based on its canal command analysis and its assumptions for prices and TDN value for production animals, were apportioned between the nine zones. From these, values of GPV per cropped acre were also derived. These data are given in Table 4. TABI 4 1/ Cropped Acreage, GPV Per Cropped Acre and Gross Production for Nine Agricultural Zones (Acres in millionsi GPV per cropped acre in Rupees; Total CHPV in Rs. billions) 1965 1975 1985 2000 GPV GPV GPV GPV Acres Cropped Per Total Cropped Per Total Cropped Per Total Cropped Per Total Zones CCA Acres Acre GPV Acres Acre GPV Acres Acre GPV Acres Acre GPV I Peshawar Vale 0.7 0.9 0.9 1.1 1.2 337 406 614 869 303.5 365.3 675.0 1043.1 II Punjab Rice Area 3.1 3.3 4.1 4.6 24.6 256 361 562 780 843.8 1481.1 2589.4 3598.3 III Punjab Cotton Area 13.0 13.2 15.1 16.3 19.5 287 377 572 786 3785.1 5694.1 9320.0 15335.3 IV Puntjab Development Area 3.6 2.3 3.1 4.6 5.4 6 166 252 430 639 381.5 780.8 1980.6 3450.1 V Sind Cotton Area 5.2 4.5 5.3 6.7 7.8 214 279 462 739 961.2 1481.4 3098.3 5763.7 VI Gudu & Sukkur Rice Area 1.0 1.1 1.1 1.3 1.5 (Perennial) 163 249 423 668 179.7 274.5 550.6 1001.6 VII Gudu & Sukkur Rice Area 1.4 1.9 2.0 1.8 2.1 (Non-Perennial) 116 149 234 376 220.8 297.3 421.7 790.4 VIII Ghulam Mohammed Rice 1.0 1.1 1.1 1.0 1.4 (Non-Perennial) 62 80 159 342 68.1 89.2 162.847. IX Ghulam Mohamned Rice 0.3 0.2 020.2 0*i4 (Perennial) 167 0.2 310 640 1,020 24.1 56.1 157.4 435.4 Total Commanded in Basin 29.3 28.5 32.9 37.7 43.9 238 320 503 726 6766 10520 18956 31888 1/ Seasonally cropped acres, i.e. perennials counted twice. ANNEX 2.2 Page 9 Striking zonal differences in GPV per cropped acre are shown in Table 4. The low GPV for Zone VIII in 1965 can be attributed in part to the absence of rabi water supplies and to a considerable dubari/bosi acreage (residual moisture cropping) from which extremely low yields are obtained. The steps proposed by IACA for the removal of constraints are dis- cussed fully in its Report. Improvements are reflected in the projected GPV per cropped acre at reference years in Table 4. As might be expected, growth would be less spectacular for zones of relatively high initial productivity. The improvements expected for the less favored zones are more readily seen by comparisons of compound growth for the three variables, cropped acreage, GPV per cropped acre, and total GPV, which are given in Table 5. The high overall growth of total GPV for Zone IX is due largely to the continuing expansion of sugarcane from about 18,000 acres in 1965 to over 80,000 by 2000. TABLE 5 Growth Rates for Acreage. GPV per Cropped Acre, and Total GPV for Agricultural Zones (per cent per annum) r 1965-1975 1975-1985 1985-2000 1965-2000 ° P Cropped GPV per Total Cropped GPV per Total Cropped GPV per Total Cropped GPV per Total Zone Area Acre GPV Area Acre GPV Area Acre GPV Area Acre GPV I 0 1.5 0.7 0.7 1.9 4.2 2.3 2.7 1.9 6.3 2.9 3.5 II 2.2 1.2 0 0.9 3.5 4.5 2.2 3.2 5.7 5.7 2.2 4.2 III 1.3 0.7 1.2 1.1 2.8 4.3 2.2 2.9 4.1 5.0 3.4 4.1 IV 3.0 4.0 1.1 2.4 4.2 5.5 2.5 3.9 7.4 9.9 3.7 6.5 V 1.6 2.4 1.0 1.6 2.7 5.2 3.2 3.6 4.4 7.7 4.2 5.2 VI 0 1.7 1.0 0.9 4.3 5.5 3.1 4.1 4.3 7.1 4.1 5.1 VI 0.5 - 1.0 1.0 0.3 2.5 4.6 3.2 3.4 3.0 3.6 4.2 3.7 VIII 0 - 0.9 2.0 0.7 2.6 7.1 5.2 5.0 2.8 6.2 9.0 5.7 IXC 2.3 3.1 3.8 3.1 6.4 7.5 3.1 5.3 8.8 10.9 7.0 8.6 I/ See footnote on page 12 regarding reduction in cropped acreage. ANNEX 2.2 Page 11 For zones with unreliable rabi supplies, but without the further con- straint of poor quality groundwater, the growth of acreage resulting from additional water is almost axiomatic. For zones with poor quality of groundwater and some waterlogging, additional supply cannot be effective until such con- straints have been removed (Zones VI to VIII). GPV per cropped acre as a measure of the contribution of all inputs, including the elimination of underwatering, is more difficult to interpret. Table 5 shows that highest yield growth is generally achieved during the decade 1975-85. B. Analysis of Growth Factors In order to assess the contribution of the separate effects of water and other inputs, an analysis was made by the Bank Group of the increments in GPV attributable to (a) water alone, i.e., increased acreage at constant yield of GPV per cropped acre, and (b) due to other inputs, i.e., no increase in cropped acreage but employing IACA's full delta yields for the various refer- ence years._V To do this, first acreage was derived from IACA's cropping intensities at reference years. Then the GPV was estimated employing IACA's cropping patterns, yield projections, and price assumptions. From these it was possible roughly to apportion the incremental contribution of either water alone or non-water inputs to total GPV for each of the nine zones for the reference years. The difference between the sum of the acreage effect and the inputs effect from the total increment would be a rough measure of the interaction between these separate effects. Results of this analysis for the nine zones are summarized in Table 6. 1/ The analysis was based on Rupee values at constant prices as used by IACA. TABLE 6 Estimated Contribution of Water Alone and Other Inputs to Incremental GPV for Nine Agricultural Zones (Effects mewased in GPV in Rs. millions) Total Relative Contributions Totutions Totl Relative Contributions Total Zone 1965 Acreage GPV/acre Residual 1975 Acreage GiV/acre Residual 1985 Acreage 0PV/acre Residual 2000 I. Peshawar Vale 303.5 11.0 40.0 10.8 365.3 62.5 219.0 25.2 275.0 58.1 220.2 89.8 1,043.1 1 Per cent of Total Increment 18 65 17 20 71 9 16 60 24 II. Punjab Rice Area 843.8 254.2 298.2 84.9 1,4181.1 208.4 607.8 292.1 2,589.4 63.5 636.6 308.8 3,598.3 Per cent of Total Increment 40 47 13 19 55 26 6 63 31 III. Punjab Cotton Area 3,785.1 534.8 1,186.0 188.2 5,694.1 616.5 2,267.8 741.6 9,320.0 1,239.5 2,540.7 2,235.1 15,335.3 Per cent of Total Increment 28 62 10 17 63 20 21 42 37 IV. Punjab Development Area 381.5 205.2 123.8 70.3 780.8 360.9 307.9 531.0 1,980.6 298.9 373.1 797.5 3,450.1 Per cent of Total Increment 51 31 18 30 26 44 20 25 55 V. Sind Cotton Area 961.2 160.2 287.1 72.9 1,481.4 3114.2 777.2 525.4 3,098.3 356.4 1,029.6 1,279.4 5,763.7 Per cent of Total Increment 31 55 14 19 48 38 13 39 148 VI. Gudu-Sukkur Rice Area (perennial) 179.7 6.9 81.8 6.1 2714.5 31.3 188.2 56.6 550.6 36.6 237.9 176.5 1,001.6 Per cent of Total Increment 7 86 7 11 68 21 8 53 39 VII. Gudu-Sukkur Rice Area 7 (non-perennial) 220.8 10.9 58.5 7.1 297.3 -18.5 153.0 -10.1 421.7 56.o 216.3 96.4 790.4 Per cent of Total Increment 14 76 10 -15 123 - 8 15 59 26 VIII. Ghulam Mohammed Rice Area V8 (non-perennial) 68.1 -2.8 29.1 -5.5 89.2 -5.5 82.7 -3.6 162.8 16.3 1914.6 96.4 470.1 Per cent of Total Increment -13 139 -26 -9 118 - 9 2 76 22 IX. Ghulam Mohammed Rice Area (perennial) 24.1 16.3 11.1 14.6 56.1 26.3 29.0 146.0 157.4 73.0 30.2 174.8 435.4 Per cent of Total Increment 51 35 14 26 29 45 26 11 63 Total for West Pakistan 6,766 1,197 2,116 439 10,520 1,596 4,633 2,207 18,956 2,198 5,1479 5,255 31,888 Per cent of Total Increment 32 56 12 19 55 26 17 42 1h1 1/ In zone VII and VIII the negative contribution from acreage (water) shown arises as a result of IACA's procedure, where underwatering occurs, of reducing the actual cropped acreage to the full delta equivalent. This procedure results in a corresponding inflation of the GPV per cropped acre without however materially affecting the total GPV. ANNEX 2.2 Page 13 The relative importance of water and inputs is illustrated by their percentage contribution to increments between reference years. Thus, where perennial supplies are limited as in Zones II and IV, a larger proportion of the expected increment would be expected from additional water. By contrast, in all zones except IV the effects of non-water inputs on yield would be substantially greater. Even in Zone IV the sums of input effects plus residual or interaction would be very large once the initial water shortage was overcome. The observation that the residual (or interaction) proportion increases over the successive reference years is an axiomatic reflection of the importance of employing higher input levels after enlarging the cropped acreage in order to achieve best results. The overall picture of development is one of higher growth of rabi acreages up to 1985 and thereafter a further rise in kharif acreage which by 2000 just exceeds the former. During this period, the increased area under perennial crops is a modest one, being from about three to six million acres at a rate of growth of 1.6 percent per annum. Analysis of IACA's projections clearly implies that non-water inputs would make a substantially greater contribution to the increase in agricultural production than water alone. Even if the total residual effect were attributed to increases in irrigation supplies, the response to water would be less than that to inputs throughout the period up to 1985. To the extent that it can be traced in this analysis the relative contributions to the incremental GPV for the periods between reference years are demonstrated below on the basis of the total CCA: Relative Contributions of Growth Factors to Incremental GPV (as implicit in the IACA projections) 1965 to 1975 1975 to 1985 1985 to 2000 Rs. Rs. Rs. billion Percent billion Percent billion Percent Total Increment 3.753 100 8.437 100 12.932 100 Thereof: Inputs 2.116 56 4.633 55 5.479 42 Water 1.197 32 1.596 19 2.198 17 Residual .439 12 2.207 26 5.255 41 This analysis would tend to overstate the input effects to the extent that the IACA yield projections beyond 1975 are generally based on full delta irrigation. The elimination of underwatering of an average of about 20 percent between 1965 and 1975 would thus be attributed to non-water inputs. However, even if allow- ance is made for this, the analysis forcefully demonstrates the importance of non-water inputs for rapid growth of agricultural production in the irrigated areas of iJest Pakistan. ANNEX 2.2 Page 14 C. Analysis of IACA's Aggregate Production Projections IACA's totals of GPV for West Pakistan were obtained by adding GPV for the uncommanded outside areas to those of the nine zones and are shown in Table 7 below. The separate contributions of agriculture and livestock are also included as are growths between reference years. TABLE 7 Contribution of Crops and Livestock to Total GPV (Rs. billions) 1965 1975 Growth 1985 Growth 2000 Growth Total Total 1965-1975 Total 1975-1985 Total 1985-2000 GPV GPV (%) GPV (,) GPV (M) (A) Canal Commanded Areas Crops 4.41 6.34 3.7 11.95 6.5 18.70 3.0 Livestock 2.35 4.18 5.9 7.00 5.3 13.19 4.3 TOTAL 6.76 10.52 4.5 18.95 6.0 31.89 3.5 (B) Outside (Uncounanded) Areas Crops 0.96 1.21 2.3 1.49 2.1 1.88 1.5 Livestock 0.97 1.58 5.0 2.71 5.5 5.27 4.6 TOTAL 1.93 2.79 3.8 4.20 4.2 7.15 3.6 (C) Total for Tlest Palcistan Crops 5.37 7.55 3.5 13.44 5.9 20.57 2.9 Livestock 3.32 5.77 5.7 9.71 5.3 18.46 4.3 TOTAL 8.69 13.32 4.3 23.15 5.7 39.03 3.5 The contribution of livestock production based on IACA's projections is extremely high. However, in the Bank Group's view, as discussed in Chapter II.6, the maintenance of a growth rate in livestock production in excess of five percent per annum for some 20 years (1965-85) would demand a level of herd management and breed improvement far in excess of current standards and dif- ficult to attain. The growth of crop production for the period 1965-85 at 5.1 percent also represents a challenge of immense proportion and would only be made possible by the best use of the interdependent factors also discussed in Chapter II.5. ANNEX 2.3 Page 1 Factors Affecting Cropping Intensities The Chapter text gives a general description of the factors which pre- clude cropping intensities as high as 200 percent, the theoretical maximum. The text also indicates IACA has concluded that an overall intensity of 150 percent is a reasonable indicative target for the Indus Basin. This Annex is provided to illustrate in some detail how different factors impinge on cropping intensity and why 150 percent may be regarded as a reasonable overall average. The example used here is based on IACA's Region III (Punjab Cotton Area). The first table shows the present distribution of crops between the two major seasons at a cropping intensity of 102 percent. The table also gives basic data on monthly rainfall, crop water requirements, and temperatures. The greatest occupancy of land by kharif crops occurs during July (36 percent), and by rabi crops in December (h8.5 percent). The area under perennial crops must be added to each of these to determine the full occupancy of the land at any given month. Thus it is in November, rather than December, that the largest percentage of the land is utilized (58.5 percent), for some cotton and maize are still unharvested from the kharif season. If ten percent of the land is reserved in all months for livestock use, then only 90 percent is the maximum available for cropping. An additional 31.5 percent of the land (90 percent minus 58.5 percent) thus represents what could be cropped in November if water were available. Actually, as the table shows, intensity could be increased by adding acreage in both kharif and rabi seasons if adequate water was available. ANNEX 2.3 Page 2 Region III (Punjab Cotton Area) Monthly Land Occupation f6r a Cropping Intensity of 102 Per Cent Kharif Rabi Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Rainfall Average - inches 0.3 0.3 o.6 2.0 1.8 o.5 0.1 0.1 0.2 0.4 o.4 0.4 Crop Irrigation Requirement - inches 5.6 6.9 6.8 6.4 5.8 5.1 4.2 2.7 1.8 1.7 2.3 3.9 Mean Maxirmum Temp. (Degrees F) 95 105 107 102 99 99 91 83 72 68 73 84 Mean Minimum Temp. (Degrees F) 68 77 85 86 83 78 64 51 43 42 47 57 Mean Diurnal Temp. Difference (Degrees F) 27 28 22 16 16 21 30 32 29 26 26 27 Number Crop Gross Sowing Period Area (Months) - --------------------percent- -------p er -n-------- Kharif Rice 1 34 2 - - - 2 2 2 1 - - - - - Cotton 1 6 17 - 3 16 17 17 17 17 15 - - - - Maize 1 3 l 3 - - - 1 2 3 3 1 - - - - Fodder 2 21 9 - - 41 9 6-3/A 21 -- - - - - - Jowar 1 4 5 - - - 5 5 5 5 - - - - - Others 1 4 2 - - 2 2 2 2 - - - - - - Total (excluding perennials) 38% - 3 22* 36 34-3/4 314 26 16* - - - - Rabi Wheat 1 5* 31 20 - _ - - - 74 19 31 31 31 31 Fodder 1 5v 11 - - - - - 1* 6 9 11 11 11 11 Oil Seeds 1 3* 2* - - 11 2* 2* 21 - - - Others 1 4 4 - _ _ _ _ 4 4 4 4 - - - Total (excluding perennials) 48j% 20 - - - - 6-3/4 20 341 181 42 42 12 Perennials Sugar Cane 1 12 6 6 6 6 6 6 6 6 6 6 6 6 6 Fruit 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 Vegetables 1 12 A i i i i i i i i i i i i 7* 7* 71 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* Total Monthly Land Occupation 27* 10* 30 43 4214 45* 53* 58* 56 49* 49* 19* Cropping Intensity (Perennials Twice) Kharif 38 + 74 - 454% Rabi 482+ 74 = 56% TO I ; ANNEX 2.3 Page 3 The next table illustrates IACA's conception of a feasible intensity of 150 percent under full delta irrigation. The same area is involved, and the same basic rainfall and temperature data apply. The peak month of land occu- pancy in the kharif season would still be July, but by September the fodder crop would have been harvested and some rabi crops would be sown. The acreage under crops would begin to build up again following further harvesting of rice and pulses in October, plus some sowing of rabi crops on land which was not occupied during the kharif season. Such sowing could take place, for example, because the cropping pattern shows a peak land occupancy in July of 73 percent, or 17 percent below the 90 percent maximum which reserves ten percent for livestock use. During October and November the total land occupancy hovers around the 90 percent maximum, even exceeding this slightly in November. This is because some cotton would not be harvested until this time, and the full rabi crop could not be planted until the cotton-occupied land has been cleared. Some wheat sowing must therefore be delayed until December, a practice which is technically possible but results in reduced yields. Referring to the tem- perature data, the mean monthly temperature minimum drops eight degrees between November and December. One alternative is to grow less cotton and more fodder and pulses in order to advance the wheat planting date, but the economic returns from this pattern are likely to be lower than if cotton is retained at the expense of some reduction in wheat yields. Another is to increase rice produc- tion at the expense of cotton in the kharif season, but the feasibility of this would depend on soil and water conditions to a great extent. In the area selec- ted for the example these preclude rice as a major alternative to cotton. The result of considerations such as these is that kharif crops would be held to 67 percent of the CCA and rabi crops to 63 percent of the CCA because of diffi- culties of fitting any succession of crops which is more economical. A constant ten percent of the CCA is under perennial crops in all months. Adding in the perennials, the combined intensity of 77 percent in kharif and 73 percent in rabi equals the 150 percent which IACA has used as a design objective. In arriving at this end result, the maximum land occupancy by all crops in any month, not the maximum occupancy by the seasonal crops of kharif or rabi, has set the limits to the ultimate feasible cropping intensity, because this measure reflects the extent of overlapping in the succession of the different crops which are grown. Region III (Punjab Cotton Area) Ultimate Cropping Intensity of 150 Per Cent Number Crop Gross Sowings Period Area Apr. May Jun. Jul. Aug. Sep* Oct. Nov. Dec. Jan. Feb. Mar. _ _ _ _ _ - _ _ . _~~~Au . e (Months) (T…%)c PerCen --------------------------- ---- Kharif Rice 1 31 4 - - - 4 4 4 2 - Cotton 1 6 35 - 3 35 35 35 35 35 32 Maize 1 3 5 - - - 1 4 5 5 21 Fodder 2 22 18 4 [v4 131 18 9 - - -_ Pulses 1 4 5 - - 2d- 5 5 5 21 - _ Khariif - Monthly Land Use 67 - 72 51 63 57 49 4412 342 - - - - Rabi Wheat- 1 51 29 171 - - - - - 12 14 29 29 29 29 Fodder 1 5; 15 _- - 3 12 15 15 15 15 Oilseeds 1 31 3 - _ _ _ _ 1, 3 3 3 - - - Grams/Pulses 1 4 2 _ _ _ _ - 2 2 2 2 - - - Maize 1 4 - _ _ _ _ _ 4 4 4 4 - - Green Manure 1 4 10 - - - - - - - 10 10 10 10 - Rabi - Monthly Land Use 63 171 - - - - 10i 33 48 63 54 54 29 Perennials Sugar 1 12 5 5 5 5 5 5 5 5 5 5 5 5 5 Fruit 1 12 3 3 3 3 3 3 3 3 3 3 3 3 3 Vegetables 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 Perennials - Monthly Land Use 10 10 10 10 10 10 10 10 10 10 10 10 10 Real Total Monthly Land Use 272 171 61 73 67 69" 871 921 73 64 64 39 Cropping Intensity (Perennials Twice) Kharif 67+10 a 77 Rabi 63+10 - 73 15-0% iUEM2 3.1 Page 1 IACA Estimates of Cost of Groundwater Mining The need to maintain the water table sufficiently below the surface to avoid salinity and waterlogging is agreed by all who have examined the problem, but expert opinions have diverged widely on the question of whether fresh groundwater should be continuously pumped to greater depths. The White House Panel Report recommended overpumping and so lowering the water table down to about 100 feet below ground level in order to meet the rapidly increasing water demand. SCARP IV is designed to permit lowering the water table to an equilibrium level calculated to reach a depth of 80 feet near the center of the well field. On the other hand, in the LIP report, it is proposed that balanced recharge should be abstracted at relatively shallow levels of the water table. Harza plan to pump balanced recharge over the long term but with considerable periodic fluctuations of water table level in order to take full advantage of aquifer storage. Continuous pumping of a groundwater resource which could not be replaced is called mining. In the Indus Plains it would theoretically always be possible to replace groundwater at some future date by pumping less than the recharge over a long period. Nonetheless, there is a clear distinction between temporary overpumping to alleviate short-term shortages and con- tinuous overpumping for a long period. Temporary overpumping is a valuable expedient as a means of maintaining supplies at times of lower than average river flows or before the introduction of surface storage projects and in these cases the replacement of the groundwater would form a part of the general plan. On the other hand, continuous overpumping implies no such replacement but rather the exploitation of water in the natural subsurface reservoir as in the White House Panel Report recommendation that the water table in areas of fresh groundwater should be lowered to a depth of about 100 feet below ground level over a period of 30 years. Continuous overpumping in this way is effectively mining, which involves substantial additional costs both for capital installation of the tubewells and for power to pump from the greater depths. The increased capital costs consist of two elements. Firstly, the cost of all tubewells would be raised as deeper installations would be required to operate with the lowered water table. Secondly, extra installed tubewell capacity would be required to pump the mined water. If the wells were to be designed for a final depth of water table at the 100 foot level IACA estimates that capital costs would be increased by about 50 percent for each tubewell compared to those for balanced re- charge at ten feet. The main items in this increased cost would be the pump housing and motor and controls; smaller amounts would be added for drilling and the gravel pack. However, it is unlikely that the wells would be designed initially for a condition which would not be applicable for 30 years, particularly as IACA has projected a life of only 20 years for the ANNEX 3.1 Page 2 motors. IACA has therefore taken a lower increase of 30 percent in the capital cost of the wells. The maximum output and hence capacity, of individual tubewells would be limited by the hydrological conditions of the aquifer regardless of whether the groundwater is mined. A typical four cusec well, without mining, commands about 600 acres and thus the extra capital cost for deeper installations would be: Rs. 90,000 30% of = Rs. 45 per acre 600 If thewater table is lowered from a depth of ten feet to 100 feet below ground level in an aquifer with a specific yield of 0.15, the amount of water mined would be 13.5 acre feet per acre which is equal to 0.45 acre feet per acre per year for 30 years. Irrigation requirements would follow the same projected pattern as without mining and the increase in groundwater pumping would be provided partly from a higher utilization of the wells and partly from additional installed tubewell capacity. The increase in the designed quantity of groundwater to be pumped would be between 20 and 25 percent for which an increase of about 15 percent would be required in the installed capacity. The cost of this additional installed capacity would therefore be: Rs. 90,000 15% of 130% of = Rs. 29 per acre 600 The additional capital costs are therefore: 45 + 29 = Rs. 74 per acre Amortized over 20 years the capital charges attributable to mining are then: Depreciation = Rs. 3.7 per acre per year Interest at 8 percent = Rs. 3.0 per acre per year Capital Charge = Rs. 6`.7 per acre per year 6.7 Or: = Rs. 14.9 per acre foot mined. 0.45 This capital charge of Rs. 14.9 per acre foot mined compares with a capital cost of Rs. 6.9 per acre foot pumped with balanced recharge, as derived by IACA. Turning now to the power costs of mining, IACA finds that the economic cost is substantially more than that of the immediate pumping involved, since allowance must be included for the considerable extra cost in perpetuity of pumping normal recharge from a lowered water table. IACA ANNEX 3.1 Page 3 has projected a typical unit power cost of Rs. 7.4 per acre foot for a four cusec public tubewell pumping against a total head of 40 feet. If one acre foot is then mined from an acre of the aquifer, the water table would be lowered by about 6-2/3 feet and the power cost would be raised to Rs. 8.6 per acre foot, in proportion to the pumping head. The incremental power cost in nerpetuity caused by mining the acre foot of water would therefore be: (8.6 - 7.4) = Rs. 1.2 per acre foot pumped With a future recharge of two acre feet per acre and future costs discounted at eight percent (i.e., a discount factor of 12.5), the effective cost in terms of power alone to mine an acre foot of water from an acre of the aquifer would be: 7.4 + (2 x 1.2 x 12.5) = Rs. 37.4 per acre foot mined. A similar figure was calculated in IACA Report, Volume 3, Annexure 4, "Climate and Hydrology", with different assumptions for the pumping head, economic electricity cost and wire to water efficiency. Depending also on the assumptions for specific yield of the aquifer and the amount of annual recharge, the power cost for mining an acre foot of water from an acre of the aquifer may be taken as between Rs. 30 and 40. Clearly the most significant item in this power cost, and indeed in the total cost of mining, is the additional cost in perpetuity of pumping recharge from the lower levels. This additional cost in perpetuity is related to the specific yield of the aquifer but is independent of the depth of water table. On the other hand, the actual power cost for each acre foot mined would increase as the water table is lowered, and would be about Rs. 23.8 per acre foot pumped with the water table at 100 feet below ground level. The effective power cost to mine an acre foot of water from an acre of the aquifer would then be: 23.8 + (2 x 1.2 x 12.5) = Rs. 53.8 per acre foot mined The mean power cost between ten and 100 feet would therefore be: 37.4 + 53.8 = Rs. 45.6 per acre foot mined 2 For operation and maintenance, the same unit rates may be allowed as for balanced recharge pumping. These can now be added to the capital and power costs derived above to give the effective cost of Rs. 63 per acre foot mined, if the water table is lowered from ten feet to 100 feet below ground level over a period of 30 years. The variation in power costs for actual pumping of the mined water would make the last acre foot mined more expensive than the first. The effective cost of Rs. 63 per acre foot mined is the mean of Rs. 55 per acre foot mined with a ten foot water table and Rs. 71 per acre foot mined with a 100 foot water table. ANNEX 3.1 Page 4 Effective Cost of Mining Groundwater Item Cost (Rs. per acre foot mined) Capital 14.9 Power 45.6 Operation and Maintenance 2.6 Total Mining Cost, say Rs. 63 per acre foot This effective cost of about Rs. 63 per acre foot makes mining appear to be about the same as surface storage when comparing the cost per acre foot at watercourse. It is also evident that the effective cost of mining is several times that of pumping with balanced recharge. However, apart from these economic considerations, there are several technical factors which would require detailed analysis before mining could be accepted. The most important of these is the possible intrusion of saline groundwater down the steep gradient into the fresh groundwater zones. The extent of this hazard would vary at different sites but additional buffer drainage wells might be necessary in order to safeguard the quality of usable groundwater. Other problems which cculd be caused by mining would be increased losses from rivers and canals and diminished yields from existing wells. Finally, the construction of tubewells for mining could introduce additional constraints on the implementation capacity and so retard the general rate of development in the next decade. For these reasons IACA does not at this stage foresee a case for widespread mining of groundwater although special cases could arise in parti- cular areas. IACA's recommendations on the policy of temporarily lowering the water table, as opposed to mining are contained in Volume 5, Annexure 7 of the IACA report and where IACA also discusses the possibility of inducing additional recharge in fresh groundwater zones. SEQUENTIAL ANALYSIS OF A PROGRI'IE FOR IRRIGATION AND POWER DEVELOPMENT IN WEST PAKISTAN As prepared by Sir Alexander Gibb and Partners, on the basis of the Harza computer programme, London, 1966 CONTENTS Page Number SUiMRY (i) - (iv) AGENCIES AND CONSULTANTS TERMS OF REFERENCE Chapter 1 INTRODUCTION 1.1 Background to Study 1 1.2 Conditions of Sequential River Flows 2 Chapter 2 THE DEVELOPMENT PROGRAMME h Chapter 3 METHOD OF ANALYSIS 3.1 General 6 3.2 Integrated Use of Surface and Groundwater 6 3.3 Power and Energy Generation 7 3.4 Load Dispatching and Inter-Zone Transfers 7 Chapter 4 INPUT DATA 4.1 General 9 4.2 The Irrigaticn System 10 4.3 Groundwater Hydrology 1 4.b Surface Water Supplies 16 4.5 Watercourse Requirements 19 4.6 Power Demands and Installation 20 h.7 Operating Cr'iteria 20 Chapter 5 PRINCIPAL RESULTS OF ANALYSIS 5.1 General 22 5.2 Irrigation Sapplies 23 5.3 Power 34 5.4 Reservoir Operation 37 Appendices A Input Data B Mean Year Sequence : Zonal and System Summaries i966,85 C First Historic Sequence : System Summaries 1966-85 I I I TABLES Table Page Number Title Number 2.1 Projected Number of Wells in Operation 4 2.2 Areas Developed under Proposed Programnme 5 14.1 Canal Cormriands 11 t.2 Variations of Historic Rabi Flows from Mean Flows 17 5.1 Watercourse Requirements and Mean Year Deliveries 23 5.2 lWatercourse Shortages (October-May) - Mean Year Sequence 5.3 Surplus at Ghulam Mohammed (October-May)- Mean Year Sequence 25 5.4 Watercourse Shortages (October-May) - 1st Historic Sequence 27 5.5 Surplus at Ghulam Mohammed (October-May)- 1st Historic Sequence 27 5.6 Watercourse Shortage (October-May) 2nd Historic Sequence 28 5.7 Surplus at Ghulam Mohammed (October-May) - 2nd Historic Sequence 28 5.8 Water Budgets before and after Tarbela. Period November to April 33 5.9 Annual Pumping Energy Load - Mean Year Sequence 36 5.10 Peak Pumping Load 36 5.11 Minimum Peak Reserve. Interconnected System 1973-1985 36 5.12 Reserve Generating Capacity. Comparisons for Critical Water Years in 1976 and 1985 37 5.13 Interzone Power Transfer - Mean Year Sequence 37 A.1 Capacities of Link Canals A.2 Canal Head Capacities A.3 Tubewell and Drainage Installation A.4 Gain and Loss Factors in River Reaches A.5 Indus, Jhelum and Chenab River Flows - Mean Year Sequence A.6 Indus River Flows at Attock - Historic Sequences A.7 Jhelum River Flows above Mangla - Historic Sequences A.8 Chenab River Flows above Marala - Historic Sequences A.9 Indus, Jhelum and Chenab River Flaws - Supplementary Sequence A.10 Ravi and Sutlej River Flows - All Sequences A.I1 Watercourse Requirements and Associated Intensities A.12 Schedule of Power Installations I I FIGTURES Figure Number Title 1 Proposed Basin Groundwater and Canal Development Programme 2 Schematic Diagram of Irrigation and Power System 3 Canal Commands L River and Link Canal Distribution System 5 Growth of Watercourse Requirements and Mean Year Deliveries 6 Groundwater Pumping by Years 7 Overdraft on the Aquifer below 10 ft. Level 8 Depth of Fresh Groundwater in Rohri Canal Command 9 Depth of Fresh Groundwater in Panjnad and Abbasia Canal Commands 10 Depth of Fresh Groundwater in Lower Jhelum Canal Command I (i) SUMvARY As part of the Indus Special Study, the consultants to the World Bank formulated proposals for the development of irrigation and power in West Pakistan over the next twenty years. The Irrigation and Agricultural Consultants Association (IACA) were responsible for the irrigation programme, Stone and Webster for the power programme and C.T. Main for dam sites. Harza, as general consultants to WAPDA, have evolved an elaborate computer programme which enables a development plan to be tested on a monthly time basis over any desired period of years. In this study, the effects on the predetermined development programme of a sequence of river flaws, which may be historic, random, or synthetic, can be examined. In accordance with terms of reference laid down on June 28th 1966 Gibb, as co-ordinating consultants, were directed to carry out, in co-operation with Harza a behaviour trial of the ILACA progranme from 1966 to 1985 and to test the power programme against the system electrical demand. The results of these studies are contained in this report. THE DEVELOPMNENT PROGRAJE The dominant feature of the IACA programme during the first decade is the continued installation of public tubewells (2 to 5 cusec capacity) which would rise to about 20,000 in number by 1975, covering 11.6 million acres. From 1975 to 1985 public tubewell fields would be extended over the outstanding usable groundwater areas with the object of achieving full integration between tubewell and canal supplies. Increasingly tubewells would be installed for drainage in saline areas, so that by 1985 an estimated total of 44.,100 public tubewells would be in operation of which 34,300 would cover an area of 18.7 million acres underlain by usable groundwater, and 9,800 an area of 4.3 million acres in zones of saline groundwater. Projections were also made for the growth of private tubewells (approximately 1 cusec capacity) which indicated that about 48,ooo would be in operation in 1975, declining to 25,000 in 1985 as they become superseded by public wells. Surface storage facilities are provided during this period by three main projects, the Mangla Dam (4.5 MLF) in 1967, Tarbela Dam (8.6 MAF) in 1974 and Selwan/Manchar (1.8 MAF) in 1982. Other minor schemes are also anticipated, including a reservoir at Chasma in 1971. Canal enlargement is only applied to a limited area in the first decade, about 0.9 million acres, but subsequently takes the leading role and by 1985 a further 5 million acres are developed. The power programme envisages a steady growth of thermal power in the South and hydro-electric power in the North. In 1975 the minimum installed capacity is approximately 2540 megawatts, of which thermal stations contribute 1660 megawatts and hydro stations would provide a minimum capability of 880 megawatts, from 2 units at Tarbela, 6 at Mangla and 6 at Warsak. By 1985 thermal capacity will have risen to 3800 megawatts and minimum hydro capability to 1700 megawatts with the I installation of 2 more units at Mangla and 10 more units at Tarbela. THE METHOD OF ANALYSIS The Harza computer programme is essentially a numerical model of the irrigation and power delivery system of West Pakistan, incorpor- ating all the major physical constituents, rivers, link canals, canal commands, reservoir and power installations, in their correct geograph- ical layout. Into this model is fed the data of the analysis, which falls into six main categories. 1. Values for the physical components of the system, such as canal size, reservoir capacity and installed tubewell capacity. 2. Assumptions regarding groundwater hydrology. 3. The sequence of monthly river flows entering the system. 4. Monthly irrigation demands at the watercourse. 5. IMlonthly power demands and the characteristics of generating plants. 6. Assumptions on the method of operation to be adopted, including such aspects as groundwater mixing and reservoir operation. The essence of the IACA programme is contained in items 1 and 6 while the associated irrigation demands forms ibem L. Item 5 is derived from the Stone and Webster report. The analysis starts at a fixed point in time, which for this study was October 1965, regarded as the beginning of water year 1966. The analysis proceeds to meet the irrigation demands of the basin by the distribution of surface and groundwater governed by a complex system of rules, which incorporate all the physical constraints of the system and all the operating criteria. Similarly the power demand is derived and supplied by the generating system. Thus the analysis will calculate the total deliveries of water and power, revealing at the same time any shortages that may arise. Three main studies were made of the system in which the only items of data that were varied were the monthly river flows. The first study used for every year the 4l year mean flows of the Indus, Jhelum and Chenab which had previously served as the benchmark for the IACA studies. Two further studies were made with historic sequences of river flow; and a variation on one of these studies used critical river flows at selected points in time. CONCLUSIONS The principal conclusion arising from this study is that the IACA programme behaved satisfactorily and it confirms the earlier studies made by IACA for certain reference years. Some irrigation shortages were noted but this was expected. The aggregated shortage was 8.2 MAF in the mean year sequence out of a total watercourse delivery over the twenty years of 1840 I4AF. These shortages occur primarily in two periods of time, I.3 MAF in the first two years of the study, which is due to the very low estimate that was made for the availability of water from the Ravi and Sutlej in the transition period before the advent of Mangla and 2.9 UAF in the three years just prior to the commissioning of Tarbela as demand rises in anticipation of the reservoir. There were no irrigation shortages beyond 1975 under mean year flows. The historic sequences revealed higher shortages throughout, but as much the same periods of time. Excluding the effect of the first two years, which may be slightly unreal, the aggregated October to May shortages in the two historic sequences were 10.1 IMAF and 11.9 WA.F. Kharif shortages also arose in the historic sequences, but these were mostly due to exceptional circumstances. The IACA programme was not intended to meet requirements under all conditions of low river flow and small shortages were there- fore expected. In general these shortages were not more than about 6 per cent of the projected watercourse requirement in any year before 1975 and less than one per cent thereafter. It is reasonable to conclude that, subject to the limitations of the accuracy of the basic assumptions, the IACA programme contains adequate facilities to meet the projected irrigation demands. Since the sequential analyses are operational rather than analyt- ical it is not suitable for an evaluation of the IACA projections for stored water demand. It is however possible to make deductions on this subject from the incidence of shortages and surpluses and fron the behaviour of the watertable. Prior to 1975 there is evidence of irrigation shortages in the system and a small overdraft on the aquifer, restricted to areas of public tubewell development. This is temporarily relieved by the installation of the Tarbela reservoir, but by 1980 the overdraft is becoming more rapid which is an indication that Tarbela storage water is being fully absorbed and that the system is becoming short of water again. At this point also the surplus passed to the sea in the release period has become very small. By 1985 the total over- draft on the system has reached 8 N4AF in the mean year sequence and 16 HAF and 18 MAF in the historic sequences. The higher figures for the h-istoric sequences are due to two factors. Firstly the total rabi flows in the historic sequences are slightly lower than mean, and secondly the constraint imposed by canal capacities means that the over- draft on the aquifer cannot always be fully replaced by additional surface water at times of high river flow. The two main conclusions from the power aspects of the study are: 1. There are small deficiencies in peaking capability in the North prior to commissioning of the Mangla units, but beyond this point I I (iv) and with the completion of the North-South inter-tie in 1973 the system peaking capability exceeds the system demand at all times. After the first Tarbela units are commissioned there is also considerable transfer of power from North to South. 2. The pumping loads that were calculated in the analysis were closely in line with the estimates made by IACA in july 1966, but less than those assumed for the Stone and Webster report. This resulted in a higher value arising for the peak power reserve of the system. Nothing arose from the study to suggest any radical change in the mode of reservoir operation visualized by IACA, except that it would seem desirable to draw down Mangla to the lower elevation of 100h when required, rather than maintain it at 1075 as previously assumed. The method of sequential analysis is a valuable technique for examining alternative development plans and providing a basis for planning decisions. This study has provided a very useful overall impression of the irrigation and power programmes in operation. It would however be unwise to attach too much emphasis on individual figures derived from this series of studies for it must be recognized that any particular topic will in most cases require more detailed analysis, on a shorter time base, than is possible in this form of study. I I - AGENCIES AND CONSULTANTS Title Abbreviation International Bank for Reconstruction IBRD or World Bank and Development liater and Power Development Authority of West Pakistan WAPDA Consultants to IBRD for Indus Special Study: Irrigation and Agriculture Consultants Association IACA consisting of: * Sir Alexander Gibb and Partners* Gibb International Land Development Consultants ILACO Hunting Technical Service Hunting Stone and Webster Overseas Consultants Inc. Stone and Webster Chas. T. Main International Inc. C.T. Main General Consultants to WAPDA: Harza Engineering Company International Harza * Sir Alexander Gibb and Partners acted as co-ordinating consultants for the Indus Special Study. I TERMS OF REFERENCE INDUS SPECIAL STUDY HARZA/GIBB SEQUENTIAL ANALYSIS OF kWATER DISTRIBUTION DEMvxOPMENT PROGRAMME 1. OBJECTIVE The objective is to carry out a behaviour trial of IACA's assumed plan for distributing surface water and for the pumping of groundwater, simulating the twenty-year period 1965 to 1985, using the computer programme developed by Harza operated by an IBM 7094 computer. The programme will be modified as necessary to test the Bank's Con- sultants proposed development plan for water and power and new input will be prepared to suit their assumptions. 2. SCOPE A historic sequence, random or other selection of river flows, will be adopted to include in the twenty year period some years of high flow and some of low level, but the mean of the twenty year period will be close to the long term mean flow. A separate run will use the mean flow for each year. Releases from the reservoirs (Mangla and Tarbela) and the operation of pumps should follow rules which could, in practice, be adopted. Distribution of water will meet the water course requirements derived from IACA's assumptions regarding crop intensities, patterns and water requirements. The use of groundwater will follow the assumptions made by IACA regarding recharge, mixing ratios and aquifer coefficients. The analysis will indicate the fluctuation of the groundwater storage and levels year by year, the electrical power and energy required for pumping and the capability of, and energy generated at, the hydro- electric power stations at Mangla and Tarbela and water shortages in critical years, following the sequence of IACA's development plan. The analysis will also test the Dank's Consultants' power programme against the system electrical demand. 3. PROGRAMME AND REPORTS It is intended that the task will be started on July 3, 1966, and be completed by September 15, 1966. An interim analysis will be submitted to the Bank and WAPDA on August 1, 1966 which will assess the feasibility of completing the task in the proposed period of 2½ months and which will suggest any changes that may be necessary in the scope of the analysis as a result of the first month's work. Preliminary results will be issued from time to time, when available. A final report will be issued to the Bank and to WAPDA on com- pletion of the task. I4. RESPONSIBILITIES (i) Harza will be responsible for:- (a) Advising Gibb of the details involved in the preparation of all items of input data required and the format for punching of these data on IBM cards. (b) (1) Discussing the logic built into the Harza programme with Gibb; and (2) making such programme changes as are desired by Gibb to the extent that such changes can be accomplished in the time available and are necessary to apply the logic adopted by IACA. (c) Directing the computer runs in Chicago. (d) Assist Gibb in: (1) evaluating the several runs; and (2) preparing effective tabular, graphic and narrative presentation of the results for submission to IBRD and W4APDA. (ii) Gibb will be responsible for:- (a) Examining the Harza programme logic and advising Harza of the nature of the changes necessary to simulate the development programme as envisaged by IACA. (b) Performing the computations and preparing all items of input data required for simulation of the operation of the water and power systems of West Pakistan during the period October 1965 through September 1985 with average and one or more twenty-year sequences of varying river flow. (c) Preparing and assembling input data cards in accordance with instructions on format and sequence by Harza. (d) Evaluating the several computer runs. (e) Selecting modifications in programme or input data to be used in the next run. (f) Participating with Harza in preparing effective tabular, graphic and narrative presentation of the results for submission to IBRD and WAPDA. CHAPTER 1 INTRODUCTION 1.1 BACKGROUND TO STUDY This report is an account of a series of sequential operation studies of the water and power system of West Pakistan performed in accordance with the Terms of Reference, reproduced at the front of this report. The objective of the studies was to carry out a behaviour trial of IACA's assumed plan for distributing surface water and for the pumping of groundwater, simulating the twenty year period 1965 to 1985, using the computer programme developed by Harza. The scope of the studies was also intended by the Terms of Reference to test the World Bank's Consultants' power programme against the system electrical demand. Gibb, in association with the other Bank Consultants, made system analyses for certain reference years, including 1975 and 1985, as part of the Indus Special Study. Various potential forms of development of water and power resources were tested in the reference years under different conditions of river flows. These system analyses were used by IACA in conjunction with other studies in order to formulate the proposed programme for development of irrigation supplies described in Chapter 2. The IACA porjections for growth of storage demand were used by C.T. Main in their study of dam sites and the projections for tubewell pumping and hydro energy generation were used by Stone and Webster in their study of power resources. The sequential method of analysis evolved by Harza as general consultants to WAPDA enables a development programme to be tested for any desired period of consecutive years. The methods of analysis and basic data used by Gibb and Harza were compared in some detail at meetings in London and Arnhem in February 1966 and it was found that the exchange of data between the consultants since the inception of the Indus Special Study had resulted in agreement on many of the basic para- meters relating to system analysis. Subsequent to these meetings the Bank and WAPDA agreed on the desirability of initiating a series of studies combining the development programme of the Bank's consultants and the techniques of system analysis developed by WAPDA's general con- sultants. The studies reported herein are the result of a co-operative effort between Gibb and Harza. Gibb held primary responsibility for preparing input data consistent with the Bank consultants' development programme and the associated technical criteria and assumptions, for selecting the sequences of river flows adopted, and for evaluating the results. Harza provided advice and assistance in arranging and pro- cessing the input data in the form required for the analysis, and in the use of computer facilities. - 2 - The period July to August 1966 was used for the preparation of the input data described in Chapter 4. 'The studies were then carried out in Chicago in August, 1966, using the IBM 7091 computer at the Illinois Institute of Technology Research Institute. 1.2 CONDITIONS OF SEQUENTIAL RIVER FLOWS Three analyses and one supplementary analysis were made under different sequences of flow in the Indus, Jhelum and Chenab Rivers. Water years, assumed to begin in October, were used rather than calendar years. Thus a water year begins in October of the previous calendar year and continues until September of its own calendar year. In each case the analysis was applied to projections for the 20 year sequence of water years from 1966 to 1985. The four conditions of sequential river flors were:- (i) Mean Year Sequence A mean water year was used in each of the 20 years for this analysis. The mean was taken from monthly flows over the same 41 year period of water years, 1923 to 1963, as were adopted in the IACA studies. This sequence provided a direct comparison with many of the IACA pro- jections. (ii) First Historic Sequence For this sequence actual recorded river flows were used. The historic period of water years 1926 to 1945 was applied in the same sequence to the period of the study 1966 to 1985. In this way the programme was tested under a sequence of river flows which were known to have actually occurred. (iii) Second Historic Sequence This analysis provided a second test of the programme under actual river flows. The same period of water years was used as in the previous analysis but the order of the sequence was transposed by ten years. The historic flows of the water years 1926 to 1935 were applied to the period 1976 to -1985 and the years 1936 to 1945 were applied to 1966 to 1975. (iv) Supplementary Sequence The -river flows in this analysis were the same as in the first historic sequence except that certain flows were replaced by those of a critically low water year. This analysis served as a further test cn the power programme and as a check on the possible scale of irrigation. I - 3 - shortages. The critical water year selected was 1955 which was also used in the IACA studies. In this water year the lowest October to May floir of record occurred on the Indus, Jhelum and Chenab Rivers combined. This critical year was applied to 1976 ;nd 1985. It was not used for the water year 197L, which is likely to be difficult for power, as both the h:.storic sequences happened to produce low rabi flows for that year. The conditions of sequential river flows are discussed in more detail with the assumptions for other tributary rivrer flowis in Section .l4. The other input data described in Chapter b wrere the same in each of the sequential analyses. I CHAPTER 2 THE DEVELOPMENT PROGRAMME LICA considered potential development of water resources in the Indus Basin from the combined aspects of agriculturo, water supply and economics. These considerations led to a proposed groundwater and canal development programme which is reproduced as F'igure 1 of this report. The installed tubewell capacities, canal sizes and irrigation requirements which are used as input data for the soquential analyses were based on this programme for development. The dominant feature during the first decade of the IACA pro- gramme is the continued installation of tubewells to provide new irrigation supplies and simultaneously to control the watertable. The following decade from 1975 to 1985 would witness tho extension of public tubewells fields over the outstanding usable groundwater areas and hence the achievement of fully integrated tubewoll and canal supplies. IACA's estimate for the number of public and private tube- wells which would be operating in reference years fr'om 1965 to 1985 under their proposed programme is shown in Table 2.1. TABLE 2.1 Projected Number of Wells in Operation Plan Year 1965 1970 1975 1980 1985 Public Wells (2 to 5 cusec capacity) Usable groundwater 2,200 9,500 19,800 32,200 34,300 Saline groundwater - - 200 I,500 9,800 Private Wells (Approx. 1 cusec capacity. Canal commanded and uncommanded areas) Electric 9,000 17,000 24,000 18,000 23,000 Diesel 23,000 35,000 2b,000 5,000 2,000 The scheduled completion of Mangla Dam (4.5 MAF) on the Jhelum River in 1967 has a predetermined place in the IACA programme as also does the proposed Tarbela Dam (8.6 MAF) which, undee the IACA terms of reference, is assumed to begin operation on the Indus River in the autumn of 1974. Surface storage development is alsc expected at Chasma in 1971 but the reservoir size there would be relatively small (0.5 MAF). Further storage proposed by IACA at Sehuran/Manchar I I I I - 5 - (2.2 MAF capacity), equivalent to 1.8 MAF of useful storage, in 1982 would be particularly related to the enlargement and remodelling of Rohri Canal. Other storage projects would be implemented after 1985 which is the last reference year for the sequential analysis. The improved irrigation supplies and the control over the water- table in usable groundwater zones form the backgrouad to canal enlarge- ment in the IACA programme. Canal enlargement is a:plied to a limited number of canal commands in the first decade but the programme for en- largement gains momentum and takes the leading rule in further develop- ment. IACA's projections for the areas which would be developed by canal enlargement-and by tubewells and horizontal d&ains are shown in Table 2.2 for 1965, 1975 and 1985. TABLE 2.2 Areas Developed under Proposed Progrwmme (millions of acres CCA) 1965 By 197' By 1985 Saline groundwater area under sub-surface drainage development: Vertical drainage - 0.5 4-3 by tubewells Horizontal drainage by tile drains - 0.3 1.1 Total saline groundwater area with sub-surface drainage - 0.8 5.4 Usable groundwater area under public tubewell development 1.3 10.8 18.7 Total area under groundwater development 1.3 11.6 24.1 Area under development by canal enlargement - 0.9 5.9 From their projections for development, IACA calculated the tube- well pumping requirements. Stone and Webster took these IACA estimates for tubewell pumping and added their own projection.; for other power demands in order to derive a programme for the installation of power generating equipment. The power installation programme and the basic load forecasts form part of the input for the sequential analyses and are described in Chapter . I; PROPOSED BASIN GROUNDWATER AND CANAL DEVELOPMENT PROGRAMME INCLUDING HORIZONTAL DRAINAGE REGION,AND COMMAND, PROJECT PLAN YEAR PLAN PERIOD OR DEVELOPMENT AREA Ns T R_9/61W8 19681 N iPm/h 7 1971/i2 1974/4 19741/ sz75- O 980- as /95 - iooo PESHA WAR VALE UPPER SwA r L OWER SWAT A8UL /RIVER WARSAK HIGH lEfVEfL I.Dous RIoHr BANK ANO THAL DOAB THA L DEVELOPmeNT---- /MUZAF:4AROA 'NJ SCARP 3 AND RAN o PUR ---------- o G A'HAN#______.....,__ PAHARPUR (D I. aAN) DEV,_ CHAd DOAG LoEvR JEL u£44 j SCARP 2 AECHNVA DOA_ Al-f LINEC U SPP_ __e -AND LOWEr cNEANAaI SCARP4 4'PPER CHENAB J -- S.OWER CHNr.AA SCARPIIw" ---- LOWER RECHNIA DVrLoPwNTvrl == sHoRNor- RAMALI/A PROJEcr(2_ BARI DOA B WAGAN PRojecT(3) RA Vl SYPAON-DIPA4PUR LINK PRoJEcr _ G __ DIPALPUR AaOVE B-S LINK PROJECr omm,pow e Stojw e-s AlvloroRojcr_ C __ SHUAABAD PRoJECTr 4)(9) LOWER BARI DOAd3 DnEVEOPMENT (5)_ |- -- - PAXPATrAN ABOVE S-l LAINK DEVr (6) PoAKPArrAm ariowS-m LlAw Ory _ le SBEGAI DESKERT _AD PATr7 MAfALSI 8ELOW S-, L/NVK OC ,(a) zr SUrifJ AAD PAA,V.1AD LZ"r8A#1r ORTD WAE - SANDO AA -' NOT , 8AAIAWAI- QAI 9 __ C ez PAN.IA(AD- AfiASIA 09J _______. L oWER //VDUS _ _ _ __ __ GHorErXC BEGARI S/NDO,ESERr AIVO PArT__ _ NO,9rN WAE3r AAsO DADU VoRrH 9 -e OPADU SOUrH RI1CE rAAIRP(IR EAsr AND WeSr ROHRI VORTrH(9_ RONRI SOUTHr (9) NARA PUPS_ _ EASrERN NARA KB. EEDER, OCHNrO Is A/ID PUMPS_ AINYARI AND AU |ELI LINED CHANNEL GAJA rANDO BACO Ga 0 ------ USABLE GRoUvowArTEA wELLS CANAL fNL4,RGEA4ENr SAL/NE CROUNWOATER WELLS HORIZOANrAL DRAINAGE FI G. I (TILE DRAINS) PROPOSED BASIN GROUNDWATER AND CANAL DEVELOPMENT PROGRAMIM NOTES ON FIGURE 1 The programme takes account of the following developments which are not shown in the figure: Mangla Dam to be completed in 1967. Other IBP works (including Chasma Barrage) to be completed in 1971l Tarbela Dam to be completed in 1974. Sehwan Barrage to be completed (including Sehwan-Manchar storage) in 1982. 1 Sehwan-Nara Feeder to be completed in 1985. Lower Indus Left Bank outfall drain under construction 1968/85. Lower Indus Righ Bank outfall drain under construction 1980/90. Northern zone surface drainage projects under construction 1965/72. Additional Link canal capacity under construction in the Punjab from 1980. Well drilling periods are shown for each tubewell project. Tubewells would be fully operational one year after completion of drilling. NOTES: (1) Lower Rechna Development area covers lower Chenab Canal command excluding the areas in SCARP 1 and in the Shorkot-Kamalia Project (see below). (2) Shorkot-Kamalia Project area covers the usable and saLine ground- water areas of Haveli Canal command, Koranga and Kot Distributaries of Lower Bari Doab Canal, and the tail of Burala Branch of Lower Chenab Canal. The project includes remodelling of some distribu- taries, and subsurface drainage by tile drains in the saline ground- water areas. (3) Wagah Project covers the present CCA between the Ravi Siphon.6 Dipalpur Link and the Indian border. (4) Shujaabad Project area covers the usable groundwater areas of Shujaabad Branch of Sidhnai Canal, Fazal Shah Distributary of Lower Bari Doab Canal, and the tail of Lodhran Branch of Mailsi Canal. (5) Lower Bari Doab Development area covers the Lower Bari Doab Canal command, excluding Fazal Shah, Koranga and Kot Distributaries which will be developed with other projects (see (2) and (4) ). A pilot scheme to include subsurface drainage by tile drains and distribu- tary remodelling is proposed in the saline groundwater area on the left bank of the head reach. I (6) Includes that part of Mailsi Canal comnmand which lies above the S-M Link. (7) Excludes Shujaabad Branch, which is in Shujaabad Project. (8) Excludes tail of Lodhran Branch, which is in Shujaabad Project. (9) Project covers development of usable grouncbdater area by tubewells but does not include canal remodelling. (Notes on Figure 1) - 6 - CHAPTER 3 I4ETHOD OF ANALYSIS 3.1 GENERAL The method of analysis consists of a numerical model of the Indus Basin Power and Irrigation System which simulates system operation using time intervals of one month for any desired period of years. The system corresponds geographically to the Indus Plains and the Peshawar Vale and the storage reservoirs on the Indus and its principal tribu- taries. The basic model includes all existing irrigation and power facilities, projects under construction and all major potential projects as shown in Figure 2. Individual components of the system may be included, excluded, or modified by suitable selections of input data. The water and power demands of the system are also defined by input data which can be chosen to correspond to projected future demands. An IBM 7094 electronic computer is used to perform the computations. The computer programme and the general principles of system operation assumed in its formulation, are described in 'A Guide to the Computer Program' published by Harza in March 1966 and revised in September 1966. The account of the method of analysis contained in this section is largely confined to a discussion of those areas where the procedures followed in the Harza method differ fram the procedures and assumptions adopted in the system analyses made by IACA in the course of the Indus Special Study. Reference should be made to 'A Guide to the Computer Program' for a more detailed account of the Harza method of analysis. 3.2 INTEGRATED USE OF SURFACE AND GROUNDWATER The IACA and Harza system studies differ in regard to the use of groundwater. In the IACA analysis the pattern of groundwater pump- ing is pre-determined by Discrete canal command studies in which allow- ance is made for groundwater mixing and the state of development of public and private tubewells. The remainder of the watercourse require- ment is made up by surface water deliveries. The elements of surface water are then aggregated to build the demand throughout the system. The Harza computer programme works in the reverse manner by first dis- tributing surface water throughout the system and then pumping in the canal commands to meet the watercourse requirements. Both studies aim to balance the volume of recharge in a command by an equal amount of groundwater pumping, thus maintaining the groundwater at a fairly constant level. In the Harza system analysis pumping may, however exceed recharge when surface water deliveries are limited by canal capacity or by a general shortage of water in the system and IACA assumed the same principle in their development plan. In practice the two approaches would produce much the same results. W.rs.k D.. .Goml Rarwo,r ..und.. ./W A_randaro H/W ARABIAN~~~~~~~~~~~~~~ \oig //5Of Suku J".lu R org inir soor Rep~~~~~.d~~~~cd f.m,,, ~ ~ ~ .d C.. G.~~~~~~~~FG +~epoinOd by ver ONversoon foru.te \rP FDA\ \r / a + Irolgrztion ConoI t /SId~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~hnc .k t; 1 \ \ Borroge \s° rQ/ J / | f~~~~~~~~~~~~~~~~~~~~~~.... T Slphon \ \ 2\ \ Oodirobod / Khonki D Shodlarol /~~~~~~~~~~~~~~~~~~~~~~ vD Hydroeleelrie Porrerplont \ \ 3/ \ \ Borroge ffi t Borro,gel ldorolo^30rroge c~~~~~~~R .... SYMBOLSA \g ~~ ~~ ~ ~ ~ ~~~~~~ R B.,a \,m-l Rolk ... t ° X~~~~~~~~~~~~~~~~~~hk Sh\ .d...l N r ~~~~AKSTAN Bro \ C ~~~~~~~SCHEMATIC DIAGRAM / ~~~~~~~OF IRRIGATION AND POWER SYSTEM Rptrprdf-sed fo dis,orom -"rooeo 4 H-rw f-i WAPDA F IG. 2 -7 - Consequently it was decided to retain the Harza logic in the analysis without any change to the computer programme. The Harza and IACA methods of analysis both assume a high degree of co-ordination between surface water distribution and groundwater use. Both consultants recognise the difficulty of including privately owned tubewells in an integrated system. Current indications are that utilisation factors for private wells are much lower than for public wells. Preliminary system analyses made by Harza indicated that the lower utilisation faccors associated with private tubewells could be recognised in the analysis by means of input data rather than by a change in the computer programme. The effective pumping capacity for private wells was taken as 30 per cent of installed capacity and for public wells as 87 per cent of the installed capacity, which represents the maximum monthly utilisation rate adopted as a criterion by IACA. This subject is elaborated in Chapter 4. 3.3 POIER AND ENERGY GENERATION Although the Stone and liebster basic load projections and plant installation schedule were adopted as input data for the sequential study, complete compatibility cannot be achieved due to differences that exist between the Stone and Webster method of computing the peaking capability at the hydro plants and that of Harza. Stone and Webster impose a limitation on peaking capability in months when reservoir out- flow is less than the flow required for continuous full gate operation of the turbines. Harza do not impose any restriction on peaking capability other than that resulting from the head on the turbines and it is assumed that full gate output can be developed whenever required. However in the months of minimum reserve generating capacity the reservoir outflows are in most cases sufficiently large to allow full gate operation and therefore at such times the Stone and Webster method does not result in any significant reduction in peaking capability. Furthermore the Stone and Webster analysis of generating capability is based on calculations at ten day intervals and the hydro capability for any month is governed by the lowest ten day period. In the Harza analysis hydro peaking capability is determined by the head correspond- ing to the mean reservoir level for the month. In effect the comparison would be between a minimum capability and an average value. It was decided to retain the Harza logic in the analysis, although it was recognised that the peak reserve indicated might be higher than obtained in the Stone and Webster analysis. The effects of the two different methods of calculating peak reserves are examined in Chapter 5. 3.4 LOAD DISPATCHING AND INTER-ZONE TRANSFERS The basic power and energy demands for the North and South Zones are defined by input data and groundwater pumping loads are computed - 8 - in the analysis. Total power and energy demands are therefore obtained for each month of each year of the analysis and for each zone. Two important elements of the load duration curve-are then derived, the maximum ordinate, which 9s akb fir the- total area under the curve which is the total energy`.lBy assum he curve to be parabolic and to be a function of the system load- factor, it is possible to define the complete shape of the mont-hly load duration curve, and to match the requirements with the hydro and thermal components. A load dispatching process is used in the analysis to determine peak reserves or deficiences in each zone, and to compute inter-zone transfGrs of power and energy. For the purposes of the analysis the South Zone includes Karachi. Transfers between the North and South Zone can only take place after interconnection, the date of which is determined by input data (1973 in the analyses described herein). Transfers from South to North take place only when there is a capacity deficiency in the North and reserve capacity in the South. Transfers from the North to South will always take place when there is surplus hydro capacity after the demands of the North Zone have been met, to reduce the consumption of thermal power in the South Zone. - 9 - CHAPTER 4 INPUT DATA 4.1 GENERPL The input data used in the sequential analysis fall into six main categories: (i) data descriptive of the existing and future physical com- ponents of the irrigation system, such as canal commands, main canals, link canals, barrages and reservoirs, and tubewells for irrigation and drainage; (ii) data relating to groundwater hydrology including seepage loss factors, areal variations in groundwater quality, aquifer storage coefficients, and estimates of recharge from rivers, link canals and rainfall; (iii) the surface water supply to the system expressed as monthly river flows by years at the rim stations; (iv) the demand for irrigation water expressed as monthly watercourse requirements by years for each canal command, based on the development programme selected for analysis; (v) projected demands for basic power and energy for each month of the study period, the factors used to express groundwater pumping in terms of electric power and energy, and the capacities and characteristics of existing and future thermal and hydro-electric generating plants; (vi) system operating criteria such as groundwater mixing ratios, reservoir release patterns, and minimum releases below reservoirs and barrages. For the analyses described in this report, the input data are consistent with the IACA and Stone and Webster development programmes and the associated assumptions and criteria. Different conditions of surface water supply to the system were considered in each of the sequential analyses but other input data remained the same in each analysis. The account of the more significant input data presented in this chapter under the above headings is supplemented by further details contained in Appendix A. - 10 - 4.2 THE IRRIGATION SYSTEM (a) Comparison of Canal Commands In their basin studies IACA used 61 divided canal command units, whereas the Harza analysis allows for 45 units covering the same geo- graphical area. It was therefore necessary to combine certain IACA units, and in some cases to split units in order to make them compatible with the computer programme. The configuration of commands that was finally adopted corresponds closely to that used in Harza studies except that Abbasia was combined with Panjnad, Desert with Pat, and Pinyari with Fuleli. Thus 42 canal commands emerge which are shown in Table 4.1 with the corresponding IACA commands indicated where the nomencla- ture differs. The IACA canal commands are shown in Figure 3. (b) Link Canals The system includes all existing link canals, the link canals of the Indus Basin Project, the canals required for diversion of Indus waters to offstream storage reservoirs and the canals associated with the Sehwan Development. The link canals of the system and the capacities adopted in the analysis are tabulated in Appendix A. The head and tail capacities of the link canals are defined by input data for each year of the study; capacities are set at zero in the years prior to commissioning. None of the canals required for offstream storage set in the Harza programme are included in the IACA programme and hence their capacities are zero throughout the study. The links of the Indus Basin Project are introduced in the analysis in accordance with the current construction programme. There are three canals in the South Zone considered as link canals: (i) the Nara Feeder, which is the existing canal supplying the Nara Command from Sukkur; (ii) the Sehwan Feeder, which serve Sehwan Command (Rohri South) from Sehwan; (iii) the Sehwan-Nara Link which will serve the Nara Command from Sehwan. In the IACA programme the Sehwan Feeder is assumed to commence operation in 1982, and Nara Command continues to be served from Sukkur through 1985. TABLE 4.1 Canal Commands Canal Command in Culturable Corresponding Sequential Analysis Commanded Area IACA Command (nialion acres) Upper Dipalpur .372 Dipalpur above B.S. Link Central Bari Doab .595 Ravi-Syphon Dipalpur Link Int. Raya Branch .1427 Existing non-perennial area commanded by Raya Branch in Upper Chenab. Upper Chenab Internal 1.018 Existing perennial area and the remainder of the existing non- perennial area of Upper Chenab. Marala Ravi Internal .105 Marala Ravi Link Int. Sadiqia .975 Existing perennial area of Fordwah and E.Sadiqia. Fordwah .387 Existing non-perennial area of Fordwah and E.Sadiqia. Pakpattan 1.047 Pakpattan above SM Link, Mailsi above SM Link, Qaim, and Bahawal above MB Link. Lower Dipalpur .611 Dipalpur below BS Link. Lower Bari Doab 1.575 Lower Bari Doab including Ravi offtakes. Jhang and Rakh Branches 1.278 Area of Lower Chenab commanded by Khanki headworks and the Lower Chenab Canal Feeder. Gugera Branch 1.703 Area of Lower Chenab commanded by Khanki headworks. Upper Jhelum Internal .543 Upper Jhelum. Lower Jhelurm 1.500 Lower Jhelum. Bahawal .596 Bahawal below MB Link. Mailsi .996 Mailsi below SM Link and Pakpattan below SM Link. Sidhnai .754 Sidhnai. Haveli Internal .143 Haveli. Ralgpur .3hb Rangpur. Panjnad and Abbasia 1.455 Panjnad and Abbasia. Upper Swat .276 Upper Swat. Lower Swat .169 Lower Swat, Doaba and Sholgara. Warsak .119 Warsak High Level Right and Left Bank. Kabul .123 Kabul River, Jui Sheikh and Inundation. Thal 1.641 Thal. Paharpur .104 Paharpur. Muizaffargarh .656 Muzaffargarh. D.G. Khan .872 D.G. Khan. Desert and Pat .382 Desert and Pat. Begari Feeder .693 Begari Sind. Ghotki Feeder .513 Ghotki. North West .633 North West. -12 - TABLE 4.1 (Continued) Rice .337 Rice. Dadu .39 Dadu. Khairpur West .252 Khairpur West. Khairpur East .330 Khairpur East. Rohri 1.075 Rohri North and Rohri South until 1983; thereafter Rohri North only. Sehwan 1.405 Rohri South from 1983. Eastern Nara 1.559 Eastern Nara. Kalri .27) Kalri Baghar. Lined Channel .152 Lined Channel (Gaja and Tando Bago). Pinyari and Fuleli .897 Pinyari and Fueli. (c) Canal capacities The IACA figures for canal capacity were adopted throughout. At various points in time canal capacities were enlarged in accordance with the IACA programme. The canal capacities used and the extent and timing of enlargement are shown in Appendix A. (d) Reservoirs The study assumes that three major reservoir schemes are intro- duced into the system. (i) Low Mangla This has an initial live capacity of L.94 MAF between E1.1202 and E1.1040. The useful storage at a drawdown level of 1075, that was used in the IACA studies, is bl.5 MAF. For practical reasons the volume of water trapped in the Jari arm was neglected but the effect of this extra water is considered in the evaluation of results. Impounding commences at Mangla in April 1967. (ii) Tarbela The initial live storage content is 9.3 MAF between El.1550 and El.1300. However the IACA assumption is that drawdown will only be'-to El.1332, which allows a live capacity of 8.6 MAF. Impounding is assumed to start in August 1974 and it was considered for the purpose of the analysis that this would permit only-5-.0 MAF to be stored in the first year of operation. Full impounding begins in June 1975. SO NVflPWf IVNVO £ 9I 1SJIN31) N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S1 =sND''.S -T 31 ~ ~ ~ .-Ee ~~~~~~~~~~~~~~ I N...... - - ~ ~ ~ ~ ~~~~~~7z.. l v - - -'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- A- 4t t'" t~~~~~V4 IW^S AI§ -S .3.01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. - 13 - (iii) Sehwan The Sehwan project is assumed to come into operation in September 1982 with a storage capacity of 2.2 MAF, taken from the LIP report, which after evaporation allows a useful storage of about 1.8 MAF. All three reservoirs are subject to evaporation losses and sedi- mentation. In the case of Mangla and Tarbela evaporation losses are small in relation to storage capacity and only amount to an annual value of 0.05 and 0.1 YAF respectively during the release period. At Sehwan, however, they are significant and account for about 20 per cent of the storage capacity. On the other hand Mangla and Tarbela, particularly the latter, suffer from quite severe sedimentation. The sediment is treated as a function of river flow and at both these reservoirs 50 per cent of the sediment is considered as depleting live storage. The figures used for sedimentation are such that in a mean water year Mangla depletes at a rate of 0.02 MAF a year and Tarbela at 0.12 MAF a year. No allowance is made in the study for the Chasma reservoir which would store up to 0.5 MAO since it was considered that it would be best operated on a variable release pattern, and the computer programme allows variable operation only at the main reservoirs. However allowance can be made for this in considering the results. (e) Tubewell Installation The pattern of tubewell installation is based on the IACA projections for public and private tubewell development. Tubewell capacity is in two parts, tubewells used for irrigation and in some cases also for drainage in the areas of usable groundwater and tube- wells used for drainage alone in the areas of saline grcundwater. In the areas of usable groundwater the tubewell capacity was calculated for every command for each of the twenty years of the study. For public tubewell areas the effective capacities used are 87 per cent of the existing, or planned, installed capacities, since 87 per cent represents the peak monthly utilisation factor projected by IACA. In the case of private tubewells a different approach was used. The IACA projections have assumed an annual utilisation factor for private wells of 27.4 per cent. The difficulty that arises is that the logic of the computer programme will try to maintain the groundwater table at a fixed level, in this case, ten feet. This has the effect that in an area of low installed tubewell capacity, the pumps will be used to 100 per cent of their capacity, which will give unrealistic quantities of groundwater pumping. To offset this tendency the value of effective capacity for private tubewells was tacen as thirty per cent of the in- stalled capacity. This will correct the annual pumping total though at the same time leaving no flexibility in the monthly figure. In areas of mixed development (i.e. private and public wells in the same command) I - 14 - the capacities of public and private tubewells were added. Some allowance was also made for persian wheels in the early years of the study. The use of groundwhater in a command is physically limited by the capacities as computed above, but, mixing criteria also impose limitations and these are discussed in section 4.7(a). A table showing the installed capacity for each command at four points in time, 1970, 1975, 1980 and 1985 is shown in Appendix A. Drainage capacity in the saline areas was installed in accordance with the IACA plan. Three options exist for the disposal of drainage water. (i) To discharge it into the river. (ii) To evaporate it in salt-pans. (iii) To pass it by drains into the sea. Also, in some commands drainage pumping and release of drainage to the rivers is restricted to months of high river flow in order to ensure dilution of drainage effluent. The assumptions regarding the timing and disposal of drainage releases for each of the canal commands are set forth in Appendix A. 1.3 GROUNDW1ATER HYDROLOGY (a) Quality of Groundwater In order that watertable depths and drainage requirements can be estimated, each canal command is divided into 'area good' and 'area bad'. 'Area good' is the area wherein mixing criteria allows all re- charge to be pumped for irrigation use and is defined as the part of the gross commanded area lying outside the 3000 ppm isogram or the 2000 ppm isogram in the case of the Lower Indus canal commands. 'Area bad' is the area wherein none of the recharge can be used for irrigation, and is the part of the gross commanded area lying within the 3000 ppm isogram or 2000 ppm for Lower Indus. The use of groundwater quality data in the determination of mixing ratios is explained in Section 4.7(a). (b) Aquifer Storage Coefficient The aquifer storage coefficients used in the study are 0.15 for the North Zone and 0.13 for the South Zone. This means, for example in the South Zone, that one cubic foot of aquifer below the watertable contains 0.13 cubic feet of recoverable groundwater. The change in depth to groundwater (an average value for each canal command) is a simple computation based on aquifer storage coefficient, 'area good' or 'area bad', and the difference between pumping and recharge. Estimates of depth to groundwater are therefore directly related to the aquifer storage coefficient. I I - 15 - (c) Canal Loss Factors Loss factors used to compute seepage and evapotranspiration losses from the main canal systems and the link canals are those used by IACA in their system analysis. The annual computed losses as a percent- age of annual canal head diversions are about 28 per cent in the North Zone, and 23 per cent in the South Zone. Annual link canal losses range from 5.2 MAF to 6.1 MAF. The proportion of main canal losses going to groundwater re- charge is defined by input data; in this analysis a value of 0.80 was used. (d) Watercourse Field Losses The losses assumed in the analysis are as follows: Watercourse loss 10% of watercourse delivery Field losses 30r of field delivery IACA assume that one half of the watercourse loss and one third of the field loss are non-recoverable. Therefore the recoverable loss, or recharge, is 23 per cent of the watercourse delivery and this value is used for all canal commands in the system. (e) River Losses and Gains The factors and equations used to compute river losses and gains are tabulated .in Appendix A. The factors were derived by Harza from flow records for the period 1937 - 1946 and were also used in the IACA studies. (f) Groundwater Recharge The three main components of groundwater recharge are: (i) Seepage from main canal systems (all channels in a canal command between the head of the main canal and the head-'of the watercourse). (ii) Seepage-_from watercourses and deep percolation from the f ields. (iii) Other 1os686 to groundwater which include seepage from-lik-canals and rivers, and rain throughput. Components~(i) and (ii) are directly computed in the analysis. The factors required for the computation are introduced as input data. Component (iii) is input data and values of this component for each month and for each canal command are computed by hand. Previous - 16 - studies are used to obtain total link canal and river losses. River losses in each river reach were divided into the seepage and evapo- transpiration components and the recharge from each reach computed and a similar calculation was made for link canals. The annual contribution of links and rivers to recharge within the canal cammands is of the order of 9 MAP. This is less than 'total seepage losses since some losses occur outside the canal commands. The distribution of the link and river recharge between the commands is based on map studies, and rain throughput is added to obtain monthly values of component (iii) for each canal command. The computer programme is so written that the computed values for components (i) and (ii) for each month in each command are added to input values for component (iii) to obtain total recharge. The total recharge is then multiplied by a factor (defined in the input data) to obtain the distribution of recharge between 'area good' and 'area bad'; values for this factor are obtained by map studies and hand computations based on previous system analyses. L .L SURFACE WIATER SUPPLIES (a) Indus, Jhelum and Chenab Supplies The conditions of sequential river flows used in the analysis have been described in Section 2.2. In the historic sequence, the actual river flows have a considerable bearing on the results of the analysis. Months of high river flow can produce plentiful surface water supplies and a reduction of groundwater use, whereas low flows can increase the tubewell pumping requirements and cause shortages. The mean water year used by IACA may be regarded as a bencbmark and an exam- ination of variations in the historic sequence from the mean provides a valuable guiding light in which to view the results. Table h.2 shows how the rabi flows from October to March for the historic sequences vary from the 41 year mean flows used by IACA. The most striking feature is that on total balance for the twenty year period the rabi flows between October and March in the Jhelum and Chenab Rivers combined are 17 WAP less than mean. The Chenab has a particu- larly large number of low flow years with a total of 12 MAF less than mean in rabi over the twenty year period. The Indus rabi flows are slightly higher than mean on balance over the twenty years. The overall effect of the variations in the historic sequences from the mean water years would be to produce rather critical conditions of surface water availability in the areas served by the Jhelum and Chenab Rivers alone, shown in Figure 4. These critical conditions would in turn be reflected in the remainder of the system in spite of the fact that Indus flows in total are reasonably close to the mean. One factor which influenced the choice of years was that Harza had already processed figures for river flows in a thirteen year sequence and considerable extra work was avoided by incorporating this thirteen I LIZ Land commanded by Chenob Rivger. LI] Land commonded by Jhe/um or Je/um and Chenab Rlvers. WARA 5 2 Land comrnanded by Indus or Indus, ihe/um ond Chenab IQ,vers. .. ,> pfS f/A WAR LI* Land commanded by kobul or Swa* Rivers. JIA A4AE ARG g .CHAS4 BARAAG WA T BARRAG R - RIVER AND LINK *CANAL DISTRIBUTION SYSTEM. /97/ Situa*/on (inc/udin9 / B. /Links) FSITG. 4 - 17 - year Harza period into the twenty year period for the sequential analysis. It was also considered that a more trenchant test of the IACA programme would be provided by low rabi flows than by high flows. Apart froma these overall considerations of the twenty year period, there are significant variations in individual years and months. The lowest combined rabi flow was in 1941, equivalent to 1981 in the first historic sequence and to 1971 in the second historic sequence, when the total flow was 7.0 MAF less than the mean. On the other hand in 1930, equivalent to 1970 and 1980 in the first and second sequences respect- ively, the total flow was 8.3 MAF higher than the mean. The full monthly flows for the three rivers are shown in Appendix A. TABLE 4.2 Variations of Historic Rabi Flows from Mean Flows Equivalent Equivalent Variation of Historic Rabi Flow Water Water Year Water Year October to March Year in first in second From 41 Year Mean Flow historic historic (MAF) sequence sequence Indus Jhelum Chenab 1926 1966 1976 - .1 -1.0 -1.1 27 67 77 - .7 -1.14 -1.2 28 68 78 +1.0 - .2 -1.0 29 69 79 -1.2 + 7 - .3 30 70 80 +4.6 +3.0 + .7 1931 1971 1981 0 - 3 -1.3 32 72 82 +2.2 - *3 -1.2 33 73 83 - .1 -1.2 -1.1 34 74 84 - *5* -1.1 - 7 35 75 85 + o5 -1.0 - o8 1936 1976 1966 +1.3 + .8 - .3 37 77 67 -1.6 - .3 - *9 38 78 68 -1.7 + .1 + 3 39 79 69 +2.8 + .2 - .5 40 80 70 - .8 -1.6 -1.6 19)1 1981 1971 -3.14 -1.7 -1.9 42 82 72 +1.6 +1.1 + .5 43 83 73 +1.2 + 9 +.8 44 84 74 - .9 -1.1 0 45 85 75 - .6 - 7 - .5 TOTAL +3.6 -5.1 -12.0 For input into the computer programme, flows of the Indus River at Attock are divided into the component flows of the Kabul River at IJarsak, the Swat River at Amandara and the Indus at Tarbela. The Indus at Tarbela is itself composed of the Indus at Darband plus the Siran River, a small tributary between Darband and Tarbela, Indus flows at Darband were based on Attock records and were derived from the method agreed in 1964 by Gibb, Harza and TAMS and described in Annexure 4 of the IACA Comprehensive I - 18 - Report. Studies were made by Harza in 1964 to derive data for the Swat and Kabul Rivers which when combined with the Tarbela flows would be consistent with the Attock record. The study revealed an annual discrepancy of of about 4 MAF which was removed by the introduction of a tributary inflow to the Kabul below Warsak. Tributary inflow on the Swat River below Amandara represents supplies from the Panjkora River, a major tributary of the Swat. A further tributary inflow was introduced on the Jhelum River in order to take account of the recorded gains in the river between Mangla and Rasul. (b) Ravi and Su.tlej Supplies Surface water supplies from the Ravi and Sutlej Rivers were treated differently from those of the Indus, Jhelum and Chenab. Under the terms of the Indus Water Treaty the flows of the Ravi and Sutlej will be available for use wholly by India after 31st March, 1970, unless Pakistan applies for a deferment of up to three years. The procedures for sharing supplies in the Ravi and Sutlej during the transition period before 31st March, 1970, are set out in Annexure H of the Indus Waters Treaty. In January 1966 Harza made a study (unpublished) in order to determine haf much water could actually be expected by Pakistan from these rivers during the transition period. Harza based their calcula- tions on discharges in the water year 1945 which they considered to correspond approximately to average year runoff conditions for the Ravi and Sutlej. They then computed the minimum supplies which would have to be released by India to fulfill her obligations under the Treaty. Supplies were considered in two periocb; the first period extended to 30th September, 1968, after which it was assumed that Mangla releases would be fully available for use in Pakistan, and the second period was from 1st October, 1968, to the end of the transition on 31st March 1970. It was calculated that in the second period, starting on 1st October, 1968, there would be no rabi water supplies available from India. During the first period, up to the 30th September, 1968, there would be supplies from the Sutlej River at Ferozepore and from the Ravi River at Madhopur through the Upper Bari Doab Canal. The total rabi flows entering Pakistan between October and March in the water years 1967 and 1968 would be: Ravi River to Central Bari Doab Canal 0.48 MAF Sutlej River at Ferozepore 1.80 IAF Total 2.28 MAF The supplies computed by Harza for the Ravi and Sutlej Rivers were used in each of the sequential analyses and are tabulated in Appendix A. The rabi supplies computed by Harza are substantially less than either the assumed replacement storage at Mangla of 4.75 MAF or the historic deliveries from the Ravi and Sutlej. The effect on the analysis of these low rabi supplies is to produce shortages which may or may not occur in-practice during the years before the advent of XMangla, I I - 19 - a period which is well before the IACA projections become effective. 4.5 WATERCOURSE REQUIREMENTS Irrigation water requirements at the watercourse are functions of the development programme and are the primary determinants of the scope and timing of other physical works such as storage reservoirs, enlarge- ment of main canals and link canals, tubewell capacities and the gener- ating facilities needed to serve the pumping loads. Monthly watercourse requirements for each canal command for each year of study constitute the most important block of input data. The watercourse requirements account for 10,000 separate values out of about 60,000 separate values for all kinds of input data in each sequential analysis. As part of their planning studies IACA computed watercourse requirements for the reference years 1970, 1975 and 1985 and estimates were also made for present conditions of development. For the years 1975 and 1985 the requirements were based on full crop watering for the projected cropping patterns and intensities. In the period prior to 1975 the transition from present day watercourse deliveries with its associated underwatering and unregulated deliveries to optimal deliveries was accomplished in three ways. (i) In commands where public tubewells are installed, full delta watercourse requirements coincide with the implementation of the project. (ii) In the remaining commands, supplied by the Jhelum and Chenab rivers, Mangla reservoir is assumed to be capable of regulating rabi flows. In these areas historic seasonal totals were maintained but re- distributed by months in accordance with the computed requirements. (iii) In commands served by the Indus main stem in which no public tubewell development was scheduled before 1975 mean historic monthly deliveries were maintained without regulation. In conditions (ii) and (iii) an extra allowance was made for the contribution of private pumping. These figures were derived for the 61 development units of the IACA study and therefore had to be rearranged to suit the 42 canal commands used in the analysis. Finally it was necessary to inter- polate between the reference years to obtain watercourse requirements for the remaining years of the study period. Interpolation factors were used which were keyed to the IACA projections for growth of intensities. A programme was developed for an IBM 1620 computer and used to compute the monthly values and punch the cards in the format required for the IBM 709M. Such an approach necessarily involves a I iI - 20 - certain degree of approximation and the validity of the figures should only be viewed on an overall basis. Figures for the annual total of watercourse requirement in certain reference years in each command with the appropriate intensity are given in Appendix A. 1!.6 POIWER DEMANDS AND INSTALLATION The forecasts of basic power and energy demands prepared by Stone and Webster were used as input data in the sequential analysis. The basic load includes all classes of load other than pumping loads for irrigation and drainage. Pumping loads are computed in the analysis by applying factors to the monthly volumes of groundwater pumping and then added to the basic loads to obtain energy and power demands for the system. The thermal plants and hydro-electric generating units were introduced during the study period in accordance with the Stone and Webster schedule reproduced in Appendix A. The boundary of the North Zone is south of the Multan thermal plant. The South Zone includes Karachi for the purpose of this analysis. The capacity of the North- South inter-tie is defined by input data, and a capacity in excess of potential transfers was used in the study in order to determine the maximum extent to which the output of the North Zone hydro plant could be used in the South. h.7 OPERATING CRITERIA (a) Mixing Ratios In the IACA studies groundwater quality zones were treated as separate entities and the following mixing ratios were adopted.* Deep Groundwater Average Mixing Ratio Quality Zone Surface Wvfater to (ppm TDS) Groundwater 0 - 1000 No restriction 1000 - 2000 1 : 1 2000 - 3000 2½ : 1 Over 3000* No groundwater use *Although the computer study does not deal with groundwater zones explicitly the mixing ratio is controlled in the programme by a factor which only permits a prQportion of the watercourse delivery to be met by ground- water. This factor will vary from 1.0 in a fresh groundwater zone to zero in a saline zone, and for a command with different zones a weighted average factor was calculated. These calculations were made separately for each command over the twenty years and account for the apparent monthly variation of pumping capacity. This factor was also used to control the internal distribution of ground- water within a canal command and prevent pumps from supplying the watercourse requirements of an area not served by tubewells. This is particularly important in the case of private tubewells which are concentrated in portions of the canal command and cannot supply the remainder of that command. **Over 2000 ppm in Lower Indus commands. I - 21 - (b) Reservoir Operation The reservoirs were operated in the manner suggested in the IACA Report with the following fixed release patterns, shown below as a monthly percentage of live storage. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Mangla* 23 15 10 10 24 18 - - Tarbela - 8 11 21 26 19 10 5 Sehwan - 10 30 27 33 - - - The releases at Tarbela were slightly modified in 1975 since only 5 ItAF was impounded in the previous year. The release patterns were developed to make allowance for an average condition of low rabi, but would clearly be modified in operation to match the variation in river flows. It was however, considered too complicated to vary the release patterns in the study, and hence they remained constant. After an examination of preliminary results it was concluded that there was no justification in maintaining the drawdown level at Mangla as high as 1075. Consequently the reservoir was drawn down to 1040 in all years except 1975 when there appeared to be a slight shortage of power capability. The following outlet facilities were assumed to be effective: Mangla below Spillway crest (1086) 4 tunnels Tarbela below Spillway crest (1492) 4 tunnels Sehwan No restriction Outlet capacities below the spillway level at Mangla and Tarbela are governed by the installation of turbines and valves. Above the spillway crest the capacity is virtually unrestricted. (c) Link Canals The computer programme provides for several alternative modes of operation for the Chasma-Jhelum and Taunsa-Panjnad Links. In this analysis the Chasma-Jhelum Link is operated to meet requirements at Trimmu, and the Taunsa-Panjnad Link is operated to meet requirements at Panjnad, when Jhelum and Chenab flows are not sufficient to meet the demands at these diversion points. *Due to an input error, a small amount of impounding takes place at INangla in April. In fact this makes no significant difference to the analysis as in a mean year 0.3 MAF is in any case involuntary impounded due to the restriction of the outlet capacity. - 22 - CHAPTER 5 PRINCIPAL RESULTS OF ANALYSIS 5.1 GENERAL The results of the sequential analysis for the period 1966-1985 generally confirm the earlier studies made by IACA for certain reference years including 1975 and 1985. The water and power demands of the system as projected by IACA and Stone and Webster are adequately served by the physical works embodied in their development programmes. As discussed elsewhere in this chapter, the sequential anlaysis revealed some irrigation shortages in the early years of development, and also in some months of critically low water years prior to the commissioning of Tarbela. The former shortages occur before the IACA projections become effective, and the latter shortages are reflections of the underwatering assumed by IACA in the pre-Tarbela period. The minimum reserve generating capacity of the system is higher in most years than indicated in the Stone and Webster report due to the lower pumping loads derived in the study* A study to determine whether these findings would justify modifications in the power develop- ment would be beyond the scope of this report. The method of sequential analysis is a valuable technique for examining alternative development plans and for providing a basis for planning decisions. It would however, be unwise to attach too much emphasis to the figures derived in this study. It should be recognized that any particular topic will in most cases require more detailed analysis than is possible in this form of study. Studies using a time base shorter than one month would be required when considering the design or operation of individual projects. This comment applies to features such as reservoir release patterns, outlet capacity require- ments, and integrated operation of the thermal and hydro plants, where the results of a sequential analysis should be supplemented by daily or weekly operation studies. Four copies of the complete series of computer output for this study were produced. One copy was submitted to the Bank, one sent to WAPDA, and one each retained by Gibb in London and Harza in Chicago. However, summaries of the most important parts of the output have been reproduced as Appendices B to C of this report. The system summary sheets for the mean-year sequence together with the breakdown summaries for the North and South zones are contained in Appendix B. The system summary alone for the first historic sequence is presented in Appendix C. * The pumping loads derived are in line with the latest projections of IACA made in July 1966. - 23 - 5.2 IRRIGATION SUPPLIES (a) Surface and Groundwater Deliveries Table 5.1 presents a summary of the watercourse requirements for the next two decades and shows the breakdown of deliveries in terms of surface and groundwater, under mean year conditions. The volume of groundwater pumped is slightly higher than projected in the IACA report for the reference years. The subject of groundwater pumping is con- sidered in Section 5.2(c). TABLE 5.1 W4atercourse Requirements and Mean Year Deliveries (MAF) Year Water Surface Ground Shortage course water water reqt. 1966 68.7 56.8 9.6 2.3 1967 70.3 55.4 12.9 2.0 1968 72.4 56.7 15.6 0.1 1969 73.8 54.2 19.2 0.4 1970 75.3 53.3 21.7 0.3 1971 78.2 54.1 23.8 0.3 1972 80.6 54.4 25.6 o.6 1973 83.8 55.7 27.1 1.0 1974 87.3 57.0 29.1 1.2 1975 92.1 61.1 31.0 0.0 1976 95.3 63.2 32.1 0.0 1977 97.4 63.2 34.2 0.0 1978 99.6 63.3 36.3 0.0 1979 101.8 63.2 38.6 0.0 1980 103.9 64.2 39.7 0.0 1981 107.8 67.1 40.7 0.0 1982 109.6 68.9 40.7 0.0 1983 111.7 70.6 41.1 0.0 1984 114.3 73.1 41.2 0.0 1985 116.5 74.4 42.1 0.0 The growth of requirements and deliveries is also represented graphically in Figure 5. Shortages are not shown in Figure 5 as they represent too small a proportion of the requirements to be illustrated in this way. I /20 - I/O loo I- 90 __ _ __ _ __ _ _ require-n7ents 80 _ _ _ .__ 70 ____ (rnean yea,-)r d - 60 ____ .50__ 4 0_ _ _ _ _ __ _ _ __ _ Gr-ounrdwCl^e r dfe/Averl/es _ 30 l X a(rn an ye ar)J 30 // . 20 _III ___ WATER YEAR 66 67t 6 69 ,9 to 7'72 7 1975 /70 o7 7 7 759 75 6,2 8,3 8/ 5 GROWTH OF WATERCOURSE REQUIREMENTS AND MEAN YEAR DELIVERIES. FIG. 5 - 24 - (b) Shortages and Surplus The crucial test of the IACA programme as analysed in this study is the extent to which the planned installation of groundwater and surface water facilities can meet the demands of the projected agri- cultural growth. Any deficiency would appear as a shortage at the watercourse. The pattern of shortages that arise under mean year conditions is shown in Table 5.2. TABLE 5.2 Watercourse Shortages (October - May) Mean Year Sequence (MAF) Oct. Nov. Dec. Jan. Feb. M4ar. Apr. 1Iay Total 1966 .58 .65 .140 .26 .41 - - - 2.30 1967 .42 .51 .31 .22 .51 - - - 1.97 1968 - - .03 - .05 - - - .08 1969 - - .08 .13 .19 - - - .40 1970 - - .07 - .22 - - - .29 1971 - - - - .27 _ - - .27 1972 .01 - .08 .09 .44 - - - .62 1973 - - .11 .27 .55 .10 - - 1.03 1971 - - .06 .33 .64 .20 - - 1.23 1975 - - - - .04 - - - .O0 No shortages were revealed in the analysis beyond 1975, at which point there is ample surface storage available and the tubewell pro- gramme is well advanced. This result in itself is not very significant, since the programe is geared to meet water requirements in conditions lower than mean. Any deficiencies would have been surprising and an indication of incorrect projections. The output of Appendix B does show occasional small shortages in Kharif, which are the result of approximations in the method of calculation and should be ignored. The total shortage prior to 1975 is 8.2 MA and occurs primarily in two periods, the first two years of the study, and the period from 1972 to 19714 just before Tarbela comes into operation. The combined shortage of 1.3 IAF in 1966 and 1967 arises from the restricted allowance that has been made for the flows of the Ravi and Sutlej Rivers in the trans- ition period before the advent of Mangla storage. The early years of the study are based on present deliveries, and do not form part of the IACA plan. Hence such shortages are not very meaningful and in practice would depend entirely on the actual flows passed down the Sutlej and Ravi. The impact of Mangla reservoir in the water year 1968 is evident, and this factor in conjunction with increasing tubewell capacity reduces shortages to a low level until 1973. At this point the demand is rising in anticipation of Tarbela storage. The shortages we equivalent to about 3 per cent of deliveries from October to April in 1973, rising to 3¼2 per cent in 19714. These small shortages are the result of interpolation in the input data and would be reflected in the undertatering projected by IACA before Tarbela. II - 25 - A measure of t&e efficiency of the use of water is the extent to which surface water, s passed to the sea during the period of reservoir release. Tjhe surplus at Ghulam Mohammed is shown in Table 5.3. A certain qua4tity of water is passed to the sea in October, a month during which '-substantial releases are made at Mangla. All the Mangla releases however are effectively used upstream of Trimmu and the surplus at Ghulam Mohammed is entirely due to flows from the Indus. In 1976 some water is surplus during the release period, but by 1982 this has shrunk to inconsiderable proportions. TABLE 5.3 Surplus at Ghulam Mohammed (October - May) Mean Year Sequence (MAF) Oct. Nov. Dec. Jan. Feb. Mar. Apr. Nay 1966 2.2 .5 0 .2 0 *3 1.5 3.3 1967 2.8 .6 .1 .2 0 .3 1.6 3.1 1968 2.8 .8 .1 .2 .1 .4 1.7 3.6 1969 2.8 .7 .1 .3 0 .3 1.7 3.5 1970 2.7 .7 .1 .2 0 .1 1.6 3.7 1971 2.8 .8 .1 .1 0 .1 1.5 3.3 1972 2.4 .5 .1 0 0 0 1.2 3.0 1973 2.4 .4 0 0 0 0 1.0 2.7 197T 2.3 .4 0 0 0 0 .8 2.2 1975 1.7 .2 0 0 0 0 .9 2.0 1976 2.0 .4 0 0 0 0 1.4 2.4 1977 1.9 .4 0 0 0 0 1.3 2.4 1978 2.0 .14 0 0 0 0 1.3 2.4 1979 2.1 .4 0 0 0 0 1.3 2.4 1980 2.2 .3 0 0 0 0 1.0 2.0 1981 2.0 .2 0 0 0 0 .5 1.5 1982 1.7 .1 0 0 0 0 .3 1.2 1983 0.4 0 0 0 0 0 .1 1.1 1981! 1.1 0 0 0 0 0 0 .9 1985 0.9 0 0 0 0 0 0 .7 A study of the shortages that occur under the historic sequences of river flow is a more revealing test of the programme than under the mean year sequence. These figures are shown in Tables 5.4 and 5.6 with the corresponding surpluses in Tables 5.5 and 5.7. As would be expected the shortages are somewhat larger than under mean year flows. Again neglecting the first two years of the study, the first historic sequence reveals October to Nay shortages from 1968-1974 totalling 7.3 MAF. This is an average shortage of about 3¼ per cent of the rabi watercourse requirement during the period, with the highest shortage of 6½ per cent occurring in 197M. From 1975 - 1985 the total shortage is 2.8 MAF. Of this figure, however, 2.2 MAF occurs in the month of October, which is a special case. These shortages occur in those areas which are only commanded by Mangla. The watercourse requirements in these commands are at a high peak in October and there is little spare capacity in the I - 26 - tubewells to supplement shortfalls in the river flows. The problem is accentuated by the selection of a historic sequence of flows that contains rather low rabi flows for the Chenab and Jhelum. The October to March mean for the twenty years is about 0.85 MAAF below the 41 year mean (See Section I1.4). Thus the system has been tested under some- what severe circumstances. The shortages in low water years could be alleviated to some extent by modifying the releases at Mangla for October, as suggested by the IACA report. Apart from the October shortage there is a total of 0.6 MAF occurring at random during the rabi months over the entire ten year period from 1975 to 1985. This represents less than half a per cent of the watercourse requirement and may be regarded as negligible. In any case the capacity of the Chasma reservoir would be more than adequate to overcome these shortages. The pattern of shortages in the second historic sequence bears a marked resemblance to that of the first historic sequence. From 1968 to 19714 there is a total October to May shortage of 9 MAF, the worst amnual total reaching 2.5 MAF in 1971. From 1975 onwards the shortage is 2.9 MAF of which the largest proportion, 1.7 MAF occurs in the month of October for similar reasons as before. Of the remaining shortages part arises in 1975, when the full benefit of Tarbela is not available, and part is due to an exceptionally low May in 1984. In both historic sequences occasional shortages are apparent in June, and there are also September shortages in the Jhelum and Chenab commands in the early years of the second historic sequence before the completion of the T-P Link. The effect of a low June would be offset by a reduction in the reservoir impounding for that month. Finally an examination of the critical years in 1976 and 1985 reveals no significantly large shortages. The conclusion that can be drawn from these results is that subject to the limitations of the accuracy of the basic assumptions the IACA programme contains adequate facilities to meet the irrigation demands. The IACA programme was not intended to meet requirements under all conditions that might arise and small shortages were therefore expected in some months of the historic sequences. Such shortages as exist are confined almost entirely to the period prior to 1975, or more pertinently the commissioning of Tarbela, and even these shortages are put in perspective when compared to the total projected watercourse deliveries over the twenty years of 1840 MAF. I - 27 - TABLE 5.4 Watercourse Shortages (October - May) 1st Historic Sequence (I4AF) Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Total 1966 .90 .64 .1h0 .45 .94 .20 .16 - 3.69 1967 .41 .62 .S3 .42 1.01 .78 .26 .20 4.13 1968 .51 .09 .20 .16 - .16 - - 1.12 1969 - - - .03 .42 - - - 0.45 1970 - _ _ - - 1971 .h1 - .07 - .43 .05 - 0 0.96 1972 .01 - - .06 .51 - _ _ 0.58 1973 .11 - .08 .35 .88 .28 _ - 1.70 1974 - - .10 .43 1.02 .72 _ .21 2.148 1975 .L4t .04 _ - - - - - 0.48 1976 .17 - - .05 - - - - 0.22 1977 .15 - _ - - - - - 0.15 1978 .39 - - - .03 - - - 0.12 1979 .23 - .01 .09 - - - - 0.33 1980 .01 - - .06 .02 .04 - - 0.13 1981 .57 - - - .15 - - - 0.72 1982 - - - - 1983 - - _ _ _ _ _ _ - 1984 - - - - - .01 - - .01 1985 .30 - - - - .07 - - .37 TABLE 5.5 Surplus at Ghulan Mohammed (October - May) 1st Historic Sequence (MAF) Oct. Nov. Dec. Jan. Feb. Mar. Apr. M4ay 1966 2.2 o.6 .1 .2 0 0 1.2 2.5 1967 Li.14 1.1 .1 .1 0 0 .6 1.0 1968 2.0 0.4 0 .2 .2 .9 2.7 5.2 1969 2.4 .6 .1 .2 0 .2 1.1 1.4 1970 3.8 1.4 .5 .6 .2 1.3 t1.1 6.1 1971 2.2 .7 .2 .1 0 0 1.2 2.6 1972 3.3 1.1 .2 0 0 0 .9 1.2 1973 2.1 .3 0 0 0 0 .1 1.4 1974 3.5 .7 .1 0 0 0 0 0 1975 1.3 .2 0 0 0 0 .8 2.0 1976 2.0 .14 0 0 0 .5 1.9 4.8 1977 1.7 .2 0 0 0 0 1.1 3.1 1978 .7 0 0 0 0 0 1.9 6.3 1979 .9 0 0 0 0 1.1 2.7 5.1 1980 2.1 .4 0 0 0 0 .4 .9 1981 .5 0 0 0 0 0 .1 2.0 1982 .7 0 0 0 0 0 1.4 1.8 1983 .7 .1 .3 .1 .1 0 .5 .5 1984 1.9 .1 0 0 0 0 0 .1 1985 .7 0 .1 0 0 0 0 0 - 28 - TABLE 5.6 Watercourse Shortages (October - May) 2nd Historic Sequence (IMAF) Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Total 1966 .91 .74 .43 .47 .63 0 0 0 3.18 1967 .85 .60 .36 .31 .58 .29 0 0 2.99 1968 .48 .08 .04 0 .11 0 0 0 .71 1969 .75 .16 .39 .35 .09 0 0 0 1.74 1970 .23 .01 .22 .19 .65 .57 0 0 1.87 1971 .68 .06 .27 .19 .90 .04 0 0 2.50 1972 .01 .04 .18 0 .02 0 0 0 0.25 1973 0 0 0 0 .41 0 0 0 O.bh 1974 0 0 .08 .33 .74 .41 0 0 1.56 1975 .17 0 0 0 .20 .18 0 0 0.55 1976 .15 0 0 .06 .17 0 0 0 .38 1977 0 0 0 .09 .14 0 0 0 .23 1978 .39 0 0 .06 0 0 0 0 0.45 1979 0 0 0 0 .01 0 0 0 0.01 1980 0 0 0 0 0 0 0 0 0.0 1981 .08 0 0 0 0 0 0 0 0.08 1982 0 0 0 0 0 0 0 0 0.0 1983 .3L4 0 0 0 0 0 0 0 .34 198)4 0 0 0 0 .01 .11 0 .24 0.36 1985 .53 0 0 0 0 0 0 0 0.53 TABLE 5.7 Surplus at Ghulam Mohammed (October - May) 2nd Historic Sequence (iAr) Oct. Nov. Dec. Jan. Feb. Mar. Apr. M4ay 1966 2.3 .6 .1 .2 .1 1.0 2.2 5.6 1967 2.7 .5 .0 .2 0 0 1.5 4.0 1968 1.4 .2 .1 .2 0 .4 2.6 7.5 1969 1.9 .4 0 .2 .1 1.5 3.0 6.3 1970 2.7 .8 .1 .1 0 0 1.0 2.5 1971 .8 .1 0 0 0 0 .9 3.8 1972 1.3 .2 0 0 0 .2 2.3 3.7 1973 3.6 1.7 .1 0 0 0 1,4 2.1 1974 3.2 .6 0 0 0 0 .6 1.5 1975 1.8 .2 0 0 0 0 .9 1.2 1976 2.1 .5 .1 0 0 0 .8 1.2 1977 3.6 .9 .1 0 0 0 .1 0 1978 1.0 0 0 0 0 .5 2.1 4.1 1979 1.8 .1 0 0 0 0 .7 .2 1980 3.4 1.1 .3 0 0 .9 3.6 4.7 1981 1.3 .1 0 0 0 0 .2 .6 1982 2.6 .5 0 0 0 0 .5 0 1983 .4 0 0 .1 .1 0 0 .1 1984 2.1 .1 0 0 0 0 0 0 1985 .8 0 0 0 0 0 0 .8 - 29 - (c) Control of the Watertable The IACA programme emphasises the intensive installation of tubewells in areas underlain by usable groundwater. Both public and private development are important to this programme in the early years but by 1980 most of the usable groundwater in the canal commanded areas would be covered by the public tubewell projects. These projects would then be extended at a declining rate into the few remaining canal commanded areas with usable groundwater during the decade after 1980. Also by about 1980 the early public tubewells would be operating at about their maximum average utilisations. The general pattern of pump- ing to be expected from the IACA programme is therefore a steadily in- creasing quantity of water pumped up to about 1980 with a decreasing rate of pumping thereafter, approach-ing the peak level by 1985. This pattern is confirmed in the sequential analyses as can be seen from the groundwater pumping by years shown in Figure 6. The slightly higher groundwa-ter delivery than in the IACA study is caused in 1975 by de- watering and in 1985 by overpumping; also there is slightly more pump- ing due to an assumption of higher recharge from rivers and link canals than in the IACA study. The effect of these factors on the tubewell pumping is very small. Other aspects of Figure 6 which call for comment are the effects of surface water storage and the relation of pumping in the historic river flow sequences to pumping under mean year conditions. The advent of Tarbela storage which would be effective in the water year 1975 might be expected to cause a reduction in tubewell pumping. None- theless the rate of increase in groundwater use is apparently unaffected by the additional surface water made available from Tarbela. There are five reasons set out below for this apparent anomaly:- (i) The most important reason is that tubewells are used up to the limits of their effective capacity to prevent further rise cf a watertable which has risen to within ten feet of ground level. Very little overpumping takes place before the advent of Tarbela in the sequential analyses as pumping is limited both by the installed tube- well capacity and by the amount of the irrigation re- quirements in the project areas. Effectively, there- fore, because there has been but little overpumping before Tarbela there is also no reduction in the ground- water pumping after Tarbela but instead there is an increase due to the larger number of tubewells installed. (ii) Many of the tubewell projects are still in a phase of dewatering which would continue regardless of additional storage water. (iii) The cropwater requirements used as input for the analyses are related in part to a rise in intensities due to the use of Tarbela water outside tubewell project areas. 46- _ _ _ _ _ 44 _ _ __ - *9z s A 1~~~~~~~st. HIstoric Sequence 4 0_ __ _ _ _ _ __ __ _ 3S t ---------/ it t \~~~~~~~~~~~~2nd Historic Sew nce ,36/ 34- 3Z 'g. tMX l+ LA _ baean YeKar Sequence 32 t - X_ X_ X_4X 28 - - _ 26 - -__ _ 22 - _ _ _ _ _ _ 14 _ /0 I 66 7 6B 9 70 7) 72 7.3 74 /95 76 77 76 79 9 8/ 82 83 84 9 GROUNDWATER PUMPING BY YEARS FIG. 6 - 30 - (iv) It is assumed in the analyses that impounding at Tarbela would not be possible until August 1974 with the result that only five MAF would be released in the water year 1975. (v) The Tarbela release patterns are based on low rabi rather than mean year river flow conditions and so some surpluses would be passed to the sea in months such as April and May. However, this point is largely outweighed by the requirements of balanced recharge in (i). Between 1975 and 1980 extensive control of the watertable should be provided by the tubewell projects. By this time it should be possible under the IACA projections for the public tubewells to make use of the aquifer as a balancing reservoir with the amount of groundwater pumping related to the availability of surface water. This potential use of aquifer storage is shown by the greater variations of the historic series from the mean year conditions in the later years of the study. The variations from mean conditions in the individual years are caused solely by the differences in river flows. It can be seen from Figure 6 that although these variations are significant they do not differ by more than about five per cent from the mean when considered on a yearly basis. A further aspect of the control of the watertable is the amount of overpumping beyond the balanced recharge level. IACA concluded that a satisfactory average level for the watertable would be about 10 to 15 feet below ground level but that temporary overpumping beyond the balanced recharge level would be desirable at times of low surface water availability or prior to the introduction of new surface storage water. In the computer programme for the sequential analyses the recharge is balanced by withdrawals from the aquifer at an average level of 10 feet below the ground when sufficient surface water is available. Pumping beyond the 10 foot level may be regarded as an overdraft on the aquifer. The cumulative totals for these overdrafts in the sequential studies are shown in Figure 7. The overdraft is small before 1975 as it is restricted to those areas in which public tubewells would already have controlled the watertable. A reduction of the overdraft in 1976 is evident in the mean year study due to the use of Tarbela water. In the historic sequences the overdraft actually increases at this time due to low Chenab flows and consequent overpumping in the Punjab SCARPs in the case of the first historic series and due to low rabi flows in both the Jhelum and the Chenab in the case of the second historic series. The amount of overpumping is not large but increases steadily after 1976 until the total overdraft on the aquifer is approaching 8 MAF 1985 in the mean year sequence. Some alleviation of this overdraft is provided by reservoir releases at Sehwan/Manchar from 1982 onwards. The overdrafts in the historic sequences vary from year to year according to the monthly river flows, and these variations, shown in Figure 7 I 20- __ -J- I - _se.____- nd. Historic S equence '4J_ _ _ _____IIIIIl ,_ 16 I-e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ QLJ 13 ----/ 12---Ii-Hsoi O __- ' __- rSequenceAR 7~~~~~~~~~~~~~~~~~~fG 9 - - -- _ _ -- _ _ _ I~~~FG - 31 - emphasise how sensitive the overdraft is to the river flow conditions at any stage of development. By 1985 the total overdraft reaches about 16 MAF in the first sequence and about 18 IIAF in the second sequence or about double the overdraft in the mean year sequence. There are two reasons for this higher level of overpumping found in the historic sequences. Firstly, as explained in Section 4.4, the total rabi flows on the Jhelum and Chenab in the historic period 1926- L6 are about 17 IIAF lower than under the 141 year mean conditions. This factor alone is sufficient to account for the differences in over- pumping between the historic and mean year sequences and provides an indication of the way in which the system would be capable of over- pumping if faced with a series of low rabi years. The second reason for the higher rate of overpumping in the historic sequence is the constraint imposed by canal capacities in certain commands. The effect of this constraint is that the overdraft on the aquifer cannot always be replaced by additional surface water at times of high river flows. The total overdraft of 8 MAF in 1985 with the mean year sequence would be equivalent to a drawdown of less than three feet over the entire fresh groundwater area in the canal commands. In practice the drawdown would be concentrated in certain canal commands but this general figure for the drawdown does indicate that the overpumping would not be at all excessive. Between 1976 and 1979 in the mean year sequence the total overdraft is increasing at a rate of only about ½2 YiAF a year which is very small in relation to the total irrigation deliveries of about 100 MAF a year. The more rapid increase in over- pumping at a rate of about 1 MAF a year after 1979 is indicative of the rising demand for storage projected in the IACA progranme. The total figures for groundwater use are derived from the de- tailed figures calculated in the sequential analyses for individual canal commands. The depth of watertable in the fresh groundwater areas is shown by years under the assumed method of system operation in Figures 8, 9 and 10 for Rohri, Panjnad and Abbasia and Lower Jhelum commands. Rohri Canal command is selected as representative of the Lower Indus Region and also because it has the greatest drawdown of any of the commands in the basin under the method of analysis. By 1982 the watertable is at a depth of over 40 feet in the mean year sequence or over 70 feet after a series of low river flows in the first historic sequence, as shaon in Figure 8. After 1982, the overdraft on the aquifer is reduced by the introduction of storage water from Sehwan/ Manchar and the enlargement of Rohri Canal. In practice a watertable depth of 70 feet in this area may be unacceptable for technical reasons and is certainly greater than envisaged by IACA. Some overpumping to raise intensities before 1982 was foreseen by IACA but not on this scale. However the depths shown in Figure 8 require clarification. The logic of the computer programme in its present form is not designed to eliminate drawdown by changes in surface water distribution. In practice the drawdown in Rohri could be alleviated by increasing pumping in upstream commands and thereby releasing additional surface water for use at Rohri in the rabi season. *t4 z,00 70 - --- __ _ _ _ 60- -- - - - r2nd Historic Sequ nce r rT X X 1X S X X Xf \)Won Year Sequence 50 - _ _ __ _ _ _=_ _ _.'_ o _ - S m- ~~~~~~~~~~WA rER YEAR 19 s66 6~ 7 6' c 9 /9-- -4 Ift7> 73 7 9r , z 9 , o6Z d l w DEPTH OF FRESH'v GROUNDWATER IN ROHRI CANAL COMMAND FIG. 8 2g - _ _ 2a1 I8 --- , _ _ _AT R E '7- 16 - _ /5 - - l _ l 14- Ist. hisoi eu is toric storiceSequnce _ 1! 66 67_ 68_ 69 / 7_l7__ 4 / 5 6 7 7 9 /2s / z 8 4 / d1 9 - 'I - C ~~~~~~~Mean Year Sequlerce 7- 6 _ _ _ _ _ A. ...L L ___ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ FI. 4 __ _ WATER YEAR /966C, 68 659 171 712 737I4 -7177 9 8 238,8 66 1~~970 1975 -7 7 7 9 /980 8 2 8 418 DEPTH OF FRESH GROUNDWATER IN PANJNAD& ABBASIA CANAL COMMANDS FIG. 9 70- __ _ 19- - - I I . Ist. Historic sequlence I-94- _ 2nd. Historlc Sequlence j 16 - _ _ 15 ?_ ___ _ w_ ~ ~ 4 - _ - _ _ __ l_ lc _ 14 766 6 7 f 8 6 9 {9 7o 7 =r 2 7 ffi 74 9 7S 76 77 7 B u 9 l5 '80 81 82 #3 84 85 DEPTH OF FRESH GROUNDWATER 14 - _ -_ 7 -~~~~_ _ __ s~~~~~~~~~~~~~~~~~~~~~~~ 4~~~~I4 IN LOWER JHELUM CANAL CATOMRAYEA 10-- - - - -1208_ -~~~~~~7 j 19 6 67 6 9 1i 7____75__76 77 _ 7 ___ 79 __ 19_ ___ __ __5_ 9- - -I-- 970 /9 ___ __ _ _ * -IEPHfFleEHaRONDYeArTEqR nc 8----- -NLOERJHLU -NA CMMND FIG 1 - 32 - In contrast to Rohri, the depth of the watertable in FaQn1ad and Abbasia Canal commands is seen from Figure 9 to remain stable through the period of analysis. However, it should not be concluded that all the overdraft at Rohri could be transferred to Panjnad and Abbasia. Part of the reason for the stable level of the watertable in Panjnad and Abbasia is that the canal capacities are adequate to replenish the aquifer at times of high river flow. In any case the pumping could not be increased above the level of requirements in this command. Nonetheless, it would be feasible to increase slightly the amount of pumping here and in the Trimmu commands in order to alleviate the overdraft in Rohri. The third command illustrated is Lower Jhelum Canal, which depends for its supplies on the Jhelum River with Mangla reservoir and cannot be served by the Indus (see Figure 4). In this command it can be seen from Figure 10 that there would be some overpumping prior to canal enlargement but the overdraft would be entirely made good before 1985 by use of the enlarged canal combined with the projected additional link canal capacity in the Punjab. Variations in the depth of the watertable are attributable to the availability of surface water in the conditions of river flow used for the analyses. The watertable is generally deeper under the historic sequences due to the constraint of the canal system which prevents the same degree of aquifer replenishment as would be possible under mean conditions. Canals served by the Chenab River alone (see Figure )) are not illustrated as the watertable in these commands remains generally with- in the 10 to 15 foot range, in spite of the low rabi flows in the historic sequences. (d) Link Canal System IACA expected the existing and IBP link canal system to be adequate until about 1980 when they estimated that there would be a rising demand for additional link capacity in the Punjab. An allowance was made in the input data for an additional 0.3 MAF/month capacity in the RQ and QB Links (see Figures 2 and 4) from the water year 1981 onwards. This additional capacity in the sequential analyses is utilised in many months in the QB Link and in a few months in the RQ Link. Allowance was also made in the input data for ten per cent excess over the design capacity in the TSMB Link in all years. The excess capacity seemed reasonable from the reports of early operation of the Link. Without the additional capacity there would have been some shortages in the canals served by the TSMB Link. In practice the short- ages could alternatively have been largely removed by using supplies passed dowqnstream from the RQBS Link. No capacity constraints were apparent in the others link canals. I - 33 - (e) Use of Surface Storage The IACA analysis projected a firm demand for storage on the Indus of about 5 MAF in 1975 rising to 9 MAF in 1985 under mean conditions of river flow. Projections for the period between 1975 and 1985 were made by interpolation between the reference years. The sequential analyses are operational rather than analytical in nature and are therefore not suited to an evaluation of the IACA projections for growth of stored water demand. While a general assessment can be made of the use of surface storage water, it is not possible to quantify the results. The results of the sequential analyses are illustrated in Table 5.8 which shows the breakdown of irrigation deliveries,in the mean year sequence for the period November to April, before and after the commissioning of Tarbela Reservoir. TABLE 5.8 Water Budgets Before and After Tarbela Period November to April - Mean Year Sequence (M4AF) 1974 1976 Increase W4atercourse Requirement 30.3 33.5 3.2 comprising: Surface Water Deliveries 16.5 20.7 4.2 Groundwater Pumping 12.6 12.8 0.2 Shortages 1.2 0 - 1.2 Canal Head Diversions 24.3 29.9 5.6 River Outflow 1.2 1.8 o.6 The fact that river outflow during the period November to April increases by only 0-.6 RAF between 1974 and 1976 would seem to indicate that nearly all the storage water is absorbed immediately. It cannot however be deduced--that this represents a firm demand for storage since the computer proggramme will tend to utilise surface water in preference to groundwater.--The-,analysis is further complicated by the fact that neither the capacity o'f tubewells nor the operation of reservoirs is based on mean year-conditions but is geared to low rabi conditions. A general examination of the results of the sequential analysis confirms that a steadily rising storage requirement exists from 1972 on- wards under the IACA programme. In Figure 7, the pattern of overdraft on the aquifer shows the drawdown increasing from 1977. Up to 1979 the - 314 - relatively small drawdown is in fact the result of the constraints in individual canal commands, but beyond then the rate of drawdown is more rapid which is an indication that Tarbela storage water is being fully absorbed and that the system is becoming short of water again, as projected by IACA. Between 1975 and 1985 the watercourse requirements during the release period are increasing at a rate that is approximately linear. The same is true of the pumping capacity, and it is reasonable to conclude that tlhis will be also true of the storage demand. 5.3 POWER (a) General The sequential analysis provided an opportunity to compare the Stone and Webster programme for power development with the system demands. The demands of the system are the Stone and W4ebster basic load forecasts, included as input data, and the groundwater pumping loads computed in the analysis. The principal conclusions to be drawn from the results of the sequential studies are: (i) there are deficiencies in peaking capability in the North Zone prior to commissioning of the first M4angla units; (ii) minor and infrequent deficiencies occurring in the North Zone after completion of the inter-tie in 1973 are met by transfers from the South Zone; (iii) there are no deficiencies of peaking capability in the South Zone after 1971; prior to 1971 there may be deficiencies in certain areas witlin the South Zone which would not be revealed by the analysis; (iv) system peaking capability exceeds system demand for the entire period following completion of the North-South inter-tie; (v) there are substantial power transfers from North to South in the months of July through January after the first Tarbela units are commissioned. The principal results of the analysis with regard to power and energy generation appear in the summary sheets of the ccmputer print- out (Appendices B through C) which are generally self-explanatory. 'Peak Reserve' - the difference between peaking capability and total peak load - is listed for each zone, and for the system. Ihen 'Peak Reserve' is negative in the period 1973-1985 there is a 'Firm Capacity Transfer' having the same value. I - 35 - In the North Zone, after Mangla is in operation, the hydro- plants will serve most of the power and energy demand, and the load- dispatching process adopted in the analysis has the effect of maximising the use of the hydro-plants and minimising the use of the thermal plants. It is believed that this method yields realistic values for the 'Thermal Capacity to Load's but the 'Thermal Energy to Load' would in practice be somewhat greater than compuited and the 'Hydro Energy to Load' correspondingly less. This is because the thermal plants, in order to be available at the time of peak demand, would be operating at part load during off-peak hours, although the hydro plants could meet the off-peak load. (b) Pumping Loads The power and energy required for groundwater pumping are computed in the sequential analysis in contrast to the basic loads which are input. Pumping loads are a significant part of the system demands. The annual energy demands for groundwater pumping within the canal commands are tabulated in Table 5.9. Monthly pealc power loads for the years 1975 and 1985, given in Table 5.10, indicate the magnitude and annual distribution of peak pumping loads. No interruption of service to tubewells was assumed in deriving these values. In general the power and energy demands for pumping obtained in the sequential analysis are lower than the values adopted as a basis for the Stone and Wlebster development programme. (c) Peak Reserves The minimum reserve capacities of the system after the North- South inter-tie becomes effective are shown in Table'5.11. The peak reserves obtained in the sequential analysis are somewhat greater than those given in the Stone and Webster report. The principal reasons for the difference are firstly the lower pumping loads and secondly the higher hydro peaking capability obtained due to the method of calcula- tion in the sequential analysis. Table 5.12 presents a comparison of results for the critical water years 1976 and 1985, in which adjustments have been made to place the figures on a similar basis. Transfers of power between zones obaained in the mean year analysis for 1976, 1980 and 1985 are given in Table 5.13. Transfers were not limited by inter-tie capacity, since a large capacity was adopted for the inter-tie in order to determine the potential for inter- zone power transfers. -36 - TABLE 5. 9 Annual Pumping Energy Load Mean Year Sequence (mi l lion Kwh) Year Pumping Per cent of Year Pumping Per cent of energy total load energy total load 1966 491 114 1976 2877 23 1967 726 18 1977 3153 23 1968 897 19 1978 3462 22 1969 1205 22 1979 3747 22 1970 1466 22 1980 3932 21 1971 1776 23 1981 1283 21 1972 1982 24 1982 4393 20 1973 2191 23 1983 4608 20 1974 2448 23 1984 4626 19 1975 2738 23 1985 4731 18 TABLE 5.10 Peak Pumping Load (MW) 1975 Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Mean 517 398 353 381 525 503 194 249 447 477 546 534 1st Historic 518 428 380 405 540 549 193 222 415 473 556 546 2nd Historic 533 1418 366 357 554 531 167 212 426 478 5145 539 1985 Mean 865 684 5514 653 853 809 413 505 726 791 9L11 932 1st Historic 919 759 589 671 943 900 1403 533 751 808 999 990 2nd Historic 952 754 619 705 911 903 413 500 757 783 1003 1013 Critical 899 759 640 735 959 969 834 722 694 686 985 968 TABLE 5.11 Minimum Peak Reserve Interconnected System 1973-1985 Year IMean ,Water 1st Historic 2nd Historic Critical year sequence sequence years Month _ 94 Month MW Month MW Month NW 1973 IIarch 421 March 400 March 505 1971I 4 364 " 288 334 1975 " 345 " 304 314 1976 May 555 Mlay 635 523 March 453 1977 571 " 619 530 1978 682 " 721 May 747 1979 564 " 623 " 531 1980 61414 March 652 " 625 1981 710 " 594 March 717 1982 735 May 772 May 650 1983 760 " 739 April 755 1984 965 " 994 May 546 1985 1036 " 990 '' 1095 M4ay 800 - 37 - TABLE 5.12 Reserve Generating Capacity Comparisons for Critical Water Years in 1976 and 1985 May 1976 May 1985 Sequential S & 1I Sequential S & W MW ME mlW 14W Peak pumping load 384 709 722 1211 Less interruptable - 130 - 187 Peak basic load 1850 1850 4162 4162 Total peak load 2234 2429 18814 5186 Hydro capacity 1070 1043 1937 1717 Thermal capacity 1662 1662 3747 3796 Total capability 2732 2705 5684 5513 Reserves 198 276 800 327 Adjustments a) Tubewells outside canal commands -15 -55 b) Assume no load shedding -130 -187 c) Use common value for total capability Adjusted reserves -27 -171 456 146 574 140 TABLE 5.13 Interzone Power Transfers - Mean Year Sequence (14w) Month 1976 1980 1985 October 539 833 1221 November 56Li 916 1320 December 500 855 1281 January 373 630 923 February 80 121 233 Harch 0 0 0 April 0 0 0 IHIay 0 0 -30 June 0 0 0 July 400 584 1262 August 413 641 1251 September 424 645 1265 Transfers are North to South, except for the negative value which is South to North. The maximum South to North transfer of 214 MW occurs in April 1985 (critical water year conditions). 5.4 RESMVOIR OPERATION Since the reservoirs are influenced by both irrigation and power considerations we have dealt with them under a separate heading. To I - 38 - draw any justifiable conclusions on reservoir operation it is necessary to examine the subject on a time interval that is shorter than the monthly base used in the study. Nevertheless it is possible to comment on three aspects of reservoir operation, namely drawdown levels, outlet capacities and release patterns. (i) Drawdown Levels The results of the analysis seem to confirm the view that the Mangla reservoir should be drawn down to the 100h level when required. In the pre-Tarbela period there would in general be a need for as much water as can be made available from the reservoir. Nothing arose in the analysis to suggest any alteration in the Tarbela drawdown level of 1332. (ii) Outlet Capacities The outlet capacity at Mangla of four tunnels has certain restrictive effects. It causes the involuntary impounding in a mean year of 0.3 MAF in April and it is not even possible to pass the full releases in March that were projected in the IACA plan. While no shortages were apparent in April, they did arise in March. (iii) Release Patterns. The justification for the release patterns adopted is that relatively few shortages arose after 1975, and such shortages as arose before 1975 could not be much alleviated by altering the MIangla release pattern. Two points regarding the release patterns, however, may need further consideration. Firstly it may be necessary to increase Mangla releases in October during months of low flow. Secondly releases from Tarbela in April and iMay tend to be wasted to the sea up to 1980 under conditions of mean flow. Such releases are, however, needed to counter- act low flows in these months, and they serve the dual function of reducing groundwater pumping and at the same time increasing hydro capability in the months of lowest peak reserve. Fairly severe short- ages can occur on the Indus in April and May which is the critical period for the sowing of kharif crops and a small retention in the reservoir up to the first ten days of M4ay will act as a safeguard. As a rough indication of the effect on peaking capability of storage in April it can be calculated that every 0.1 M4AF stored during this month is equivalent to increasing the peak reserve of the system by a value varying from 20 megawatts in 1977 to 30 megawatts in 1985. Thus the drawing down of the Tarbela reservoir by the end of Yarch would require a compensating increase in peak reserve of the order of 200 megawatts, which may be a high price to pay for extra releases in the early part of the year. I APPENDIX A INPUT DATA I TABLE A.1 Capacities of Link Canals (N4AF/month) First Head Tail year in Link Canal Capacity Capacity operation Remarks Upper Jhelum .703 .471 E Rasul Power Channel .217 .215 E Lower Jhelum Feeder .328 .327 E Head and tail capacities enlarged to .598 & .594 in 1981 Rasul-Quadirabad 1.142 1.n16 1969 Capacities enlarged by .3 MAF/month in 1981 Quadirabad-Balloki 1.122 .808 1969 Quadirabad-Balloki Sub Link .247 .238 1969 Lower Chenab Upper .754 .675 E Balloki-Suleimanki .784 .757 E Enlarged in 1969 to 1.I16 and 1.082 Marala-Ravi .965 .920 E Enlarged in 1969 to 1.326 and 1.174 IR Cross Link .332 .329 E Bombanwata-Ravi- Bedian-Dipalpur .310 .130 E Chasma-Jhelum 1.309 1.224 1972 Taunsa-Panjnad .724 .693 1970 Trimmu-Sidhnai .729 .692 E Haveli .320 .265 E Sidhnai-Mailsi- Bahawal .673 .655 E Nara .917 .826 E Sehwan-Nara 1.321 1.226 1983 E = Existing canal at start of analysis I TABLE A.2 Canal Head Capacities (MAF/month) Date when Initial Enlarged enlargement Canal Command capacity capacity becomes effective Upper Dipalpur ,124 Central Bari Doab .141 .173 1974 Raya Branch .095 Upper Chenab Internal .206 IR Internal .052 Sadiqia .307 Fordwhah .160 Pakpattan .391 Lower Dipalpur .241 Lower Bari Doab .470 .575 1983 - 85 Jhang & Rahk Branches .247 Gugera Branch .452 Upper Jhelum Internal .151 Lower Jhelum .327 .591! 1981 - 85 Bahawal .262 Mailsi .369 Sidhnai .241 .312 1981 Haveli Internal .048 .067 1972 Rangpur .163 Panjnad & Abbasia .641 1.040 1978 - 81 Upper Swat .119 Lower Swat .071 lWarsak .030 Kabul .077 Thal .452 Paharpur .030 Muzaffargarh .501 D.G. IKhan .1446 Desert & Pat .500 Begari Feeder .891 Ghotki Feeder .557 North West .452 .688 1983 - 85 Rice .579 Dadu .253 .408 1983 - 84 Khairpur Wlest .115 .171 1974 - 75 Khairpur East .145 .308 1973 - 75 Rohri North .723 .620 ) Sehwan 0 1.038 ) 1981 - 83 Eastern Nara .823 Kalri .543 Lined Channel .076 Pinyari & Fuleli 1.018 I TABLE A.3 Tubewell and Drainage Installation Effective capacities in Drainage usable groundwater zones Date of Method of Canal Command (MAF/month) Installation Disposal 1970 1975 1980 1985 Upper Dipalpur .062 .128 Central Bari Doab .039 .137 1978 R Raya Branch .148 Upper Chenab Internal .393 .447 DR Internal .035 .054 o62 Sadiqia 0 0 0 0 Fordwah .012 .111 Pakpattan .089 .148 .302 .397 Lower Dipalpur .052 .157 Lower Bari Doab .145 .228 .503 .555 1971 R Jhang & Rahk Branches .305 .332 Gugera Branch .514 .562 Upper Jhelum Internal .147 Lower Jhelum .310 1977 R Bahawal .015 .092 Mailsi .061 .101 .159 .194 1985 R Sidhnai .063 .153 .227 .244 1983 R Haveli Internal .087 1971 R (Hor) Rangpur .140 Panjnad & Abbasia .177 .330 1975 SP Upper Swat 0 0 .065 Lower Swati .002 .002 .052 Warsak 0 0 .023 Kabul 0 0 .037 Thal .021 .135 .335 .390 1982 R Paharpur .002 .012 .037 Muzaftfargarh .168 .210 1980 R D.G. Khan .013 .022 .085 .260 Desert & Pat 0 0 0 0 Begari Feeder .005 .138 Ghotki Feeder .014 .023 .092 .160 1984 SP North West 0 .040 .076 Rice 0 0 0 0 Dadu 0 .028 .051 1984 R Khairpur West .047 1973 OD Khairpur East 0 0 0 0 1967 OD Rohri North .092 .315 .446 .226 1978 OD Sehwan 0 0 0 .220 1983 OD Eastern Nara 0 0 0 0 1981 OD Kalri 0 0 0 0 1975 OD Lined Channel 0 0 0 0 1971 OD Pinyari & Fuleli 0 0 0 0 R = Disposal to river May to October R(Hor) Disposal to river by horizontal drainage SP Disposal into salt pans OD Disposal into outfalls drains to the sea TABLE A.L Gain and Loss Factors in River Reaches Approximate Length River Reach (statute miles) GF SF Ferozepore-Suleimanki 60 .091 .037 Modhopur-I8E Tail 90 .070 .050 I4arala-Khanki 30 .080 .020 NIR Tail-Balloki I10 .070 .060 Klianki-Qadirabad 20 0.0 0.0 Mangla-Rasul 0 .060 .050 Rasul-CJ Tail 100 .140 .110 Suleimanki-Islam 90 .245 .08h Islan-Panjnad 120 .259 .116 Balloki-Sidhnai 140 .615 .136 Amandara-Munda 40 0.O 0.0 Munda-Kabul River 20 0.0 0.0 Warsak-Indus River 60 0.0 0.0 Tarbela-Kalabagh 100 0.0 0.0 Kalabagh- Chasma 70 .080 .050 Chasma-Taunsa 120 .120 .080 Taunsa-Mithankot 130 .120 .080 Qadirabad-Trimmu 120 .060 .050 CJ Tail-Trimmu 60 .110 .090 Trimmu-TP Tail 100 .110 .075 TP Tail-Panjnad 70 .100 .065 Panjnad-Nlithankot 40 .040 .030 Mithankot-Gudu 50 .070 .050 Gudu-Sukkur 110 .IL0 .080 Sukkur-Ghlulam Mohammed 220 .280 .250 The general form of the river routing equation is RL = (GF x Q2) - (SF x Q1) Where RL = nett loss (+) or gain (-) in the reach SF = channel and bank storage factor for the reach (see table above) Q 2 = volume of inflow to the head of the reach during the current month (includes tributary inflow) Q1 = volume of inflow to the head of the reach during the previous month LF = channel loss factor (permanent seepage and evaporation) GF = LF + SF and is shown in the table above. TAIBLP A.5 Indus, Jhelum and Chenab River Flows - Mean Year Sequence (M4F) Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total Indus at Attock 3.62 2.14 1.87 1.71 1.62 2.h5 4.30 8.38 15.h9 22.57 19.81 8.65 92.61 Jhelum above Mangla .85 .54 .48 .53 .73 1.56 2.58 3.61 3.69 3.79 2.97 1.60 22.93 Chenab above Marala 1.o4 .52 .46 .53 .66 1.06 1.36 2.23 3.55 5.68 5.61 2.94 25.64 Note: The above flows are used for each of the twenty years of the mean year sequence. TABLE A.6 Indus River Flows at Attock - Historic Sequences (MkF) Actual First Second Water Historic Historic Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep0 Total Year Sequence Sequence Water Year Water Year 1926 1966 1976 3.38 2.66 2.13 1.78 1.34 2.06 3.37 6.71 10.86 18.74 23.38 12.11 88.52 27 67 77 1.36 2.13 1.75 1.49 1.30 1.76 3.08 5,95 8.65 20.73 19.44 6.99 77.63 28 68 78 3.28 2.10 1.88 1.58 2.18 3.47 5.39 11.17 18.55 22.72 16.48 7.99 96.79 29 69 79 3.05 2.14 1.89 1.55 1.27 2.38 3.47 6.04 13.65 18.51 25.72 9.15 88.82 30 70 80 4.29 2.70 2.33 2.31 2.25 4.18 6.48 10.04 16.98 29.76 17.34 7.67 106.33 1931 1971 1981 3.59 2.40 1.89 1.77 1.68 2.15 4.17 7.59 13.84 20.49 21.15 9.33 90.05 32 72 82 4.77 2.25 1.98 1.93 1.74 3.08 4.07 5.83 14.18 25.89 20.70 8.02 94.44 33 73 83 3.81 2.10 1.99 1.62 1.45 2.39 3.55 7.38 17.46 24.68 22.24 9.37 98.o4 34 74 84 4.22 2.09 1.79 1.61 1.42 1.83 3.32 4.h6 18.22 25.39 19.22 9.20 92.77 35 75 85 4.17 2.14 1.80 1.58 1.79 2.53 4.13 7.75 11.95 24.93 21.77 8.14 92.68 1936 1976 1966 3.91 2.29 1.92 1.65 1.61 3.4o 4.07 12.09 20.29 19.91 16.85 10.41 98.4o 37 77 67 2.95 1.92 1.80 1.65 1.58 2.03 4.24 11.22 16.99 19.36 16.01 8.18 87.93 38 78 68 2.33 2.04 2.38 1.45 1.26 2.35 5.18 15.31 17.65 20.55 19.94 7.64 98.08 39 79 69 3.20 1.99 1.67 1.59 2.25 5.58 6.22 12.30 19.59 23.15 16.88 10.52 104.94 40 80 70 4.04 2.07 1.75 1.56 1.46 1.78 4.11 7.70 17.47 20.99 14.9k 6.08 83.95 1941 1981 1971 2.39 1.77 1.51 1.37 1.26 1.78 4.05 13.47 18.37 18.36 18.114 6.88 89.35 42 82 72 3.82 1.8 1.4'l1 2.08 2.31 3.22 5.07 10.50 14.94 28.03 22.22 10.31 106.15 43 83 73 3.55 2.31 2.11 2.11 1.71 2.96 4.39 6.17 15.414 25.38 20.99 9.91 97.03 44 84 74 3.53 2.14 1.80 1.75 1.60 1.82 ,.08 7.63 10.88 21.')0 22.10 8.02 87.25 45 85 75 3.3k 2.09 1.88 1.87 1.51 2.25 4.97 7.39 17.27 27.62 18.74 10.28 99.21 I TABLE A.7 Jhelum River Flows Above Mangla - Historic Sequences (MAF) Actual First Second WVater Historic Historig Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.. Aug. Sep. Total Year Sequence Sequence Water Year Wr.Tater Year 1926 1986 1976 o.69 0.61 o.4o 0.36 0.41 1.24 2.25 4.07 3.98 3.89 2.98 1.87 22.75 27 67 77 0.82' 0.45 0.41 0.36 0.46 0.86 1.72 2.84 2.86 3.90 3,68 1.18 19.54 28 68 78 o.59 0.39 0.39 0.40 0.98 1.77 3.38 4.80 4.44 3.49 2.16 3.52 26.31 29 69 79 1.11 0.56 0.65 0.65 0.77 1.67 1.97 2.10 2.46 2.44 4.24 2.62 21.24 30 70 80 1.56 0.91 0.71 0.77 o.95 2.84 3.80 3.94 4.ol 4.98 3.02 1.42 28.91 1931 1971 1981 0.70 0.07 o.41 0.71 0.69 1.45 2.72 3.54 3.48 5.62 3.59 1.88 25.26 32 72 82 1.oo o.53 0.42 o.46 o.63 1.44 2.19 2.90 3.96 4.33 3.40 1.06 22.32 33 73 83 o.56 0.36 0.32 0.34 0.38 1.54 1.92 3.94 5.36 4.66 4.32 2.32 26.02 34 74 84 0.99 0.55 0.42 0.42 0.51 0.77 1.55 1.76 3.69 3.98 2.41 0.97 18.02 35 75 85 0.49 0.34 0.44 0.48 0.73 1.19 3.01 4.00 3.81 4.24 3.94 1.25 23.92 1936 1976 1966 0.73 0.52 0.44 o.4i o.59 2.88 3.16 4.65 4.50 3.99 2.16 1.45 25.48 37 77 67 o.63 0.48 0.59 0.53 0.87 1.31 2.81 4.20 3.67 2.78 1.79 0.98 20.64 38 78 68 0.60 0.48 0.39 0.59 0.78 1.97 3.L9 4.94 4.18 2.94 2.16 o.95 23.47 39 79 69 0.61 0.38 0.34 0.36 o.88 2.38 2.85 4.65 4.30 3.50 2.40 1.25 23.90 40 80 70 0.73 o.54 0.38 0.39 0.42 o.68 1.68 2.88 3.65 2.36 1.87 1.01 16.59 1941 1981 1971 0.61 0.43 0.33 0.35 0.34 0.97 1.92 3.42 2.67 2.36 1.54 2.03 16.97 42 82 72 0.81 0.41 0.55 0.69 1.32 2.o5 3.1) 4.21 3.50 3.27 3.25 1.91 25.81 43 83 73 0.81 0.49 0.44 1.06 0.69 2.17 2.60 3.23 4.46 4.21 3.62 1.50 25.28 44 84 74 0.72 o.44 0.38 0.43 0.52 1.15 2.24 3.08 2.28 2.49 3.43 1.50 18.66' 45 85 75 0.69 o.48 0.47 0.58 0.43 1.36 2.46 3.21 3.94 4.28 2.35 1.22 21.47 I TABLE A.8 Chenab River FLows Above lMarala - Historic Sequences Actual First Second Water Historic Historic Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total Year Sequence Sequence Water Year Water Year 1926 1966 1976 0.67 0.50 0.37 0.36 0.31 o.89 0091 1.69 2.34 4.51 6.30 3.24 22.09 27 67 77 0.89 o.46 0.37 0.33 0.38 o.64 0.73 1.24 1.75 5.28 6.39 1.81 20.27 28 68 78 0.57 0.36 0.31 0.32 0.89 0.78 1.17 2.16 3.28 4.73 3.71 2.98 21.26 29 69 79 0.76 o.48 0.73 o.56 o.53 o.86 1.21 1.61 3.20 4.Lo 6.16 2.33 22.83 30 70 80 o.94 o.45 0.60 0,78 0.73 1.47 2.07 2.53 3.63 6.79 5.06 1.80 26.85 1931 1971 1981 0.77 0.42 0.33 0.39 o.41 o.66 0.92 1.53 2.49 4.88 4.77 2.42 19.99 32 72 82 o.94 0.42 0.33 0.37 0.38 0.60 0.73 1.15 3.02 6.23 5.59 2.00 21.76 33 73 83 0.66 0.36 0.34 0.33 o.45 l.ol 0.98 2.08 k.11 6.64 6.22 2.88 26.06 34 74 84 1.17 0.58 0.42 0.41 0.41 0.51 0.81 1.14 3.95 5.85 5.21 2.42 22.88 35 75 85 0.67 0.35 0.34 o.50 o.64 o.9o 1.48 2.77 3.53 6.21 5.71 2.27 25.37 1936 1976 1966 0.62 0.42 0.37 0.33 o.49 1.67 1.25 3.52 4.83 5.11 5.07 2.74 26.42 37 77 67 0.81 o.43 o.4o 0.36 o.54 0.77 1.18 2.49 3.63 4.62 4.35 2.05 21.63 38 78 68 0.58 O.L,2 0.37 0.74 0.96 1.51 2.01 4.51 5.17 6.09 5.08 2.05 29.49 39 79 69 0.73 0.38 0.30 0.29 0.61 1.48 1.09 2.62 4.11 5.15 4.46 2.59 23.81 4o 80 70 0.79 0.36 0.29 0.27 o.4o 0.52 0.76 2.00 3.31 4.45 4.14 1.70 18.99 19M1 1981 1971 o.54 0.35 0.28 0.32 0.29 0.52 o.86 2.16 3.87 4.38 L.12 2.45 20.14 42 82 72 0.90 o.Lti 0.55 0.61 1.07 1.22 1.64 2.43 3.26 6.10 6.98 3.41 28.58 43 83 73 0.84 0.50 0.54 1.25 0.61 1.29 1.h1 1.78 3.77 6.39 7.07 3.72 29.17 44 84 74 l.oo o.48 o.4o o.49 o.64 1.21 1.76 ?.06 2.50 5.70 6.07 2.43 2L.74 45 85 75 0.72 0.43 0.13 0.69 0.42 1.08 1.56 1.83 3.84 6.77 5.03 2.75 25.55 I I TABLE A.9 Indus, Jhelum and Chenab River Flows - Supplementary Sequence Flows for 1976 and 1985 (M4AF) Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total Indus at Attock 3.01 1.69 i.h7 1.36 1.18 1.74 2.52 4.87 i4.61 17.16 13.11 9.67 72.39 Jhelum above Mangla .90 .56 .45 .h3 .51 .89 2.00 2.85 2.84 2.88 3.43 1.77 19.51 Chenab above Marala 1.01 .51 .41 .41 .46 .73 .99 2.10 3.51 4.70 7.5h 3.58 25.95 Note: The above flows are used in 1976 and 1985 of the supplementary sequence. All other years of the sunplementary sequence are the same as in the first historic sequence. TABLE A.10 Ravi and Sutlej River Flows - All Sequences (KkF) Water Years Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total Ravi supplies from Madhopur at head 1966 to 68 .075 .053 o4h9 .096 .o65 .1h6 .0A7 0 0 0 0 .032 .563 Doab Canal Sutlej supplies at Ferozepore 1966 to 68 .524 .308 .243 .363 .225 .136 .039 0 .012 .226 .2h5 .338 2.659 Sutlej supplies at 1969 to 70 0 0 0 0 0 0 0 0 0 .187 .245 .079 .511 Fero zepore Note: The above figures are based on the unpublished Harza study. Flows are shown for the water years indicated above. In all other years flows are taken Ps zero. No other Ravi River flows are taken than the Central Bari Doab Canal deliveries shown above. I TABLE A.11 Watercourse Requirements and Associated Intensities 1975 1985 Annual Annual Watercourse Associated Watercourse Associated Requirement Intensity Requirement Intensity (MAF) percent (MAF) -percent Upper Dipalpur 1.19 124 1.46 150 Central Bari Doab 1.90 138 2.08 150 Raya Branch 1.46 138 1.62 150 Upper Chenab Internal 3.22 123 3.61 137 MR Internal .56 150 .56 150 Sadiqia 2.08 73 2.10 75 Fordwah 1.11 98 1.56 135 Pakpattan 3.55 105 4.61 144 Lower Dipalpur 1.96 123 2.39 150 Lower Bari Doab 5.14 113 6.75 141 Jhang & Rahk Branches 3.66 113 4.15 123 Gugera Branch 5.21 125 5-65 131 Upper Jhelum Internal 1.71 148 1.76 150 Lower Jhelum 4.21 113 5.61 147 Bahawal 1.86 104 2.42 133 Mailsi 3.18 96 3.63 118 Sidhnai 2.63 110 3.55 144 Haveli Internal .57 134 .63 150 Rangpur 1.18 115 1.43 147 Panjnad & Abbasia 5.35 107 7.49 144 Uppper Swat .73 132 1.11 166 Lower Swat .51 120 .74 179 Warsak .18 63 .47 164 Kabul .46 140 .52 180 Thal 3.09 74 4.83 121 Paharpur .20 71 *33 121 Muzaffargarh 2.35 121 2.83 148 D. G. Khan 2.09 80 3.28 128 Desert & Pat 1.25 64 1.26 65 Begari Feeder 2.67 94 2.96 105 Ghotki Feeder 1.88 115 2.30 123 North West 2.34 116 2.94 104* Rice 1.62 83 1.62 87 Dadu 1.42 96 1.96 122 Khairpur West 1.00 115 1.30 150 Khairpur East 1.30 120 1.72 150 Rohri North 7.11 86 5.21 145 Sehwan - - 6.80 132 Eastern Nara 5.07 88 5.96 108 Kalri 1.14 66 1.37 77 Lined Channel .57 80 .64 102 Pinyari & Fuleli 3.40 70 3.32 70 * Change to non-perennial cropping pattern in North West Kirthar. I TABLE A.12 Schedule of Power Installations 1. Aggregate total Capability North Zone South Zone New Units Installed ' Capability Thermal Hvdro Thermal Existing 277 245 300 1966 Lahore-Gas Turbines 26 Sukkur & Hyderabad-Steam 48 303 245 348 1967 Lahore-Gas Turbines 26 Lyallpur units 124 453 245 348 1968 Mangla 1, 2 131 Lower Sind - Gas Turbines 26 Hyderabad - retire (3) 453 376 371 1969 Mangla 3 66 M4ari-Gas Turbines 26 Lower Sind - Gas Turbines 53 453 442 437 1970 Warsak 5, 6 80 Mari - Gas Turbines 24 Korangi 3 125 453 522 599 1971 Mangla 4 65 Mari - Gas Turbines 96 Karachi - Nuclear 25 453 587 720 1972 Mangla 5, 6 132 Northern Grid - retire (16) Karachi - Nuclear 100 437 719 820 1973 Mari - Steam 1 120 Karachi retire (16) 437 719 924 1974 Mari - Steam 2 150 437 719 1074 1975 Tarbela 1, 2 162 Mari - Steam 3 150 437 881 1224 1976 Tarbela 3 , 4 162 437 1043 1224 1977 Tarbela 5, 6 149 Korangi 4 125 437 1192 1349 1978 Tarbela 5, 6 125 Korangi 5 200 437 1317 1549 1979 Mari - Steam 4 150 437 1317 1699 1980 Mari - Steam 5 150 Korangi 6 200 437 1317 2049 1981 Mangla 7, 8 139 'Mari - Steam-6 150 437 1456 2199 1982 Tarbela 9, 10 125 Karachi - Uni-t x 200 437 1581 2399 1983 Tarbela ll,E12 136 Karachi - Unit Y 240 437 1717 2639 1984 Mari - Steamk7 240 Karachi - Unit Z 240 437 1717 3119 1985 Mari - Steam 8 240 437 1717 3359 The complete schedule of monthly power and energy demands can be seen from the output in Appendix B. 1. Reproduced from the Stone and Webster Report - May 1966. , I APMJDIX B MEAN YEAR SEQUENCE ZONAL AND SYSTEM SUNWRIES 1966-815 I WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685n72110 YEAR 1966 NORTH ZONE SUMMARY wATER (MAF) OCT NOV DEC JAN FEB MAR APR mAy JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742 FROM STORAGE RELEASE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM TRIBUTARIES 0.280 0.200 0-220 0.210- 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.000 0.000 m.ooo 0.0U0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TO RESERVOIR EVAPORA7ION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TO RIVER OUTFIOW 3.470 1.867 1.367 1.435 1.330 1.927 3.906 7.193 13.085 20.925 20.770 10.597 87.874 TO RIVER LOSS -0.751 -n.126 0.104 0.369 0.226 0.735 1.607 2.766 4.303 6.062 2.538 -2.386 15.448 TO LINK LOSS 0.164 0.068 0.070 0.062 0.081 0.215 0.269 0.266 0.276 0.280 0.278 0.278 2.307 TO CANAL LOSS 1.124 0-687 0.619 0.590 0.718 0.964 1.021 1.201 1.309 1.315 1.324 1.315 12.186 TO WATERCOURSF 2.302 1.28? 1.130 0.917 1.133 2.190 2.273 3.165 3.839 4.144 4.175 4. 007 3n.556 FROM GROUND WATER 1.121 n.928 0.811 0.699 0.864 0.788 0.707 0.598 0.763 0.637 0.738 0. 880 9.534 SHORTAGE AT WATERCOUJRSE 0.579 0-647 0.305 0.264 0.339 0.000 0.000 0.000 0.000 0.000 0.001 0.000 2.13; WATERCOIJRSE RFOT. 4.001 2.857 2.246 1.880 2.335 2.978 2.980 3.763 4.602 4.781 4.914 4.887 42.224 PUMP CAPACITY GOOD AREA 1.125 - 0.937 0.805 0.709 D.865 1.026 1.001 1.084 1.140 1.090 1.092 1.136 12.009 PUMPED FROM GOOD AREA 1.121 0.92A 0.811 0.699 0.864 0.788 0.707 0.598 0.763 0.637 0.738 0.880 q.534 EVAPORATION GOOD AREA 0.033 0.008 0.016 0.018 0.036 0.050 0.0v0 0.234 0.380 0.867 0.993 0.791 3.517 RECHARGE TO bOOD AREA 1.840 1.252 1.019 0.967 1.256 1.833 1.743 2.113 2.476 4.001 3.941 2.751 25.193 NET CHANGE -- GOOD AREA 0.686 0.316 0.192 0.250 0.356 0.994 0.947 1.281 1.333 2.497 2.210 1.O80 12.143 PUMP CAPACITY BAD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUIMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPORATION bAD AREA 0.000 0.000 0.000 0.001 0.001 0-003 0.003 0.012 0.019 0.041 0-111 0.109 0.301 RECHARGE TO BAD ARFA 0.272 0.174 0.147 0.146 0.171 0.257 0.239 0.289 0.357 0.570 0.547 0.398 3.568 NET CHANGE BAD AREA 0.272 0.174 0.146 0.145 0.170 0.255 0.235 0.276 0.339 0.529 0.437 0.289 3.268 DRAIN STORAGE CONTFNI 0.000 n.ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o.onn '-NFR6, (t' I ! CN,IVe TOTAL PUIMP LOAD 57.75 47.7? 42.70 35.38 45.28 44.45 39.00 32.99 39.59 31.19 34.16 39.00 489.19 TOTAL BASE LOAD 158.00 159.00 162.00 155.00 152.00 151.00 159.00 163.00 167.00 167.00 168.00 170.00 1931.00 TOTAL ENERGY LnAD 215.75 206.7? 204.70 190.38 197.28 195.45 198.00 195.99 206.59 198.19 202.16 209.00 2420.19 HYDRO ENERGY TO LOAD 122.20 95.60 93.84 92.99 88.89 136.99 134.74 132.61 131.64 130.29 131.27 131.56 1422. 63 THERMAL ENERGY TO LOAD 93.52 110.75 110.53 96.93 107.68 58.44 63.25 63.37 74.12 67.88 70.88 77.43 994.78 ENERGY DEFICIENCY -0.02 -0.37 -0.33 -0.45 -0.72 0.00 0.00 0.00 -0.83 0.00 0.00 0.00 -2.72 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 HYnRO ENERGY SURPLIIS 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.09 POwER (MEGAWATTS) PEAK PUMP LOAO1 101.U7 84.qn 82.30 74.92 84.16 84.95 81.81 74.81 83.05 71.22 75.19 80.90 979.28 PEAK BASE LOAD 380.00 400.00 400.00 375.00 355.00 347.00 367.00 37n.00 388.00 388.00 390.00 396.00 4565.00 TOTAL PEAK LOAD 481.07 484.9n 482.30 449.92 439.16 431-95 448.81 453.81 471-05 459.22 465.19 476.90 5544.28 HYDRO CAPACITY TO LOAD 170.48 156.09 155.27 156.49 160.20 187.68 184.59 181.80 180.35 178.50 179.84 180.24 2071.53 THERMAL CAPACITY TO LOAD 277.00 277.00 277.00 277.00 277.00 244.27 264.23 272.02 290.00 280.72 285.35 296.67 3318.24 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0-00 PEAK RESERVE -33.58 -51.61 -50.03 -16.43 -1.95 32.73 12.77 17.98 -0.70 9.28 17.65 6.33 _57.74 B-l SOUTH ZONE SUMMARY wATER (MAF) OCT NOv DEC JAN FEB MAR APR MAy JUNE JUJLY AUG SEPT TOTAL FROM RIVER INFLOW 3.470 1.867 1.367 1.435 1.330 1.927 3.906 7.lq3 13.085 20.925 20.770 10.597 87.874 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBLUTARIES 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 4.555 2.nn4 1.365 1.858 1.329 2.357 6.122 11.779 20.523 34.399 35.204 16.888 138.385 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0-000 -0.000 -0.000 -0-000 -0-000 -0-000 -0-000 -0.000 -0-000 0-000 TO RIVER OIJTFLOW 2.204 0.460 0.029 0.234 0.025 0.245 1.540 3.303 6.216 11.970 14.148 8.428 48.801 TO RIVER LOSS -1.587 -0.436 -0.051 0.157 -0.060, 0.212 0.761 1.212 1.940 3.201 1.332 -2.226 4.455 TO LINK LOSS 0.091 0.091 0.090 0.060 0.086 0.091 0-091 0.091 0.091 n.091 0-091 0.091 1.053 TO CANAL LOSS 0.654 n.41? 0.367 0.303 0.361 0.376 0.367 0.594 0.973 0.986 0.982 0.948 7.323 TO WATERCOURSE 2.108 1.341 0.933 0.681 0.918 1.003 1.147 1.993 3.865 4.678 4.217 3.357 26.241 FROM GROUND WATER O.OU6 0.004 0.005 0.004 n.oos 0.004 0.004 0.006 0.006 0.007 0.007 0.006 0.064 SHORTAGE AT WATERCnORSE 0.000 n.000 0.090 n.ooo 0.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.157 WATERCOURSE REQT. 2.114 1.34s 1.028 0.685 0.990 1.on7 1.151 1.999 3.871 4.685 4.224 3.363 26.462 PUMP CAPACITY GOOD AREA 0.007 8.005 0.005 O.0U5 0.005 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.072 PUMPED FROM GOOD AREA 0.006 0.004 0.005 0.004 0.005 0.004 0.004 0.006 0.006 0.007 0.007 0.006 0.064 EVAPORATION GOnD AREA 0.117 0.186 0.163 O.LOO 0.149 0.152 0.140 0.177 0.338 0.678 n.760 0.631 3.593 RECHARGE TO bOOD AREA 0.319 0.19n 0.155 0.115 0.143 0.166 0.145 0.194 0.440 0.738 0.767 0.637 4.010 NET CHANGE -- GOOD ARFA 0.196 -0.000 -0.013 0.011 -0.011 0.010 0.001 0.010 0.096 0.053 -0.000 -0.000 0.353 PUMP CAPACITY BAD AREA 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPORATION UAD AREA 0.543 0.459 0.374 0.272 0.373 0.403 0.429 0.751 1.280 1.702 1.660 1.276 q.522 RECHARGE TO BAD AREA 0.738 0.462 0.360 0.288 0.362 0.417 0.430 0.774 1.325 1.764 1.676 1.279 9.876 NET CHANGE BAD AREA 0.195 0.003 -0.014 0.017 -0.011 0.014 0.002 0.024 0.045 0.062 0.016 0.003 0.354 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0;000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 0.49 0.33 0.41 0-33 0.41 0-33 0-33 0.48 0.47 0.53 0.53 0.45 5.10 TOTAL BASE LOAD 81.00 80.00 80.00 78.00 78.00 80.00 82.00 85.00 87.00 87.00 88.00 92.00 998.00 TOTAL ENERGY LOAD 81.49 80.33 80.41 78.33 78.41 80.33 82.33 8r.48 87.47 87.53 88.52 92.45 1003.10 HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -0.00 -0.00 -0-00 -0.00 -0.00 -0-00 -0.00 -0.00 -0.00 0.00 THIERMAL ENERbY TO LOAD 81.49 80.33 80.40 78.33 78.40 80.33 82.33 85.48 87.46 87.52 88.52 92.44 1003.03 ENERGY DEFICIENCY 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER o.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 0.77 0.57 0.64 0.52 0.64 0.52 0.52 0.76 0.74 0.84 0.83 0.71 a.03 PEAK BASE LOAD 170.00 169.00 170.00 166.00 166.00 171.00 178.00 183.00 186.00 187.00 193.00 196.00 2135 00 TOTAL PEAK LOAD 170.77 169.52 170.64 166.52 166.64 171.52 176.52 181.76 186.74 187.84 193.83 196.71 2143.03 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY TO LOAD 170.77 169j52 170.64 166.52 166.64 171.52 178.52 183.76 186.74 187.84 193.83 196.71 2143.03 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 177.23 178.48 177.36 181.48 181.36 176.48 169.48 164.24 161.26 160.16 154.17 151.29 2032.97 B-2 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr SEPT TOTAL FROM RIVER INFLOW 6-029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742 FROM STORAGE RELEASE 0.000 0.000 0.000 0.000 0.000 o-ooo 0o000 0.000 0.000 0.000 0.000 0.000 0.000 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 4.555 2.004 1.365 1.858 1.329 2.357 6.122 11.779 20.523 34.399 35.204 16.888 138.385 TO RESERVOIR EVAPORATION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TO RIVER OIJTFLOW 2.204 0.460 0.029 0.234 0.025 0.245 1.540 3.303 6.216 11.970 14.148 8.428 48.801 TO RIVER LOSS -2.338 -0.562 0.053 0.527 0.166 0.947 2.369 3.978 6.244 9.263 3.870 -4.613 19.903 TO LINK LOSS 0.255 0.159 0.160 o.1z3 0.167 o.305 o.359 o.357 0.367 0.371 0.369 0.368 3.360 TO CANAL LOSS 1.778 1.099 0.986 0.893 1.079 1.340 1.388 1.795 2.282 2.300 2.306 2.263 19.509 TO WATERCOURSE 4.410 2-623 2.063 1.598 2.051 3.193 3.420 5.158 7.704 8.822 8-392 7.364 56.796 FROM GROUND WATER 1.127 0.93? 0.816 0.703 0.869 0.792 0.711 0.604 0.769 0.644 0.745 0.886 9.598 SHORTAGE AT WATERCOURSE 0.579 0.647 0.395 0.264 -0.406 0.000 0.000 0.000 0.000 0.000 0.001 0,000 2.292 WATERCOURSE REOT. 6.115 4.202 3.274 2.565 3.325 3.985 4.131 5.762 8.473 9.466 9.138 8.250 68.686 PUMP CAPACITY GOOD AREA 1.132 0.94? 0.810 0.714 0.870 1.031 1.006 1.091 1.147 1.097 1.099 1.143 12.081 PUMPED FROM GOOD AREA 1.127 0.93? 0.816 0o703 0.869 0.792 0.711 0.604 0.769 0.644 0.745 0.886 9.598 EVAPORATION GOOD AREA 0.150 0.194 0.180 0.118 0-185 0.203 0-230 0.412 0.718 1.545 1-753 1.422 7.110 RECHARGF TO GOOD AREA 2.159 1.441 1.174 1.082 1.400 1.999 1.889 2.307 2.916 4.739 4.708 3.389 29.203 NET CHANGE -- GOOD AREA 0.882 0.316 0.179 0.261 0.345 1.004 0.948 1.291 1.429 2.550 2.210 1.080 12.495 PUMP CAPACITY BAD APEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPORATION fAU AREA 0.543 0.460 0.375 0.272 0.374 0.405 0.432 0.763 1.299 1.744 1.771 1.385 9.823 RECHARGE TO "AD AREA 1.010 0.636 0.507 0.434 0.533 0.674 0-669 1.063 1.682 2.334 2.224 1.677 13.444 NET CHANGE BAD AREA 0.467 0.177 0.132 0.162 0.159 0.269 0.237 0.300 0.383 0.591 0.453 0.292 3.621 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 58.24 48.05 43.11 35.71 45.69 44.78 39.33 31.48 4n.06 31.72 34.68 3q.45 494.29 TOTAL BASE LOAD 239.00 239.00 242.00 233.00 230.00 231.00 241.00 24A.00 254.00 254.00 256.00 262.00 2929.00 TOTAL ENERGY LOAD 297.24 287.05 285.11 268.71 275.69 275.78 280.33 281.48 294.06 285.72 290.68 301.45 3423.29 HYDRO ENERGY TO LOAD 122.20 95.6n 93.84 92.99 88.89 136.99 134.74 132.61 131.64 130.29 131.27 131.56- 1422.63 THERMAL ENERGY TO LOAD 175.01 191.07 190.93 175.26 186.08 138-77 14 CR 166-n 85 1 --^1 a-, i997.rl ENFRr.Y FrFTr!rK,Cl -U,37 -G.33 -u.-5 -0.72 0-00 0.00 0-00 -0.83 0-00 0.00 0.00 -2-72 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SIIRPLIIS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.09 POWER (MEGAWATTS) PEAK PUMP LOAD 101.84 S85.4? 82.94 75.45 84.80 85.47 82.34 75.57 83.79 72.05 76.02 81.61 987.31 PEAK BASE LOAD 550.00 569.00 570.00 541.00 521.00 518.00 545.00 56P.00 574.00 575.00 583.00 592.00 6700.00 TOTAL PEAK LOAD 651.84 654.4? 652.94 616.45 605.80 603.47 627.34 637.57 657.79 647.05 659.02 673.61 7687.31 HYDRO CAPACITY TO LOAD 170.48 1S6.09 155.27 156.49 160.20 187.68 184.59 181.80 180.35 178.50 179.84 180.24 2071.53 THERMAL CAPACITY TO LOAD 447.77 446.5? 447.64 443.52 443.64 415.79 442.75 455.78 476.74 468.55 479.18 493.37 5461.27 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 143.64 126.67 127.33 165.04 179.40 209.21 182.25 182.22 160.56 169.45 171.82 157.63 1975.23 B-3 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMFER 6685072110 YEAR 1967 NORTH ZONE SUIMMARY WATER (MAF) ocr Nov DEC JAN FEB MAR APR *AY JUNE JUL Y AUG SEPT TOTAL FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742 FROM STORAGE RELEASE 0.000 0-000 0-000 0-000 0.000 0.000 0.000 -1.481 -1.626 -1.426 -0.392 0.001 -4.925 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 TO RESERVOIR EVAPORATION 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.021 0.034 0.025 0.027 0.002 0.109 TO RIVER OUTILOW 3.904 1.910 1.386 1.442 1.324 1.945 4.017 6.827 12.146 20.064 20.241 10.409 85.615 TO RIVER LOSS -1.392 -0.142 0.122 0.353 0.245 0-739 1.635 2.191 3.883 6-000 2-775 -2.221 14.187 TO LINK LOSS 0.174 0.072 0.070 0.057 0.072 0.209 0.252 0.236 0.274 n.279 0.277 0.27R 2.250 TO CANAL LOSS 1.120 0.690 0.614 0.603 0.723 0.947 0.960 1,102 1.300 1.301 1.311 1.302 11.972 TO WATERCOURSE 2.502 1.261 1.100 0.923 1.134 2.172 2.211 2.733 3.549 3-632 4.063 4.041 2q.321 FROM GROUND WATER 1.352 1.054 0.905 0.808 1.084 1.128 0.816 0.979 1.155 1.087 1.082 1.149 12.599 SHORTAGE AT WATERCOURSE 0.415 0.511 0.244 0.216 0.431 0.000 0.000 0.000 0.000 0.000 0.004 0.000 1.s71 WATERCOURSE REOT. 4.269 2.825 2.249 1.947 2-649 3.300 3.027 3.712 4.704 4.719 5.150 5.190 43.741 PUMP CAPACITY GOOD AREA 1.349 1.01 0.900 0.806 1.082 1.237 1.148 1.215 1.364 1.305 1.300 1.3'3 14.110 PUMPED FROM GOOD AREA 1.352 1.054 0.905 0.8U8 1.084 1.128 0.816 0.979 1.155 1.087 1.082 1.149 12.599 EVAPORATION bOOD AREA 0.335 0.203 0.219 0.185 0.229 0.352 0-404 0.561 0-851 1.542 1.521 1.10P 7.510 RECHARGE TO GOOD ARFA 1.923 1.274 1.028 0.998 1.302 1.879 1.708 2.029 2.491 3.982 3.979 2.805 25.398 NET CHANGE -- GOOD AREA 0.236 0.01P -0.097 0.005 -0.011 0.398 0.488 0.488 0.485 1.353 1.376 0,549 5.288 PUMP CAPACITY BAD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUMPED TO DRAINAGE 0.000 0-000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0-000 0.000 0.000 0.000-" EVAPORATION bAD AREA 0.118 0.068 0.041 0.054 0.065 0.082 0.103 0.141 0.186 0.283 0.277 0.20p 1.626 RECHARGE TO BAD AREA 0285 0.178 0.148 0.152 0.181 0.272 0.236 0.282 0.359 0.564 0.552 0.404 3.613 NET CHANGE BAD AREA 0.167 O.1ln 0.107 0.098 0-116 0.190 0.133 0.141 0.173 0.281 0.275 0.196 1.987 DRAIN STORAGE CONTENt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 74.00 58.30 51.00 43.89 60.78 62.11 38.67 47.08 56.69 50.69 49.56 53.97 646.75 TOTAL BASE LOAD 165.00 167.00 176.00 171.00 168.00 166.00 175.00 179.00 184.00 184.00 186.00 188.00 2109.00 TOTAL ENERGY LOAn 239.00 225.30 227.00 214.89 228.78 228.11 213.67 226.08 240.69 234.69 235.56 241.97 2755.75 HYDRO ENERGY TO LOAD 129.82 96.7? 93.36 95.91 88.76 140.00 136.95 134.15 134.34 232.78 234.57 240.55 1757.92 THERMAL ENERGY TO LOAD 108.84 128.45 133.38 118.88 139.96 88.09 76.71 91.57 106.33 1.90 0.98 1.40 996.50 ENERGY DEFICIENCY -0.34 -0.14 -0.26 -0.09 -0-06 0.00 0.00 -0-36 0.00 0.00 0.00 0.00 -1-25 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SIJRPLUS 0,00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 82.97 95.19 89.79 267.96 POWER (MEGAWATTS) PEAK PUMP LOAD 118.80 100.47 94.81 87.18 103.56 103.72 78.36 90.84 102.50 95.03 92.87 98.63 1166.78 PEAK BASE LOAD 384.00 388.00 408.00 410.00 391.00 382.00 404.00 41.00 427.00 427.00 431.00 435.00 4905,00 TOTAL PEAK LOAn 502.80 488.47 502.81 497-18 494.56 485.72 482.36 508.84 529.50 522.03 523.87 533.63 6071.78 HYDRO CAPACITY TO LOAD 181.13 157.62 154.61 160.49 160.23 191.80 187.62 181.78 184.05 432.58 451.77 452.57 2898.26 THERMAL CAPACITY TO LOAD 303.00 303.00 303.00 303.00 303.00 293.91 294.74 303.00 345.45 89.45 72.10 81.06 2994.71 FIRM CAPACITY TRANSFER 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE -18.68 -27.85 -45.20 -33.69 -31.33 9.09 8.26 -22.06 19.55 337.55 354.90 345.94 896.48 B-4 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 3.904 1.910 1.386 1.442 1.324 1.945 4.017 6.827 12.146 20.064 20.241 10.409 85.615 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0-000 0-000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 5.453 ?.141 1.383 1.862 1.321 2.389 6.347 11.113 18.735 32.717 34.148 16.498 134.108 TO RESERVOIR EVAPOPATION -0.000 -n.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTFLOW 2.788 0.635 0.059 0.243 0.031 0.262 1.635 3,103 5.524 11.176 13.569 8.151 47.177 TO RIVER LOSS -1.734 -0.541 -0.080 0.155 -0.061 0.219 0.799 1.059 1.708 3.155 1.396 -2.131 3.943 TO LINK LOSS 0.091 0.091 0.090 0.060 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.053 TO CANAL LOSS 0.656 0.411 0.369 0.300 0.360 0.375 0.366 0.594 0.973 0.986 0.982 0.948 7.320' TO WATERCOURSE 2.103 1.314 0.948 0.684 0.908 0.998 1.126 1.979 3.851 4.657 4.204 3.350 2A.122 FROM GROUND WATER 0.022 0.019 0.019 0.019 0.019 0.019 0.019 0.022 0.022 0.022 0.022 0.022 0.246 SHORTAGE AT WATERCnIJRSE 0.000 0.000 0.065 0.0°O 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.138 WATERCOUJRSE REOT. 2.125 1.333 1.032 0.7U3 1.000 1.017 1.145 2.001 3.873 4.679 4.226 3.372 26.506 PUMP CAPACITY GOOD AREA 0.022 n.020 0.020 0.020 0.020 0.020 0.020 0.022 0.022 0.022 0.022 0.022 0.2s2 PIJMPED FROM GOOD APEA 0.022 0.019 0.019 0.019 0.019 0.019 0.019 0.022 0.022 0.022 0.022 0.022 0.246 EVAPORATION GOOD AREA 0.297 0.173 0.151 0.093 0.137 0.141 0.127 0.163 0.415 0.716 0.746 0.616 3.773 RECHARGE TO GOOD AREA 0.319 0.190 0.159 0.117 0.144 0.167 0.145 0.194 0.440 0.738 0.768 0.638 4.019 NET CHANGE -- GOOD AREA -0.000 -0.00? -0.010 0.005 -0.012 0.008 -0.001 0.009 0.003 -0.000 -0.000 -0.000 -0.000 PUMP CAPACITY BAD ARtA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.200 0.194 0.039 0.037 0.044 0.038 0.040 0.044 0.046 0.060 0.060 0.052 0.953 EVAPORATION HAD AREA 0.691 0.414 0.337 0.240 0.330 0.366 0.388 0.731 1.279 1.693 1.614 1.228 9.313 RECHARGE TO HAD ARFA 0.742 0.459 0.365 0.289 0.361 0.418 0.428 0.775 1.325 1.763 1.675 1.280 9.878 NET CHANGE BAD AREA -0.149 -0.151 -0.011 0.011 -0.013 0.014 -0.000 -0.000 0.000 0.010 0.001 -0.000 -0.788 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 14.02 15.15 4-33 4.24 4.71 4.27 4.43 4.96 5.08 6.11 6.11 5.56 78.97 TOTAL BASE LOAD 96.00 95.00 95.00 92.00 92.00 94.00 97.00 100.00 103.00 103.00 104.00 108.00 1179.00 TOTAL ENERGY LOAD 110.02 110.15 99.33 96.?4 96.71 98.27 101.43 104.96 108.08 109.11 110.11 113.56 1257.97 HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 ° o.nn _n-nn __ THERMAL ENERGY TO LOAD 110.01 110.14 99.32 96.23 96.70 CA n n - - . L.& _iu.11 113.55 1257.88 ENERGY DEFICIENCY A6 uAuu 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 E EN tRGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 °.-° 0.00 0.00 0.00 0.00 HYDRO ENERGY StIRPLIiS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 19.55 21.04 6.22 6.10 6.74 6.15 6.36 '.14 7.30 8.71 8.71 7.96 111.99 PEAK BASE LOAD 204.00 203.00 204.00 195.00 196.00 201.00 208.00 21.O0 21A.00 219.00 225.00 230.00 2516.00 TOTAL PEAK LOAD 223.55 224.04 210.22 201.10 202.74 207.15 214.36 220.14 225.30 227.71 233.71 237.96 2627.99 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.oo 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY TO LOAD 223.55 2?4.04 210.22 201.10 202.74 207.15 214.36 220.14 225.30 227.71 233.71 237.96 2627.99 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 124.45 123.n6 137.78 146.90 145.26 140.85 133.64 127.86 122.70 120.29 114.29 110.04 1548.01 B-5 SYSTEM SUMMARY wATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AOir, SEPT TOTAL FROM RIVER INFLOW 6.029 3.5ql 3.072 3.219 3.260 5.322 7-976 13.500 21.972 31.386 28.155 13.260 140.742 FROM STORAGE RELEASE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.481 -1.626 -1.426 -0.392 0.001 -4.925 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 5.453 2.141 1.383 1.862 1.321 2.389 6.347 11.113 1.735 32.717 34.148 16.4i8 134.108 TO RESERVOIR EVAPORATION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.034 0.025 0.027 0.002 0.109 TO RIVER OUTILOW 2.788 0.635 0.059 0.243 0.031 0.262 1.635 3.103 5.524 11.176 13.569 8.151 47.177 TO RIVER LOSS -3.126 -0.683 0.042 0.507 0.183 0.957 2.434 3.250 5.590 9.155 4.171 -4.352 18.130 TO LINK LOSS 0.265 0.163 0.160 0-118 0.159 o.300 0.343 0.327 o.365 0.369 0.367 o.369 3.303 TO CANAL LOSS 1.776 1.101 0.983 0.903 1.083 1.322 1.327 1.696 2.273 2.286 2.292 2.250 19.291 TO WATERCOURSE 4.605 2.575 2.048 1.607 2.042 3.170 3.337 4.712 7.400 8.289 8.267 7.3q1 55.443 FROM GROUND WATER 1.374 1.073 0.924 0.8Z7 1.103 1.147 0.835 1.001 1.177 1.109 1.104 1.171 12.445 SHORTAGE AT wATERCOURSE 0.415 0.511 0.309 0.216 0.504 0.000 0.000 0.000 0.000 0.000 0.004 0.000 1.q59 WATERCOURSE REOT. 6.394 4.158 3.281 2.650 3.649 4.317 4.172 5.713 8.577 9.398 9.376 8.562 7n.247 PUMP CAPACITY GOOD AREA 1.371 1.071 0.920 0.826 1.102 1.257 1.168 1.237 1.386 1.327 1.322 1.375 14.362 PUMPED FROM GOOD AREA 1.374 1.073 0.924 0.8Z7 1.103 1.147 0.835 1.001 1.177 1.109 1.104 1.171 12.A45 EVAPORATION GOOD ApEA 0.632 0.375 0.370 0.278 0.366 0.492 0-532 0.724 1.265 2.258 2.267 1.724 11.284 RECHARGE TO GOOD AREA 2.242 1.464 1.187 1.115 1.446 2.046 1.853 2.223 2.931 4.720 4.747 3.444 29.417 NET CHANGE -- GOOD AREA 0.236 0.018 -0.107 0.010 -0.023 0.406 0.487 0.497 0.489 1.353 1.376 0.549 5.288 PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.200 0.194 0.039 0.037 0.044 0.038 0.040 0.044 0.046 0.060 0.060 0.05? 0.A53 EVAPORATION BAD AREA 0.809 0.483 0.378 0.294 0.396 0.448 0-491 0.872 1.465 1.977 1.891 1.435 10.939 RECHARGE TO UAD AREA 1.027 0.637 0.513 0.440 0.542 0.690 0.664 1.057 1.684 2.327 2.227 1.684 13.491 NET CHANGE BAD AREA 0.018 -n.041 0.096 0.109 0.103 0.204 0.133 0.141 0.173 0.291 0.277 0.196 1.699 DRAIN STORAGE CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.(0o 0.000 ENEROY (MILLION KWHI TOTAL PUMP LOAD 88.02 73.45 55.32 48.13 65.49 66.38 43.10 52.04 61.78 56.81 55.68 59.53 725.73 TOTAL BASE LOAD 261.00 262.00 271.00 263.00 260.00 260.00 272.00 27n.00 287.00 287.00 290.00 296.00 3288.00 TOTAL ENERGY LOAD 349.02 335.45 326.32 311.13 325.49 326.38 315.10 331.04 348.78 343-81 345.68 355.53 4013.73 HYDRO ENERGY TO LOAD 129.82 96.7? 93.36 95.91 88.76 140.00 136.95 134.15 134.34 232.78 234.57 240.55 1757.92 THERMAL ENERbY TO LOAD 218.85 238.58 232.70 215.11 236.66 186.36 178.13 196.53 214.41 111.00 111.09 114.96 2254.38 ENERGY DEFICIENCY -0.34 -0.14 -0.26 -0.09 -0.06 0.00 0.00 -0-36 0.00 0.00 0.00 0.00 -1.25 INTERZONE ENERGY TRANSFER 0.00 n.oo 0.00 o0.o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 82.97 95.19 89.79 267.96 POWER (MEGAWATTS) PEAK PUMP LOAD 138.35 121.5? 101.03 93.28 110.30 109.87 84.72 97.98 109.80 103.75 101.58 106.59 1278.77 PEAK BASE LOAD 588.00 591.00 612.00 605.00 587.00 583.00 612.00 631.00 645.00 646.00 656.00 665.00 7421.00 TOTAL PEAK LOAD 726.35 712.52 713.03 698-Z8 697.30 692-87 696.72 728.98 754.80 749.75 757.58 771.59 8699.77 HYDRO CAPACITY TO LOAD 181.13 157.62 154.61 160.49 160.23 191.80 187.62 183.78 184.05 432.58 451.77 452.57 2898.26 THERMAL CAPACITY TO LOAD 526.55 527.04 513.22 504.10 505.74 501.06 509.10 523.14 570.75 317.16 305.81 319.02 5622.70 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 PEAK RESERVE 105.78 96.11 92.58 113.21 113.92 149.94 141.90 105.80 142.25 457.84 469.19 455.98 2444.49 B-6 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1968 NORTH ZONE SUMMARY WATER (MAF) OCT NOV nEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742 FROM STORAGE RELEASE 1.133 n.739 0.493 0.492 1.182 0.167 -0.195 -0.560 -1.620 -1.421 -0.390 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.005 0.009 0.025 0.033 0.024 0.027 0.002 0.169 TO RIVER OUTFLOW 4.063 2.001 1.398 1.433 1.493 2.076 4.045 7.474 12.550 20.358 20.406 10.521 87.818 TO RIVER LOSS -1.072 -n.260 0.074 0.411 0.443 0.615 1.560 2.726 3.634 6.025 2.774 -2.224 14.707 TO LINK LOSS 0.222 0.150 0.127 0.098 0.183 0.219 O.242 O.222 o.269 o.268 o.268 0.273 2.541 TO CANAL LOSS 1.126 0.873 0.782 0.745 n.897 0.953 0.940 1.041 1.271 1.276 1.282 1.282 12.468 TO WATERCOURSE 3.081 1.755 1.398 1.188 1.660 2.313 2.083 2.543 3.435 3.355 3.938 3.956 30.704 FROM GROUND WATER 1.535 1.058 0.871 0.852 1.325 1.383 1.022 1.139 1.431 1.356 1.526 1.636 15.134 SHORTAGE AT WATERCOuJRSE 0.000 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.008 0.002 0.055 WATERCOURSE REOT. 4.616 2.813 2.269 2.040 3.030 3.696 3.105 3.682 4.866 4.711 5.471 5.594 45.893 PUMP CAPACITY GOOD AREA 1.735 1.176 0.952 0.878 1.330 1.548 1.334 1.452 1.721 1.588 1.676 1.753 17.144 PUMPED FROM bOOD AREA 1.535 1.058 0.871 0.852 1.325 1.383 1.022 1.139 1.431 1.356 1.526 1.636 15.134 EVAPORATION GOOD ARFA 0.649 0.445 0.376 0.337 0.416 0.525 0.499 0.629 0.857 1.723 1.906 1.295 9.657 RECHARGE TO GOOD AREA 2.076 1.489 1.191 1.148 1.562 1.960 1.708 1.975 2.502 3.965 4.023 2.873 26.473 NET CHANGE -- GOOD AREA -0.108 -0.015 -0.055 -0.041 -0.178 0o052 0.188 0o207 0.213 0.886 0.591 -0.057 1.681 PUMP CAPACITY BAD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPORATION BAD ARFA 0.158 0.107 0-086 0.091 0.115 0.168 0.162 0.201 0.266 0.391 0.386 0.290 2.423 RECHARGE TO BAD AREA 0.312 0.224 0.180 0.186 0.236 0.286 0.238 0.280 0.362 0.559 0.559 0.413 3. 36 NET CHANGE BAD AREA 0.155 0.117 0.094 0.095 0.121 0.118 0.076 0.079 0.096 0.168 0.172 0.123 1.414 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0-000 0.000 0-000 0.000 0.000 TOTAL PIUMP LOAD 83.67 57.79 47.89 46.92 76.11 77.30 51.25 5P.54 76.05 70.29 82.39 89.83 818.03 TOTAL BASE LOAD 181.00 184.00 194.00 194.00 191.00 189.00 198.00 203.00 208.00 208.00 211.00 213.00 2374.00 TOTAL ENERGY LOAD 264.67 241.79 241.89 240.92 267.11 266.30 249.25 261.54 284.05 278.29 293.39 302.83 3192.03 HYDRO ENERGY TO LOAD 259.87 236.27 232.15 227.45 262.16 256.75 243.20 259.58 280.20 278.27 293.37 302.81 3128.09 THERMAL ENERGY TO LOAD 4.78 5.50 9.72 13.46 4.93 9.53 6.04 S.94 3.83 0.00 0.00 0.00 63.74 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SHRPLUS 62.45 48.01 34.54 24.51 38.86 46.82 65.27 71.22 83-56 215.40 230.72 223.53 1144.89 POwER (MEGAWATTS) PEAK PUMP LOAD 146.81 121.65 109.95 108.88 136.66 139.73 105.44 llq.95 140.21 129.46 145.01 150.94 1554.71 PEAK BASE LOAD 422.00 427.00 449.00 455.00 442.00 432.00 457.00 472.00 483.00 483.00 488.00 493.OO 5503.00 TOTAL PEAK LUAD 568.81 548.65 558.95 563-88 578.66 571.73 562.44 591.95 623.21 612.46 633.01 643.94 7057.70 HYDRO CAPACITY TO LOAD 445.24 414.58 391.88 374.28 451.22 415.90 422.60 447.71 498.35 676.33 718.01 721.09 5977.20 THERMAL CAPACITY Tn LOAD 123.56 134.07 167.07 189.60 127.44 155.83 139.84 144.24 124.87 0.00 0.00 0.00 1306.52 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 303.44 292.93 259.93 237.40 299.56 284.17 313.16 30R.76 328.13 516.87 537.99 530.15 4212.50 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JIINE JULY AUG SEPT TOTAL FROM RIVER INFLOW 4.063 2.001 1.398 1.433 1.493 2.076 4.045 7.474 12.550 20.358 ?0.406 10.521 87.818 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 n.ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 5.758 2.364 1.398 1.842 1.568 2.669 6.443 12.365 19.561 33.312 34.489 16.745 13A.513 TO RESERVOIR EVAPORATION -0.000 -n.000 -0.000 -0.000 -0-000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTtLOW 2.835 0.767 O.n91 0.243 0.090 0.388 1.723 3.561 5.969 11.506 13.777 8.288 49.237 TO RIVER LOSS -1.612 -0.538 -0.116 0.147 -0.019 0.242 0.776 1.269 1.679 3.134 1.365 -2.140 4. 186 TO LINK LOSS 0.091 n.091 0.090 0-060 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.053 TO CANAL LOSS 0.658 0.407 0.367 0.296 0.364 0.371 0.362 0.595 0.972 0.986 0.981 0.949 7.307 TO WATERCOURSE 2.092 1.274 0.966 0.687 0.972 0.985 1.094 1.958 3.838 4.642 4.193 3.333 26.034 FROM GROUND WATER 0.040 n.038 0.039 0.038 0.038 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.469 SHORTAGE AT WATERCOURSE 0.000 0.000 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 WATERCOURSE REQT. 2.132 1.312 1.034 0.725 1.010 1.023 1.132 1.998 3.878 4.682 4.233 3.373 26.532 PUMP CAPACITY GOOD AREA 0.040 n.038 0.038 0.038 0.038 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.468 PUMPED FROM GOOD AREA 0.040 0.038 0.039 0.038 0.038 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.469 EVAPORATION GOOD AREA 0.278 0.161 0.142 0.094 0.128 0.140 0.117 0.150 0.371 0.672 0.706 0.598 3.558 RECHARGE TO GOOD AREA 0.318 0.188 0.161 0.118 0.154 0.166 0.143 0.193 0.440 0.738 0.769 0.638 4.027 NET CHANGE -- GOOD AREA -0.000 -0.011 -0.020 -0.015 -0.012 -0.012 -0.012 0.003 0.030 0.026 0.023 -0.000 -0.000 PUMP CAPACITY BAD ARtA 0.200 0.700 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.051 0.043 0.040 0.041 0.046 0.041 0.040 0.044 0.046 0.060 0.060 0.052 0.564 EVAPORATION BAD AREA 0.694 0.410 0.334 0.243 0.328 0.376 0.383 0.731 1.279 1.703 1.616 1.229 9.327 RECHARGE TO BAD AREA 0.745 0.453 0.369 0,290 0.374 0.417 0.423 0.776 1.325 1.763 1.675 1.281 9.891 NET CHANGE BAD AREA -0.000 -n.000 -0.005 0.005 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 DRAIN STORAGt CONTENT 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 6.85 6.09 5.96 6.03 6.39 6.07 6.01 6.49 6.60 7.58 7.50 6.91 78.48 TOTAL BASE LOAD 112.00 112.00 112.00 112.00 111.00 115.00 117.00 120.00 124.00 124.00 127.00 130.00 1416.00 TOTAL ENERGY LOAD 118.85 118.09 117.96 118-03 117.39 121.07 123.01 126.49 130.60 131.58 134.50 136.91 1494.48 HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -0.00 -0.00 -0-00 -0.00 -0-00 -0.00 -0.00 -0.00 -0.00 0.00 THERMAL ENERGY TO LOAD 118.84 118.08 117.95 118.02 117.38 121.07 123.00 12A.48 130.59 131.57 134.49 136.90 1494.37 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 10.00 9.01 8.86 8.95 9.44 9.02 8.94 9.54 9.69 11.02 10.90 10.08 115.45 PEAK BASE LOAD 239.00 238.00 239.00 240.00 237.00 245.00 251.00 260.00 264.00 265.00 270.00 279.00 3027.00 TOTAL PEAK LOAD 249.00 247.01 247.86 248.95 246.44 254.02 259.94 269.54 273-69 276.02 280.90 289.08 3142.45 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY TO LOAD 249.00 247.01 247.86 248.95 246.44 2S4.02 259.94 269.54 273.69 276.02 280.90 289.08 3142.45 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 99.00 100.99 100.14 122.05 124.56 116.98 111.06 101.46 97.31 94.98 90.10 81.92 1240.55 B-8 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOTAL FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742 FROM STORAGE RELEASE 1.133 0.739 0.493 0.492 1.182 0.167 -0-195 -0.560 -1.620 -1.421 -0.390 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 5.758 2.364 1.398 1.842 1.568 2.669 6.443 12.365 19.561 33.312 34.489 16.745 138.513 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.005 0.009 0.025 0.033 0.024 0.027 0.002 0.169 TO RIVER OUITFLow 2.835 0.767 0.091 0.243 0.090 0.388 1.723 3.561 5.969 11.506 13.777 8.288 49.237 TO RIVER LOSS -2.684 -0.798 -0.042 0.558 0.424 0.857 2.336 3.995 5.314 9.159 4.139 -4.364 18.893 TO LINK LOSS 0.313 0.241 0.217 0.158 0.269 0.310 o.333 0.313 0.360 o.359 0.359 0.364 3.595 TO CANAL LOSS 1.784 1.280 1.149 1.040 1.261 1.323 1.302 1.636 2.244 2.261 2.263 2.232 19.775 TO WATERCOURSE 5.173 3.02q 2.365 1.875 2.632 3.298 3.177 4.501 7.273 7.997 8.131 7.289 56.738 FROM GROUND WATER 1.575 1.098 0.909 0.890 1.363 1.421 1.060 1.179 1.471 1.396 1.566 1.676 15.603 SHORTAGE AT WATERCOURSE 0.000 0.000 0.029 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.008 0o002 0.084 WATERCOURSE REQT. 6.748 4.125 3.303 2.765 4.040 4.719 4.237 5.680 8.744 9.393 9.704 8.967 72.425 PUMP CAPACITY GOOD AREA 1.775 1.214 0.990 0.916 1.368 1.586 1.372 1.492 1.761 1.628 1.716 1.793 17.612 PUMPED FROM GOOD AREA 1.575 1.096 0.909 0.890 1.363 1.421 1.060 1.179 1.471 1.396 1.566 1.676 15.603 EVAPORATION GOOD AREA 0.927 0.606 0.518 0.431 0.544 0.665 0.616 0.779 1.228 2.395 2.612 1.893 13.216 RECHARGE TO GOOD AREA 2.395 1.676 1.353 1.265 1.716 2.126 1.852 2.168 2.942 4.703 4.792 3.511 30.500 NET CHANGE -- GOOD AREA -0.108 -0.026 -0.075 -0.056 -0.190 0.040 0.176 0.209 0.243 0.912 0.614 -0.057 1.681 PUMP CAPACITY BAD ARtA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.051 0.043 0.040 0.041 0.046 0.041 0.040 0.044 0.046 0.060 0.060 0.052 0.564 EVAPORATION BAD AREA 0.852 0.517 0.421 0.334 0.443 0.544 0.545 0.932 1.546 2.095 2.002 1.519 11.750 RECHARGE TO BAD AREA 1.058 0.677 0.549 0.476 0.610 0.703 0.662 1.056 1.688 2.322 2.234 1.694 13.727 NET CHANGE BAD AREA 0.155 0.117 0.089 0.100 0.121 0.118 0.076 0.079 0.096 0.168 0.172 0.123 1.414 DRAIN STORAGL CONTENT 0.000 0.000 0.000 O.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.oo0 o.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAn 90.52 63.87 53.85 52.96 82.50 83.38 57.26 65.03 82.65 77.87 89.89 96.74 896.51 TOTAL BASE LOAD 293.00 296.00 306.00 306.00 302.00 304.00 315.00 323.00 332.00 332.00 338.00 343.00 3790.00 TOTAL ENERGY LOAD 383.52 359.87 359.85 358.96 384.50 387.38 372.26 388.03 414.65 409.87 427.89 439.74 4686.51 HYDRO ENERGY TO LOAD 259.87 236.27 232.15 227.45 262.16 256.75 243.20 255.58 280.20 278.27 293.37 302.81 3128-09 THERMAL ENERGY TO LOAn 123.62 123.58 127.68 131.49 12Z.31 13060 '129.04- '-32.42 134.42 i31.57 i34.49 136.90 1558.12 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 62.45 48.01 34.54 24.51 38.86 46.82 65.27 71.22 83-56 215-40 230.72 223.53 1144.89 POWER (MEGAwATTS) PEAK PUMP LOAD 156.80 130.66 118.81 117.83 146.11 148.75 114.38 129.50 149.91 140.48 155.91 161.07 1670.16 PEAK BASE LOAD 661.00 665.00 688.00 695.00 679.00 677.00 708.00 73?.00 747.00 748.00 758.00 772.00 8530.00 TOTAL PEAK LOAD 817-80 795-66 806.81 812-83 825.11 825-75 822.38 861.50 896.91 888.48 913.91 933.02 10200.15 HYnRO CAPACITY TO LOAD 445.24 414.58 391.88 374.28 451.22 415.90 422.60 447.71 498.35 676.33 718.01 721.09 5977.20 THERMAL CAPACITY Tn LOAD 372.56 381.07 414.93 438.55 373.88 409.85 399.78 413.79 398.56 276.02 280.90 289.08 4448.97 FIRM CAPACITY TRANSFIR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 PEAK RESERVE 402.44 393.93 360.07 359.45 424.12 401.15 424.22 410.21 425.44 611.85 628.09 612.07 5453.05 B-9 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMI3ER 6685072110 YEAR 1969 NORTH ZONE SIIMMARY WATER (MAF) OCT mnv DEC JAN FEB MAR APR AAY JUNE JULY AUG SEPT TOTAI FROM RIVER INFLOW 5.430 3.Z3n 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.347 28.155 12.969 138.031 FROM STORAGE RELEASE 1.128 0.736 0.491 0.491 1.177 0.745 -0.274 -1.057 -1.614 -1.415 -0.389 0.001 o0o.Q FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TO RESERVOIR EVAPORATION 0.022 n.o0n 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157 TO RIVER OUTFLOW 3.944 1.927 1.402 1.423 1.290 1.926 4.001 7.342 12.527 20.563 20.612 10.413 87.370 TO RIVER LOSS -1.285 -0.245 0.125 0.321 0.324 0.734 1.514 2.559 3.790 6.170 2.819 -2.331 14.495 TO LINK LOSS 0.325 n.238 0.171 0.159 0.280 n.329 0.240 0.234 0.311 0.305 0.303 0.331 3.226 TO CANAL LOSS 1.080 0.77F 0.661 0.611 0.871 0.979 0.892 1.002 1.234 1.257 1.257 1.255 11.e75 TO WATERCOURSE 2.753 1.461 1.122 0-946 1.617 2.544 2.063 2.376 3.293 ?.953 3-678 3.850 28.655 FROM GROUND WATER 2.123 1.281 1.040 1.014 1.631 1.493 1.049 1.12 1.613 1.618 1.992 2.034 18.071 SIIORTAGE AT WATERCOURSE 0.000 0.000 0.078 0.125 0.122 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.332 WATERCOURSE RFOT. 4.876 P.742 2.240 2.085 3.370 4.037 3.112 3.558 4.906 4.571 5-674 5.887 47.058 PlIMP CAPACITY GOOD AREA 2.137 1.3n4 1.034 1.011 1.628 1.876 1.513 1.616 2.054 1.868 2.047 2.173 20.262 PUMPED FROM GOOD AREA 2.123 1.281 1.040 1.014 1.631 1.493 1.049 1.182 1.613 1.618 1.992 2.034 18.071 EVAPORATION GOOD AREA 0.581 0.403 0.358 0.2b5 0.319 0.449 0.430 0.560 0.766 1.543 1.702 1.116 8.493 RECHARGE TO CO0D AREA 2.096 1.421 1.096 1.053 1.601 2.049 1.685 1.922 2.482 3.927 4.047 2.914 26.291 NET CHANGE -- GOOD AREA -0.608 -0.263 -0.303 -0.226 -0.350 0,107 0.205 0.180 0.103 0.766 0.353 -0.236 -0o272 PUMP CAPACITY BAD AREA 0.000 n.000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUMPED TO DRAINAGE 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPORATION BAD ARFA 0.216 n.130 0-111 0.107 0.146 0.188 0.153 0.194 0.264 0.387 0.389 0.293 2.579 RECHARGE TO BAD AREA 0.316 0.19A 0.155 0.156 0.238 0.297 0.225 0.274 0.361 0.550 0.562 0.417 3.747 NET CHANGE BAID AREA 0.099 n.068 0.044 0.048 0.091 0,109 0.072 0.080 0.098 0.163 0.173 0.123 1.169 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY IMILLION KWH) TOTAL PUMP LOAD 131.58 77.26 62.99 60.Z0 101.38 84.92 54.81 65.21 94.51 94.61 122.62 124.60 1074.69 TOTAL BASE LOAD 206.00 208-00 221.00 213.00 211.00 208.00 219.00 224.00 229-00 229.00 232.00 235.00 2635.00 TOTAL ENERGY LOAD 337.58 285.26 283.99 273.20 312.38 292.92 273.81 289.21 323.51 323.61 354.62 359.60 3709.69 HYDRO ENERGY TO LOAD 337.56 2A5.24 283.88 272.67 307.40 276.99 257.96 283.49 320.67 323.58 354.59 359.58 3663.61 THERMAL ENERGY TO LOAD 0.00 0.00 0.09 0.51 4.96 15-91 15-83 5.71 2.82 0.01 0.00 0.00 45.85 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 165.32 164-27 96.42 114.06 54.56 44.81 43.50 85.18 110-91 161.00 167-51 166.78 1374.32 POWER (MEGAWATTS) PEAK PUMP LOAD 218.93 164.46 149.29 144.71 189.84 173.49 114.75 138.47 184.32 181.58 205.89 209.32 2075.05 PEAK BASE LOAD 477.00 483.00 508.00 510.00 487.00 476.00 504.00 521.00 532.00 532.00 538.00 543.00 6111.00 TOTAL PEAK LOAD 695-93 647.46 657.29 654.71 676-84 649-49 618.75 659.47 716.32 713.58 743.89 752.32 8186.05 HYDRO CAPACITY TO LOAD 692.97 641.16 604.36 582.29 534.90 440.86 412.99 505.08 591.26 663.88 715.28 721.11 7106.14 THERMAL CAPACITY TO LOAD 2.96 6.3n 52.93 72.41 141.94 208.63 205.76 154,39 125.06 49.69 28.61 31.21 1079.91 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 450.04 446.70 400.07 380.59 311.06 244.37 247.24 298.61 327.94 403.31 424.39 421.79 4356.09 B-10 SOUTH ZONF SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIvER INFLOW 3.944 1.927 1.402 1.423 1.290 1.926 4.001 7.342 12.527 20.563 20.612 10.413 S7.370 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0-000 0.000 0.000 FROM DRAINS 5.580 2.264 1.402 1.857 1.290 2.395 6.377 12.148 19.534 33.757 34.937 16.585 138.126 TO RESERVOIR EVAPORATION -0.000 -o.ooo -o.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUJTFLOW 2.813 0.745 0.088 0.271 0.047 0.286 1.685 3.488 5.947 11.682 14.009 8.305 49.365 TO RIVER LOS5 -1.681 -0.533 -0.103 0.153 -0.066 0.225 0.805 1.242 1.705 3.223 1.383 -2.238 4.116 TO LINK LOSS 0.091 0.091 0.090 0.060 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.053 TO CANAL LOSS 0.660 0.401 0.366 0.280 0.356 0.368 0.363 0.595 0.972 0.985 0.980 0.949 7.276 TO WATERCOURSE 2.060 1.223 0.966 0.658 0.867 0.956 1.057 1.926 3.812 4.582 4.150 3.306 25.564 FROM GROUND WATER 0.102 0.094 0.090 0.095 0.101 0.094 0.076 0.083 0.092 0.102 0.102 0.102 1.132 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 WATERCOURSE REaT. 2.162 1.317 1.056 0.753 1.036 1.050 1.133 2.009 3.904 4.684 4.252 3.408 26.764 PUMP CAPACITY GOOD AREA 0.102 0.094 0.090 0.095 0.101 0.094 0.089 0.099 0.102 0.102 0.102 0.102 1.171 PUMPED FROM GOOD AREA 0.102 n.094 0.090 0.095 0.101 0.094 0.076 0.083 0.092 0.102 0.102 0.102 1.132 EVAPORATION 00D AREA 0.233 0.118 0.100 0.048 0.085 0.089 0.074 0.102 0.315 0.628 0.653 0.540 2.985 RECHARGE TO GOOD AREA 0.3Z1 0.187 0.166 0.115 0.148 0.169 0.147 0.195 0.443 0.740 0.772 0.642 4.045 NET CHANGE -- GOOD AREA -0.014 -0.025 -0.023 -O.OZ7 -0.038 -0.015 -0.004 0.010 0.036 0.010 0.016 0.000 -0.072 PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.051 0.04? 0.041 0.045 0.047 0,040 0.037 0.042 0.047 0.057 0.060 0.053 0.561 EVAPORATION BAD ARFA 0.700 n.407 0. 334 0.241 0.328 0.366 0.384 0.735 1.282 1.704 1.617 1.232 9.332 RECHARGE TO HAD ARFA 0.751 0.450 0.375 0.286 0.363 0.419 0.421 0.776 1.329 1.761 1.676 1.285 9.892 NET CHANGE BAD AREA -0.000 -0.000 -0.000 -0.000 -0.013 0.013 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 DRAIN STORAGE CONTENT 0.000 n.ooo o.ooo O.o0O 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 11.51 10.30 9-92 10.68 11.51 10.44 8.69 1.66 10.80 12.40 12-52 12.01 130.43 TOTAL BASE LOAD 136.00 135.00 135.00 135.00 135.00 138.00 142.00 146.00 149.00 150.00 153.00 157.00 1711.00 TOTAL ENERGY LOAD 147.51 145.30 144.92 145.68 146.51 148.44 150.69 155.66 159.80 162.40 165.52 169.01 1841.43 HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -o.uo -0.00 -0.00 -0.00 -0-00 -0.00 -0-00 -0.00 -0-00 0.00 THERMAL ENERGY TO LOAD 147.50 145.29 144.91 145.67 146.50 148.43 150.67 15s.65 159.79 162.39 165.51 169.00 1841.30 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENLRGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAn 17.35 15.5q 15.27 16.15 17.42 15.85 14.37 1l.44 16.46 18.65 18.81 18.10 199.48 PEAK BASE LOAD 289.00 286.00 286.00 295.00 284.00 292.00 301.00 307.00 314.00 316.00 322.00 331.00 3623.00 TOTAL PEAK LOAD 306.35 3n0.5' 301.27 311.15 301.42 307.85 315.37 322.44 330.46 334.65 340-81 349.10 3822.48 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.(O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY TO LOAD 306.35 301.59 301.27 311.15 301.42 307.85 315.37 322.44 330.46 334.65 340.81 349.10 3822.48 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0.00 0.00 PEAK RESERVE 64.65 69.41 69.73 138.85 148.58 142.15 134.63 127.56 119.54 115.35 109.19 100.90 1340.52 B-l1 SYSTEM SUMMARY WATER (MAF) OCT NnV nEC JAN FEB MAR APR MAY JUNE JULY AUr, SFPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.347 28-155 12.969 138.031 FROM STORAGE RELEASE 1.128 0.736 0.491 0.491 1-177 0.745 -0.274 -1.057 -1.614 -1.415 -0.389 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 5.580 2.264 1.402 1.857 1.290 2.395 6.377 12.148 19.534 33.757 34.937 16.585 138.126 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157 TO RIVER OUTtLOW 2.813. 0.745 0.088 0.271 0.047 0.286 1.685 3.488 5.947 11.682 14.009 8.305 49.365 TO RIVER LOSS -2.965 -0.77A 0.022 0.474 0.258 0.958 2.319 3.801 5.495 9.393 4.202 -4.569 18.610 TO LINK LOSS 0.416 0.329 o.261 0.219 o.366 0.419 0.331 0.325 o.402 o.396 o.394 0.422 4.279 TO CANAL LOSS 1.740 1.176 I.O27 0.892 1.227 1.348 1.255 1.597 2.206 2.242 2,237 2.204 19.151 TO WATERCOURSE 4.813 2.684 2.088 1.604 2.483 3.500 3.120 4.301 7.105 7.535 7-828 7.156 54.218 FROM GROUND WATER 2.225 1.375 1.130 1.109 1.732 1.587 1.125 1.266 1.705 1.720 2.094 2.136 19.203 SHORTAGE AT WATERCOUJRSE 0.000 0.000 0.078 0.125 0.190 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.400 WATERCOURSE REOT. 7.038 4.059 3.296 2.838 4.406 5.087 4.245 5.567 8.810 9.255 9.926 9.295 73.822 PUMP CAPACITY GOOD AREA 2.239 1.398 1.123 1.106 1.729 1.970 1.602 1.715 2.156 1.970 2.149 2.275 21.433 PUMPED FROM GOOD AREA 2.225 1.375 1.130 1.109 1.732 1.587 1.125 1.266 1.705 1.720 2.094 2.136 19.203 EVAPORATION GOOD AREA 0.813 0.521 0.458 0.313 0.404 0.538 0.505 0.662 1.081 2.171 2.355 1.656 11.478 RECHARGE TO GOOD AREA 2.417 1.608 1.262 1.169 1.749 2.218 1.831 2.117 2.925 4.667 4.818 3.556 30.337 NET CHANGE -- GOOD AREA -0.621 -0.288 -0.326 -0.253 -0.388 0.092 0.201 0.189 0.140 0.776 0.369 -0.236 -0.344 PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.051 0.042 0.041 0.045 0.047 0.040 0.037 0.042 0.047 0.057 0.060 0.053 0.561 EVAPORATION HAD AREA 0.916 0.538 0.446 0.349 0.475 0.554 0.537 0.928 1.545 2.091 2.006 1.526 11.910 RECHARGE TO BAD AREA 1.067 0.648 0.530 0.442 0.601 0.716 0.646 1.050 1.690 2.311 2.238 1.702 13.640 NET CHANGE BAD AREA 0.099 0.068 0.044 0.048 0.079 0.122 0.072 0.080 0.098 0.163 0.173 0.123 1.169 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 143.09 87.56 72.91 70.88 112.89 95.36 63.49 74.87 105.31 107.01 135.14 136.61 1205.12 TOTAL BASE LOAD 342.00 343.00 356.00 348.00 346.00 346.00 361.00 370.00 378-00 379.00 385.00 392.00 4346.00 TOTAL ENERGY LOAD 485.09 430.56 428.91 418.88 458.89 441.36 424.49 444.87 483.31 486.01 520.14 528.61 5551.12 HYDRO ENERGY TO LOAD 337.56 285.24 283.88 272.67 307.40 276.99 257.96 283.49 320.67 323.58 354.59 359.58 3663.61 THERMAL ENERGY TO LOAD 147.50 145.29 145.00 146-19 151.46 164.34 166-51 161.36 162.61 162-39 165.51 169.00 1887.15 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 165.32 164.27 96.42 114.06 54.56 44-81 43.50 85-18 110.91 161-00 167.51 166.78 1374.32 POwER (MEGAWATTS) PEAK PUMP LOAD 236.28 180.05 164.57 160.86 207.26 189.35 129.12 153.92 200.79 200.23 224.69 227.42 2274.53 PEAK BASE LOAD 766.00 769.00 794.00 805.00 771.00 768.00 805.00 828.00 846.00 848.00 860.00 874,00 9734.00 TOTAL PEAK LOAD 1002.28 949.05 958.57 965.06 978.26 9S7.35 934.12 gal.92 1046-79 1048.23 1084.69 1101.42 12008.53 HYDRO CAPACITY TO LOAD 692.97 641.16 604.36 582.29 534.90 440.86 412.99 505.08 591.26 663.88 715.28 721.11 7106.14 THERMAL CAPACITY TO LOAD 309.31 307.89 354.21 383.57 443.36 516.48 521.13 476.83 455.53 384.3s 369.41 380.31 4902.39 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 514.69 516.11 469.79 519.43 459.64 386.52 381.87 426.17 447.47 518.65 533.59 522.69 5696.61 B-12 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 668507Z110 YEAR 1970 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOw 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.347 28.155 12.969 138.031 FROM STORAGE RELEASE 1.124 0.733 0.489 0.489 1.172 0.745 -0.274 -1.055 -1.607 -1.410 -0.3A7 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.2ZO 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.000 n.ooo o.ooo o.o0o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157 TO RIVER OUTFLOW 3.757 1.806 1.296 1.253 1.038 1.662 3.972 7.575 12.719 21.085 20.850 10.489 87.503 TO RIVER LOSS -1.336 -0.206 0.133 0.252 0.241 0.712 1.620 2.624 3.779 6.355 2.729 -2.376 14.526 TO LINK LOSS 0.361 0.262 0.190 0.206 0.344 0.371 0.235 0.214 0.308 0.269 0.300 0.336 3.396 TO CANAL LOSS 1.094 0.786 0.694 0.670 0.900 1.010 0.881 0.908 1.217 1.175 1.221 1.241 11.795 TO WATERCOURSE 2.936 1.505 1.166 1.077 1.854 2.757 2.003 2.193 3.139 2.370 3.570 3.829 28.399 FROM GROUND WATER 2.237 1.167 1.055 1.073 1.902 1.668 1.136 1.235 1.817 2.060 2.337 2.377 20.064 SHORTAGE AT WATERCOIJRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOIURSE REQT. 5.173 2.672 2.221 2.150 3.756 4.425 3.139 3.428 4.956 4.430 5.907 6.206 48.463 PUMP CAPACITY GOOD AREA 2.441 1.354 1.074 1.1U6 1.955 2.208 1.65? 1.684 2.317 2.109 2.389 2.531 22. 819 PIJMPED FROM GOOD APEA 2.237 1.167 1.055 1.073 1.902 1.668 1.136 1.235 1.817 2.060 2.337 2.377 20.064 EVAPORATION GOOD AREA 0.487 0.368 0.339 0.2t6 0.313 0.483 0.447 0.533 0.656 1.327 1.453 0.919 7.601 RECHARGE TO bOOD AREA 2.169 1.429 1.130 1.129 1.723 2.150 1.687 1.834 2.480 3.840 4.068 2.971 26.609 NET CHANGE -- GOOD AREA -0.554 -0.106 -0.264 -0.2ZO -0.492 -0.001 0.105 0.066 0.007 0.453 0.276 -0.326 -1.056 PUMP CAPACITY BAD ARtA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPORATION BAD AREA 0.219 0.1?8 0.115 0.110 0.159 0.202 0.149 0.176 0.261 0.379 0.394 0.299 2.592 RECHARGE TO BAD ARFA 0.322 n.183 0.160 0.11 0.254 0.310 0.220 0.257 0.361 0.539 0.567 0.423 3.766 NET CHANGE BAD AREA 0.103 0.054 0.045 0.060 0.096 0.107 0.071 0. 081 0.100 0.159 0.173 0. 124 1.174 DRAIN STORAGt CONTFNI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 146.04 73.47 67.56 68.11 125.94 106.02 66.32 74.96 116.02 136.32 155.51 157.65 1293.92 TOTAL BASE LOAD 227.00 230.00 243.00 242.00 248.00 236.00 251.00 257.00 263.00 267.00 273.00 273.00 3010.00 TOTAL ENERGY LOAD 373.04 303.47 310.56 310.11 373.94 342.02 317.32 331.96 379.02 403.32 428.51 430.65 4303.92 HYDRO ENERGY TO LOAD 372.16 303.29 308.34 3n6.21 350.42 301.10 279.05 31?.72 362.95 394.03 421.36 423.92 4135.54 THERMAL ENERbY TO LOAD 0.85 0.17 2.20 3.89 23.49 40.91 38.26 l.22 16.05 9.26 7.12 6.70 168.12 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0O. 0 0.00 °° 0.00 ° n.o00 0.00 0.00 0.00 0.00 0.00 1HYDRO ENERGY SURPLIIS 131.32 150.08 72.02 81.19 13.35 21.69 21.90 5S.65 68.19 89.14 100.48 102.12 qO7.12 POWER (MEGAWATTS) PFAK PUMP LOAD 251.92 174.76 168.87 165.52 236.63 210.59 134.00 15-.22 223.47 244.29 262.04 263.99 2493.30 PEAK BASE LOAD 526.00 532.00 560.00 570.UO 563.00 550.00 582.00 602.00 614.00 621.00 640.00 640.00 7000.00 TOTAL PEAK LOAD 777.92 706.76 728.87 735.52 799.63 760.59 716.00 75q.22 837.47 865.29 902.04 903.99 9493.30 HYDRO CAPACITY TO LOAD 694.11 646.44 605.19 583.94 537.80 442.22 412.29 504.66 590.66 661.94 714.91 720.67 7114.83 THERMAL CAPACITY TO LOAD 83.82 60.33 123.68 151.58 261.83 318.37 303.70 254.56 246.81 203.35 187.12 183.33 2378.47 FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 o.uO 0.00 0-00 0.00 .00 000 0.00 0.00 0.00 0 .00 PEAK RESERVE 369.18 392.67 329.32 301.42 191.17 134.63 149.30 19P.44 206.19 249.65 265.88 269.67 3057.53 B-13 SOUTH 7ONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAAy JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 3.757 1.806 1.296 1.253 1.038 1.662 3.972 7.575 12.719 21.085 20.850 10.489 87.503 FROM STORAGE RELEASE -0.000 -n.000 -0.000 -0.00O -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 5.270 2.067 1.296 1.5Z9 1.038 1.869 6.342 12.6?9 19.957 34.822 35.481 16.788 139.n88 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -O.OUO -0.000 -0.000 -0-000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTfLOW 2.702 0.668 0.070 0.161 0.019 0.091 1.629 3.662 6.168 12.137 14.354 8.470 S0.132 TO RIVER LOSS -1.718 -0.523 -0.087 0.102 -0.046 0.150 0.879 1.341 1.714 3.353 1.326 -2.28ri 4.201 TO LINK LOSS 0.091 0.091 0.090 0.061 0.087 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.054 TO CANAL LOSS 0.663 0.398 0.361 0.265 0.302 0.374 0.362 0.598 0.972 0.984 0.979 0.950 7.209 TO WATERCOIJRSE 2.019 1.171 0.862 0.664 0.676 0.956 1.012 1.884 3.774 4.521 4.100 3.268 24.0n6 FROM GROUND WATER 0.158 0.132 0.136 0.113 0.155 0.109 0.115 0.132 0.141 0.158 0.158 0.158 1.665 SHORTAGE AT WATERCOURSE 0.000 0.000 0.068 0.000 0.217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.285 WATERCOURSE REOT. 2.177 1.303 1.065 0.777 1.048 1.065 1.127 2.016 3.915 4.679 4.258 3.426 26.A56 PUMP CAPACITY GOOD AREA 0.158 0.136 0.138 0.149 0.155 0.145 0.135 0.146 0.158 0.158 0.158 o.158 1.794 PUMPED FROM GOOD AREA 0.158 0.137 0.136 0.113 0.155 0.109 0.115 0.132 0.141 0.158 0.158 0.158 1.665 EVAPORATION GOOD AREA 0.184 0.074 0.055 0.031 0.045 0.031 0.019 0.041 0.236 0.555 0.605 O.4q2 2.367 RECHARGE TO UOOD APEA 0.322 0.186 0.159 0.112 0.117 0.173 0.147 0.196 0.444 0.740 0.772 0.643 4.011 NET CHANGE -- GOOD AREA -0.021 -0.019 -0.031 -0.032 -0.083 0.033 0.013 0.023 0.066 0.027 0.009 -0.006 -0.021 PUMP CAPACITY BAD AREA 0.200 0.200 0.200 O.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPEU TO DRAINAGE 0.051 0.041 0.042 0.045 0.049 0.034 0.036 0.041 0047 0.056 0.060 0.053 0.553 EVAPORATION BAD AREA 0.706 0.404 0.338 0.223 0.328 0.332 0.383 0.739 1.283 1.704 1.617 1.235 9.291 RECHARGE TO BAD AREA 0.757 0.445 0.365 0.2B2 0.320 0.423 0.419 0.779 1.330 1.759 1.677 1.289 9.844 NET CHANGE BAD AREA -0.000 -0.000 -0.015 0.015 -0.057 0.057 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERLY (MILLION KWH TOTAL PIJMP LOAD 16.17 13.25 13.66 12.06 16.13 10.91 11.60 13.37 14.58 16.63 16.86 16.38 171.61 TOTAL BASE LOAD 162.00 160.00 160.00 172.UO 170.00 174.00 179.00 184.00 189.00 178.00 191.00 195.00 2114.00 TOTAL ENERGY LOAD 178.17 173.25 173.66 184.06 186.13 184.91 190.60 197.37 203.58 194.63 207.86 211.38 2285.61 HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -O.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 THERMAL ENERbY TO LOAD 178.15 173.23 173.65 184.04 186.12 184.90 190.59 197.36 203.57 194.62 207.84 211.36 22A5.43 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 24.68 21.42 21.81 19.13 24.67 16.67 18.77 21.75 22.90 25.35 25.64 24.99 267.77 PEAK BASE LOAD 344.00 340.00 341.00 350.00 347.00 358.00 368.00 378.00 384.00 386.00 393.00 404.00 4393.00 TOTAL PEAK LOAD 368.68 361.42 362.81 369.13 371.67 374.67 386.77 39Q.75 406.90 411.35 418-64 428.99 4660.77 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY TO LOAD 368.68 361.42 362.81 369.13 371.67 374.67 386.77 399.75 406.90 411.35 418.64 428.99 4660.77 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 O-0. 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 PEAK RESERVE 81.32 88.58 87.19 229.87 227.33 224.33 212.23 199.25 192.10 187.65 180.36 170.01 2080.23 B-14 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUrn SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21-960 31.347 28.155 12.969 138.031 FROM STORAGE RELEASE 1.124 o.733 0.489 0.489 1.172 0.745 -0.274 -1.055 -1.607 -1.410 -0.387 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 5.270 2.067 1.296 1.5Z9 1.038 1.869 6.342 12.629 19.957 34.822 35.481 16.788 139.088 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157 TO RIVER OUTFLOW 2.702 0.668 0.070 0.161 0.019 0.091 1.629 3.662 6.168 12.137 14.354 8.470 50.132 TO RIVER LOS5 -3.053 -0.729 0.046 0.354 0.195 0.861 2.498 3.965 5.493 9.708 4.055 -4.666 1A.727 TO LINK LOSS 0.452 0.353 0.281 0.267 0.431 0.462 0.325 0.304 0.399 0.360 0.391 0.426 4.450 TO CANAL LOSS 1.757 1.184 1.054 0.935 1.201 1.384 1.243 1.507 2.189 2.159 2.200 2.191 19.004 TO WATERCOURSE 4.955 2.676 2.028 1.740 2.530 3.713 3.015 4.077 6.913 6.891 7.670 7.097 53.305 FROM GROUND WATER 2.395 1.299 1.190 1.187 2.057 1.777 1.251 1.367 1.958 2.218 2.495 2.535 21.729 SHORTAGE AT WATERCOURSE 0.000 0.000 0.068 O.OUO 0.217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.?85 WATERCOURSE REQT. 7.350 3.975 3.286 2.927 4.804 5.490 4.266 5.444 8.871 9.109 10.165 9.632 75.319 PUMP CAPACITY GOOD AREA 2.599 1.489 I.Z12 1.255 2.110 2.353 1.786 1.830 2.475 2.267 2.547 2.689 24.613 PUMPED FROM GOOD AREA 2.395 1.799 1.190 1.187 2.057 1.777 1.251 1.367 1.958 2.218 2.495 2.535 21.729 EVAPORATION GOOD AREA 0.671 0.442 0.394 0.306 0.359 0.514 0.466 0.573 0.893 1.883 2.058 1.411 9.968 RECHARGE TO GOOD AREA 2.490 1.615 1.289 1.241 1.840 2.322 1.834 2.030 2.924 4.580 4.840 3.614 30.620 NET CHANGE -- GOOD AREA -0.575 -0.126 -0.296 -0.252 -0.575 0.032 0.117 0.089 0.073 0.479 0.288 -0.332 -1.077 PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400 PUMPED TO DRAINAGE 0.051 0.041 0.042 0.045 0.049 0.034 0.036 0.041 0.047 0.056 0.060 0.053 0.553 EVAPORATION bAD AREA 0.925 0.53Z 0.452 0.333 0.487 0.535 0.532 0.915 1.544 2.083 2.011 1.535 11.883 RECHARGE TO bAD AREA 1.078 0.628 0.525 0.453 0.574 0.732 0.639 1.037 1.692 2.298 2.243 1.712 13.610 NET CHANGE BAD AREA 0.103 0.054 0.031 0.075 0.039 0.164 0.071 O.0A1 0.100 0.159 0.173 0.124 1.174 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PIJMP LOAD 162.21 86.72 81.22 80.17 142.07 116.94 77.92 88.34 130.60 152.95 172.36 174.03 1465.53 TOTAL BASE LOAD 389.00 390.00 403.00 414.00 418.00 410.00 430.00 441.00 452.00 445.00 464.00 46A.00 5124.00 TOTAL ENERGY LOAD 551.21 476.72 484.22 494.17 560.07 526.94 507.92 529.34 582.60 597.95 636.36 642.03 6589.53 HYURO ENERGY TO LOAD 372.16 303.29 308.34 306.21 350.42 301.10 279.05 312.72 362.95 394.03 421.36 423.92 4135.54 THERMAL ENERGY TO LOAD 179.01 173.41 175.85 187.93 209.60 225.80 228-84 216.58 219.62 203.88 214.96 218.07 2453.55 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLIIS 131.32 150.08 72.02 81.19 13.35 21.69 21.90 55.65 68.19 89.14 100.48 102.12 907.12 POWER (MEGAWATTS) PEAK PUMP LOAD 276.61 196.18 190.67 184.65 261.30 227.26 152.77 17R.97 246.36 269.64 287.68 288.98 2761.06 PEAK BASE LOAD 870.00 872.00 901.00 920.00 910.00 908.00 950.00 980.00 998.00 1007.00 1033.00 1044.00 11393.00 TOTAL PEAK LOAD 1146.61 1068.18 1091.67 1104.65 1171.30 1135.26 1102.77 1158.97 1244.36 1276.64 1320.68 1332.98 14154.06 HYDRO CAPACITY TO LOAD 694.11 646.44 605.19 583.94 537.80 442.22 412.29 504.66 590.66 661.94 714.91 720.67 7114.83 THERMAL CAPACITY TO LOAD 452.50 421.74 486.48 520.11 633.50 693.04 690.48 654.31 653.70 614.69 605.76 612.31 7039.23 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 450.50 481.26 416.52 531.Zg 418.50 358.96 361.52 397.69 398.30 437.31 446.24 439.69 5137.77 B-15 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 66850721O YEAR 1971 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEc JAN FEB MAR APR M AY JIINE JuLY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.730 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27-910 12.890 137.520 FROM STORAGE RELEASE 1.j20 -.730 0.487 0.487 1.168 0.745 -0.274 -1.052 -1.601 -1.404 -0.385 0.001 0.01Q FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.030 0.030 0.030 0.030 0.030 0.030 0.024 0.024 0.024 0.030 0.030 0.026 0.338 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.OU1 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157 TO RIVER OUTFLOW 3.823 1.848 1.349 1.267 1.018 1.615 3.689 7.250 12.514 20.806 20.634 10224 A6.037 TO RIVER LOSS -1.303 -0.202 0.134 0.246 0.234 0.642 1.475 2.621 3.775 6.238 7.774 -2.455 14.179 TO LINK LOSS 0.345 0.261 0.192 0.2u9 0.342 0.388 0.265 0.241 n.324 0.299 0.319 0.343 3. 530 TO CANAL LOSS 1.100 0.816 0.698 0.684 0.924 1.066 0.980 1.026 1.249 1.143 1.194 1.275 12.155 TO WATERCOURSE 2.873 1.456 1.134 1.080 1.884 2.830 2.325 2.402 3.330 2.617 3.537 4.079 29.548 FROM GROUND WATER 2.652 1.321 1.146 1.200 2.175 1.932 1.006 1.206 1.838 2.001 2.612 2.391 21.479 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REOT. 5.525 P.777 2.280 2.280 4.059 4.762 3.331 3.608 5.168 4.618 6.149 6.470 51.027 PUMP CAPACITY GOOD AREA 2.748 1.498 1.178 1.230 2.215 2.523 1.848 1.874 2.650 2.457 2.787 2.941 25.q50 PUMPED FROM GOOD AREA 2.652 1.321 1.146 1.200 2.175 1.932 1.006 1.206 -1.838 2.001 2.612 2.391 21.479 EVAPORATION bOOD AREA 0.483 0.345 0.323 0.282 0.331 0.439 0.398 0.476 0.586 1.241 1.363 0.774 7.041 RECHARGE TO GOOD AREA 2.247 1.471 1.143 1.163 1.801 2.263 1.799 1.957 2.550, 3.853 4.100 3.055 27.400 NET CHANGE -- GOOD AREA -0.888 -0.195 -0.326 -0.3cO -0.705 -0.108 0.394 0.275 0.126 0.611 0.125 -0,110 -1.120 PUMP CAPACITY BAD AREA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0. 030 0.030 0.360 PUMPED TO DRAINAGE 0.030 0.030 0.030 0.030 0.030 0.030 0.024 0.024 0.024 0.030 0.030 0.026 0.338 EVAPORATION BAD AREA 0.214 0.123 0.109 o.1u8 0.158 0.198 0.148 0.248 0.350 0.515 0.536 0.407 3.116 RECHARGE TO tAD AREA 0.330 0.188 0.164 0.178 0.266 0.319 0.232 0.270 0.366 0.543 0.568 0.428 3. 852 NET CHANGE BAD AREA 0.086 0.03s 0.025 0.040 0.078 0.091 0.060 -0.001 -0.009 -0.003 0.002 -0.006 0.399 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.00o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERUY (MILLION KWH) TOTAL PUMP LOAD 191.24 94.20 82.37 86.13 160.22 138.63 65.16 81.23 126-37 138.87 189.33 169.68 1523.43 TOTAL BASE LOAD 257.00 260.00 273.00 261.UO 268.00 255.00 271.00 278.00 285.00 288.00 295.00 295.00 3286.00 TOTAL ENERGY LOAD 448.24 354.20 355.37 347.13 428.22 393.63 336.16 359.23 411.37 426.87 484.33 464.68 4809.43 HYDRO ENERGY TO LOAD 447.39 354.18 354.36 345.71 360.96 327.61 325.01 353.43 405.53 ,425.51 480.97 462.67 4643.35 THERMAL ENERGY TO LOAD 0.81 0.00 0.99 1.40 67.23 65.99 11.13 5.78 5.82 1.34 3.32 1.98 165.78 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 54.92 95.89 22.50 35.31 0.01 0.00 70.12 118.09 128.09 163.74 143.25 124.55 956.47 POWER (MEGAWATTS) PEAK PUMP LOAD 320.21 220.69 207.48 208.Z9 293.13 272.26 138.35 179.05 258.60 251.86 319.36 302.82 2972.09 PEAK BASE LOAD 602.UO 608.00 640.00 630.00 608.00 594.00 629.00 649.00 663.00 670.00 691.00 691.00 7675.00 TOTAL PEAK LOAD 922.21 828.69 547.48 838-29 901.13 866-26 767.35 828.05 921.60 921.86 1010.36 993.82 10647.09 HYDRO CAPACITY TO LOAD 832.40 781.66 740.90 715.68 673.70 583.89 553.82 645.99 731.06 807.26 855.19 860.85 8782.41 THERMAL CAPACITY TO LOAD 89.a1 47.03 106.58 122.62 227.44 282.36 213.53 182.06 190.54 114.59 155.17 132.97 1864.68 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0O0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 363.19 405.97 346.42 330.38 225.56 170.64 239.47 270.94 262.46 338.41 297.83 320.03 3571.32 B-16 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 3.823 1.848 1.349 1.267 1.018 1.615 3.689 7.250 12.514 20.806 20.634 10.224 86.o37 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBtJTARIES 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0-000 0.000 0-000 0.000 0.000 FROM DRAINS 5.467 2.212 1.337 1.418 0.974 1.774 5.859 11.773 19.412 34.407 35.240 16.503 136.376 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTFLOW 2.817 0.790 0.107 0.111 -0.001 0.060 1.483 3.329 5.876 11.902 14.176 8.376 49.027 TO RIVER LOSS -1.717 -0.521 -0.111 0.071 -0.033 0.142 0.807 1.251 1.739 3.363 1.346 -2.300 4.037 TO LINK Loss 0.091 0.091 0.089 0.070 0.091 0.091 0.091 0.091 0-091 0.091 0.091 0.091 1.066 TO CANAL LOSS 0.658 0.405 0.375 0.3U0 0.302 0.390 0.369 0.650 0.979 0.982 0.978 0.921 7.310 TO WATERCOURSE 1.975 1.084 0.888 0.715 0.659 0.932 0.938 1.930 3.829 4.468 4.043 3.136 24.597 FROM GROUND WATER 0.195 0.178 0.178 0.181 0.208 0.162 0.167 0.183 0.192 0.209 0.209 0.209 2.272 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.271 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.271 WATERCOURSE REQT. 2.170 1.262 1.066 0.896 1.138 1.094 1.105 2.113 4.021 4.677 4.252 3.345 27.139 PUMP CAPACITY GOOD AREA 0.209 0.188 0.190 0.202 0.208 0.198 0.188 0.198 0.209 0.209 0.209 0.209 2.417 PUMPED FROM GOOD AREA 0.195 0.178 0.178 0.181 0.208 0.162 0.167 0.183 0.192 0.209 0.209 0.209 2.272 EVAPORATION bOOD AREA 0.154 0.053 0.048 0.035 0.044 0.024 0.017 0.063 0.265 0.437 0.463 0.421 2.024 RECHARGE TO GOOD AREA 0.319 O.189 0.175 0.157 0.121 0.181 0.149 0.215 0.455 0.734 0.764 0.633 4.072 NET CHANGE -- GOOD AREA -0.030 -0.042 -0.051 -0.080 -0.130 -0.004 -0.036 -0.031 -0.002 0.087 0.092 0.003 -0.224 PUMP CAPACITY BAD AREA 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 2.880 PUMPED TO DRAINAGE 0.092 0.081 0.082 0.087 0.089 0.063 0.054 0.063 0.069 0.084 0.084 0.074 0.921 EVAPORATION BAD AREA 0.682 0.381 0.329 0.250 0.334 0.308 0.364 0.760 1.280 1.680 1.598 1.183 9.150 RECHARGE TO BAD AREA 0.753 0.439 0.377 0.314 0.324 0.433 0.418 0.824 1.349 1.764 1.682 1.257 9.933 NET CHANGE BAD AREA -0.021 -0.024 -0.034 -0-.04 -0.099 0.063 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 -0.138 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERNY (MILLION KWH) TOTAL PUMP LOAD 21.z4 19.28 19.59 20-12 23.65 17.97 17.96 20.19 21.51 23.95 23.57 22.67 252-30 TOTAL BASE LOAD 204.00 202.00 201.00 198.00 198.00 203.00 209.00 214.00 218.00 219.00 223.00 227.00 2516.00 TOTAL ENERGY LOAD 225.24 221.28 220.59 218.12 221.65 220.97 226.96 234.19 239.51 242.95 246.57 249.67 2768.30 HYDRO ENERGY TO LOAD -O.UO -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0-00 -0.00 0.00 THERMAL ENERbY TO LOAD 225.Z2 221.27 220.57 218.70 221.64 220.95 226.94 234.17 239.49 242.93 246.55 249.65 2768.08 ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 0-00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER O.UO 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PowEm (MEGAWATTS) PEAK PUMP LOAD 32.63 30.69 31.14 32.r8 35.92 27.34 28.40 32.13 33.45 36.44 35.85 34.57 391.34 PEAK BASE LOAU 419.00 414.00 415.00 406.U0 403.00 415.00 426.00 437.00 445.00 447.00 455.00 467.00 5149.00 TOTAL PEAK LOAD 451.63 444.69 446.14 438.78 438.92 442.34 454.40 469.13 478.45 483.44 490.85 501.57 5540.34 HYDRO CAPACITY TO LOAD o.uO 0.00 0.00 0.0O 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 .°00 THERMAL CAPACITY TO LOAD 451.63 444.69 446.14 438.78 438.92 442.34 454.40 46q.13 478.45 483.44 490.85 501.57 554n.34 FIRM CAPACITY TRANSFER 0.00 0.00 0-00 0.00 0.00 0-00 0.00 0-00 0-00 0.00 0-00 0.00 0.00 PEAK RESERVE 147.37 154.31 152.86 281.Z2 281.08 277.66 265.60 250.87 241.55 236.56 229.15 218.43 2736.66 B-17 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 Z-780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.ZO 0.730 0.487 0.457 1.168 0.745 -0.274 -1.052 -1.601 -1.404 -0.385 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 5o497 2.242 1.367 1.448 1.004 1.804 5-883 11-796 19.436 34.437 35.270 16.529 136.714 TO RESERVOIR EVAPORAIION 0.022 n.0I0 0.006 O.OU1 0.005 0,004 0.005 0.020 0.031 0.024 0.026 0.002 0.157 TO RIVER OUTtLOW 2.817 0.790 0.107 0.111 -0.001 0.060 1.483 3.329 5.876 11.902 14.176 8.376 49.027 TO RIVER LOSS -3.020 -0.723 0.023 0.317 0.201 0.784 2.282 3.872 5.514 9.601 4.120 -4.756 I.216 TO LINK LOSS 0.435 0.352 0.281 0.278 0.433 0.479 0.356 0.332 0.415 0.390 0.410 0.434 4.596 TO CANAL LOSS 1.758 1.221 1.073 0.985 1.226 1.456 1.350 1.676 2.228 2.125 2.172 2.196 19.464 TO WATERCOUR5E 4.848 2.540 2.023 1.7V4 2.544 3.762 3.262 4.332 7.159 7.085 7.580 7.215 54.144 FROM GROUND WATER 2.847 1.499 1.323 1.352 2.383 2.094 1.174 1.389 2.030 2.210 2.821 2.600 23.751 SHORTAGE AT WATERCOURSE 0.000 0.000 0-000 O.OuO 0-271 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.771 WATERCOURSE REOT. 7.695 4.039 3.346 3.176 5.197 5.856 4.436 5.721 9.189 9.295 10.401 9.815 78.166 PUMP CAPACITY GOOD AREA 2.957 1.687 1.368 1.432 2.423 2.722 2.037 2.071 2.859 2.666 2.996 3.150 28.367 PUMPED FROM GOOD AREA 2.847 1.499 1.323 1.382 2.383 2.094 1.174 1.389 2.030 2.210 2.821 2.600 23.751 EVAPORATION 00D AREA 0.636 0.398 0.371 0.318 0.374 0.463 0.415 0-539 0.851 1.678 1.827 1.194 9.665 RECHARGE TO GOOD AREA 2.565 1.659 1.317 1.299 1.922 2.444 1.947 2.172 3.005 4.587 4.865 3.688 31.472 NET CHANGE -- GOOD AREA -0.918 -0.238 -0-377 -0-4uo -0.835 -0-112 0.359 0.244 0.123 0.698 0.217 -0.107 -1.345 PUMP CAPACITY BAD ARtA 0.270 0.270 0.270 0.210 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 3.240 PUMPED TO DRAINAGE 0.122 0.111 0.112 0.117 0.119 0.093 0.078 0.087 0.093 0.114 0.114 0.100 1.258 EVAPORATION BAD AREA 0.896 0.504 0.438 0.358 0.492 0.505 0.512 1.008 1.630 2.196 2.135 1.590 12.266 RECHARGE TO BAD AREA 1.083 0.627 0.540 0.492 0.589 0.752 0.650 1.094 1.715 7.307 2.250 1.6A5 13.785 NET CHANGE BAD AREA 0.065 0.011 -0.009 0.016 -0.022 0.154 0.060 -0.001 -0.009 -0.003 0.002 -0.006 0.260 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 212.48 113.49 101.96 106.84 183.87 156.60 83.13 101.41 147.88 162.82 212.90 192.35 1775.73 TOTAL BASE LOAD 461.00 462.00 474.00 459.00 466.00 458.00 480.00 497.00 503.00 507.00 518.00 522.00 5802.00 TOTAL ENERGY LOAD 673.48 575.49 575.96 565.84 649.87 614.60 563.13 593.41 650.88 669.82 730.90 714.35 7577.73 HYDRO ENERGY TO LOAD 447.39 354.18 354.36 345.71 360.96 327.61 325.01 353.43 405.53 425.51 480.97 462.67 4643.35 THERMAL ENERGY TO LOAD 226.04 221.27 221.56 220.10 288.86 286.94 238.07 239.95 245.31 244.27 249.87 251.62 2933.87 ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0-00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 54.92 95.89 22.50 35.31 0.01 0.00 70.12 118.09 128.09 163.74 143.25 124.55 956.47 POWER (MEGAWATTS) PEAK PUMP LOAD 352.84 251.38 238.62 241.07 329.06 299.60 166.75 211.18 292.05 288.30 355.21 337.39 3363.43 PEAK BASE LOAD 1021.00 1022.00 1055.00 1036.00 1011.00 1009.00 1055.00 1086.00 1108.00 1117.00 1146.00 1158.00 12824.00 TOTAL PEAK LOAD 1373-84 1273.38 1293.62 1277-07 1340.06 1308.60 1221.75 1297.18 1400.05 1405.30 1501.21 1495.39 16187.43 HYDRO CAPACITY TO LOAD 832.40 781.66 740.90 715.68 673.70 583.89 553.82 645.99 731.06 807.26 855.19 860.85 8782.41 THERMAL CAPACITY TO LOAD 541.44 491.72 552.71 561.39 666.36 724.71 667.92 651.19 668.99 598.04 646.02 634.53 7405.02 FIRM CAPACITY TRANSFLR 0-00 0-00 0-00 0-uo 0.00 0-00 0.00 0-00 0-00 0-00 0-00 0.00 0.00 PEAK RESERVE 510.56 560.28 499.29 611.61 506.64 448.29 505.08 521.81 504.01 574.96 526.98 538.47 6307.98 B-18 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1972 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.115 0.727 0.485 0.4a5 1.163 0.805 -0.320 -1.064 -1.594 -1.398 -0.384 0.001 0.019 FROM TRIBUTARIES 0.280 0.200. 0.220 0.210 0.240 0.730 1,100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.025 0.023 0.023 O-OZ3 0.024 0.025 0.014 0.014 0.014 0.026 0.028 0.021 0.259 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.0ul 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156 TO RIVER OUTeLOW 3.174 1.580 1.157 1.060 0.878 1.476 3.453 7.217 12.544 21.129 20.745 10.353 84.766 TO RIVER LOSS -1.492 -0.109 0.098 0.219 0.273 0.606 1.552 2.664 3.765 6.409 2.666 -2.408 14.242 TO LINK LOSS 0.468 o.286 0.247 0.260 0.352 0.390 0.247 0.239 o.320 0.278 0.317 0.330 3.735 TO CANAL LOSS 1.203 0.820 0.745 0.751 0.976 1.129 1.082 1.062 1.247 1.091 1.238 1.286 12.630 TO WATERCOURSE 3.476 1.597 1.251 1.186 1.914 2.995 2.345 2.337 3.313 2.197 3.493 3.899 29.998 FROM GROUND WATER 2.333 1.262 1.061 1.195 2.400 2.048 1.141 1.408 1.997 2.545 2.797 2.730 22.16 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 o.ouO 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.009 WATERCOURSE REOT. 5.809 2.854 2.312 2.381 4.314 5.043 3.486 3.745 5.310 4.742 6.294 6.633 52.q23 PUMP CAPACITY GOOD AREA 3.011 1.605 1.255 1.332 2.454 2.795 2.o26 2.027 2.920 2.671 3.135 3.288 28.518 PUMPED FROM GOOD AREA 2.333 1.26? 1.061 '1.195 2.400 2.048 1.141 1.408 1.997 2.545 2.797 2.730 22.916 EVAPORATION GOOD AREA 0.428 0.307 O.Z84 0.243 0.299 0.392 0.351 0.428 0.493 0.886 0.959 0.614 5.685 RECHARGE TO GOOD AREA 2.382 1.488 1.182 1.2Z8 1.890 2.366 1.894 2.005 2.581 3.843 4.165 3.098 28.122 NET CHANGE -- GOOD AREA -0.379 -0.082 -0.163 -0.210 -0.809 -0.074 0.402 0.170 0.090 0.412 0.409 -0.246 -0.479 PUMP CAPACITY BAD AREA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.360 PUMPED TO DRAINAGE 0.025 0.023 0.023 0.023 0.024 0.025 0.014 0.014 0.014 0.026 0.028 0.021 0.259 EVAPORATION BAD AREA 0.324 0.181 0.167 0.1a7 0.257 0.308 0.231 0.266 0.350 0.513 0.538 0.408 3.729 RECHARGE TO BAD AREA 0.342 0.193 0.170 0.190 0.277 0.330 0.253 0.281 0.366 0.541 0.571 0.430 3.945 NET CHANGE BAAD AREA -0.0U7 -0.011 -0.019 -0.020 -0.003 -0.003 0.009 0.002 0.002 0.002 0.004 0.001 -0.043 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 170.27 90.55 77.09 87.68 181.07 152.41 76.91 99.40 142.38 19.67 207.60 200.61 1675.63 TOTAL BASE LOAD 278.00 281.00 295.00 28O.UO 287.00 273.00 291.00 298.00 305.00 309.00 316.00 316.00 3529.00 TOTAL ENERGY LOAD 448.27 371.55 372.09 367.68 468.07 425.41 367.91 397.40 447.38 498.67 523.60 516.61 5204.63 HYDRO ENERGY TO LOAD 446.41 370.94 369.60 363.12 361.66 408.85 361.38 396.18 447.35 498.63 523.56 516.57 5064.25 THERMAL ENERGY TO LOAD 1.83 0.60 Z.47 4.55 106.38 16.53 6.51 1.20 0.00 0.00 0.00 0.00 140.07 ENERGY DEFICIENCY 0.00 0.00 0.00 o.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.UO 0.00 0.00 o.Uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 61.72 81.64 11.30 16.81 0o00 4.22 109.18 188.89 234.91 261.81 294.22 191.70 1456.40 POWER (MEGAWATTS) PEAK PUMP LOAD 321.42 220.96 207.35 223.91 331.53 302.04 177.11 223.31 289.90 338.56 357.55 346.34 3339.98 PEAK BASE LOAD 649.00 656.00 691.00 680.00 652.00 637.00 674.00 696.00 711.00 719.00 741.00 741,00 8247.00 TOTAL PEAK LOAD 970.42 876.96 898.35 903-91 983.53 939.04 851.11 919.31 1000.90 1057-56 1098-55 1087.34 11586.98 HYDRO CAPACITY TO LOAD 840.71 785.08 747.21 714.92 674.83 700.96 657.36 801.54 934.70 1041.81 1120.35 1129.36 10148.84 THERMAL CAPACITY TO LOAD 129.71 91.88 151.14 188.98 308.71 238.08 193.75 117.77 66.20 15.76 0,00 o,oo 1501.97 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0-00 0.00 0.00 0-00 0.00 0.00 PEAK RESERVE 323.29 361.12 301.86 248.02 128.29 198.92 243.25 319.23 370.80 421.24 458.80 479.03 3853.86 B-19 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUnY-FEB 1965 REVISED VERSION STUDY NUMBER 668507Z110 YEAR 1973 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DFC JAN FEB MAR APR MAY JUNE JIJLY AUOr SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27-910 12.890 137.520 FROM STORAGE RELEASE 1.111 0.724 0.483 0.483 1.158 0.804 -0.322 -1.060 -1.588 -1.393 -0.382 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.017 0.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.02A 0.021 0.196 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156 TO RIVER OUTPLOW 3.035 1.451 1.073 0.937 0.860 1.302 3.247 6.908 12.369 21.019 20.684 10.327 83.212 TO RIVER LOSS -1.613 -0.097 0.095 0.193 0.295 0.511 1.514 2.642 3.793 6.399 2.682 -2.402 14.013 TO LINK LOSS 0.4.90 n.328 0.300 0.310 0.353 0.431 0.276 0.262 0.320 0.284 0.314 0.330 3.997 TO CANAL LOSS 1.270 0.867 0.768 0.792 0.963 1.152 1.123 1.175 1.223 1.116 1.252 1.288 12.082 TO WATERCOURSE 3.634 1.611 1.247 1.231 1.907 3.191 2.516 2.537 3.490 2.292 3.528 3.918 31.102 FROM GROUND WATER 2.540 1.35n 1.124 1.291 2.664 2.212 1.170 1.390 2.017 2.624 2.975 2.950 24.307 SHORTAGE AT WATERCOURSF 0.000 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.055 WATERCOURSE REQT. 6.174 2.961 2.371 2.5Z2 4,626 5.403 3-686 3.927 5.507 4.916 6.503 6.868 55.464 PUMP CAPACITY GOOD AREA 3.281 1.71? 1.331 1.443 2.676 3.068 2.190 2.183 3.123 2.829 3.353 3.508 30.696 PUMPED FROM GOOD AREA 2.540 1.350 1.124 1.291 2.664 2.212 1.170 1.390 2.017 2.624 2.975 2.950 24.307 EVAPORATION GOOD AREA 0.395 0.289 0.246 0.2Z8 0.308 0.382 0.326 0.408 0.477 0.811 0.898 0.563 5.331 RECHARGE TO GOOD AREA 2.507 1.535 1.206 1.282 1.937 2.455 1.963 2.126 2.604 3.896 4.219 3.148 28.878 NET CHANGE -- GOOD AREA -0.429 -0.104 -0.164 -0.237 -1.036 -0.138 0.468 0.328 0.110 0.461 0.346 -0.366 -0.760 PUMP CAPACITY BAD ARLA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.360 PUMPED TO DRAINAGE 0.017 0.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.028 0.021 0.196- EVAPORATION BAD AREA 0.336 0.191 0.175 0.197 0.271 0.308 0.239 0.277 0.353 0.519 0.545 0.414 3.A24 RECHARGE TO BAD AREA 0.355 0.203 0.177 0.201 0.279 0.344 0.263 0.293 0.369 0.547 0.577 0.436 4.044 NET CHANGE BAD AREA 0.002 0.001 -0.008 -0.0U8 -0.007 0.019 0.011 0.002 0.002 0.003 0.004 0.001 0.023 DRAIN STORAGt CONTFNT 0.000 0.000 0.000 0.0uo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 194.03 102.06 86.09 99-J9 210.12 174.77 84.25 102.42 151-22 205.04 229.60 226.64 1865.62 TOTAL BASE LOAD 298.00 301.00 316.00 303.00 310.00 295.00 314.00 322.00 330.00 334.00 341.00 341.00 3805.00 TOTAL ENERGY LOAD 492.U3 403.06 40Z.09 402.39 520.12 469.77 398.25 424.42 481.22 539.04 570.60 567.64 5670.62 HYDRO ENERGY TO LOAD 492.00 403.04 373.49 371.47 482.01 408.77 384.63 420.58 479.74 .538.42 570.56 567.59 5492.31 THERMAL ENERGY TO LOAD 0.00 0.00 28.58 30.91 38.06 60.97 13.60 3.82 1.44 0.59 0.00 0.00 177.97 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 29.77 45.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.51 HYDRO ENERGY SURPLUS 171.10 32.75 0.00 0.00 7.90 0.00 85.54 165.26 202.52 222.65 247.24 140.56 1275.49 POWER (MEGAWATTS) PEAK PUMP LOAD 357.Z0 246.06 233.11 248.17 368.22 329.60 187.81 229.43 300.89 364.16 391.79 383.96 3640.41 PEAK BASE LOAD 696.00 704.00 741.00 740.00 704.00 688.00 728.00 752.00 768.00 776.00 800.00 800.00 8897.00 TOTAL PEAK LOAD 1053.20 950.06 974.11 988-17 1072.22 1017-60 915.81 981.43 1068.89 1140.16 1191.79 1183.96 12537.41 HYDRO CAPACITY TO LOAD 1053.20 950.06 954.51 908.47 850.74 695.28 657.02 802.60 934.70 1042.65 1120.39 1129.36 11098.98 THERMAL CAPACITY TO LOAD O.00 0.00 19.60 79.70 221.49 322.32 258.79 178.83 134.19 97.51 71.40 54.60 1438.43 FIRM CAPACITY TRANSFER 40-79 62-66 0.00 O-O0 0.00 0-00 0.00 0-00 0.00 0-00 0.00 0.00 103.44 PEAK RESERVE 477.79 499.66 417.40 357.30 215.51 114.68 178.21 258.17 302.81 339.49 365.60 382.40 3909.02 B-22 SYSTEM SUMMARY WAtER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31-160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.115 0.727 0.485 0.485 1.163 0.805 -0.320 -1.064 -1.594 -1.398 -0.384 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 4.422 1.763 1.151 1.OZ8 0.849 1.593 5.267 11.373 19.199 35.182 35.757 17.202 134.786 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156 TO RIVER OUITFLOW 2.418 n.536 0.047 -0.000 -0.000 -0.000 1.204 3.023 5.629 12.060 14.371 8.703 47.990 TO RIVER LOSS -3.360 -0.557 0.034 0.236 0.284 0.732 2.263 3.920 5.525 9.956 4.002 -4.660 18.375 TO LINK LOSS 0.559 0.377 0.335 0.339 0.443 0.481 0.338 0.330 0.411 0.369 0.407 0.421 4.510 TO CANAL LOSS 1.838 1.223 1.083 1.050 1.224 1.510 1.461 1.749 2.232 2.071 2.215 2.146 19.803 TO WATERCOURSE 5.374 2.590 1.998 1.852 2.443 3.873 3.413 4.497 7.392 6.648 7.463 6.850 54.393 FROM GROUND WATER 2.620 1.503 1.314 1.470 2.684 2.306 1.173 1.480 2.069 2.793 3.098 3.031 25.541 SHORTAGE AT WATERCOURSE 0.005 0.000 0-083 0-057 0.435 0-000 0-000 0.000 0.000 0-000 0-004 0.004 0.619 WATERCOURSE REOT. 7.999 4.093 3.396 3.409 5.562 6.179 4.586 5.977 9.461 9.441 10.565 9.885 80.553 PUMP CAPACITY GOOD AREA 3.312 1.856 1.509 1.607 2.737 3.058 2.267 2.318 3.221 2.972 3.436 3.589 31.883 PUJMPED FROM GOOD AREA 2.620 1.503 1.314 1.470 2.684 2.306 1.173 1.480 2.069 2.793 3.098 3.031 25.541 EVAPORATION GOOD AREA 0.561 0.356 0.329 0.277 0.344 0.406 0.370 0.472 0.669 1.191 1.364 0.960 7.301 RECHARGE TO GOOD AREA 2.694 1.677 1.340 1.375 1.997 2.548 2.047 2.235 3.049 4.572 4.924 3.709 32.167 NET CHANGE -- GOOD AREA -0.488 -0.1A2 -0.304 -0.373 -1.031 -0.164 0.505 0.283 0.310 0.588 0.461 -0.282 -0-675 PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.3Z0 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 3.440 PUMPED TO DRAINAGE 0.148 0.130 0.110 0.094 0.089 0.055 0.082 0.095 0.111 0.153 0.160 0.130 1.356 EVAPORATION BAD AREA 0.976 0.541 0.480 0.449 0.568 0.581 0.574 1.050 1.624 2.157 2.098 1.507 12.608 RECHARGE TO HAD AREA 1.089 0.624 0.519 0.5U2 0,559 0.766 0.673 1.148 1.737 2.312 2.262 1.638 13.829 NET CHANGE BAD AREA -0.035 -0.048 -0.071 -0.041 -0.097 0.130 0.017 0.002 0.002 0.002 0.004 0.001 -0.134 DRAIN STORAGE CONTENT 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 202-03 118.30 105.24 117.e4 211.77 178.96 84.46 111.24 155.26 220.31 242.73 234.n4 1981.58 TOTAL BASE LOAD 514.00 515.00 529.00 511.U0 516.00 507.00 531.00 545.00 557.00 562.00 574.00 580.00 6441.00 TOTAL ENERGY LOAD 716.03 633.30 634.24 628.24 727.77 685.96 615.46 656.24 712.26 782.31 816.73 814.04 8422.58 HYDRO ENERGY TO LOAD 446.41 370.94 369.60 363.12 361.66 408.85 361.38 396.18 447.35 498.63 523.56 516.57 5064.25 THERMAL ENERGY TO LOAD 269.57 262.33 264.60 265.08 366.06 277.06 254.05 260.02 264.86 283.62 293.11 297.40 3357.76 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLDS 61.72 81.64 11.30 16.51 0.00 4.22 109.18 18R.89 234.91 261.81 294.22 191.70 1456.40 POWER (MEGAWATTS) PEAK PUMP LOAD 370.09 265.87 252.48 269.99 379.37 344.85 189.23 240.70 308.70 385.52 410.88 397.32 3815.01 PEAK BASE LOAD 1134.00 1136.00 1172.00 1152.00 1122.00 1119.00 1169.00 1203.00 1227.00 1236.00 1269.00 1283.00 14222.00 TOTAL PEAK LOAD 1504.09 1401.87 1424.48 1421.99 1501.37 1463.85 1358.23 1443.70 1535.70 1621.52 1679.88 1680. 3 18037.01 HYDRO CAPACITY TO LOAD 840.71 785.0R 747.21 714.92 674.83 700.96 657.36 801.54 934.70 1041.81 1120.35 1129.36 10148.84 THERMAL CAPACITY TO LOAD 663.39 616.79 677.27 707.07 826.54 762.88 700.87 64?.16 601.00 579.71 581.33 592.98 7952O00 FIRM CAPACITY TRANSFtR o.0o 0.00 0.00 n.uO 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 509.61 556.71 495.73 549.Y3 430.46 494.12 556.13 614.84 656.00 677.29 697.47 706.04 6943.83 B-Z1 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 3.174 1.580 1.157 1.060 0.878 1.476 3.453 7.217 12.544 21.129 20.745 10.353 84.766 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO 0.000 0-000 0-000 0.000 0.000 0.000 0-000 0.000 0.000 FROM DRAINS 4.396 1.740 1.129 1.005 0.825 1.569 5.253 11.360 19.185 35.156 35.728 17.181 134.527 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTF-LOW 2.418 0.536 0.047 -0.oUo -0.000 -0.000 1.204 3.023 5.629 12.060 14.371 8.703 47.990 TO RIVER LOSS -1.868 -0.448 -0.064 0.017 0.010 0.126 0.711 1.257 1.760 3.548 1.337 -2.251 4.133 TO LINK LOSS 0.091 0.091 0.088 0.0/9 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.075 TO CANAL LOSS 0.636 0.403 0.338 0.298 0.248 0.381 0.379 0.687 0.986 0.980 0.977 0.860 7.173 TO WATERCOURSE 1.898 0.998 0.747 0.665 0.530 0.878 1-068 2.160 4.079 4.451 3.970 2.951 24.394 FROM GROUND WATER 0.287 0.241 0.253 0.276 0.284 0.258 0.032 0.072 0.072 0.248 0.301 0.301 2.025 SHORTAGE AT WATERCOURSE 0.005 0.000 0.083 0.087 0.435 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.10 WATERCOURSE REQT. 2.190 1.239 1.084 1.OZ8 1.248 1.136 1.100 2.232 4.151 4.699 4.271 3.252 27.630 PUMP CAPACITY GOOD AREA 0.301 0.251 0.254 0.276 0.284 0.263 0.241 0.291 0.301 0.301 0.301 0.301 3.365 PUMPED FROM GOOD AREA 0.287 0.241 0.253 0.276 0.284 0.258 0.032 0.072 0.072 0.248 0.301 0.301 2.625 EVAPORATION GOOD AREA 0.134 0.049 0.045 0.034 0.045 0.014 0.019 0.045 0.176 0.304 0.405 0.346 1.616 RECHARGE TO GOOD AREA 0.312 0.190 0.158 0.147 0.107 0.182 0.153 0.230 0.468 0.729 0.759 0.611 4.045 NET CHANGE -- GOOD AREA -0.109 -0.100 -0.141 -0.163 -0.222 -0.090 0.102 0.113 0.221 0.177 0.053 -0.036 -0.196 PUMP CAPACITY 8AD ARtA 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480 PUMPED TO DRAINAGE 0.122 0.108 0.087 0.071 0.065 0.030 0.068 0.082 0.097 0.128 0.131 0.109 1.097 EVAPORATION BAD AREA 0.652 0.361 0.313 0.262 0.312 0.273 0.344 0.784 1.274 1.644 1.560 1.099 8.879 RECHARGE TO BAD AREA 0.746 0.431 0.348 0.312 0.282 0,436 0.420 0.866 1.371 1.772 1.691 1.208 9.884 NET CHANGE BAD AREA -0.028 -0.037 -0.052 -0.020 -0.094 0.133 0.008 -0.000 -0.000 -0.000 -0.000 -0.000 -0.091 DRAIN STORAGt CONTENT 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LoAD 31.76 27.75 28-15 29-55 30.70 26.55 7.55 11.84 12-88 30.65 35-13 33.43 305.94 TOTAL BASE LOAD 236.00 234.00 234.00 231.UO 229.00 234.00 240.00 247.00 252.00 253.00 258.00 264.00 2912.00 TOTAL ENERGY LOAD 267.76 261.75 262.15 260.55 259.70 260.55 247.55 258.84 264.88 283.65 293.13 297.43 3217.94 HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -o.uo -0-00 -0-00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 THERMAL ENERGY TO LOAD 267.74 261.73 262.13 260.53 259.68 260.53 247.53 258.82 264.86 283.62 293.11 297.40 3217.69 ENERGY DEFICIENCY 0.00 0.00 0.00 O.UO 0-00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER O.UO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 48.67 44.91 45.14 46.08 47.83 42.81 12.12 17.39 18.80 46.96 53.33 50.98 475.03 PEAK BASE LOAD 485.00 480.00 481.00 472.00 470.00 482.00 495.00 507.00 516.00 517.00 528.00 542.00 5975.00 TOTAL PEAK LOAD 533.67 524.91 526.14 518.08 517.83 524.81 507-12 524.39 534-80 563-96 581.33 592.98 6450.03 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY Tn LOAD 533.67 524.91 526.14 518.08 517.83 524.81 507.12 524.39 534.80 563.96 581.33 592.98 6450.03 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 O.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 186.33 195.09 193.86 301.92 302.17 295.19 312.88 295.61 285.20 256.04 238.67 227.02 3089.97 B-20 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 3.035 1.451 1.073 0.9J7 0.860 1.302 3.247 6.908 12.369 21.019 20.684 10.327 83.212 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 4.151 1.409 1.028 0.852 0.779 1.250 4.826 10.538 18.637 34.817 35.663 17.406 131.358 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTPLOW 2.381 0.374 0.003 -0.000 0.000 0.000 1.020 2.668 5.301 11.750 14.178 8.739 46.414 TO RIVER LOSS -2.021 -0.47A -0.021 0.011 0.017 0.075 0.675 1.167 1.779 3.559 1.384 -2.193 3.955 TO LINK LOSS 0.091 0.091 0.087 0.068 0.091 0.091 0.091 0.091 0-091 0.091 0.091 0.091 1.083 TO CANAL LOSS 0.635 0.416 0.322 0.273 0.237 0.360 0.402 0.739 0.998 0.990 0.988 0.814 7.173 TO WATERCOURSE 1.949 1.049 0.683 0.585 0.515 0.776 1.059 2.243 4.201 4.629 4.043 2.876 24.587 FROM GROUND WATER 0.259 0.170 0.314 0.331 0.351 0.303 0.039 0.119 0.120 0.139 0.306 0.323 2.775 SHORTAGE AT WATERCOURSE 0.000 0.000 0.106 0.269 0.493 0.103 0.000 0.000 0.000 0.000 0.000 0.000 0.971 WATERCOURSE REQT. 2.208 1.219 1.103 1.165 1.359 1.181 1.098 2.362 4.321 4.768 4.349 3.199 28.332 PUMP CAPACITY GOOD AREA 0.372 0.310 0.314 0.331 0.351 0.302 0.276 0.383 0.393 0.393 o.393 o.393 4.212 PUMPED FROM GOOD AREA 0.259 0.170 0.314 0.331 0.351 0.303 0.039 0.119 0.120 0.139 0.306 0.323 2.775 EVAPORATION GOOD AREA 0.127 0.04A 0.044 0.048 0.038 0.014 0.018 0.054 0.176 0.270 0.316 0.277 1.428 RECHARGE TO GOOD AREA 0.308 0.192 0.152 0.134 0.112 0.182 0.158 0.248 0.483 0.730 0.757 0.594 4.050 NET CHANGE -- GOOD AREA -0.077 -0.026 -0.206 -0.245 -0.277 -0.135 0.101 0.075 0.187 0.321 0.135 -0.006 -0.153 PUMP CAPACITY BAD ARLA 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480 PUMPED TO DRAINAGE 0.107 0.081 0.073 0.012 0.055 0.025 0.059 0.091 0.109 0.140 0.149 0.126 1.087 EVAPORATION BAD AREA 0.648 0.353 0.311 0.283 0.293 0.270 0.314 0.828 1.296 1.654 1.571 1.051 8.871 RECHARGE TO UAD ARFA 0.754 0.434 0.341 0.295 0.281 0.406 0.433 0.920 1.405 1.794 1.719 1.177 9.959 NET CHANGE BAD AREA -0.000 -0.000 -0.043 -0.060 -0.067 0.110 0.059 0.001 -0.000 -0.000 -0.000 -0.000 -0.000 DRAIN STORAGt CONTENT 0.000 0.000 0.000 o.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 29.48 70-35 32.90 35.43 37.42 31.72 7.48 16.75 1.21 22.03 37.23 36.75 325. 72 TOTAL BASE LOAD 275.00 272.00 272.00 269.00 265.00 273.00 281.00 285.00 294.00 295.00 298.00 305.00 3384.00 TOTAL ENERGY LOAD 304.48 292.35 304.90 304.43 302.42 304.72 28A.48 301.75 312.21 317.03 335.23 341.75 3709.72 HYDRO ENERGY TO LOAD 29.77 45.74 0.00 0.00 0.00 0.00 o.0n 0.00 0.00 0.00 0.00 0.00 75.51 THERMAL ENERGY TO LOAD 274.68 246.58 304.87 304.40 302.40 304.69 288.45 301.73 312.18 317.00 335.20 341.72 3633.92 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER -29.77 -45.74 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 -75.51 HYDRO ENERGY SIJRPLIJS 0.00 0.00 0.00 0.00 n.oo 0.00 n.00 0.00 0.00 0.00 0.00 0.00 0.00 POWEk (MEGAWATTS) PEAK PUMP LOAD 49.78 41.4? 54.11 56.64 59.74 52.40 12.93 24.99 27.26 33.95 59.88 58.02 531.13 PEAK BASE LOAD 562.00 556.00 557.00 557.00 551.00 566.00 584.00 600.00 608.00 611.00 629.00 635.00 7016.00 TOTAL PEAK LOAD 611.78 597.42 611.11 613.64 610.74 618.40 596.93 624.99 635.26 644.95 688.88 693.02 7547.13 HYDRO CAPACITY TO LOAD 40.79 62.66 0.00 o.0o 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 103.44 THERMAL CAPACITY TO LOAD 571.00 534.76 611.11 613.64 610.74 618.40 596.93 624.99 635.26 644.95 688.88 693.02 7443.68 FIRM CAPACITY TRANSFLR -40.79 -62.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -103.44 PEAK RESERVE 208.22 222.58 208.89 311.36 314.26 306.60 328.07 30n.01 289.74 280.05 236.12 231.98 3237.87 SYSTEM SUMMARY WATER (MAF) OCT NOV DIEC .JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.111 0.724 0.483 0.483 1.158 0.804 -0.322 -1.060 -1-588 -1.393 -0.382 0.001 0.019 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 4.168 1.420 1.038 0.8b3 0.793 1.267 4.839 10.552 18.651 34.842 35.692 17.428 131.554 TO RESEhVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156 TO RIVER OUTPLOW 2.381' 0.374 0.003 -0.0(10 0.000 0.000 1.020 2.668 5.301 11.750 14.178 8.739 46.414 TO RIVER LOSS -3.633 -n.574 0.074 O.2u4 0.312 0.586 2.189 3.809 5.572 9.958 4.066 -4.595 17.968 TO LINK LOSS 0.580 0.41q 0.387 0.398 0.444 0.522 0.367 0.353 0.411 0.374 0.405 0.420 5.080 TO CANAL LOSS 1.905 1.277 1.090 1.065 1.199 1.512 1.524 1.914 2.221 2.106 2.240 2.102 20.156 TO WATERCOURSE 5.583 2.659 1,930 1.796 2.422 3.967 3.575 4.780 7.691 6.921 7.570 6.794 55.689 fROM GROUND WATER 2.799 1.521 1.438 1.622 3.015 2.514 1.209 1.509 2.137 2.763 3.282 3.273 27.082 SHORTAGE AT WATERCOURSE 0.000 0.000 0.106 0.269 0.548 0.103 0.000 0.000 0.000 0.000 0.000 0.000 1.026 WATERCOURSE REQT. 8.382 4.180 3.474 3.687 5.985 6.584 4.784 6.289 9.828 9.684 10.852 10.067 83.796 PUMP CAPACITY GOOD AREA 3.653 2.022 1.645 1.774 3.027 3.369 2.466 2.566 3.516 3.222 3.746 3.901 34.909 PUMPED FROM GOOD AREA 2.799 1.S21 1.438 1.622 3.015 2.514 1.209 1.509 2.137 2.763 3.2t2 3.273 27.082 EVAPORATION GOOD AREA 0.522 0.337 0.290 0.275 0.346 0,396 0.344 0.462 0.653 1.081 1.213 0.841 6.760 RECHARGE TO bOOD AREA 2.815 1.727 1.358 1.415 2.049 2.636 2.122 2.374 3.086 4.627 4.976 3.742 32.928 NET CHANGE -- GOOD AREA -0.506 -0.130 -0.369 -0.482 -1.313 -0.273 0.56A 0.403 0.296 0.783 0.481 -0.372 -0.d13 PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 3.A40 PUMPED TO DRAINAGE 0.123 0.092 0.083 0.083 0.070 0.042 0.072 0.105 0.124 0.166 0.177 0.148 1.284 EVAPORATION BAD AREA 0.984 0.544 0.486 0.480 0.563 0.578 0.553 1.105 1.649 2.173 2.115 1.465 12.696 RECHARGE TO BAD AREA 1.109 0.637 0.518 0.495 0.559 0.749 0.695 1.213 1.775 2.341 2.297 1.613 14.003 NET CHANGE BAD AREA 0.002 0.001 -0.051 -0.068 -0.074 0.129 0.070 0.003 0.002 0.003 0.004 0.001 0.023 DRAIN STORAGE CONTENT 0.000 0.000 0.000 O.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 223.51 122.40 118.98 134.81 247.54 206.48 91.73 119.18 169.42 2?7.07 266.83 263.38 2191.34 TOTAL BASE LOAD 573.00 573.00 588.00 572.U0 575.00 568.00 595.00 607.00 624.00 629.00 639.00 646.00 7189.00 TOTAL ENERGY LOAD 796.51 695.40 706.98 706.81 822.54 774.48 686.73 726.18 793.42 856.07 905.83 909.38 9380.34 HYDRO ENERGY TO LOAD 521.77 448.78 373.49 371.47 482.01 408.77 384.63 420.58 479.74 538.42 570.56 567.59 5567.82 THERMAL ENERGY TO LOAD 274.68 246.58 333.45 335.J1 340.46 365.66 302.06 305.55 313.63 317.59 335.20 341.72 3811.89 ENERGY DEFICIENCY O-UO 0.00 0.00 0.0o 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER O.UO 0.00 0.00 o.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 171.10 32.75 0.00 o.uO 7.90 0.00 85.54 165.26 202.52 222.65 247.24 140.56 1275.49 POWER (MEGAWATTS) PEAK PUMP LOAD 406.99 287.49 287.22 304.81 427.96 381.99 200.73 254.43 328.15 398.11 451.67 441.98 4171.53 PEAK BASE LOAD 1258.00 1260.00 1298.00 1297.00 1255.00 1254.00 1312.00 1352.00 1376.00 1387.00 1429.00 1435,00 15913,00 TOTAL PEAK LOAD 1664.99 1547.49 1585.22 1601.81 1682.96 1635.99 1512.73 1606.43 1704.15 1785.11 1880.67 1876.98 20084.53 HYDRO CAPACITY TO LOAD 1093.99 1012.72 954.51 908.47 850.74 695.28 657.02 802.60 934.70 1042.65 1120.39 1129.36 11202.42 THERMAL CAPACITY TO LOAD 571.00 534.76 630.71 693.34 832.23 940.72 855.72 803.82 769.45 742.45 760.29 747.62 8882.11 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 PEAK RESERVE 686.00 722.24 626.29 668.66 529.77 421.28 506.28 558.18 592.55 619.55 601.71 614.38 7146.89 B-24 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY ,NUMBER 6685072110 YEAR 1974 NORTH ZONE SUMMARY WATER (MAF) OCT NOV UEC JAN FEB MAR APR MAY JUNE JUJLY AUG SEPT TOTAL FROM RIVER INFLOW .5.430 3.230 2.780 2.760 2.970 5.040 7.890 13-500 21.960 31.160 27-910 12.890 137.520 FROM STORAGE RELEASE 1.106 0.721 0.481 0.481 1.154 0.804 -0.323 -1.056 -1.581 -1.387 -5.786 0.410 -4.977 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.017 n.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.02e 0.021 0.198 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.027 0.020 0.175 TO RIVER OUTtLOW 2.918 1.411 1.129 0.968 0.863 1.199 2.997 6.666 12.164 20.826 17.073 9.406 77.620 TO RIVER LOSS -1.632 -0.074 0.134 0.198 0.254 0.499 1.373 2.673 3.806 6.351 0.879 -1.195 13.267 TO LINK LOSS 0.493 0.356 0.293 0.3U4 0.353 0.440 0.334 0.282 0.326 0.282 0.310 0.331 4.105 TO CANAL LOSS 1.298 0.901 0.754 0.792 0.965 1.197 1.194 1.212 1.257 1.146 1.247 1.313 13.276 TO WATERCOUR5E 3.733 1.559 1.171 1.199 1.939 3.250 2.776 2.695 3.649 2.511 3.546 3.996 32.022 FROM GROUND WATER 2.813 1.507 1.258 1.458 2.906 2.507 1.093 1.411 2.030 2.562 3.139 3.070 25.755 SHORTAGE AT WATERCOUJRSE 0.000 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102 WATERCOURSE REQT. 6.546 3.066 2.429 2.657 4.947 5.757 3.869 4.106 5.679 5.073 6.685 7.066 57.880 PUMP CAPACITY GOOD AREA 3.569 1.844 1.433 1.569 2.917 3.357 2.370 2.350 3.302 2.976 3.525 3.703 32.913 PUMPED FROM GOOD AREA 2.813 1.507 1.258 1.458 2.906 2.507 1.093 1.411 2.030 2.562 3.139 3.070 25.755 EVAPORATION GOOD AREA 0.352 t.237 0.183 0.188 0.288 0.348 0.271 0.351 0.441 0.749 0.787 0.498 4.692 RECHARGE TO GOOD AREA 2.603 1.578 1.200 1.301 1.998 2.555 2.050 2.184 2.661 3.948 4.252 3.206 29.536 NET CHANGE -- GOOD AREA -0.562 -0.167 -0.241 -0.345 -1.196 -0.300 0.686 0.421 0.190 0.638 0.326 -0.361 -O.qll PUMP CAPACITY BAD AREA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.360 PUMPED TO DRAINAGE 0.017 0.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.028 0.021 0.198 EVAPORATION BAD AREA 0.349 0.204 0.186 0.211 0.284 0.312 0.252 0.290 0.362 0.527 0.549 0.421 3.944 RECHARGE TO BAD ARFA 0.367 0.216 0.185 0.213 0.282 0.360 0.276 0.306 0.379 f.555 0.582 0.443 4.166 NET CHANGE BAU AREA 0.002 0.001 -0.010 -0.009 -0.016 0.032 0.011 0.002 0.002 0.003 0.005 0.001 0.024 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 222.56 119.46 100.60 117.08 238.11 208.71 84.02 108.85 160.77 206.95 251.82 246.40 2065.33 TOTAL BASE LOAD 322.00 326.00 342.00 328.00 337.00 320.00 341.00 349.00 358.00 362.00 371.00 371.00 4127.00 TOTAL ENERGY LOAD 544.56 445.46 442.60 445.U8 575.11 528.71 425.02 457.85 518.77 568.95 622.82 617.40 6192.33 HYDRO ENERGY TO LOAD 544.52 445.44 367.05 364.U5 488.92 407.06 403.60 448.59 513.36 566.17 619.85 615.37 5783.99 THERMAL ENERGY TO LOAD 0.00 0.00 75.54 81.00 86.14 119.87 21.40 9.24 5.37 2.74 2.92 1.98 406.21 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 -1.78 0.00 0-00 0.00 0.00 0.00 0.00 -1.78 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.UO 0.00 0.00 0.00 n.0o 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 148.45 31.48 0.00 0.uo 0.24 1.74 68.14 137.78 168.90 199.41 197.97 92.67 1046.77 POWER (MEGAWATTS) PEAK PUMP LOAD 399.45 288.21 263.63 281.68 407.75 386.16 177.58 236.15 312.03 375.64 425.42 414.19 3967.87 PEAK BASE LOAD 752.00 760.00 800.00 800.00 765.00 747.00 791.00 817.00 834.00 843.00 869.00 869.00 9647.00 TOTAL PEAK LOAD 1151.45 1048.21 1063.63 1081.68 1172.75 1133.16 968.58 1053.15 1146.03 1218.64 1294.42 1283.19 13614.87 HYDRO CAPACITY TO LOAD 1094.24 1007.57 946.44 899.06 849.71 692.93 659.16 803.33 934.70 1048.84 1120.42 1129.36 11185.76 THERMAL CAPACITY TO LOAD 57.21 40.63 117.19 182.62 323.05 437.00 309.42 249.82 211.33 169.79 174.00 153.83 2425.88 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 O-UO 0.00 -3-22 0.00 0.00 0-00 0-00 0-00 0.00 -3.22 PEAK RESERVE 379.79 396.37 319.81 254.38 113.95 -3.22 127.58 187.18 225.67 267.21 263.00 283.17 2814.89 B-25 SOUTH ZONE SUMMARY WATER (MAF) OCT NnV nEC JAN FEB MAR APR MAY JUNE JIJLY AUG SEPT TOTAL FROM RIVER INFLOW 2.918 1.411 1.129 0.968 0.863 1.199 2.997 6.666 12.164 20.826 17.073 9.406 77.620 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -O.0UO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBlUTARIES 0.000 n.000 0.000 0.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 3.943 1.355 1.069 0.850 0.750 1.123 4.302 9.459 17.919 34.506 28.941 15.527 119.745 TO RESERVnIR EVAPORATION -0.000 -0.000 -0.000 -O.Ouo -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTtLOh 2.'306 0.355 0.000 -0.000 -0.000 -0.000 0.845 2.220 4.873 11.494 11.687 7.242 41.021 TO RIVER LOSS -2.084 -0.453 -0.011 0.008 0.014 0.064 0.592 1.041 1.801 3.618 0.210 -1.583 3.217 TO LINK LOSS 0.091 0.091 0.087 0.091 0.091 0.091 0-091 0.091 0.091 0.091 0.091 0.091 1.085 TO CANAL LOSS 0.639 0.416 0.341 0.284 0.234 0.339 0.419 0.848 1.016 1.006 0.981 0.791 7.313 TO WATERCOURSE 1.967 1.003 0.713 0.585 0.523 0.706 1.050 2.467 4.383 4.616 4.105 2.865 24.983 FROM GROUND WATER 0.296 0.218 0.378 0.421 0.447 0.346 0.059 0.059 0.163 0.268 0.353 0.303 3.311 SHORTAGE AT WATERCOURSE 0.000 0.000 0.057 0.325 0.535 0.201 0.000 0.000 0.000 0.000 0.000 0.000 1.118 WATERCOlURSE REOT. 2.263 1.221 1.148 1.331 1.505 1,253 1.109 2.526 4.546 4.884 4.458 3.168 29.412 PUMP CAPACITY GOOD AREA 0.458 0.364 0.378 0.423 0.449 0.351 0.303 0.465 0.515 0.515 0.515 0.515 5.252 PUMPED FROM bOOD AREA 0.296 0.218 0.378 0.4Z1 0.447 0.346 0.059 0.059 0.163 0.268 0.353 0.303 3.311 EVAPORATION GOOD AREA 0.090 0.017 0.016 0.033 0.021 0.009 0.003 0.019 0.128 0.209 0.279 0.240 1.065 RECHARGE TO G00D AREA 0.312 0.192 0.168 0.149 0.126 0,174 0.167 0.297 0.505 0.739 0.753 0.590 4.171 NET CHANGE -- GOOD AREA -0.073 -0.044 -0.226 -0.305 -0.343 -0.181 0.105 0.219 0.214 0.262 0.120 0.047 -0.205 PUMP CAPACITY BAD ARtA 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480 PUMPED TO DRAINAGE 0.120 0.089 0.083 0.081 0.055 0.022 0.050 0.103 0.124 0.154 0.164 0.141 1.185 EVAPORATION BAD AREA 0.646 0.346 0.311 0.332 0.309 0.270 0.283 0.891 1.326 1.671 1.580 1.014 8.979 RECHARGE TO BAD AREA 0.766 0.434 0.361 0.314 0.289 0.390 0.440 0.995 1.449 1.826 1.743 1.155 10.164 NET CHANGE BAD AREA -0.000 -0.000 -0.032 -0.099 -0.075 0.098 0.107 0.001 -0.000 -0.000 -0.000 0.000 -0.000 DRAIN STORAGt CONTENr 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 33.74 74-92 39.17 44.40 47.06 35.96 8.31 12-27 22-91 34.67 42-92 36.49 182.82 TOTAL BASE LOAD 312.00 307.00 306.00 307.00 303.00 313.00 323.00 328.00 337.00 338.00 342.00 350.00 3866.00 TOTAL ENERGY LOAD 345.74 331.92 345.17 351.40 350.06 348.96 331.31 340.27 359.91 372.67 384.92 386.49 4248.82 HYDRO ENERGY TO LOAD 0.00 0.00 0.00 O.UO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL ENERGY TO LOAD 345.71 331.89 345.14 351.57 350.03 348.93 331.28 340.25 359.89 372.64 384.89 386.46 4248.49 ENERGY DEFICIENCY 0.00 0-00 0.00 o.uo 0-00 0-00 0.00 0-00 0.00 0-00 0.00 0.00 0.00 INTERZONE ENtRGY TRANSFER 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 61.36 51.78 65.42 72.Z9 76.46 61.86 12.31 17.74 34.78 60.51 73.92 65.36 653.80 PEAK BASE LOAD 650.00 640.00 638.00 638.00 631.00 646.00 668.00 686.00 697.00 700.00 712.00 727.00 8033.00 TOTAL PEAK LOAD 711.36 691.78 703.42 710.Z9 707.46 707.86 680.31 703.74 731.78 760.51 785.92 792.36 8686.80 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 THERMAL CAPACITY TO LOAD 711.36 691.78 703.42 710.29 707.46 707.86 680.31 703.74 731.78 760.51 785.92 792.36 8686.80 FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 0.00 0.00 3-22 0.00 0-00 0.00 0.00 0-00 0.00 3.22 PEAK RESERVE 213.64 233.22 221.58 364.71 367.54 367.14 394.69 371.26 343.22 314.49 289.08 282.64 3763.20 B-26 SYSTEM SUMMARY WATER (MAF) OCT NnV DEC JAN FEB MAR APR MAY JUNE JULY AUr- SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.7bO 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.106 0.721 0.481 0.481 1.154 0.804 -0.323 -1.056 -1.581 -1.387 -5.786 0.410 -4.977 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.960 1.367 1.079 0.862 0.764 1.140 4.315 9.473 17.934 34.532 28.969 15.548 119.943 TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.0U 0.005 0.004 0.005 0.020 0.031 0.024 0.027 0.020 0.175 TO RIVER OJTtLOW 2.306 0.3S5 0.000 -0.000 -0.000 -0.000 0.845 2.220 4.873 11.494 11.687 7.242 41.021 TO RIVER LOSS -3.717 -0.527 0.123 0.2U6 0.268 0.563 1.966 3.714 5.607 9.969 1.089 -2.778 16.484 TO LINK LOSS 0.584 0.447 0.380 0.395 0.444 0.531 0.425 0.373 0.417 0.372 0.401 0.422 5.190 TO CANAL LOSS 1.937 1.316 1.095 1.076 1.199 1.536 1.614 2.060 2.273 2.152 2.228 2.103 20.589 TO WATERCOURSE 5.700 2.561 1.883 1.754 2.462 3.956 3.826 5.162 8.032 7.128 7.651 6.861 57.005 FROM GROUND WATER 3.109 1.726 1.637 1.879 3.353 2.853 1.152 1.470 2.193 2.829 3.492 3.373 29.067 SHORTAGE AT WATERCOuRSE 0.000 0.000 0.057 0.3z5 0.637 0.201 0.000 0.000 0.000 0.000 0.000 0.000 1.220 WATERCOURSE REQT. 8.809 4.287 3.577 3.988 6.452 7.010 4.978 6.632 10.225 9.957 11.143 10.234 87.292 PUMP CAPACITY GOOD AREA 4.027 ?.208 1.811 1.992 3.366 3.708 2.673 2.815 3.817 3.491 4.040 4.218 38.166 PUMPED FROM GOOD AREA 3.109 1.726 1.637 1.819 3.353 2.853 1.152 1.470 2.193 2.829 3.492 3.373 29.067 EVAPORATION GOOD AREA 0.442 0.254 0.199 0.221 0.309 0.357 0.273 0.370 0.569 0.958 1.067 0.738 5.758 RECHARGE TO GOOD AREA 2.915 1.770 1.369 1.450 2.123 2.729 2.217 2.481 3.166 4.687 5.005 3.796 33.707 NET CHANGE -- GOOD AREA -0.636 -0.211 -0.467 -0.650 -1.539 -0.481 0.791 0.641 0.404 0.900 0.446 -0.314 -1.117 PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 3.A4O PUMPED TO DRAINAGE 0.137 0.100 0.093 O.0V2 0.070 0.039 0.063 0.117 0.138 0.180 0.192 0.162 1.383 EVAPORATION BAD AREA 0.995 0.549 0,497 0.543 0.593 0.581 0.535 1.181 1.687 2.198 2.129 1.435 12.923 RECHARGE TO BAD AREA 1.134 0.651 0.547 0.5Z7 0,571 0.751 0.716 1.301 1.828 2.381 2.325 1.598 14.330 NET CHANGE BAD AREA 0.002 0.001 -0.042 -0.108 -0.092 0.131 0.118 0.003 0.002 0.003 0.004 0.001 0.024 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 256.30 144.38 139.77 161.47 285.17 244.67 92.33 121.12 183.68 241.62 294.74 282.89 2448.14 TOTAL BASF LOAD 634.00 633.00 648.00 635.U0 640.00 633.00 664.00 677.00 695.00 700.00 713.00 721.00 7993.00 TOTAL ENERGY LOAD 890.30 777.38 787.77 796.47 925.17 877.67 756.33 798.12 878.68 941.62 1007.74 1003.89 10441.14 HYDRO ENERGY TO LOAD 544.52 445.44 367.05 364.U5 488.92 407.06 403.60 448.59 513.36 566.17 619.85 615.37 5783.99 THERMAL ENERbY TO LOAD 345.71 331.89 420.68 432.38 436.17 468.80 352.68 349.48 365.26 375.38 387.82 388.45 4654.70 ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 -1-78 0.00 0.00 0.00 0.00 0-00 0.00 -1.7If irIHERUNE ENLRGY TRAN5FER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLIIS 148.45 31.48 0.00 0.00 0.24 1.74 68.14 137.78 168.90 199.41 197.97 92.67 1046.77 POWER (MEGAWATTS) PEAK PUMP LOAD 460.51 339.99 329.05 353.97 484.22 448.02 189.89 253.89 346.80 436.15 499.33 479.55 4621.67 PEAK BASE LOAU 1402.00 1400.00 1438.00 1438.00 1396.00 1393.00 1459.00 1503.00 1531.00 1543.00 1581.00 15q6.00 17680.00 TOTAL PEAK LOAD 1862.81 1739.99 1767.05 1791.97 1880.22 1841.02 1645.89 1756.89 1877.80 1979.15 2080.33 2075.55 22301.67 HYDRO CAPACITY TO LOAD 1094.24 1007.57 946.44 899.06 849.71 692.93 659.16 803.33 934.70 1048.84 1120.42 1129.36 11185.76 THERMAL CAPACITY TO LOAD 768.57 732.41 820.61 892.v1 1030.51 1144.86 989.73 953.56 943.11 930.30 959.92 946.19 11112.69 FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 o.uo 0.00 -0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 593.43 629.59 541.39 619.U9 481.49 363.92 522.27 558.44 568.89 581.70 552.08 565.81 6578.09 B-27 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1q65 REVISED VERSION STUDY NUMBER 668507ZL0 YEAR 1975 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DFC JAN FEB MAR APR MAY JIUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.23n 2.780 2.760 2-970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.006 0.670 1.079 2.096 3.024 1.517 -0.213 -0.829 -6.100 -6.043 -0.337 0.007 -4.124 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.017 n.012 0.010 0.012 0.016 0.017 0.013 0.014 0.015 0.026 0.029 0.023 0.204 TO RESERVOIR EVAPORATION 0.044 n.020 0.010 0.002 0.009 0.010 0.016 0.039 0.068 0.036 0.02A 0.026 0.309 TO RIVER OUTtLOW 2.735 1.342 1.325 1.726 1.726 1.571 2.965 6.494 9.179 16.670 19.435 10.000 75.167 TO RIVER LOSS -1.622 -0.062 0.315 0.547 0.357 0.456 1.101 2.644 2.282 5.579 3.771 -2.336 13.034 TO LINK LOSS 0.509 0.381 0.336 0.3Y4 0.472 0.477 0.403 0.310 0.332 0.286 0.317 0.338 4.557 TO CANAL L05s 1.300 0.929 0.840 0.947 1.137 1.295 1.155 1.181 1.271 1.136 1.239 1.300 13.729 TO WATERCOURSE 3.767 1.502 1.259 1.461 2.549 3.495 3.151 3.107 3.584 2.776 3.741 4.142 34.933 FROM GROUND WATER 3.272 1.723 1.272 1.401 2.829 2.748 0.986 1.256 2.345 2.524 3.225 3.224 26.806 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 7.039 3.225 2.531 2.862 5.378 6.243 4.137 4.363 5.929 5.300 6-966 7.366 61.339 PUMP CAPACITY GOOD AREA 3.802 1.978 1.518 1.685 3.165 3.612 2.534 2.536 3.462 3.112 3.693 3.894 34.991 PUMPED FROM GOOD AREA 3.272 1.723 1.272 1.401 2.829 2.748 0.986 1.256 2.345 2.524 3.225 3.224 26.806 EVAPORATION GOOD AREA 0.290 0.189 0.160 0.11 0.218 0.285 0.248 0.271 0.368 0.673 0.697 0.404 3.984 RECHARGE TO bOOD AREA 2.692 1.613 1.262 1.434 2.209 2.715 2.062 2.205 2.714 3.979 4.292 3.249 30.426 NET CHANGE - GOOD AREA -0.869 -0.299 -0.171 -0.149 -0.838 -0.319 0.827 0.679 0.001 0.782 0.370 -0.379 -0.364 PUMP CAPACITY BAD AREA 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 1.080 PUMPED TO DRAINAGE 0,077 0.072 0.070 0.072 0.076 0.077 0.073 0.074 0.075 0.086 0.089 0.083 0.924 EVAPORATION BAD AREA 0.313 0.192 0.172 n.188 0.259 0.305 0.220 0.241 0.294 0.448 0.500 0.377 3.510 RECHARGE TO BAD AREA 0.392 0.240 0.216 0.251 0.331 0.391 0.294 0.319 0.395 0.569 0.600 0.459 4.457 NET CHANGE BAD AREA 0.002 -0.024 -0.026 -0.008 -0.004 0.009 -0.000 0.003 0.025 0.034 0.011 -0.001 0.023 DRAIN STORAGE CONTENT 0.060 0.120 0.180 0.240 0.300 0.360 0.420 0.480 0.540 0.600 0.660 0.720 4.680 ENERGY (MILLION KWH) TOTAL PUMP LOAD 272-52 146.43 108.67 118.85 240.61 234.85 82.11 10i.76 196.41 211.86 269-24 269.00 2254.32 TOTAL BASE LOAD 349,00 354.00 370.00 368.uo 363.00 354.00 368.00 391.00 396.00 396.00 409.00 409.00 4527.00 TOTAL ENERGY LOAD 621.52 500.43 478.67 486.85 603.61 588.85 450.11 494.76 592.41 607.86 678.24 678.00 6781.32 HYDRO ENERGY TO LOAD 618.09 460.42 347.85 346.85 509.04 447.78 430.75 488.90 589.65 607.82 678.19 677.95 6203.31 THERMAL ENERGY TO LOAD 3.38 39.98 130.80 139.98 94.52 140.56 19.34 5.83 2.72 0.00 0.00 0.00 577.12 ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 -0-51 0.00 0.00 0.00 0.00 0.00 0.00 -0-51 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.14 88.84 97.87 274.86 HYDRO ENERGY SURPLUS 76.95 0.00 0.00 o.uo 1.31 0.47 88.45 171.98 234.03 355.22 344.82 226.17 1499.39 POWER (MEGAWATTS) PEAK PUMP LOAD 459.67 336.64 284.93 297.Z6 429.17 423.01 173.93 227.60 386.26 391.23 454.39 451.08 4315.16 PEAK BASE LOAD 817.00 826.00 869.00 870.O0 843.00 824.00 871.00 900.00 928.00 928.00 947.00 947.00 10570.00 TOTAL PEAK LOAD 1276.67 1162-63 1153-93 1167-Z6 1272.17 1247-01 1044.93 1127.60 1314-26 1319.23 1401.39 1398.08 14885.16 HYDRO CAPACITY TO LOAD 1097.24 1011.19 948.66 905.68 878.94 748.72 724.39 905.40 1128.43 1319.23 1401.39 1398.08 12467.35 THERMAL CAPACITY TO LOAD 179.43 151.45 205.27 261.58 393.23 437.00 320.54 222.20 185.83 0.00 0.00 0.00 2356.52 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 o.uo 0.00 -61-29 0.00 0.00 0-00 120-89 121.85 134-07 315.52 PEAK RESERVE 257.57 285.55 231.73 175.42 43.77 -61.29 116.46 214.80 251.17 557.89 558.85 571.07 3203.00 B-28 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.735 1.342 1.325 1.7Z6 1.726 1.571 2.965 6.494 9.179 16.670 19.435 lo.ooo 75.167 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 FROM DRAINS 3.271 1.193 1.197 1.503 1.584 1.657 4.232 8.779 12.031 26.474 33.201 17.079 112.200 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTeLOW 1.724 0.242 -0.001 -0.004 -0.000 -0.004 0.869 1.952 2.720 7.974 12.095 8.221 35.788 TO RIVLR LOSS -1.868 -0.349 0.025 0.069 0.053 0.082 0.515 0.917 0.833 3.003 2,171 -1.815 3.636 TO LINK LOSS 0.091 0.091 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.085 TO CANAL LOSb 0.676 0.426 0.394 0.498 0.477 0.446 0.434 0.890 1.033 1.021 0.986 0.769 8.051 TO wATERCOURSE 2.112 0.932 0.821 1.072 1.105 0.955 1.057 2.643 4.502 4.580 4,092 2.735 26.607 FROM GROUND WATER 0.242 0.317 0.402 0.472 0.546 0.407 0.084 0.068 0.265 n.406 0.493 0.422 4.123 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.0UO 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 WATERCOURSE KEQT. 2.354 1.249 1.223 1.544 1.693 1.362 1.141 2.711 4.767 4.986 4.585 3.157 30.772 PUMP CAPACITY GOOD AREA 0.545 0.415 0.448 0.534 0.550 0.411 0.337 0.505 0.591 0.591 0.591 0.571 6.090 PUMPED FROM GOOD AREA 0.242 0.317 0.402 0.412 0.546 0.407 0.084 0.068 0.265 0.406 0.493 0.422 4.123 EVAPORATION GOOD AREA 0.070 0.014 0.010 0.032 0.031 0.015 0.007 0.022 0.112 0.180 0.223 0.200 0.916 RECHARGE TO GOOD AREA 0.334 0.203 0.203 0.265 0.263 0.216 0.176 0.325 0.527 0.746 0.756 0.589 4.604 NET CHANGE -- GOOD AREA 0.022 -0.128 -0.209 -0.239 -0.313 -0.206 0.085 0.234 0.150 0.160 0.040 -0.033 -0.435 PU'MP CAPACITY BAD ARtA 0.290 0.290 0.290 0.29O 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480 PUMPED TO DRAINAGE 0.134 0.091 0.085 0.097 0.115 0.092 0.088 0.117 0.139 0.169 0.178 0.158 1.462 EVAPORATION BAD AREA 0.662 0.348 0.321 0.393 0.416 0.405 0.338 0.925 1.353 1.685 1.595 0.979 9.420 RECHARGE TO BAD AREA 0.796 0.438 0.399 0.492 0.502 0.505 0.450 1.044 1.491 1.854 1.774 1.136 10.882 NET CHANGE BAD AREA -0.000 -0.001 -0.007 0.002 -0.029 0.008 0.024 0.001 -0.000 -0.000 0.001 -0.001 -0.000 DRAIN STORAGE CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENER5Y (MILLION KWH) TOTAL PUMP LOAD 30.10 33.7F 42.05 51.19 61.22 46.98 13-31 14.16 33.73 49.18 58.00 50.27 483.96 TOTAL BASE LOAD 357.00 351.00 351.00 353.UO 345.00 357.00 366.00 374.00 384.00 384.00 390.00 399.00 4411.00 TOTAL ENERGY LOAD 387.10 384.78 393.05 404.19 406.22 403.98 379.31 388.16 417.73 433.18 448.00 449.27 4894.96 HYDRO ENERGY TO LOAD 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 0.00 0.00 88.14 88.84 97.87 274.86 TIIERMAL ENERGY TO LOAU 387.07 384.75 393.02 404.15 406.18 403.95 379.28 38'3 '!7.'0 3'.5.1 0 3;9.12 351.36 4619.73 ENERGY nEFFC!EfC! u.uu t.uO 0.00 O.UO 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.110 0.00 0.00 0.00 0.00 0.00 -88.14 -88.84 -97.87 -274.86 HYURO ENERGY SURPLUS 0.00 0.00 0.00 O.Uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 57.53 61.4? 68.75 83.40 95.84 80.35 19.62 21.66 61.07 85593 92.01 83.69 811.26 PEAK BASE LOAD 743.00 725.00 730.00 728.U0 720.00 738.00 762.00 787.00 794.00 798.00 812.00 830.00 9162.00 TOTAL PEAK LOAD 800.53 786.4? 798.75 811.40 815.84 818.35 781.62 803.66 855-07 883.93 904.01 913.69 9973.26 HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 o.Uo 0.00 0.00 0.00 0.00 0.00 120.89 121.85 134.07 376.81 THERMAL CAPACITY TO LOAD 800.53 786.4? 798.75 811.40 815.84 818.35 781.62 803.66 855.07 763.04 782.16 779.62 9596.45 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 61.29 0.00 0.00 0-00 -120.89 -121.85 -134.07 -315.52 PEAK RESERVE 274.47 288.58 276.25 413.60 409.16 406.65 443.38 421.34 369.93 341.07 320.99 311.31 4?76.74 SYSTEM SUMMARY wATER (MAF) OCT Nnv DEC JAN FEB MAR APR MAY JUNE JUJLY AUCI SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.OU6 0.670 I.o09 2.096 3.024 1.517 -0.213 -0.829 -6.100 -6.043 -0.337 0.007 -4.124 FROM TRIBUTARIES 0.280 O.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.288 1.205 1.207 1.515 1,600 1.674 4.245 8.794 12.046 26.500 33.230 17.102 112.403 TO RESERVOIR EVAPORATION 0.044 0.020 0.010 0.002 0.009 0.010 0.016 0.039 0.068 0.036 0.028 0.026 0.309 TO RIVER OUTtLOW 1.724 0.242 -0.001 -0.004 -0.000 -0.004 0.869 1.952 2.720 7.974 12.095 8.221 35.788 TO RIVER LOSS -3.490 -0.411 0.341 0.616 0.410 0.539 1.616 3.562 3.115 8.582 5.941 -4.151 16-670 TO LINK LOSS 0.600 0.472 0.422 0.489 0.563 0.568 0.494 0.401 0.423 0.377 0.408 0.428 5.641 TO CANAL L05 1.976 1.355 1.234 1.445 1.613 1.742 1.589 2.072 2.304 2.157 2.225 2.069 21.781 TO WATERCOURSE 5.879 2.434 2.079 2.533 3.654 4.450 4.208 5.750 8.086 7.356 7.834 6.877 61.140 FROM GROUND WATER 3.514 2.040 1.675 1.873 3.375 3.155 1.070 1.324 2.610 2.930 3.717 3.646 30.929 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OUO 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 WATERCOURSE REOT. 9.393 4.474 3.754 4.406 7.071 7.605 5.278 7.074 10.696 10.286 11.551 10.523 92.111 PUMP CAPACITY GOOD AREA 4.347 2.394 1.966 2.219 3.715 4.024 2.871 3.040 4.053 3.703 4.284 4.465 41.081 PUMPED FROM GOOD AREA 3.514 2.040 1-675 1.873 3.375 3.155 1-070 1.324 2.610 2.930 3-717 3.646 30.929 EVAPORATION GOOD AREA 0.360 0.203 0.170 0.214 0.249 0.300 0.255 0.293 0.480 0.853 0.920 0.603 4.900 RECHARGE TO GOOD AREA 3.026 1.817 1.465 1.699 2.472 2.931 2.238 2.530 3.241 4.725 5.048 3.838 35.030 NET CHANGE -- GOOD AREA -0.847 -0.427 -0.380 -0.3a7 -1.152 -0-525 0.913 0.913 0.152 0.942 0-410 -0.412 -0.799 PUMP CAPACITY BAD AREA 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 4.560 PUMPED TO DRAINAGE 0.211 0.162 0.155 0.169 0.190 0.169 0.161 0.192 0.214 0.256 0.266 0.241 2.386 EVAPORATION BAD AREA 0.974 0.540 0.494 0.580 0.676 0.710 0.559 1.167 1.647 2.133 2.095 1.356 12.q30 RECHARGE TO BAD AREA 1.188 0.678 0.616 0.744 0.834 0,897 0.744 1.363 1.886 2.423 2.374 1.595 15.340 NET CHANGE BAD AREA 0.002 -0.024 -0.033 -O.OU6 -0.032 0.018 0.024 0.005 0.025 0.034 0.013 -O0002 0.023 DRAIN STORAGt CONTENT 0.060 0.120 0.180 0.240 0.300 0.360 0.420 0.480 0.540 0.600 0.660 0.720 4.680 ENERbY (MILLION KWH) TOTAL PUMP LOAD 302.62 180.21 150.72 170.04 301.83 281.83 95.42 117.92 230.13 261.04 327.24 319.27 2738.28 TOTAL sASE LOAD 706.00 705.00 721.00 721.UO 708.00 711.00 734.00 76S.00 780.00 780.00 799.00 808.00 8938.00 TOTAL ENERGY LOAD 1008.62 885.21 871.72 891.04 1009.83 992.83 829.42 882.92 1010.13 1041.04 1126.24 1127.27 11676.28 HYDRO ENERGY TO LOAD 618.09 460.42 347.85 346.85 509.04 447.78 430.75 488.90 589.65 695.97 767.03 775.83 6478.16 THERMAL ENERGY TO LOAD 390.45 424.73 523.81 544.13 500.71 544.51 398.62 393.97 420.42 345.01 359.12 351.36 5196.85 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 -0.51 0.00 0-o00 0-00 0-00 -0.0 0.00 -051 INTERZONE ENLRGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 76.95 0.00 0.00 0.00 1.31 0.47 88.45 171.98 234.03 355.22 344.82 226.17 1499.39 POWER (MEGAWATTS) PEAK PUMP LOAD 517.20 398.05 353.68 380.67 525.01 503.36 193.54 249.26 447.32 477.16 546.40 534.76 5126.43 PEAK BASE LOAD 1560.00 1551.00 1599.00 1598.00 1563.00 1562.00 1633.00 1682.00 1722.00 1726.00 1759.00 1777.00 19732.00 TOTAL PEAK LOAD 2077.20 1949.05 1952.68 1978.67 2088.01 2065.36 1826.54 1931.26 2169.32 2203.16 2305.40 2311.76 24858.42 HYDRO CAPACITY TO LOAD 1097.24 1011.19 948.66 905.68 878.94 748.72 724.39 905.40 1128.43 1440.12 1523.24 1532.15 12844.17 THERMAL CAPACITY TO LOAD 979.96 937.86 1004.02 1072.99 1209.07 1255.35 1102.15 1025.86 1040.89 763.04 782.16 779.62 11952.97 FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 532.04 574.14 507.98 589.0l 452.93 345.36 559.85 636.14 621.11 898.96 879.84 882.38 7479.74 B-30 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1976 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TnTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.098 1.355 1.391 2.213 3.338 2.450 0.495 -0.590 -5.308 -5.980 -0.336 0.007 o.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.016 0.012 0.010 0.012 0.016 0.017 0.014 0.014 0.016 0.026 0.030 0.022 0.205 TO RESERVOIR EVAPORAIION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTtLOW 2.687 1.75? 1.633 1.852 1.775 1.906 3.795 7.043 9.814 16.868 19.377 9.915 78.415 TO RIVER LOSS -1.613 0.166 0.285 0.510 0.396 0.705 1.200 2.568 2.509 5.429 3-715 -2.340 13.530 TO LINK LOSS 0.508 0.379 0.337 0.397 0.473 0.509 0.388 0.305 0.331 0.286 0.318 0.339 4.568 TO CANAL LOSS 1.315 0.943 0.856 0.964 1.216 1.300 1.162 1.190 1.250 1.124 1.248 1.299 13.867 TO WATERCOURSE 3.878 1.534 1.275 1.470 2.693 3.806 2.938 2.869 3.535 2.805 3.848 4.230 34.880 FROM GROUND WATER 3.359 1.771 1.313 1.462 2.808 2.573 1.328 1.640 2.583 2.662 3.373 3.396 28.269 SHORTAGE AT WATERCOtJRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 WATERCOURSE REQT. 7.237 3.305 2.588 2.932 5.501 6.379 4.266 4.509 6.118 5.467 7.221 7.626 63.149 PUMP CAPACITY GOOD AREA 3.980 2.069 1.587 1.769 3.340 3.763 2.671 2.688 3.671 3.300 3.886 4.075 36.801 PUMPED FROM GOOD AREA 3.359 1.771 1.313 1.462 2-808 2.573 1.328 1.640 2.583 2.662 3.373 3.396 28.269 EVAPORATION bOOD AREA 0.227 n.127 0.114 0.146 0.167 0.195 0.161 0.215 0.273 0.482 0.591 0.313 3.009 RECHARGE TO OOD AREA 2.745 1.639 1.285 1.459 2.294 2.744 2.092 2.241 2.738 4.005 4.352 3.302 30.897 NET C11ANGE -- GOOD AREA -0.841 -0.259 -0.142 -0.148 -0.681 -0.023 0.604 0.387 -0.119 0.860 0.388 _0.407 -0.381 PUMP CAPACITY BAD AREA 0.090 0.090 - 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 1.080 PUMPED TO DRAINAGE 0.076 0.072 0.070 0.072 0.076 0.077 0.074 0.074 0.076 0.086 0.090 0.082 0.o25 EVAPORATION BAD AREA 0.318 0.194 0.175 O. 111 0.262 0.311 0.225 0.246 0.297 0.451 0.512 O.3A3 3.563 RECHARGE TO bAD AREA 0.397 0.243 0.219 0.255 0.338 0.396 0.298 0.324 0.398 0.572 0.606 0.465 4.513 NET CHANGE BAD AREA 0.003 -0.023 -0.026 -0-008 0.000 0.009 -0-000 0.004 0.026 0.035 0.005 0.000 0.025 DRAIN STORAGt CONTENT 0.780 0.840 0.900 0.960 1.020 1.080 1.140 1.200 1.260 1.320 1.380 1.440 13.320 ENERUY (MILLION KWH) TOTAL PUMP LOAn 284.43 jS2.84 113.91 125.97 241.21 221.00 113.72 i3q.66 220.47 226.81 286.19 287.96 2414.17 TOTAL BASE LOAD 373.00 377.00 396.00 400.UO 394.00 384.00 400.00 424.00 429.00 429.00 444.00 444.00 4894.00 TOTAL ENERGY LOAD 657.43 529.84 509.91 525.97 635.21 605.00 513.72 563-66 649.47 655.81 730.19 731.96 7308.16 HYDRO ENERGY TO LOAD 657.38 529.81 509.89 525.94 635.17 602.28 510.42 560.40 649.43 655.77 730.14 731.90 7298.52 THERMAL ENER6Y TO LOAn o.0O 0.00 0.00 0.00 0.00 2.68 3.28 3.23 0.00 0.00 0.00 0.00 9.19 ENERGY DEFICIENCY 0.00 0.00 0.00 o0uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 218.36 384.60 301.76 272.50 42.19 0.00 0.00 0.00 0.00 292.56 301.49 310.04 2123.49 HYDRO ENERGY SURPLIIS 336.26 145.15 124.23 85.43 242.97 120.63 21n.68 229.13 334.47 382.48 374.26 254.05 2839.72 POWER (MEGAWATTS) PEAK PUMP LOAD 480.15 353.S58 298.74 312.Z3 442.99 407.14 247.68 300.89 421.55 413.26 482.87 480.22 4641.30 PEAK BASE LOAD 881.00 890.00 928.00 927.U0 917.00 896.00 948.00 978.00 1009.00 1009.00 1030.00 1030.00 11443.00 TOTAL PEAK LOAD 1361.15 1243.58 1226.74 1239.23 1359.99 1303.14 1195.68 1278.89 1430.55 1422.26 1512.R7 1510.22 16084.30 HYDRO CAPACITY TO LOAD 1361.15 1243.58 1226.74 1239.23 1359.99 1125.44 1001.19 1081.65 1347.94 1422.26 1512.87 1510.22 15432. 26 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 o.uO 0.00 177.70 194.49 197.24 82.61 0.00 0.00 0.00 652.04 FIRM CAPACITY TRANSFER 539.04 564.41 500.55 373.28 80.48 0.00 0.00 0.00 0-00 400-95 413.19 424.71 3296.61 PEAK RESERVE 976.04 1001.41 937.55 810.28 517.48 259.30 242.51 239.76 354.39 837.95 850.19 861.71 7888.57 B-31 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JIINE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.6B7 1.75? 1.633 1.852 1.775 1.906 3.795 7.043 9.814 16.868 19.377 9.915 78.415 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 3.228 1.731 1.493 1.623 1.707 1.879 5.745 9.770 13.204 26.791 32.992 16.856 117.017 TO RESERVOIR EVAPOPAlION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTFLOW 1.959 0.351 0.014 -0.0U4 0.001 0.000 1.370 2.401 3.182 8.150 11.999 8.035 37.457 TO RIVER LOS5 -2.139 -0.280 -0.005 0.059 0.067 0.084 0.769 0.872 0.896 2.885 2.078 -1.830 3.456 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.656 n.434 0.428 0.504 0.474 0.518 0.450 0.912 1.033 1.028 0.997 0.767 8.203 TO WATERCOURbE 2.120 1.156 1.105 1.201 1.143 1.213 1.115 2.767 4.612 4.714 4.213 2.852 28.209 FROM GROUND WATER 0.269 0.133 0.156 0.398 0.608 0.177 0.065 0.141 0.376 0.476 0.566 0.511 3.A77 SHORTAGE AT WATERCOIIRSE 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 2.389 1.289 1.261 1.599 1.751 1.390 1.180 2.908 5.005 5.206 4.795 3.363 32.136 PUMP CAPACITY GOOD AREA 0.626 0.458 0.487 0.577 0.613 0.453 0.385 0.552 0.668 0.668 0.668 0.654 6.809 PUMPED FROM GOOD AREA 0.269 0.133 0.156 0.398 0.608 0.177 0.065 0.141 0.376 0.476 0.566 0.511 3.P77 EVAPORATION GOOD AREA 0.056 n.01? 0.008 0.031 0.029 0.013 0.005 0.020 0.094 0.119 0.159 0.183 0.731 RECHARGE TO bOOD AREA 0.332 0.204 0.210 0.270 0.261 0.244 0.180 0.346 0.542 0.759 0.769 0.598 4.713 NET CHANGE -- GOOD AREA 0.006 0.058 0.045 -0.160 -0.377 0.054 0.110 0.184 0.072 0.165 0.044 -0.097 0.105 PUMP CAPACITY BAD AREA 0.290 0.290 0.290 0.Z90 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480 PUMPED TO DRAINAGE 0.140 0.100 0.096 0.106 0.121 0.117 0.103 0.122 0.144 0.176 0.185 0.167 1.577 EVAPORATION BAD AREA 0.650 0.353 0.334 0.4U4 0.424 0.399 0.365 0.964 1.383 1.717 1.627 1.009 9.630 RECHARGE TO BAD AREA 0.790 0.453 0.429 0.505 0.525 0.542 0.469 1.086 1.527 1.893 1.813 1.174 11.207 NET CHANGE BAD AREA -0.000 -0.000 -0.001 -0.005 -0.020 0.026 -0.000 -0.000 -0.000 -0.000 0.002 -0.002 -0.000 DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 33.85 18.39 20.43 44.02 66.58 25.06 12.97 21.17 43-93 55.25 63.78 57.86 463.28 TOTAL BASE LOAD 407.00 401.00 400.00 392.00 386.00 397.00 408.00 416.00 427.00 429.00 434.00 444.00 4941.00 TOTAL ENERGY LOAD 440.85 419.39 420.43 436.02 452.58 422.06 420.97 437.17 470.93 484.25 497.78 501.86 5404.28 HYDRO ENERGY TO LOAD 218.36 384.60 301.76 272.50 42.19 0.00 0.00 0.00 0.00 292.56 301.49 310.04 2123.49 THERMAL ENERGY TO LOAD 222.46 34.76 118.64 163.49 410.35 422.03 420.94 437.13 470.89 191.66 196.26 191.78 3280.38 ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER-218.36 -384.60 -301.76 -272.50 -42.19 0.00 0.00 0.00 0.00 -292.56 -301.49 -310.04 -2123.49 HYDRO ENERGY SURPLUS 0-00 0-00 0.00 0-00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 66.45 32.87 43.73 77.53 104.01 53.80 18.84 37.86 78.90 94.62 100.40 93.55 802.56 PEAK BASE LOAU 847.00 832.00 832.00 811.00 799.00 820.00 850.00 872.00 891.00 891.00 907.00 925.00 10277.00 TOTAL PEAK LOAD 913.45 864.87 875.73 888.53 903.01 873-80 868.84 909.86 969.90 985.62 1007.40 1018.55 11079.56 HYDRO CAPACITY TO LOAD 539.04 564.41 500.55 373.Z8 80.48 0.00 0.00 0.00 0.00 400.95 413.19 424.71 3296.61 THERMAL CAPACITY TO LOAD 374.41 300.46 375.18 515.Z5 822.52 873.80 868.84 909.86 969.90 584.68 594.20 593.84 7782.95 FIRM CAPACITY TRANSFER -539.04 -564.41 -500.55 -373.Z8 -80.48 0.00 0.00 0.00 0.00 -400.95 -413.19 -424.71 -3296.61 PEAK RESERVE 311.55 360.13 349.27 336.47 321.99 351.20 356.16 315.14 255.10 239.38 217.60 206.45 3620.44 B-32 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.098 1.355 1.391 2.213 3.338 2.450 0.495 -0.590 -5.308 -5.980 -0.336 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.244 1.742 1.502 1.635 1.722 1.896 5.759 9.784 13.220 26.817 33-022 16.878 117.222 TO RESERVOIR EVAPORATION N0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTFLOW 1.959 0.351 0.014 -0.004 0.001 0.000 1.370 2.401 3.182 8.150 11.999 8.035 37.457 TO RIVER LOSS -3.751 -0.113 0. 280 0.569 0.463 0.788 1.969 3.440 3.405 8.314 5.793 -4.170 16.986 TO LINK LOSS 0.599 0.469 0.427 0.468 0.564 0.599 0.479 0.396 0.422 0.377 0.409 0.430 5.658 TO CANAL LOSS 1.972 1.377 1.285 1.468 1.690 1.818 1.612 2.102 2.283 2.152 2.245 2.067 22v070 TO WATERCOURSE 5.997 2.689 2.379 2.611 3.836 5.019 4.053 5.636 8.147 7.518 8.060 7.082 63.088 FROM GROUND WATER 3.629 1.905 1.470 1.860 3.416 2.750 1.393 1.781 2.959 3.138 3.939 3.907 32.146 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.017 0-017 0.000 0.0sO WATERCOURSE REOT. 9.626 4.594 3.849 4.531 7.252 7.769 5.446 7.417 11.123 10.673 12.016 10.989 95.285 PUMP CAPACITY GOOD ARFA 4.606 2.527 2.074 2.345 3.953 4.217 3.056 3,240 4.339 3.968 4.554 4.729 43.610 PUMPED FROM GOOD AREA 3.629 1.905 1.470 1.880 3.416 2.750 1.393 1.781 2.959 3.138 3.939 3.907 32.146 EVAPORATION GOOD AREA 0.283 0.140 0.122 0.177 0.196 0.208 0.165 0.235 0.367 0.601 0.750 0.496 3.739 RECHARGE TO bOOD AREA 3.077 1.843 1.495 1.7Z9 2.555 2.988 2.272 2.587 3.280 4.764 5.121 3900 35.610 NET CHANZGE -- GOOD AREA -0.834 -0.202 -0.097 -0.3U8 -1.057 0.031 0.714 0.570 -0.046 1.025 0.433 -0.503 -0.276 PUMP CAPACITY BAD ARtA 0.380 0.380 0.380 0.360 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 4.560 PUMPED TO DRAINAGE 0.216 0.172 0.166 0.118 0.197 0.194 0.177 0.196 0.220 0.262 0.275 0.249 2.501 EVAPORATION BAD AREA 0.968 0.548 0.510 0.595 0.686 0.709 0.590 1.210 1.679 2.168 2.138 1.392 13.193 RECHARGE TO BAD AREA 1.187 0.697 0.648 0.760 0.863 0.938 0.767 1.410 1.925 2.465 2.420 1.639 15.720 NET CHANGE BAU AREA 0.003 -0.023 -0.027 -0.013 -0.020 0.035 -0.000 0.004 0.026 0.035 0-007 -0.002 0.025 DRAIN STORAGt CONTENT 0.780 0.840 0.900 0.960 1.020 1.080 1.140 1.200 1.260 1.320 1.380 1.440 13.320 ENERbY (MILLION KWH) TOTAL PUMP LOAD 318.28 171.23 134.34 169.99 307.79 246.06 126.69 160.82 264.39 282.06 349.98 345.81 2877.45 TOTAL BASE LOAD 780.00 778.00 796.00 792.uo 780.00 781.00 808.00 840.00 856.00 858.00 878.00 888.00 9835.00 TOTAL ENERGY LOAD 1098.Z8 949.23 930.34 961.99 1087.79 1027.06 934.69-1000.82 1120.39 1140.06 1227.98 1233.81 12712.45 HYDRO ENERGY TO LOAD 875.74 914.41 811.65 798.44 677.36 602.28 510.42 560.40 649.43 948.33 1031.63 1041.94 9422.02 THERMAL ENERGY TO LOAD 222.46 34.76 118.64 163.49 410.35 424.71 424.22 440.36 470.89 19!66 !76.2s 191.78 3269.57 ENERGY DEFTCIECrv S,^ 0.00 0.00 u.uO 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLIUS 336.26 145.15 124.23 85.43 242.97 120.63 210.68 22q.13 334.47 382.48 374.26 254.05 2839.72 POWER (MEGAWATTS) PEAK PUMP LOAIJ 546.60 3A6.45 342.47 389.76 546.99 460.95 266.52 33A.75 500.45 507.89 583.27 573.77 5443.86 PEAK BASE LOAD 1728.00 1722.00 1760.00 1738.U0 1716.00 1716.00 1798.00 1850.00 1900.00 1900.00 1937.00 1955.00 21720.00 TOTAL PEAK LOAD 2274.60 2108.45 2102.47 2127.76 2262.99 2176.95 2064.52 218Q.75 2400.45 2407.89 2520.27 2528.77 27163.85 HYDRO CAPACITY TO IOAU 1900.18 1807.99 1727.29 1612.51 1440.47 1125.44 1001.19 1081.65 1347.94 1823.21 1926.06 1934.93 18728.87 THERMAL CAPACITY TO LOAD 374.41 300.46 375.18 515.Z5 822.52 1051.50 1063.33 1107.10 1052.51 584.68 594.20 593.84 8434.99 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 o.uo 0.00 '0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1287-59 1361-54 1286.82 1146.75 839.48 610-50 598.67 554.90 609.49 1077.32 1067.80 1068.16 11509.01 B-33 WES7 PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 668507Z110 YEAR 1977 NORTH ZONE SIIMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2-970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.093 1.344 1.378 2.190 3.306 2.429 0.483 -0.591 -5.255 -5.917 -0.334 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.017 0.012 0.010 0.012 0-016 0.017 0.014 0.014 0.016 0.026 0.030 0.023 0.205 TO RESERVOIR EVAPORATION 0.053 0.023 0-012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.328 TO RIVER OUTtLOW 2.725 1.817 1.645 1.809 1.777 1.941 3.730 6.931 9.781 16.932 19.342 9.871 78.300 TO RIVER LOSS -1.559 0.169 0.270 0.491 0.420 0.730 1.144 2.519 2.571 5.469 3-662 -2.333 13.553 TO LINK LOSS 0.509 0.373 0.344 0.403 0.472 0.509 0.410 0.323 0.333 0.286 0.324 0.345 4.631 TO CANAL LOSS 1.296 0.926 0.857 0.970 1.195 1.264 1.159 1.191 1.235 1.117 1.246 1.299 13.755 TO WATERCOURSE 3.799 1.477 1.256 1.496 2.658 3.760 3.029 3.010 3.572 2.770 3.933 4.262 35.023 FROM GROUND WATER 3.635 1.921 1.394 1.502 2.962 2.744 1.375 1.655 2.749 2.883 3.561 3.639 30.019 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 WATERCOURSE REQT. 7.434 3.398 2.650 2.998 5.620 6.504 4.404 4.665 6.321 5.653 7.495 7.903 65.045 PUMP CAPACITY GOOD AREA 4.208 2.216 1.687 1.842 3.479 3.936 2.860 2.900 3.912 3.511 4.127 4.319 38.996 PUMPED FROM GOOD AREA 3.635 1.921 1.394 1.5U2 2.962 2.744 1.375 1.655 2.749 2.883 3.561 3.639 30.019 EVAPORATION GOOD AREA 0.150 0.084 0-075 0.1Y5 0.099 0.111 0.093 0.133 0.201 0.391 0.437 0.215 2.114 RECHARGE TO GOOD AREA 2.771 1.644 1.298 1.478 2.301 2.743 2.118 2.272 2.768 4.038 4.408 3.359 31.198 NET CHANGE -- GOOD AREA -1.014 -0.360 -0.172 -0.148 -0.760 -0.111 0.650 0.484 -0.183 0.763 0.410 -0494 -0.935 PUMP CAPACITY BAD AREA 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 1.080 PUMPED TO DRAINAGE 0.077 0.072 0.070 0.072 0.076 0.077 0.074 0.074 0.076 0.086 0.090 0.083 0.925 EVAPORATION BAD AREA 0.321 0.197 0.178 0.193 0.265 0.312 0.228 0.251 0.301 0.458 0.518 0.388 3.611 RECHARGE TO DAD AREA 0.401 0.246 0.221 0.256 0.341 0.398 0.302 0.330 0.402 0.577 0.612 0.471 4.558 NET CHANGE BAD AREA 0.003 -0.022 -0.026 -0.008 0.000 0.009 -0.000 0.004 0.026 0.032 0.004 -0.000 0.021 DRAIN STORAGt CONTENT 1.500 1.560 1.620 1.680 1.740 1.800 1.860 1.920 1.980 2.040 2.100 2.160 21.960 ENERbY IMILLION KWH) TOTAL PUMP LOAD 311.30 167.25 122.14 131.31 258.22 239-23 118.73 142.09 237-65 248.73 305-55 312.36 2594.56 TOTAL 8ASE LOAD 404.00 409.00 429.00 436.00 430.00 419.00 437.00 463.00 468.00 468.00 485.00 485.00 5333.00 TOTAL ENERGY LOAD 715-30 576.25 551.14 567.31 688.22 658.23 555-73 605.09 705-65 716.73 790.55 797.36 7927.56 HYDRO ENERGY TO LOAD 715.24 576.22 551.12 567.29 688.18 657.85 554.05 602.48 705.60 716.68 790.50 797.30 7922.51 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.34 1.65 2.58 0.00 0.00 0.00 0.00 4.57 ENERGY DEFICIENCY 0.00 0-00 0.00 o.uo 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 396.63 466.78 461.89 325.61 44.90 0.00 0.00 0.00 0.00 442.98 468.64 489.52 3096.96 HYDRO ENERGY SURPLUS 367.38 219.80 115.35 254.92 382.93 199.62 268.55 262.04 403.08 421.91 414.17 299.58 3609.35 POWER (MEGAWATTS) PEAK PUMP LOAD 525.05 385.67 321.35 328.37 476.03 438.71 272.08 311.54 457.41 455.71 519.17 520.65 5011.73 PEAK BASE LOAD 958.00 968.00 1009.00 1012.00 1000.00 978.00 1034.00 1068.00 1101.00 1101.00 1124.00 1124.00 12477.00 TOTAL PEAK LUAD 1483.05 1353.67 1330.35 1340.37 1476.03 1416.71 1306.08 1379-54 1558.41 1556-71 1643.17 1644.65 17488.73 HYDRO CAPACITY TO LOAD 1483.05 1353.67 1330.35 1340.37 1416.03 1308.60 1138.46 1184.39 1518.90 1556.71 1643.17 1644.65 16978.35 THERMAL CAPACITY TO LOAD O.OO 0.00 0.00 0.00 0.00 108.11 167.62 195.14 39.51 0.00 0.00 0.00 510.38 FIRM CAPACITY TRANSFER 783.28 827.55 778-03 634-15 231.14 0-00 0.00 0.00 0-00 610-04 649-27 688.15 5201 62 PEAK RESERVE 1220.28 1264.55 1215.03 1071.15 668.14 328.89 269.38 241.86 397.49 1047.04 1086.27 1125.15 9935.24 B-34 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.725 1.817 1.645 1.8U9 1.777 1.941 3.730 6.931 9.781 16.932 19.342 9.871 78.300 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 3.231 1.824 1.501 1,579 1.706 1.899 5.535 9.618 13.167 26.978 32.940 16.821 116.798 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 -0-000 -0-000 -0-000 -0-000 0.000 TO RIVER OUTFLOW 1.933 0.365 0.018 -O.OU5 -0.000 0.000 1.264 2.358 3.162 8.207 11.992 8.016 37.310 TO RIVER L05S -2.099 -0.259 -0.015 0.054 0.070 0.084 0.725 0.886 0.909 2.927 2.041 -1.829 3.493 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.660 0.434 0.431 0.493 0.462 0.523 0.466 0.905 1.033 1.033 1.005 0.771 8.216 TO WATERCOURSE 2.141 1.187 1.121 1.116 1.154 1.243 1.184 2.691 4.586 4.675 4.213 2.822 28.192 FROM GROUND WATER 0.269 0.139 0.174 0.473 0.650 0.165 0.040 0.129 0.371 0.540 0.633 0.560 4.144 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 WATERCOURSE REOT. 2.410 1.326 1.295 1.649 1.804 1.408 1.224 2.820 4.959 5.215 4.846 3.382 32.338 PUMP CAPACITY GOOD AREA 0.683 0.499 0.524 0.617 0.654 0.493 0.420 0.599 0.731 0.741 0.741 0.733 7.435 PUMPED FROM GOOD AREA 0.269 0.139 0.174 0.473 0.650 0.165 0.040 0.129 0.371 0.540 0.633 0.560 4.144 EVAPORATION GOOD AREA 0.056 0.012 0.008 0.032 0.029 0.013 0.005 0.020 0.092 0.116 0.125 0.167 0.675 RECHARGE TO GOOD AREA 0.338 0.205 0.208 0.268 0.260 0.247 0.190 0.341 0.540 0.760 0.775 0.598 4.730 NET CHAN6E -- GOOD AREA 0.013 0.053 0.026 -0.2J7 -0.419 0.069 0.145 0.193 0.077 0.104 0.017 -0.130 -0.089 PUMP CAPACITY BAD AREA 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 4.680 PUMPED TO DRAINAGE 0.241 0.203 0.199 O.2U9 0.222 0.217 0.207 0.223 0.246 0.278 0.2A7 0.270 2.804 EVAPORATION BAD AREA 0.550 0.257 0.243 0.309 0.328 0.299 0.281 0.839 1.271 1.623 1.540 0.913 8.454 RECHARGE TO BAD AREA 0.791 0.460 0.441 0.510 0.529 0.546 0.482 1.064 1.522 1.901 1.830 1.181 11.257 NET CHANGE BAD AREA- -0.000 -0.000 -0.001 -0.009 -0-021 0.030 -0-006 0.002 0.005 -0-000 0-003 -0-003 -0-000 DRAIN STORA6iE CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 39-51 24.84 27.91 56.Z6 75.81 29-81 17.01 26-02 49.52 67.05 76.04 68.89 558.68 TOTAL BASE LOAD 452.00 445.00 442.00 438.00 430.00 443.00 455.00 464.00 476.00 479.00 484.00 495.00 5503.00 TOTAL ENER'Y LOAD 491.51 469.84 469.91 494.26 505.81 472.81 472.01 49f.02 525.52 546-05 560.04 563.89 6061.68 HYDRO ENERGY TO LOAI) 396.63 466.7A 461.89 325.b1 44.90 0.00 0.00 0.00 0.00 442.98 468.64 489.52 3f96.96 THERMAL ENERGY TO LOAD 94.85 3.02 7.99 168.61 460.86 472.77 471.98 489.99 525.48 103,03 91.36 74.m3 2964.26 ENERGY DEFICIENCY 0.00 0-00 0.00 000 ' 0-00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER-396.63 -466.78 -461.89 -325.61 -44.90 0.00 0.00 0.00 0.00 -442.98 -468.64 -489.52 -3096.96 HYDRO ENERGY SURPLIIS O.UO 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 77.23 42.36 54.79 94.Z9 117.18 60.87 25.53 44.03 88.17 111.09 117.08 109.75 942.37 PEAK BASE LOAD 944.00 931.00 9?7.00 911.UO 899.00 923.00 953.00 977.00 993.00 998.00 1015.00 1036.00 11507.00 TOTAL PEAK LUAD 1021.Z3 973.36 981.79 1005.Z9 1016.18 983.87 978.53 1021.03 1081.17 1109.09 1132.n8 1145.75 12449.36 HYDRO CAPACITY TO LOAD 783.Z8 827.55 778.03 634.15 231.14 0.00 0.00 0.00 0.00 610.04 649.27 688.15 5201.62 THERMAL CAPACITY TO LOAD 237.95 145.80 203.76 371.14 785.04 983.87 978.53 1021.03 1081.17 499.05 482.80 457.60 7247.74 FIRM CAPACITY TRANSFER -783.28 -827.55 -778.03 -634.15 -231.14 0.00 0.00 0.00 0.00 -610.04 -649.27 -688.15 -5201.62 PEAK RESERVE 203.77 2SI.64 243.21 344.71 333.82 366.13 371.47 328.97 268.83 240.91 217.92 204.25 3375.63 B-35 SYSTEM SUMMARY 'WATER (MAFI OCT NOV nEC JAN FEB MAR APR MAY JUINE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.23n 2.780 2.7bO 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.093 1.344 1.378 2.190 3.306 2.429 0.483 -0.591 -5.255 -5.917 -0.334 0.007 0.13? FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.248 1.835 1.511 1.590 1.721 1.916 5.549 9.632 13.182 27.004 32-970 16.844 117.003 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.328 TO RIVER OIJTFLOW 1.933 0.365 0.018 -0.0U5 -0.000 0.000 1.264 2.358 3.162 8.207 11.992 8.016 37.310 TO RIVER LOSS -3.658 -0.090 0.255 0.545 0.490 0.814 1.869 3.405 3.480 8.395 5.703 -4.161 17.045 TO LINK LOSS 0.600 0.464 0.435 0.494 0.563 0.600 0.500 0.414 0.424 0.377 0.414 0.435 5.720 TO CANAL LOSS 1.956 1.360 1.288 1.4b4 1.656 1.787 1.625 2.096 2.268 2.150 2.251 2.069 21.970 TO WATERCOURSE 5.940 2.664 2.377 Z.672 3.812 5.003 4.212 5.702 8.158 7.445 8.146 7.084 63.216 FROM GROUND WATER 3.904 2.060 1.568 1.975 3.612 2.909 1.416 1.783 3.120 3.423 4.194 4.199 34.163 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.0UO 0.000 0-000 0.000 0.000 0.001 0.000 0.001 0.002 0.004 WATERCOURSE REOT. 9.844 4.724 3.945 4.647 7.424 7.912 5.628 7.485 11.280 10.868 12.341 11.285 97.383 PUMP CAPACITY GOOD AREA 4.891 2.714 2.211 2.459 4.133 4.429 3.280 3.499 4.643 4.252 4.868 5.052 46.431 PUMPED FROM GOOD AREA 3.904 2.060 1.568 1.975 3.612 2.909 1.416 1.783 3.120 3.423 4.194 4.199 34.163 EVAPORATION GOOD AREA 0.206 0.096 0.083 0.156 0.129 0,124 0.097 0.153 0.293 0.508 0.562 0.382 2.789 RECHARGE TO GOOD AREA 3.109 1.849 1.505 1.747 2.561 2.990 2.308 2.613 3.308 4.798 5.182 3.957 35.927 NET CHANGE -- GOOD AREA -1.001 -0.307 -0.146 -0.365 -1.179 -0.042 0.795 0.676 -0.106 0-867 0-427 -0.624 -1.024 PUMP CAPACITY BAD ARtA 0.480 0.480 0.480 0.460 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 5.760 PUMPED TO DRAINAGE 0.318 0.275 0.269 0.261 0.298 0.294 0.281 0.298 0.322 0.365 0.377 0.353 3.729 EVAPORATION BAD AREA 0.872 0.454 0.421 0.5U2 0.593 0.611 0.510 1.090 1.571 2.081 2.058 1.301 12.065 RECHARGE TO BAD AREA 1.193 0.706 0.662 0.766 0.869 0,944 0.784 1.394 1.924 2.478 2.442 1.652 15.615 NET CHANGE BAD AREA 0.003 -0.022 -0.027 -0.016 -0.021 0.039 -0.007 0.006 0.031 0.032 0.006 -0.003 0.021 DRAIN STORAGE CONTFNT 1.500 1.560 1.620 1.680 1.740 1.800 1.860 1.920 1.980 2.040 2.100 2.160 21.960 ENERGY (MILLION KWH) TOTAL PUMP LOAD 350.81 192.09 150.05 187.58 334.03 269-04 135.74 168.11 287-16 315-78 381-60 381.25 3153.24 TOTAL BASE LOAD 856.00 854.00 871.00 874.00 860.00 862.00 892.00 927.00 944.00 947.00 969.00 980.00 10836.00 TOTAL ENERGY LOAD 1206.81 1046-09 1021.05 1061.58 1194.03 1131-04 1027.74 1096.11 1231.16 1262.78 1350.60 1361.25 13989.24 HYDRO ENERGY TO LOAD 1111.87 1043.00 1013.01 892.90 733.08 657.85 554.05 602.48 705.60 1159.66 1259.14 1286.82 11019.46 THERMAL ENERGY TO LOAD 94.85 3.02 7.99 168.61 460.86 473.11 473.63 492.56 525.48 103.03 91.36 74.33 2968.83 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 367.38 219.80 115.35 254.92 382.93 199.62 268.55 262.04 403.08 421.91 414.17 299.58 3609g35 POWER (MEGAWATTS) PEAK PUMP LOAD 602.Z8 428.02 376.15 422.66 593.21 499.58 297.61 355.57 545.57 566.80 636.24 630.41 5954.09 PEAK BASE LOAD 1902.00 1899.00 1936.00 1923.U0 1899.00 1901.00 1987.00 2045.00 2094.00 2099.00 2139.00 2160.00 23984.00 TOTAL PEAK LOAD 2504.28 2327.02 2312.15 2345.66 2492.21 2400-58 2284.61 2400.57 2639.57 2665.80 2775.24 2790.41 29938.09 HYDRO CAPACITY TO LOAD 2266.33 2181.22 2108.39 1974.52 1707.17 1308.60 1138.46 1184.39 1518.90 2166.75 2292.44 2332.80 22179.97 THERMAL CAPACITY TO LOAD 237.95 145.80 203.76 371.14 785.04 1091.98 1146.15 1216.17 1120.68 499.05 482.80 457.60 7758.13 FIRM CAPACITY TRANSFtR 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1424.05 1516.20 1458.24 1415.86 1001.96 695.02 640.85 570.83 666.32 1287.95 1304.20 132q.40 13310.87 B-36 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1978 - NORTH ZONE SIIMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.089 1.334 1.364 2.167 3.274 2.409 0.471 -0.593 -5.202 -5.854 -o.333 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.059 0.012 0.009 0.012 0.016 0.017 0.014 0.057 0.100 0.110 0.114 0.107 0.627 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328 TO RIVER OUTtLOW 2.750 1.811 1.716 1.859 1.775 1.965 3.779 6.953 9.815 17.021 19.399 9.979 78.824 TO R!YEP LOSS =:.553 0.159 0.290 0.458 0.411 0.734 1.148 2.499 2.588 5.494 3.659 -2.306 13.610 TO LINK LOSS 0.505 0.39? 0.330 0.399 0.473 0.508 0.405 0.326 0.333 0.285 o.320 0.342 4.619 TO CANAL LOSS 1.331 0.904 0.813 0.953 1.204 1.277 1.139 1.190 1.268 1.153 1.282 1.315 13.829 TO WATERCOURSE 3.772 1.485 1.208 1.446 2.626 3.700 2.989 3.046 3.624 2.768 3.934 4.198 34.797 FROM GROUND WATER 3.822 1.990 1.492 1.6U9 3.080 2.894 1.533 1.759 2.872 3.043 3.804 3.951 31.848 SHORTAGE AT WATERCOURSE 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00? WATERCOURSE REQT. 7.596 3.475 2.700 3.055 5.706 6.594 4.522 4.805 6.496 5.811 7.738 8.149 66.647 PUMP CAPACITY GOOD AREA 4.476 2.371 1.804 1.965 3.643 4.121 3.054 3.101 4.115 3.704 4.413 4.599 41.368 PUMPED FROM GOOD AREA 3.822 1.990 1.492 1.609 3.080 2.894 1.533 1.759 2.872 3.043 3.804 3.951 31.848 EVAPORATION GOOD AREA 0.043 0.009 0.026 0.027 0.005 0.017 0.014 0.012 0.114 0.257 0.212 0.093 0.828 RECHARGE TO GOOD AREA 2.829 1.649 1.280 1.478 2.326 2.768 2.130 2.302 2.827 4.095 4.483 3.420 31.588 NET CHANGE -- GOOD AREA -1.035 -0.350 -0.238 -0.157 -0.758 -0.143 0.583 0,531 -0.159 0.795 0.467 -0.623 -1.089 PUMP CAPACITY BAD ARtA 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 2.808 PUMPED TO DRAINAGE 0.179 0.132 0.129 0.132 0.136 0.137 0.134 0177 0.220 0.230 0.234 0.227 2.067 EVAPORATION BAD AREA 0.278 0.189 0.172 0.159 0.267 0.315 0.223 0.218 0.268 0.387 0.429 0.318 3.254 RECHARGE TO BAD AREA 0.408 0.241 0.216 0.256 0.344 0.404 0.301 0.331 0.409 0.584 0.621 0.480 4.596 NET CHANGE BAU AREA -0.049 -0.080 -0.085 -0.065 -0.059 -0.049 -0.057 -0.064 -0.078 -0.034 -0.042 -0.065 -0.725 DRAIN STORAGt CONTENI 2.280 2.400 2.520 2.640 2.760 2.880 3.000 3.120 3.240 3.360 3.480 3.600 35.280 ENERGY (MILLION KWH) TOTAL PUJMP LOAD 335.51 177.86 135.18 145.50 274.93 259.11 137.79 159.45 260.62 274.84 338.66 351.62 2851.07 TOTAL BASE LoAD 444.00 447.00 468.00 477.00 471.00 459.00 477.00 507.00 513.00 513.00 530.00 530.00 5836.00 TOTAL ENERGY LOAD 779.51 624.86 603-18 622.50 745.93 718.11 614.79 666.45 773.62 787.84 868.66 881.62 8687.07 HYDRO ENERGY TO LOAD 779.45 624.83 603.15 622.47 745.88 718.07 614.62 665.31 773.58 787.79 868.60 881.55 8685.29 THERMAL ENERGY TO LOAU 0.00 0.00 0.00 0.00 0.00 0.00 0.14 1.10 0.00 0.00 0.00 0.00 1.24 ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 550.11 526.67 522.64 532.88 115.54 0.00 0.00 0.00 44.32 575.62 604.95 605.40 407A.14 HYDRO ENERGY SURPLUS 387.03 117.47 5.81 172.08 424.63 295.34 344.42 325.34 467.63 5n6.59 514.16 397.03 3957.53 POWER (MEGAWATTS) PEAK PUMP LOAD 564.29 406.46 347.79 358.58 510.45 480.52 311.38 344.92 497.28 500.51 570.27 57A.26 5470.71 PEAK BASE LOAD 1045.00 1057.00 1101.00 1105.00 1093.00 1068.00 1130.00 1167.00 1201.00 1203.00 1228.00 1228.00 13628.00 TOTAL PEAK LOAD 1609.29 1463.46 1448.79 1463.58 1603.45 1548-52 1441.38 1511.92 1700.28 1703.51 1798.27 1806.26 19098.71 HYDRO CAPACITY TO LOAD 1609.29 1463.46 1448.79 1463.58 1603.45 1522.58 1326.13 1357.19 1700.28 1703.51 1798.27 1806.26 18802.77 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 25.95 115.26 154.73 0.00 0.00 0.00 0.00 295.94 FIRM CAPACITY TRANSFtR 1096.05 1088.07 1066.65 872.99 398.20 0.00 0.00 0.00 60.89 858.38 924.89 934.23 7300.36 PEAK RESERVE 1533.05 1571.22 1503.65 1309.99 835.20 411.05 321.74 282.27 497.89 1295.38 1361.89 1371.23 12294.56 B-37 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.750 1.811 1.716 1.859 1.775 1.965 3.779 6.953 9.815 17.021 19.399 9.979 78.824 FROM STORAGE RELEASE -0.000 -n.ooo -o.ooo -o.ooo -o.ooo -O.oOO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO o.Ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 3.322 1.851 1.632 1.658 1.736 1.943 5.668 9.673 13.269 27.168 33.033 17.054 11A.006 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -O.ouO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTPLOW 1.989 0.374 0.035 -O.OU4 0.000 0.000 1.302 2.383 3.183 8.246 12.007 8.064 37.579 TO RIVER LOSS -2.081 -0.268 o.ooo 0.048 0.067 0.085 0.745 0.875 0.920 2.945 2.030 -1.801 3.564 TO LINK LOSS 0.091 0.091 0.091 O.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.639 0.421 0.423 0.483 0.448 0.516 0.453 0.896 1.027 1.033 1.009 0.778 8.125 TO WATERCOURSE 2.113 1.194 1.167 1.242 1.169 1.274 1.187 2.709 4.595 4.707 4.262 2.847 28.466 FROM GROUND WATER 0.303 0.162 0.157 0.450 0-679 0.147 0.066 0.154 0.443 0.605 0-700 0.628 4.495 SHORTAGE AT WATERCOIJRSE 0.000 0.000 0.000 O.o0O 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 WATERCOURSE REOT. 2.416 1.356 1.324 1.692 1.848 1.421 1.253 2.863 5.040 5.312 4.962 3.475 32.962 PUMP CAPACITY GOOD AREA 0.715 0.531 0.552 0.648 0.685 0.524 0.455 0.635 0.770 0.806 0.806 0.804 7.93l PUMPED FROM GOOD AREA 0.303 0.162 0.157 0.450 0.679 0.147 0.066 0.154 0.443 0.605 0.700 0.628 4.495 EVAPORATION GOOD AREA 0.026 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.069 0.102 0.144 0.341 RECHARGE TO GOOD AREA 0.332 0.199 0.201 0.262 0.254 0.244 0.184 0.341 0.543 0.768 0.785 0.604 4.717 NET CHANGE -- GOOD AREA 0.003 0.037 0.044 -0.157 -0.426 0.097 0.118 0.187 0.100 0.093 -0.017 -0.167 -0.118 PUMP CAPACITY BAD AREA 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 5.880 PUMPED TO DRAINAGE 0.342 0.304 0.292 0.212 0.223 0.241 0.256 0.297 0.347 0.379 0.389 0.372 3.654 EVAPORATION BAD AREA 0.498 0.259 0.248 0.313 0.337 0.273 0.231 0.765 1.144 1.514 1.437 0.839 7.856 RECHARGE TO BAD AREA 0.782 0.462 0.448 0.517 0.534 0.547 0.483 1.067 1.533 1.916 1.850 1.201 11.340 NET CHANGE BAD AREA -0.058 -0.100 -0.092 -0.008 -0.026 0.033 -0.004 0.005 0.042 0.023 0.025 -0.010 -0.170 DRAIN STORAGL CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 44.15 28.71 28.68 54.26 78.43 28.49 20.66 30.42 58.89 75.59 85.-n 78.46 611.84 TOTAL BASE LOAD 506.00 498.00 494.00 491.00 476.00 490.00 508.00 523.00 532.00 538.00 548.00 554.00 6158.00 TOTAL ENERGY LOAD 550.15 526.71 522.68 545.46 554.43 518-49 528.66 553.42 590-89 613.59 633.09 632.46 6769.84 HYDRO ENERGY TO LOAD 550.11 526.67 522.64 532.58 115.54 0.00 0.00 0.00 44.32 575.62 604.95 605.40 4078.14 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 12.34 438.85 518.46 528.62 553.38 546.53 37.93 28.09 27.01 26q1.20 ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER-550.11 -526.67 -522.64 -532.88 -115.54 0.00 0.00 0.00 -44.32 -575.62 -604.95 -605.40 -4078.14 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 86.09 48.07 45.45 95.01 121.05 57.76 31.59 50.18 105.86 123.77 130.04 123.34 1024.22 PEAK BASE LOAD 1057.00 1040.00 1038.00 1030.00 999.00 1028.00 1071.00 1100.00 1117.00 1119.00 1147.00 1166.00 12912.00 TOTAL PEAK LOAD 1143.09 1088-07 1086.45 1128.01 1120.05 1085.76 1102.59 1150.18 1222.86 1242.77 1277.04 1289.34 13936.21 HYDRO CAPACITY TO LOAD 1096.05 1088.07 1066.65 872.99 398.20 0.00 0.00 0.00 60.89 858.38 924.89 934.23 7300.36 THERMAL CAPACITY TO LOAD 47.04 0.00 19.80 255.03 721.85 1085.76 1102.5q 1150.18 1161.96 384.38 352.15 355.11 6635.86 FIRM CAPACITY TRANSFER -1096.05-1088.07-1066.65 -872-Y9 -398.20 0.00 0.00 0-00 -60-89 -858-38 -924.89 -934.23 -7300.36 PEAK RESERVE 206.91 261.93 263.55 421.99 429.95 464.24 447.41 399.82 327.14 307.23 272.96 260.66 4063.78 B-38 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2. 780 2.Tb0 2.970 5.040 1.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.089 l.334 1.364 2. 167 3.274 2.409 0.471 -0.593 -5.202 -5.854 -0.333 0.007 0.i32 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0. 730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.381 1.863 1.641 1.669 1.752 1.960 5.682 9.729 13.369 27.279 33.147 17.161 116.633 TO RESERVOIR EVAPORATION .0.053 0.023 0.012 0.00j2 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328 TO RIVER OUTFLOW 1.989 0.374 0.035 -0.004 0.000 0.000 1.302 2.383 3.183 8.246 12.007 8.064 37.579 TO RIVER LOSS' -3.634 -0.109 0.290 0.536 0.478 0.819 1.893 3.373 3.508 8.439 5.688 -4.107 17.175 TO LINK LOSS 0.596 0.483 0.421 0.490 0.564 0.599 0.496 0.417 0.424 0.376 0.411 0.433 5.T09 TO CANAL LOSS 1.970 1.325 1.236 1.436 1.653 1.793 1.592 2.086 2.294 2.186 2.292 2.093 21.953 TO WATERCOURSE 5.885 2.679 2.376 2.658 3.795 4.974 4.176 5.755 8.219 7.475 8.196 7.045 63.263 FROM GROUND WATER 4.126 2.152 1.648 2.059 3.759 3.041 1.599 1.913 3.315 3.648 4.504 4.579 36.343 SHORTAGE AT WATERCOURSE 0.002 0.000 0.000 0.000 0.000 Moo0 oz0o0 A.000c 0.001 0.000 0.000 0.000 0.003 WATERCOURSE RECT. io.rOiZ 4.831 4.024 4.747 7.554 8.015 5.775 7.668 11.536 11.123 12.700 11.624 99.609 PUMP CAPACITY GOOD AREA 5.192 2.902 2. 356 2.614 4.328 4.645 3.510 3.736 4.886 4.510 5.219 5.403 49.299 PUMPED FROM OOOD AREA 4.1Z6 2.152 1.648 2.OSg9 3.759 3.041 1.599 1.913 3.315 3.648 4.504 4.579 36.343 EVAPORATION GOOD AREA 0.069 0~.009 0.026 0.027 0.005 0.017 0.014 0.012 0.114 0.326 0.314 0.236 1.169 RECHARGE TO GOOD AREA 3.161 1.848 1.480 1.741 2.580 3.012 2.315 2.643 3.370 4.863 5.268 4.025 36.305 NET CHANGE -- GOOD AREA -1.033 -0.313 -0.194 -0.345 -1.184 -0.047 0.701 0.718 -0.059 0.889 0.450 -0.791 -1.207 PUMP CAPACITY 5AD ARIA 0.724 0.724 0.724 0.7Z4 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 8.688 PUMPED TO DRAINAGE 0.521 0.436 0.4Z1 0.343 0.358 0.378 0.390 0.474 0.566 0.610 0.623 0.600 5.720 EVAPORATION BAD AREA 0. 776 0.448 0.420 0.502 0.605 0.588 0.455 0.983 1.412 1.901 1.865 1.157 11.110 RECHARGE TO BAD ARFA 1.190 0.704 0.664 0.773 0.878 0.950 0.784 1.398 1.942 2.500 2.471 1.681 15.936 NET CHANGE BA0) AREA -0.107 -0.180 -0.177 -0. 072 -0.085 -0O. 016 -0.060 -0.059 -0.037 -0.011 -0.017 -0.075 -0.895 DRAIN STORAGE CONTFNT 2.280 2.400 2.520 2.640 2.760 2.880 3.000 3.120 3.240 3.360 3.480 3.600 35.280 ENERGY (MILLION KWH) TOTAL PUMP LOAD 379.66 206.57 163.86 199.15 353.36 287.61 158.45 189.88 319.51 350.44 423.75 430.08 3 462. 91 TOTAL BASE LOAD 950.00 945.00 962.00 968.U0 947.00 949.00 905.00 1030.00 1045.00 1051.00 1078.00 1084.00 11994.00 TOTAL ENEkGY LOAD 1329.66 1151.57 1125.85 1167.75 1300.36 1236.61 1143.45 IZIP.88 1364.51 1401.44 1501.75 1514.08 15456.91 HYIIRO ENERGY TO LOAD 1329.56 1151.50 1125.79 1155.35 861.42 718.07 614.62 665.31 817.90 1363.41 1473.55 1486.95 12763.42 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 12.34 438.85 518.46 528.76 554.48 546.53 37.93 28.09 27.01 2692.44 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 387.03 117.47 5.81 172.08 424.63 295.34 344.42 325.34 467.63 506.59 514.16 397. 03 3957.53 POWER (MEGAWATTS) PEAK PUMP LOAD 650.38 454.53 396. 25 456.59 6 31. 50 538.28 342.97 395.11 603.13 624.28 7 00. 32 701.60 6494.93 PEAK BASE LOAD 2102.00 2097.00 2 139. 00 2135.00 2092.00 2096.00 2201.00 2267.00 2320.00 2322.00 2375. 00 2394.00 26540.00 TOTAL PEAK LOAD 2752.38 2551.53 25 35. 25 2591.59 2723.50 2634.28 2543.97 2662.11 2923.13 2946.28 3075.32 3095.60 33034.92 HYDRO CAPACITY TO LOAD 2705.34 2551.53 2515.45 23 36. 56 2001.65 1522.58 1326.13 1357.19 1761.17 2561.89 2723.16 2740.49 26103.13 THERMAL CAPACITY TO LOAD 47.04 0.00 19.80 255.03 721.85 1111.70 1217.84 1304.92 1161.96 384.38 352.15 355.11 6931.79 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1739.96 1833.14 1767. 20 1731.97 1265.15 875.30 769.16 682.08 825.04 1602.62 1634.85 1631.89 16358.35 1'-39 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1979 NORTH ZONE SlIMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JIINE JULY AUG SEPT TnTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.084 1.323 1.351 2.1'43 3.243 2.388 0.459 -0.594 -5.150 -5.791 -0.331 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.060 n.Oll 0.009 0.011 0.016 0.017 0.014 0.057 0.100 0.111 0.114 0.108 0.629 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.0U2 0.010 0.012 0.01 0.040 0.070 0.035 0.028 0.026 0.328 TO RIVER OUTFLOW 2.803 1.81n 1.655 1.9U5 1.761 1.931 3.811 6.988 9.829 17.065 19.396 9.978 78.932 TO RIVER LOSS -1.568 0.146 0.284 0.510 0.388 0.724 1.173 2.515 2.582 5.507 3-641 -2.302 13.0O0 TO LINK LOSS 0.502 0.396 0.338 0.386 0.474 0.507 0.395 0.325 n.336 0.287 0.319 0.341 4.607 TO CANAL LOSS 1.357 0.891 0.826 0.927 1.220 1.307 1.140 1.184 1.294 1.182 1.316 1.343 13.986 TO WATERCOURSE 3.712 1.498 1.241 1.3'04 2.615 3.694 2.929 3.002 3.640 2.742 3.923 4.170 34.560 FROM GROUND WATER 4.051 2.053 1.510 1.718 3.184 2.992 1.719 1.947 3.040 3.236 4.077 4.236 33.763 SHORTAGE AT WATERCOUIRSE 0.000 0.000 0.000 0.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOlJRSE REOT. 7.763 3.551 2.751 3.112 5.799 6.686 4.648 4.949 6.680 5.978 8.000 8.406 68.323 PlIMP CAPACITY GOOD AREA 4.722 2.479 1.875 2.017 3.817 4.307 3.234 3.302 4.35o 3.925 4.686 4.858 43.632 PUMPEU FROM GOOD AREA 4.051 2.053 1.510 1.718 3.184 2.992 1.719 1.947 3.040 3.236 4.077 4.236 33.763 EVAPORATION GOOD AREA 0.000 n.0oo o.n25 O.OZ5 0.002 0.000 0.012 0.009 0.027 0.133 0-082 0.013 0.329 RECHARGE TO GOOD AREA 2.881 1.657 1.299 1.473 2.357 2.807 2.158 2.329 2.881 4.148 4.560 3.491 32.040 NET CHANGE -- GOOD AREA -1.170 -0.396 -0.236 -0.271 -0.829 -0.185 0.427 0.372 -0.186 0.780 0.400 -0.758 -2.051 PUMP CAPACITY BAD AREA 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 2.808 PUMPED TO DRAINAGE 0.180 0.050 0.049 0.067 0.083 0.078 0,077 0.123 0.193 0.213 0.200 0.204 1.51? EVAPORATION bAD AREA 0.278 0.173 0.156 0.171 0.247 0.287 0.212 0.218 0.271 0.390 0.433 0.321 3.159 RECHARGE TO ffAD AREA 0.416 0.241 0.218 0.254 0.347 0.411 0.303 0.333 0.419 0.593 0.632 0.490 4.655 NET CHANGE BAD AREA -0.042 0.017 0.014 0.016 0.016 0.045 0.013 -0.009 -0.046 -0.010 -0.001 -0.035 -0.020 DRAIN STORAGt CONTENT 3.720 3.758 3.798 3.854 3.921 3.982 4.045 4.111 4.204 4.306 4.392 4.488 48.581 ENERGY (MILLION KWH) TOTAL PUMP LOAD 359.?0 180.32 133.45 152.62 283.34 266.64 152.89 175.13 277.42 293.82 364.27 379.56 3018.66 TOTAL BASE LOAD 483.U0 489.00 513.00 517.00 510.00 497.00 517.00 54q.00 556.00 556.00 575.00 575.00 6337.00 TOTAL ENERGY LOAD 842.Z0 669.32 646.45 669.62 793.34 763.64 669.89 724.13 833.42 849.82 939.27 954.56 9355.66 HYDRO ENERGY TO LOAD 842.14 669.28 646.42 669.59 793.29 762.89 666.22 718.11 833.37 849.76 939.20 954.49 9344.76 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.69 3.64 5.98 0.00 0.00 0.00 0.00 10.32 ENERGY DEFICIENCY 0.00 0.00 0.00 O.uO 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 TNTERZONE ENERGY TRANSFER 589.41 579.34 479.87 528.23 31.11 0.00 0.00 0.00 0.00 530.43 571.46 573.57 3883.42 HYDRO ENERGY SURPLUS 284.10 15.96 0.00 121.50 461.31 249.64 293.34 273.11 452.15 493.03 477.79 355.91 3477.85 POWER (MEGAWATTS) PEAK PUMP LOAD 599.72 415.48 353.95 378.50 534.63 505.84 346.51 384.17 529.16 536.42 608.81 620.14 5813.32 PEAK BASE LOAD 1142.00 1154.00 1203.00 1210.00 1184.00 1157.00 1224.00 1263.00 1303.00 1303.00 1330.00 1330.00 14803.00 TOTAL PEAK LOAD 1741.72 1569.48 1556.95 1588.50 1718.63 1662.84 1570.51 1647-17 1832.16 1839.42 1938.8l 1950.14 20616.32 HYDRO CAPACITY TO LOAD 1741.72 1569.48 1556.95 1588.50 1718.63 1521.52 1326.97 1357.98 1761.17 1839.42 1938.81 1950.14 19871.28 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 o.uo 0.00 141.31 243.53 289.20 71.00 0.00 0.00 0.00 745.04 FIRM CAPACITY TRANSFER 963.73 1028.72 958.11 747-67 282.55 0.00 0.00 0.00 0.00 726-89 785-37 790-35 6283.39 PEAK RESERVE 1400.73 146S.72 1395.11 1184.L7 719.55 295.69 193.47 147.80 366.00 1163.89 1222.37 1227.35 10782.35 B-40 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV OEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.803 1.810 1.655 1.905 1.761 1.931 3,811 6.988 9.829 17.065 19.396 9.978 78.932 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0f0 FROM DRAINS 3.478 1.894 1.575 1.754 1.752 1.926 5.758 9.686 13.366 27.290 33.037 17.054 118.571 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTFLOW 2.094 0.400 0.016 0.000 0.001 0.000 1.325 2.392 3.194 8.266 11.989 8.015 37.693 TO RIVER LOSS -2.065 -0.285 -0.017 0.010 0.059 0.080 0.763 0.863 0,935 2.953 2.013 -1.803 3.544 TO LINK LOSS 0-091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.619 0.407 0.408 0.411 0*434 0.498 0.442 0.897 1.007 1.029 1.012 0.787 8.012 TO WATERCOURSE 2.084 1.197 1.157 1.274 1.177 1.262 1.190 2.745 4.602 4.727 4.292 2.888 28.594 FROM GROUND WATER 0.330 0.185 0.191 0.452 0.706 0.162 0.089 0.151 0.497 0.666 0-762 0.671 4.A62 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.007 WATERCOURSE REQT. 2.414 1.382 1.348 1.726 1.883 1.424 1.279 2.896 5.103 5.396 5.054 3.559 33.464 PUMP CAPACITY GOOD AREA 0.743 0.560 0.576 0.674 0.712 0.551 0.487 0.670 0.806 0.828 0.828 0.828 8.263 PUMPED FROM GOOD AREA 0.330 0.185 0.191 0.452 0.706 0.162 0.089 0.151 0.497 0.666 0.762 0.671 4.862 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.034 RECHARGE TO GOOD AREA 0.326 0.193 0.192 0.255 0.247 0.236 0.180 0.348 0.536 0.771 0.793 0.611 4.688 NET CHANGE -- GOOD AREA -0.004 0.008 0.002 -0.197 -0.459 0.074 0.091 0.197 0.039 0.105 0.030 -0.094 -0.209 PUMP CAPACITY BAD ARtA 0.590 0.590 0.590 0.59f0 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 7.080 PUMPED TO DRAINAGE 0.442 0.322 0.302 0.314 0.323 0.276 0.254 0.303 0.390 0.480 0.490 0.475 4.370 EVAPORATION BAD AREA 0.457 0.257 0.245 0.300 0.320 0.267 0.229 0.766 1.106 1.360 1.278 0.756 7.341 RECHARGE TO BAD AREA 0.771 0.464 0.450 0.5Z2 0.537 0.541 0.485 1.069 1.538 1.929 1.866 1.221 11.393 NET CHANGE BAD AREA -0.128 -0.114 -0.096 -0.092 -0.106 -0.003 0.002 -0.000 0.042 0.089 0.098 -0.010 -0-318 DRAIN STORAGt CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 53-88 35.69 36.65 63.43 90.87 34.56 24.67 37.86 69.88 91.78 101.53 92.93 728.74 TOTAL BASE LOAD 551.00 547.00 544.00 545.00 527.00 544.00 564.00 581.00 592.00 597.00 609.00 615.00 6816.00 TOTAL ENERGY LOAD 604.88 582-69 580.65 608-43 617.87 578.56 588-67 613.86 661.88 688-78 710.53 707.93 7544.74 HYDRO ENERGY TO LOAD 589.41 579.34 479.87 528.Z3 31.11 0.00 0.00 0.00 0.00 530.43 571.46 573.57 3883.42 THERMAL ENERGY TO LOAD 15.44 3.32 100.74 80.15 586.71 578.52 588.63 613.82 661,84 158.30 139.02 134.30 3660.76 ENERGY DEFICIENCY 0.00 0-00 0-00 0.uO 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER-589.41 -579.34 -479.87 -528.23 -31.11 0.00 0.00 0.00 0.00 -530.43 _571.46 -573.57 _3883.42 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 100.53 57.96 62.58 112.77 138.69 65.15 37.81 54.42 122.90 145.17 153.62 143.41 1195 02 PEAK BASE LOAD 1164.00 1143.00 1141.00 1150.00 1116.00 1148.00 1197.00 122q.00 1249.00 1260.00 1281.00 1302.00 14380.00 TOTAL PEAK LOAD 1264.53 1200-96 1203-58 1262-T7 1254.69 1213.15 1234.81 1283-42 1371.90 1405-17 1434-62 1445.41 15575.02 HYDRO CAPACITY TO LOAD 963.73 1028.72 958.11 747.67 282.55 0.00 0.00 0.00 0.00 726.89 785.37 790.35 6283.39 THERMAL CAPACITY TO LOAD 300.80 172.24 245.47 515.10 972.14 1213.15 1234.81 1283.42 1371.90 678.28 649.25 655.06 9291.63 FIRM CAPACITY TRANSFtR -963.73-1028.72 -958.11 -747.67 -282.55 0.00 0.00 0.00 0.00 -726.89 -785-37 -790.35 -6283-39 PEAK RESERVE 285.47 349.04 346.42 437.23 445.31 486.85 465.19 416.58 328.10 294.83 265.38 254.59 4374.98 B-41 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.004 1.323 1.351 2.143 3.243 2.388 0.459 -0.594 -5.150 -5.791 -0.331 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.538 1.905 1.584 1.765 1.768 1.944 5.773 9.743 13.466 27.401 33.151 17.162 119.200 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328 TO RIVER OUTPLOW 2.094 0.400 0.016 0.0U0 0.001 0.000 1.325 2.392 3.194 8.266 11.989 8.015 37.693 TO RIVER LOSS -3.653 -0.139 0.267 0.580 0.447 0.804 1.936 3.378 3.517 8.460 5.654 -4.106 17.144 TO LINK LOSS 0.593 o.486 0.429 0.477 0.564 o.598 0.486 0.416 0.427 0.378 0.410 0.432 5.696 TO CANAL LOSS 1.976 1.298 1.234 1.398 1.654 1.806 1.582 2.081 2.301 2.211 2.328 2.129 21.998 TO WATERCOURSE 5.795 2.695 2.399 2.667 3.793 4.956 4.119 5.747 8.242 7.469 8.214 7.058 63.155 FROM GROUND WATER 4.302 2.238 1.700 2.171 3.889 3.154 1.808 2.098 3.537 3.901 4.840 4.907 38.625 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.007 WATERCOURSE REQT. 10.177 4.933 4.099 4.838 7.682 8.110 5.927 7.845 11.783 11.374 13.054 11.965 101.787 PUMP CAPACITT GOOD AREA 5.465 3.039 2.452 2.751 4.528 4.857 3.721 3.972 5.156 4,753 5.514 5.686 51.895 PUMPED FROM GOOD AREA 4.382 2.238 1.700 2.171 3.889 3.154 1.808 2.098 3.537 3.901 4.840 4,907 38.625 EVAPORATION GOOD AREA 0.000 0.000 0.025 0.05Z 0.002 0.000 0.012 0.009 0.027 0.133 0.082 0.048 0.363 RECHARGE TO GOOD AREA 3.207 1.849 1.491 1.728 2.604 3.043 2.338 2.676 3.417 4.919 5.352 4.102 36.728 NET CHANGE -- GOOD AREA -1.175 -0.388 -0.234 -0.468 -1.288 -0.111 0.518 0.569 -0.147 0.885 0.431 -0.852 -2.260 PUMP CAPACITY BAD AREA 0.824 0.824 0.824 0.8Z4 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 9.888 PUMPED TO DRAINAGE 0.622 0.372 0.350 0.381 0.406 0.355 0.331 0.426 0.583 0.693 0.689 0.678 5.687 EVAPORATION bAD AREA 0.735 0.430 0.401 0.471 0.567 0.555 0.441 0.984 1.377 1.750 1.711 1.078 10.500 RECHARGE TO BAD AREA 1.187 0.705 0.669 0.776 0.884 0.952 0.788 1.402 1.957 2.521 2.497 1.711 16.049 NET CHANGE BAD AREA -0.170 -0.097 -0.082 -0.015 -0.089 0.043 0.015 -0.009 -0.004 0.079 0.097 -0.045 -0.338 DRAIN STORAGE CONTENT 3.720 3.758 3.798 3.854 3.921 3.982 4.045 4.111 4.204 4.306 4.392 4.488 48.581 ENERbY (MILLION KWH) TOTAL PUMP LOAD 413.08 216.01 170.10 216.U4 374.22 301.20 177.56 207.99 347.30 385.60 465.80 472.49 3747.40 TOTAL BASE LOAD 1034.00 1036.00 1057.00 1062.U0 1037.00 1041.00 1081.00 1130.00 1148.00 1153.00 1184.00 1190.00 13153.00 TOTAL ENERGY LOAD 1447.08 1252.01 1227.10 1278.04 1411.22 1342.20 1258.56 1337.99 1495.30 1536.60 1649.80 1662.49 16900.40 HYDRO ENERGY TO LOAD 1431.54 1248.62 1126.29 1197.82 824.40 762.89 666.22 718.11 833.37 1380.19 1510.66 1528.06 13228.18 THERMAL ENERGY TO LOAD 15.44 3.32 100.T4 80.15 586.71 579.21 592.27 619.80 661.84 158.30 139.02 134.30 3671.08 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.UO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 284.10 15.96 0.00 121.50 461.31 249.64 293.34 273.11 452.15 493.03 477.79 355.91 3477.85 POWER (MEGAWATTS) PEAK PUMP LOAD 700.25 473,45 416.53 491.28 673.32 570.99 384.31 436.60 652.06 681.59 762.42 763.55 7008.34 PEAK BASE LOAD 2306.00 2297.00 2344.00 2360.00 2300.00 2305.00 2421.00 2492.00 2552.00 2563.00 2611.00 2632.00 29183.00 TOTAL PEAK LOAD 3006.25 2770.45 2760.53 2851.Z8 2973.32 2875.99 2805.31 2930.60 3204.06 3244.59 3373.42 3395.55 36191.34 HYDRO CAPACITY TO LOAD 2705.45 2598.20 2515.05 2336.18 2001.18 1521.52 1326.97 1357.98 1761.17 2566.31 2724.18 2740.49 26154.67 THERMAL CAPACITY TO LOAD 300.8O 172.24 245.47 515.10 972,14 1354.46 1478.34 1572.62 1442.90 678.28 649.25 655.06 10036.67 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1686.20 1814.76 1741.53 1621.90 1164.86 782.54 658.66 564.38 694.10 1458.72 1487.75 1481.94 15157.33 B-42 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1980 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB mAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1-080 1.312 1.338 2.1ZO 3.211 2.368 0.447 -0.595 -5.097 -5.728 -0.330 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.075 n.011 0.009 0.010 0.016 0.018 0.014 0.072 0.121 0-132 0.135 0.130 0.743 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328 TO RIVER OUTILOW 2.847 1.688 1.479 1.787 1.769 1.910 3.439 6.759 9.720 17.107 19.362 9.890 77.757 TO RIVER LOSS -1.565 n.093 0.272 0.502 0.405 0.726 1.012 2.518 2-613 5.553 3.597 -2.335 13.391 TO LINK LOSS 0.499 0.425 0.366 0.422 0.472 0.509 0.476 0.340 0.343 0.291 0.328 0.354 4.824 TO CANAL LOSS 1.375 0.921 0.864 0.943 1.227 1.335 1.187 1.189 1.297 1.188 1.343 1.367 14.238 TO WATERCOURSE 3-660 1.602 1.350 1.445 2.553 3.664 3.321 3.221 3.781 2.731 3.987 4.274 35.588 FROM GROUND WATER 4.251 2.020 1.447 1.7Z0 3.324 3.106 1.442 1.864 3.060 3.397 4.253 4.373 34.258 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOUIRSE REOT. 7.911 3.622 2.797 3.165 5.877 6.770 4.763 5.085 6.841 6.128 8.240 8.647 69.846 PUMP CAPACITY GOOD AREA 4.970 2.569 1.940 2.152 4.001 4.499 3.386 3.489 4.586 4.159 4.967 5.128 45.847 PUMPED FROM GOOD AREA 4.251 2.020 1.447 1.7z0 3.324 3.106 1.442 1.864 3.060 3.397 4.253 4.373 34.258 EVAPORATION GOOD AREA 0.000 n.000 0.000 0.011 0.000 0.000 0.000 0.000 0.011 0.102 0.064 0.011 0.199 RECHARGE TO bOOD AREA 2.923 1.694 1.333 1.494 2.379 2.842 2.212 2.361 2.916 4.182 4.627 3.557 32.520 NET CHANGE -- GOOD AREA -1.328 -0.327 -0.114 -0.237 -0.944 -0.265 0.770 0.496 -0.155 0.683 0.311 -0.827 -1.q37 PUMP CAPACITY BAD AREA 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 4.176 PUMPED TO DRAINAGE 0.156 0.044 0.051 0.062 0.086' 0.079 0.080 0.138 0.219 0.239 0.227 0.230 1.613 EVAPORATION BAD AREA 0.269 0.179 0.159 0.177 0.248 0.288 0.220 0.214 0.259 0.375 0.418 0.311 3.118 RECHARGE TO BAD ARFA 0.423 0.245 0.226 n.257 0.348 0.418 0.313 0.336 0.423 0.598 0.641 0.500 4.727 NET CHANGE BAD APEA -0.003 0.021 0.015 0.018 0.012 0.051 0.012 -0.015 -0.054 -0.016 -0.003 -0.042 -0.003 DRAIN STORAGt CONTENT 4.568 4.602 4.644 4.696 4.769 4.830 4.895 4.961 5.059 5.166 5.257 5.358 58.806 ENERGY (MILLION KWH) TOTAL PUMP LOAD 380.74 180.59 130.73 155.16 300.78 282.83 132.60 172-26 285.47 313.94 387.20 399.73 3122.01 TOTAL BASE LOAD 523.00 530.00 555.00 563.U0 563.00 542.00 570.00 591.00 606.00 606.00 620.00 620.00 6889.00 TOTAL ENERGY LOAD 903.74 710.59 685.73 718-16 863.78 824.83 702.60 763.26 891.47 919.94 1007.20 1019.73 10011.01 HYDRO ENERGY TO LOAD 903.67 710.56 685.70 718.12 863.73 819.46 694.83 748.09 889.69 919.88 1007.12 1019.65 9980.50 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 o.uO 0.00 5.31 7.74 18.13 1.72 0.00 0.00 0.00 29.90 ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 585.24 550.04 435.66 460.32 44.07 0.00 0.00 0.00 0.00 426.55 467.91 470.94 3440.73 HYDRO ENERGY SURPLIJS 226.51 0.00 0.00 133.02 421.65 193.81 266.64 243.90 395.84 530.01 514.34 393.36 3319.08 POWER (MEGAWATTS) PEAK PUMP LOAD 635.03 432.54 357.01 395.59 569.41 539.93 329.98 402.21 557.49 575.15 644.19 655.34 6093. 85 PEAK BASE LOAD 1237.00 120.00 1303.00 1310.00 1310.00 1267.00 1325.00 1382.00 1411.00 1411.00 1440.00 1440.00 16086. 00 TOTAL PEAK LOAD 1872.03 16c2.54 1660.01 1705.59 1879.41 1806-93 1654.98 1784-21 1968.49 1986.15 2084.19 2095.34 22179.85 HYDRO CAPACITY TO LOAD 1872.03 16R2.54 1660.01 1705.59 1879.41 1522.76 1329.86 135q.03 1761.17 1986.15 2084.19 2095.34 20938.05 THERMAL CAPACITY TO LOAD 0.UO 0.00 0.00 o0uo 0.00 284.18 325.13 425.17 207.32 0.00 0.00 0.00 1241.79 FIRM CAPACITY TRANSFER 833.50 916-59 855.10 630.57 121.31 0.00 0.00 0.00 0-00 584-58 641.24 645.13 5227.82 PEAK RESERVE 1270.30 13S3.59 1292.10 1067.57 558.31 152.82 111.87 11.83 229.68 1021.58 1078.24 1082.13 9230.02 B-43 SOUTH ZONE SUMMARY wATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JONE JULY AUfi SEPT TOTAL FROM RIVER INFLOW 2.847 1.688 1.479 1.787 1.769 1.910 3.439 6.759 9.720 17.107 19.362 9.890 77.757 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -o.OuO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 0.000 0.000 O.oUo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 3.610 1.694 1.417 1.669 1.791 1.798 4.860 9.083 13.215 27.445 32.991 16.835 116.409 TO RESERVOIR EVAPORAlION -0.000 -n.ooo -0.000 -0.ouo -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUT?LOW 2;.168 0.338 -0.002 -O.OUO -0.000 0.000 0.979 2.039 3.048 8.278 11.971 7.870 36.688 TO RIVER LOSS -2.058 -0.341 -0.004 0.075 0.069 0.061 0.605 0.876 1.011 3.009 1.984 -1.845 3.441 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0-091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.597 0.397 0.390 0.450 0.421 0.523 0.480 0.893 0.987 1.009 1.016 0.793 7.957 TO WATERCOURSE 2.048 1.202 1.004 1.171 1.189 1.235 1.285 2.860 4.584 4.720 4.301 2.981 28.581 FROM GROUND WATER 0.358 0.203 0.367 0.593 0.733 0.195 0.048 0.138 0.596 0.719 0.820 0.698 5.467 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 2.406 1.405 1.371 1.764 1.922 1.430 1.333 2.998 5.180 5.439 5.121 3.679 34.048 PUMP CAPACITY GOOD AREA 0.772 0.584 0.587 0.7U2 0.739 0.575 0.517 0.703 0.842 0.850 0.850 0.850 8.571 PUMPED FROM GOOD AREA 0.358 0.203 0.367 0.593 0.733 0.195 0.048 0.138 0.596 0.719 0.820 0.698 5.467 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 RECHARGE TO bOOD AREA 0.320 0.188 0.186 0.246 0.240 0.256 0.203 0.359 0.532 0.763 0.800 0.620 4.714 NET CHANGE -- GOOD AREA -0.038 -n.014 -0.181 -0.347 -0.492 0.062 0.155 0.221 -0.064 0.044 -0.020 -0.078 -0.754 PUMP CAPACITY BAD ARtA 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 7.080 PUMPED TO DRAINAGE 0.442 0.295 0.206 0.232 0.243 0.239 0.257 0.303 0.394 0.481 0.490 0.477 4.059 EVAPORATION BAD AREA 0.448 0.257 0.247 0.3U3 0.315 0.276 0.241 0.775 1.110 1.355 1.280 0.769 7.378 RECHARGE TO MIAD AREA 0.758 0.466 0.448 0.5Z4 0.542 0.542 0.504 1.078 1.545 1.931 1.877 1.244 11.460 NET CHANGE BAD AREA -0.132 -0.086 -0.006 -0-011 -0.017 0.027 0.006 -0.000 0.042 0.096 0.106 -0.001 0.023 DRAIN STORAGE CONTENT 0.000 n.000 0.000 o.o0O 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 59.36 37-26 49.49 75.95 93.44 37.76 21-37 31.87 82.73 102.80 114.97 103.05 810.04 TOTAL BASE LOAD 612.00 607.00 605.00 606.00 585.00 604.00 625.00 643.00 656.00 662.00 673.00 681.00 7559.00 TOTAL ENERGY LOAD 671.36 644.26 654.49 681.95 678.44 641.76 646.37 674.87 738.73 764.80 787.97 784.05 8369.04 HYDRO ENERGY TO LOAD 585.24 550.04 435.66 460.32 44.07 0.00 0.00 0.00 0.00 426.55 467.91 470.94 3440.73 THERMAL ENERGY TO LOAD 86.07 94.16 218.79 221.58 634.32 641.71 646.32 674.82 738.67 338.19 320.00 313.05 4927.69 ENERGY DEFICIENCY 0.00 0-00 0.00 0o.0 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER-585.24 -550.04 -435.66 -460.32 -44.07 0.00 0.00 0.00 0.00 -426.S5 -467.91 -470.94 -3440.73 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 109.75 60.37 96.96 123.75 143.60 81.69 34.57 54.74 141.11 160.15 174.78 156.58 1338.06 PEAK BASE LOAD 1299.00 1275.00 1273.00 1276.00 1237.00 1272.00 1327.00 1363.00 1385.00 1399.00 1421.00 1443.00 15970.00 TOTAL PEAK LOAD 1408.75 1335.37 1369.96 1399-75 1380.60 1353-69 1361.57 1417.74 1526.11 1559-15 1595.78 1599.58 17308.06 HYDRO CAPACITY TO LOAD 833.30 916.59 855.10 630.57 121.31 0.00 0.00 0.00 0.00 584.58 641.24 645.13 5227.82 THERMAL CAPACITY TO LOAD 575.45 418.78 514.86 769.18 1259.30 1353.69 1361.57 1417.74 1526.11 974.57 954.54 954.45 12080.24 FIRM CAPACITY TRANSFtR -833.30 -916-59 -855.10 -630.57 -121.31 0.00 0.00 0.00 0.00 -584.58 -641.24 -645.13 -5227.82 PEAK RESERVE 291.25 364.63 330.04 650.25 669.40 696.31 688.43 632.26 523.89 490.85 454.22 450.42 6241.94 B -44 SYSTEM SUMMARY WATER (MAF) OCT NOY DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.23n 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31-160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.080 1.312 1.338 2.1i0 3.211 2.368 0.447 -0.595 -5.097 -5.728 -0.330 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0,730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.685 1.705 1.425 1.680 1.807 1.816 4.874 9.155 13.336 27.577 33.127 16.965 117.152 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.OU2 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328 TO RIVER OUTFLOw 2.168 0.338 -0.002 -O.OO -0.000 0.000 0.979 2.039 3.048 8.278 11.971 7.870 36.688 TO RIVER LOSS -3.623 -0.247 0.268 0.576 0.474 0.786 1.618 3.395 3.623 8.562 5.581 -4.180 16.832 TO LINK LOSS 0.590 0.516 0.457 0.513 0.562 0.600 0.567 0.431 0.434 0.3a1 0.419 0.445 5.914 TO CANAL LOSS 1.972 1.319 1.254 1.393 1.648 1.858 1.666 2.082 2.284 2.197 2.360 2.161 22.195 TO WATERCOURSE 5.708 2.804 2.354 2.616 3.743 4.899 4.606 6.080 8.365 7.450 8.288 7.255 64.169 FROM GROUND WATER 4.609 2.223 1.814 2.313 4.056 3.301 1.490 2.003 3.656 4.117 5.073 5.071 39.725 SHORTAGE AT WATERcnuRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE MEOT. 10.317 5.027 4.168 4.929 7.799 8.200 6.096 8.083 12.021 11.567 13.361 12.326 103.894 PUMP CAPACITY GOOD AREA 5.741 3.153 2.527 2.854 4.740 5.074 3.904 4.193 5.428 5.009 5.817 5.978 54.418 PUMPED FROM OOD AREA 4.609 2.223 1.814 2.313 4.056 3.301 1.490 2.003 3.656 4.117 5-073 5.071 39.725 EVAPORATION bOOD AREA 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.011 0.102 0.064 0.012 0.200 RECHARGE TO GOOD AREA 3.243 1.882 1.rlB 1.740 2.619 3.098 2.415 2.720 3.448 4.945 5.428 4.177 37.233 NET CHANGE -- GOOD AHEA -1.366 -0.341 -0-295 -0.554 -1.437 -0.203 0.925 0.717 -0.219 0.726 0.291 -0.906 -2.691 PUMP CAPACITY BAD AREA 0.938 0.938 0.938 0.9J8 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 11.256 PUMPED TO DRAINAGE 0.598 0.339 0.257 0.294 0.331 0.318 0.337 0.440 0.612 0.720 0.717 0.707 5.672 EVAPORATION BAD AREA 0.718 0.436 0.407 0.480 0.563 0.564 0.462 0.989 1.368 1.729 1.699 1.080 10.495 RECHARGE TO BAD AREA 1.181 0.710 0.674 0.781 0.890 0.960 0.817 1.414 1.968 2.529 2.518 1.744 16.187 NET CHANGE BAD AREA -0.135 -0.065 0.010 0.007 -0.004 0.078 0.018 -0.015 -0.013 0.080 0.103 -0.043 0.020 DRAIN STORAGE CONTENT 4.568 4.602 4.644 4.696 4.769 4.830 4.895 4.961 5.059 5.166 5.257 5.358 58.806 ENERGY (MILLION KWH) TOTAL PUMP LUAD 440.09 217.85 180.22 231-11 394.22 320.59 153.97 204.12 368.19 416.74 502-16 502.78 3932.05 TOTAL BASE LOAD 1135.00 1137.00 1160.00 1169.00 1148.00 1146.00 1195.00 1234.00 1262.00 1268.00 1293.00 1301.00 14448.00 TOTAL ENERGY LOAD 1575.09 1354.85 1340.22 1400.11 1542.22 1466.59 1348.97 1438.12 1630.19 1684.74 1795.16 1803.78 18380.05 HYDRO ENERGY TO LOAD 1488.91 1260.61 1121.36 1178.44 907.80 819.46 694.83 748.09 889.69 1346.43 1475.03 1490.59 13421.24 THERMAL ENERGY TO LOAD 86.07 94.16 218.79 221.58 634.32 647.03 654.06 689.95 740.39 338.19 320.00 313.05 4957.59 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 226.51 0.00 0,00 133.02 421.65 193.81 266.64 243.90 395.84 530.01 514.34 393.36 3319.08 POWER (MEGAWATTS) PEAK PUMP LOAD 744.78 492.90 453.97 519.34 713.01 621.62 364.55 456.95 698.60 735.29 818.97 811.92 7431.91 PEAK BASE LOAD 2536.uO 2525.00 2576.00 25R6.00 2547.00 2539.00 2652.00 2745.00 2796.00 2810.00 2861.00 2883.00 32056.00 TOTAL PEAK LOAD 3280.78 3017.90 3029.97 3105.34 3260.01 3160.62 3016.55 3201.95 3494.60 3545.29 3679.97 3694.92 39487.91 HYDRO CAPACITY TO LOAD 2705.33 2599.12 2515.11 2336.16 2000.71 1522.76 1329.86 1359.03 1761.17 2570.72 2725.43 2740.47 26165.87 THERMAL CAPACITY TO LOAD 575.45 418.78 514.86 769.18 1259.30 1637.87 1686.69 184?.92 1733.43 974.57 954.54 954.45 13322.03 FIRM CAPACITY TRANSFER 0.00 0-00 0.00 o.uo 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1561.55 1718.22 1622.14 1717.82 1227.70 849.13 800.31 644.08 753.57 1512.43 1532.46 1532.55 15471.97 B-45 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1q65 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1981 NORTH ZONE SUMMARY WATER IMAF) oCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT ToTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.075 1.301 1.325 2.097 3.179 2.384 0.399 -0.597 -5.045 -5.665 -0.328 0.007 0.132 FROM TRIBIJTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0,930 0.550 7.730 FROM DRAINS 0.107 0.017 0.010 0.010 0.015 0.017 0-015 0.107 0.191 0.202 0.206 0.201 1.092 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTPLOW 2.704 1.547 1.369 1.696 1.821 1.374 2.851 6.469 9.487 16.873 19.109 9.578 74.877 TO RIVER LOSS -1.550 0.083 0.271 0.500 0.442 0.440 1.076 2.521 2.605 5.535 3.580 -2.374 13.129 TO LINK LOSS 0.515 0.442 0.352 0.399 0.472 0.537 0.532 0.355 0.355 0.310 0.322 0.342 4.933 TO CANAL LOSS 1.443 0.998 0.922 0.995 1.234 1.436 1.298 1.294 1.394 1.263 1.426 1.447 15.150 TO WATERCOURSE 3.727 1.651 1.406 1.484 2.424 4.375 3.630 3.423 4.036 3,022 4,253 4.628 38.058 FROM GROUND WATER 4.478 2.104 1.492 1.804 3.633 2.587 1.340 1.887 3.087 3.371 4.398 4.430 34.612 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REOT. 8.205 3.755 2.898 3.288 6.057 6.962 4.970 5.310 7.123 6.393 8.651 9.058 72.670 PUMP CAPACITY GOOD AREA 5.213 2.729 2.067 2.3Ug 4.248 4.715 3.628 3.780 4.817 4.392 5.216 5.375 48.488 PUMPED FROM GOOD AREA 4.478 2.104 1.492 1.804 3.633 2.587 1.340 1.887 3.087 3.371 4.398 4.430 34.612 EVAPORATION bOOD AREA 0.000 0.000 0.000 O.OuO 0.000 0.000 0.000 0.000 0.007 0.057 0.047 0.010 0.120 RECHARGE TO GOOD AREA 3.023 1.767 1.388 1.549 2.407 2.945 2.321 2.473 3.033 4.281 4.761 3.688 33.636 NET CHANGE -- GOOD AREA -1.455 -0.337 -0.104 -0.255 -1.226 0.358 0.982 0.586 -0.061 0.853 0.316 -0.752 -1.096 PUMP CAPACITY 8AD AREA 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 5.016 PUMPED TO DRAINAGE 0.201 0.054 0.060 0.075 0.093 0.097 0.098 0.184 0.303 0.324 0.314 0.318 2.121 EVAPORATION BAD AREA 0.270 0.180 0.158 0.119 0.239 0.279 0-224 0.219 0.264 0.377 0.420 0.314 3.125 RECHARGE TO BAD AREA 0.445 0.263 0.240 0.272 0.367 0.439 0.340 0.359 0.449 0.620 0.668 0.527 4.990 NET CHANGE BAD AREA -0.027 0.029 0.022 0.019 0.035 0.063 0.018 -0.044 -0.118 -0.080 -0.066 -0.105 -0.256 DRAIN STORAGt CONTFNT 5.452 5.494 5.543 5.608 5,686 5.765 5.849 5.927 6.039 6.161 6.269 6.386 70.178 ENERbY (MILLION KWH) TOTAL PUMP LOAD 411.12 192.65 138.35 166.90 335.06 241.84 126.64 179.01 296.30 320-26 409.34 414.68 3232.16 TOTAL BASE LOAD 577.00 584.00 598.00 609.U0 609.00 586.00 617.00 639.00 655.00 655.00 670.00 670.00 7469.00 TOTAL ENERGY LOAD 988.12 776.65 736.35 775.sO 944.06 827.84 743.64 818-01 951.30 975.26 1079.34 1084.68 10701.16 HYDRO ENERGY TO LOAD 988.05 776.61 736.32 775.86 944.00 824.55 736.81 807.37 951.24 975.20 1079.26 1084.60 10679.89 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.0o 0.00 3.24 6.79 10.60 0.00 0.00 0.00 0.00 20.63 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 502.71 482.35 382.22 365.00 0.00 0.00 0.00 0.00 0.00 547.61 546.73 558.70 3385.33 HYORO ENERGY SURPLUS 222.78 0.00 0.00 164.07 384.15 268.67 299.48 299.82 472.28 574.54 556.98 240.65 3483.42 POWER (MEGAWATTS) PEAK PUMP LOAD 675.12 453.52 378.40 421.84 617.20 526.00 328.16 417.58 577.95 596.92 684.42 686.65 6363.76 PEAK BASE LOAD 1339.00 1354.00 1382.00 1417.00 1417.00 1370.00 1432.00 1495.00 1526.00 1526.00 1557.00 1557.00 17372.00 TOTAL PEAK LOAD 2014.12 1807.52 1760.40 1838.84 2034.20 1896.00 1760.16 1912-58 2103.95 2122-92 2241-42 2243.65 23735.76 HYDRO CAPACITY TO LOAD 2014.12 1807.52 1760.40 1838.84 1999.42 1632.49 1432.48 1516.86 1964.80 2122.92 2241.42 2243.65 22574.92 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 34.78 263.50 327.68 395.72 139.15 0.00 0.00 0.00 1160.84 FIRM CAPACITY TRANSFER 688.65 794.72 757.72 500.01 0.00 0.00 0.00 0.00 0.00 750-44 749.24 765.34 5006.11 PEAK RESERVE 1125.65 1231.72 1194.72 937.01 402.22 173.50 109.32 41.28 297.85 1187.44 1186.24 1202.34 9089.27 B -46 SOUTH ZONE SUMMARY WATER IMAf) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.704 1.547 1.369 1.696 1.821 1.374 2.851 6.469 9.487 16.873 19.109 9.578 74.877 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 0.000 FROM TRIBllTARIES 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 FROM DRAINS 3.212 1.473 1.330 1.699 1.858 1.468 3.494 8.137 12.112 26.902 32.355 16.081 110.122 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.0UO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTrLOW 1.968 0.219 -0.002 0.001 -0.000 0.000 0.462 1.515 2.471 7.869 11.592 7.438 33.534 TO RIVER LOSS -2.102 -0.306 0.023 0.082 0.073 0,017 0.377 0.899 0.955 3.077 1.956 -1.886 3.164 TO LINK LOSS 0.091 0.091 0.091 0-091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.610 0.409 0.380 0.417 0.429 0.392 0.530 0.940 1.048 1.018 1.034 0.821 8.026 TO WATERCOURSE 2.137 1.134 0.877 1.106 1.228 0.875 1.392 3.024 4.923 4.818 4.436 3.114 29.063 FROM GROUND WATER 0.318 0.332 0.556 0.744 0.781 0.593 0.000 0.033 0.356 0.742 0.857 0.721 6.034 SHORTAGE AT WATERCOuRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.003 WATERCOuRSE REOT. 2.455 1.466 1.433 1.850 2.009 1.468 1.392 3.057 5.282 5.560 5.293 3.835 35.100 PUMP CAPACITY GOOD AREA 0.824 0.616 0-614 0.750 0.787 0.602 0.553 0.744 0.872 0.872 0.872 0.872 8.q78 PUMPED FROM GOOD AREA 0.318 0.33? 0.556 0.744 0.781 0.593 0.000 0.033 0.356 0.742 0.857 0.721 6.034 EVAPORATION GOOD AREA 0.000 n.000 0.000 o.o0o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.007 RECHARGE TO GOOD AREA 0.334 0.200 0.189 0.238 0.251 0.203 0.236 0.396 0.577 0.778 0.823 0.645 4.870 NET CHANGE -- GOOD AREA 0.016 -0.132 -0.367 -0.5U6 -0.530 -0.391 0.236 0.363 0.221 0.036 -0.034 -0.083 -1.172 PUMP CAPACITY BAD ARIA 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 10.680 PUMPED TO DRAINAGE 0.627 0.351 0.316 0.340 0.353 0.346 0.354 0.413 0.509 0.664 0.682 0.594 5.548 EVAPORATION BAD AREA 0.349 0.163 0.151 0.2U5 0.217 0.160 0.112 0.680 1.021 1.254 1.188 0.678 6.176 RECHARGE TO BAD AREA 0.765 0.47P 0.450 0.5Z5 0.559 0.500 0.525 1.092 1.571 1.951 1.907 1.278 11.601 NET CHANGE BAD AREA -0.210 -0.036 -0-018 -0.019 -0.011 -0.006 0.059 -0.000 0.042 0.034 0.037 0.006 -0.124 DRAIN STORAGt CONTENT 0.000 0.000 0.000 o.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY IMILLION KWH) TOTAL PUMP LOAD 69.07 55.47 82.58- 106.74 116.42 94.81 22.76 29.20 75-27 127.59 145.51 125.26 1050.67 TOTAL BASE LOAD 679.00 672.00 670.00 660.00 638.00 658.00 681.00 702.00 715.00 724.00 736.00 744.00 8279.00 TOTAL ENERGY LOAD 748.07 727.47 752.58 766.14 754.42 752.81 703.76 731.20 790.27 851.59 881.51 869.26 9329.67 HYDRO ENERGY TO LOAD 502.71 482.35 382.22 365.UO 0.00 0.00 0.00 0.00 0.00 547.61 546.73 558.70 3385.33 THERMAL ENERbY TO LOAD 245.30 245.06 370.31 401.67 754.37 752.75 703.71 731.15 790.21 303.91 334.71 310.50 5943.64 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZUNE ENERGY TRANSFER-502.71 -482.35 -382.22 -365.UO 0.00 0.00 0.00 0.00 0.00 -547.61 -546.73 -558.70 -3385.33 HYDRO ENERGY SURPLUS o.uo 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAP 122.51 107.88 137.54 163.89 178.34 160.51 31.18 41.24 136.39 196.99 220.16 190.86 1687.48 PEAK BASE LOAD 1440.00 1414.00 1411.00 1394.00 1352.00 1390.00 1441.00 1490.00 1514.00 1528.00 1552.00 1577.00 17503.00 TOTAL PEAK LOAD 1562.51 1521.88 1548.54 1557-89 1530.34 1550-51 1472.18 1531-24 1650.39 1724-99 1772.16 1767.86 19190.48 HYDRO CAPACITY TO LOAD 688.65 794.72 757.72 500.01 0.00 0.00 0.00 0.00 0.00 750.44 749.24 765.34 5006.11 THERMAL CAPACITY TO LOAD 873.87 727.16 790.82 1057.88 1530.34 1550.51 1472.18 1531.24 1650.39 974.55 ln22.92 1002.52 14184.36 FIRM CAPACITY TRANSFtR -688.65 -794.72 -757.72 -500.01 0.00 0.00 0.00 0.00 0.00 -750.44 -749.24 -765.34 -5006.11 PEAK RESERVE 487.49 528.1? 501.46 642.11 669.66 649.49 727.82 668.76 549.61 475.01 427.84 432.14 6759.52 B-47 SYSTEM SUMMARY WATER (MAF) OCT NOV nEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.075 1.301 1.325 2.097 3.179 2.384 0.399 -0.597 -5.045 -5.665 -0.328 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 3.319 1.486 1.340 1.709 1.873 1.485 3.509 8.244 12.303 27.105 32.560 16.281 111.214 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0,036 0.028 0.026 0.329 TO RIVER OUTtLOW 1.968 0.219 -0.002 O.OU -0.000 0.000 0.462 1.515 2.471 7.869 11.592 7.438 33.534 TO RIVER LOSS -3.652 -0.224 0.294 0.582 0.515 0.457 1.453 3.419 3.559 8.612 5.536 -4.259 16.293 TO LINK LOSS 0.606 0.533 0.443 0.490 0.563 0.628 0.623 0.446 0.446 0.400 0.413 0.433 6.022 TO CANAL LOS5 2.053 1.407 1.301 1.413 1.663 1-828 1.828 2.235 2.442 2.281 2.460 2.267 23.176 TO WATERCOURSE 5.864 2.785 2.283 2.589 3.652 5.249 5.022 6.446 8.958 7.840 8.689 7.743 67.121 FROM GROUND WATER 4.796 2.436 2.048 2.549 4.414 3.181 1.340 1.921 3.444 4.113 5.255 5.150 40.646 SHORTAGE AT WATERCOURSE 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0-003 0.000 0.000 0.000 0.003 WATERCOURSE REQT. 10.660 5.221 4.331 5.138 8.066 8.430 6.362 8.367 12.405 11.953 13.944 12.893 107.770 PUMP CAPACITY GOOD AREA 6.037 3.345 2.680 3.059 5.035 5.317 4.181 4.524 5.689 5.264 6.008 6.247 57.465 PUMPED FROM GOOD AREA 4.796 2.436 2.048 2.549 4.414 3.181 1.340 1.921 3.444 4.113 5.255 5.150 40.646 EVAPORATION GOOD AREA 0.000 0.000 0.000 O.0OU 0.000 0.000 0.000 0.000 0.007 0.057 0.047 0.018 0.128 RECHARGE TO GOOD AREA 3.357 1.967 1.578 1.788 2.658 3.147 2.558 2.869 3.610 5.059 5.584 4.333 38.506 NET CHANGE -- GOOD AREA -1.440 -0.469 -0.471 -0.761 -1.756 -0.033 1.218 0.948 0.159 0.889 0-282 -0.835 -2-268 PUMP CAPACITY BAD ARtA 1.308 1.308 1.308 1.3U8 1.308 1.308 1.308 1.308' 1.308 1.308 1.308 1.308 15.696 PUMPED TO DRAINAGE 0.828 0.405 0.376 0.415 0.446 0.443 0.452 0,597 0.812 0.988 0.995 0.912 7.669 EVAPORATION BAD AREA 0.620 0.343 0.309 0.383 0.456 0.439 0.336 0.899 1.285 1.630 1-609 0.992 9.301 RECHARGE TO BAD AREA 1.210 0.740 0.689 0.797 0.926 0.939 0.865 1.452 2.020 2.571 2.576 1.805 16.590 NET CHANGE BAD AREA -0.237 -0.on6 0.004 -0.001 0.024 0.057 0.077 -0.044 -0.077 -0.047 -0.028 -0.099 -0.380 DRAIN STORAGt CONTENT 5,452 5.494 5.543 5.6U8 5.686 5.765 5.849 5.927 6.039 6.161 6.269 6.386 70.178 ENERbY (MILLION KWH) TOTAL PUMP LOAD 480.19 248.12 220.94 273.63 451.49 336.65 149.39 208.22 371.57 447.85 554.84 539.94 4282.84 TOTAL BASE LOAD 1256.00 1256.00 1268.00 1269.00 1247.00 1244.00 1298.00 1341.00 1370.00 1379.00 1406.00 1414.00 15748.00 TOTAL ENERGY LOAD 1736.19 15n4.12 1488.94 1542.63 1698.49 1580.65 1447.39 1549.22 1741.57 1826.85 1960-84 1953.94 20030.83 HYDRO ENERGY TO LOAD 1490.76 1258.97 1118.54 1140.86 944.00 824.55 736.81 807.37 951.24 1522.81 1625.99 1643.30 14065.21 THERMAL ENERGY TO LOAD 245.30 245.06 370.31 401.67 754.37 755.99 710.50 741.75 790.21 303.91 334.71 310.50 5964.27 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0-00 0-00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLIIS 222.78 0.00 0.00 164.07 384.15 268.67 299.48 299.82 472.28 574.54 556.98 240.65 3483.42 POWER (MEGAWATTS) PEAK PUMP LOAD 797.63 561.40 515.94 585.73 795.54 686.51 359.34 458.82 714.34 793.91 904.58 877.50 8051.24 PEAK BASE LOAD 2779.00 2768.00 2793.00 2811.00 2769.00 2760.00 2873.00 2985.00 3040.00 3054.00 3109.00 3134.00 34875.00 TOTAL PEAK LOAD 3576.63 3329.40 3308.94 3396.73 3564.54 3446.51 3232.34 3443.82 3754.34 3847.91 4013.58 4011.50 42926.24 HYDRO CAPACITY TO LOAD 2702.76 2602.24 2518.11 2338.85 1999.42 1632.49 1432.48 1516.86 1964.80 2873.37 2990.66 3008.99 27581.04 THERMAL CAPACITY TO LOAD 873.87 727.16 790.82 1057.88 1565.12 1814.01 1799.86 1926.96 1789.55 974.55 1022.92 1002.52 15345.20 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1613.13 1759.84 1696.18 1579.12 1071.88 822.99 837.14 710.04 847.45 1662.45 1614.08 1634.48 15848.79 B -48 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVrsED VERSION STUDY NUMBER 668507Z110 YEAR 1982 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.071 1.290 1.312 2.073 3.147 2.360 0.390 -0.598 -4.992 -5.602 -0.327 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.127 0.017 0.010 0.010 0.015 0.017 0.015 0.127 0.231 0.242 0.246 0.197 1.250 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0-002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTFLOW 2.5zo 1.457 1.398 1.7Z7 1.868 1.355 2.631 6.180 9.480 17.001 19.056 9.431 74.104 TO RIVER LOSS -1.522 0.101 0.293 0.485 0.444 0.407 1.011 2.528 2.664 5.622 3.469 -2.402 13.101 TO LINK LOSS 0.514 0.437 0.326 0.392 0.471 0.534 0.534 0.372 0.355 0.310 0.325 0.350 4.919 TO CANAL LOS5 1.444 1.014 0.917 0.980 1.212 1.444 1.322 1.347 1.407 1.275 1.440 1.457 15.258 TO WATERCOURSE 3.899 1.700 1.371 1.467 2.366 4.396 3.881 3.654 4.064 2.897 4-441 4.782 38.919 FROM GROUND WATER 4.425 2.110 1.559 1.856 3.732 2.606 1.185 1.768 3.193 3.618 4.422 4.482 34.955 SHORTAGE AT WATERCOtIRSE 0.000 0.000 0.000 0.0uo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 8.324 3.810 2.930 3.323 6.098 7.002 5.066 5.422 7.257 6.515 8.863 9.264 73.874 PUMP CAPACITY GOOD AREA 5.3z5 2.788 2.106 2.356 4.321 4.810 3.728 3.900 4.952 4.532 5.334 5.490 49.642 PUMPED FROM GOOD AREA 4.425 2.110 1.559 1.856 3.732 2.606 1.185 1.768 3.193 3.618 4.422 4.482 34.955 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.ouo 0.000 0.000 0.000 0.000 0.006 0.056 0.046 0.010 0.118 RECHARGE TO GOOD AREA 3.047 1.789 1.390 1.549 2.397 2.959 2.358 2.528 3.069 4.315 4.816 3.738 33.957 NET CHANGE -- GOOD AREA -1.377 -0.321 -0.168 -0.3U7 -1.335 0.353 1.173 0.760 -0.130 0.641 0.348 -0.753 -1.117 PUMP CAPACITY BAD AREA 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 5.496 PUMPED TO DRAINAGE 0.223 0.055 0.060 0.077 0.085 O0099 0.099 0.216 0.345 0.365 0.355 0.317 2.296 EVAPORATION BAD AREA 0.251 0.182 0.159 0.119 0.240 0.278 0.214 0.202 0.243 0.354 0.396 0.290 2.987 RECHARGE TO BAD AREA 0.448 0.267 0.241 0.268 0.369 0.440 0.345 0.373 0.453 0.624 0.674 0.532 5.033 NET CHANGE BAD AREA -0.026 0.030 0.023 0.012 0.044 0.063 0.032 -0.045 -0.134 -0.096 -0.077 -0.075 -0.250 DRAIN STORAGt CONTENT 6.482 6.524 6.574 6.641 6.711 6.793 6.878 6.966 7.080 7.203 7.313 7.432 82.598 ENERGY (MILLION KWH) TOTAL PUMP LUAD 412-31 194.80 145.52 173.55 347.13 248.72 115.46 173.19 312.04 348.12 419.53 424.16 3314.53 TOTAL BASE LOAD 624.00 632.00 647.00 659.U0 659.00 634.00 667.00 691.00 708.00 708.00 724.00 724.00 8077.00 TOTAL ENERGY LOAD 1036.31 826.8n 792.52 832.55 1006.13 882.72 782.46 864.19 1020.04 1056.12 1143.53 1148.16 11391.53 HYDRO ENERGY TO LOAD 1036.24 826.7f 792.48 832.51 1006.07 882.48 779.77 856.12 1019.97 1056.05 1143.45 1148.08 11379.97 THERMAL ENERGY TO LOAV o.uo 0.00 0.00 0.00 0.00 0.19 2.65 R.03 0.00 O.O0 0.00 0.00 10.87 ENERGY DEFICIENCY o.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 710.51 430.25 321.82 465.35 225.20 0.00 0.00 0.00 0.00 716.23 742.09 642.91 4254.36 HYDRO ENERGY SURPLUS o.uo 0.00 0.00 O .UO 258.45 371.58 369.92 353.00 556.13 613.64 594.19 386.96 3503.87 POWER (MEGAWATTS) PEAK PUMP LOAD 686.31 459.58 400.57 431.80 635.45 530.04 312.05 423.00 605.07 636.69 699.25 703.16 6522.98 PEAK BASE LOAD 1448.00 1464.00 1495.00 1529.00 1529.00 1478.00 1546.00 1613.00 1646.00 1646.00 1680.00 1680.00 18754.00 TOTAL PEAK LOAD 2134.31 1973.58 1895.57 1960.8O 2164.45 2008.04 1858.05 2036.00 2251.07 2282.69 2379.25 2383.16 25276.98 HYDRO CAPACITY TO LOAD 2134.31 1923.58 1895.57 1960.80 2164.45 1853.97 1605.47 1656.49 2171.41 2282.69 2379.25 2383. 16 24411.16 THERMAL CAPACITY TO LOAD o*UO 0.00 0.00 O.uo 0.00 154.07 252.58 379.50 79.66 0.00 0.00 0.00 865.82 FIRM CAPACITY TRANSFER 1225.77 1316.05 1235.69 945.55 308.49 0-00 0.00 0.00 0.00 986.02 1017.98 1028.61 8064.15 PEAK RESERVE 1662.77 1753.05 1672.69 1382.55 745,49 282.93 184.42 57.50 357.34 1423.02 1454.98 1465.61 12442.33 B-49 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.5ZO 1.457 1.398 1.727 1.868 1.355 2.631 6.180 9.480 17.001 19.056 9.431 74.10 FROM STORAGE RELEASE -0.000 -0.000 -0.000 -o.00o -0.000 -0.000 -0,000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 FROM TRIBUTARIES 0.000 10-000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 2.732 1.328 1.397 1.744 1.925 1.434 2.990 7.494 11.852 26.702 32.038 15.617 107.253 TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 TO RIVER OUTPLOW 1.674 0.145 0.000 0.000 0.000 0.000 0.263 1.222 2.215 7.651 11.343 7.113 31.626 TO RIVER LOSS -2.077 -0.235 0.049 0.000 0.077 0.005 0.286 0.854 0.992 3.084 1.929 -1.923 3.120 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.622 0.426 0.375 0.4Z3 0.445 0.389 0.563 0.968 1.074 1.074 1.062 0.847 8.268 TO WATERCOURSE 2.210 1.031 0.884 1.134 1.256 0.870 1.429 3.044 5.108 5.102 4.631 3.303 30.001 FROM GROUND WATER 0.25 0.472 0.587 0.773 0.810 0.613 0.000 0.037 0.231 0.530 0.769 0.637 5.715 SHORTAGE AT WATERCOURJSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE HEQT. 2.465 1.503 1.471 1.907 2.066 1.483 1.429 3.081 5.339 5.632 5.400 3.940 35.716 PUMP CAPACITY GOOD AREA 0.857 0.635 0.626 0.781 0.818 0.619 0.578 0.768 0.894 0.894 0.894 0.894 9.258 PUMPED FROM GOOD AREA o.255 0.472 0.587 0.773 0.810 0.613 0.000 0.037 0.231 0.530 0.769 0.637 5.715 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.009 0.014 RECHARGE TO bOOD AREA 0.346 n.216 0.191 0.243 0.259 0.205 0.255 0.416 0.595 0.815 0.844 0.664 5.049 NET CHANGE -- GOOD AREA 0.090 -0.257 -0.396 -0.530 -0.551 -0.407 0.255 0.379 0.364 0.284 0.071 0.017 -0.680 PUMP CAPACITY BAD ARtA 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 10.680 PUMPED TO DRAINAGE 0.502 0.372 0.321 0.343 0.360 0.352 0.358 0.424 0.524 0.681 0.699 0.611 5.548 EVAPORATION BAD AREA 0.343 0.169 0.158 0.210 0.214 0.158 0.113 0.676 1.023 1.258 1.193 0.684 6.199 RECHARGE TO BAD AREA 0.766 n.484 0.453 0.538 0.575 0.498 0.541 1.100 1.588 1.976 1.934 1.304 11.757 NET CHANGE BAD AREA -0.079 -0.058 -0.025 -0.015 0.001 -0.012 0.070 -0.000 0.041 0.036 0.042 0.009 0.010 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERGY (MILLION KWH) TOTAL PUMP LOAD 51.99 81.71 96.09 122.32 133.37 107.61 23.11 30.49 62.69 110.83 140.81 117.30 1078.30 TOTAL BASE LOAD 739.00 732.00 730.00 721.00 696.00 718.00 744.00 766.00 780.00 789.00 803.00 810.00 9028.00 TOTAL ENERGY LOAD 790.99 813.71 826.09 843.32 829.37 825.61 767.11 796.49 842.69 899.83 943.81 927.30 10106.30 HYDRO ENERGY TO LOAD 710.51 430.25 321.82 465.35 225.20 0.00 0.00 0.00 0.00 716.23 742.09 642.91 4254.36 THERMAL ENERGY TO LOAD 80.42 383.39 504.21 377.90 604.11 825.54 767.05 796.43 842.63 183.54 201.65 284.32 5851.20 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0-00 INTERZONE ENERGY TRANSFER-710.51 -430.25 -321.82 -465.35 -225.20 0.00 0.00 0.00 0.00 -716.23 -742.09 _642.91 -4254.36 HYDRO ENERGY SURPLIJS 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 78.95 147.05 162.64 188.15 204.93 182.65 31.66 42.77 116.71 190.71 216.87 186.05 1749.12 PEAK BASE LOAD 1574.00 1544.00 1543.00 1526.00 1479.00 1522.00 1588.00 1630.00 1658.00 1673.00 1700.00 1726.00 19163.00 TOTAL PEAK LOAD 1652.95 1691.05 1705.64 1714.15 1683.93 1704.65 1619.66 1672.77 1774.71 1863.71 1916.87 1912.05 20912.12 HYDRO CAPACITY TO LOAD 1225.77 1316.05 1235.69 945.55 308.49 0.00 0.00 0.00 0.00 986.02 1017.98 1028.61 8064.15 THERMAL CAPACITY TO LOAD 427.18 375.00 469.94 768.60 1375.44 1704.65 1619.66 1672.77 1774.71 877.69 898.90 883.44 12847.97 FIRM CAPACITY TRANSFER -1225.77-1316.05-1235.69 -945.55 -308.49 0.00 0.00 0.00 0.00 -986.02-1017.98-1028.61 -8064.15 PEAK RESERVE 547.05 508.95 494.36 635.a5 666.07 645.35 730.34 677.23 575.29 486.29 433.13 437.95 6837.88 B-50 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27-910 12.890 137.520 FROM STORAGE RELEASE 1.071 1.290 1.312 2.073 3.147 2.360 0.390 -0.598 -4.992 -5.602 -0.327 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 2.859 1.341 1.407 1.754 1.939 1.452 3.005 7.621 12.083 26.945 32.283 15.814 108.503 TO RESERVOIR EVAPORAIION .0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTtLOW 1.674 0.145 0.000 0.000 0.000 0.000 0.263 1.222 2.215 7.651 11.343 7.113 31.626 TO RIVER LOSS -3.599 -0.134 0.342 0.565 0.521 0.412 1.296 3.381 3.656 8.706 5.399 -4.326 16.221 TO LINK LOSS 0.605 0.528 0.417 0.482 0.562 0.625 - 0.625 0.463 0.446 0.400 0.415 0.441 6.009 TO CANAL LOSS 2.066 1.440 1.292 1.4U2 1.656 1.833 1.885 2.315 2.481 2.349 2.503 2.304 23.526 TO WATERCOURSE 6.109 2.730 2.255 2.601 3.622 5.266 5.310 6.698 9.172 7.999 9.072 8.085 68.920 FROM GROUND WATER 4.680 2.583 2.146 2.6Z9 4.542 3.219 1.185 1.805 3.424 4.148 5.191 5.119 40.670 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 10.789 5.313 4.401 5.210 8.164 8.485 6.495 8.503 12.596 12.147 14.263 13.204 109.590 PUMP CAPACITY GOOD AREA 6.182 3.424 2.732 3.1J7 5.139 5.428 4.306 4.667 5.846 5.426 6.228 6.384 58.900 PUMPED FROM GOOD AREA 4.680 2.583 2.146 2.6Z9 4.542 3.219 1.185 1.805 3.424 4.148 5.191 5.119 40.670 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-006 0.056 0.051 0.019 0.132 RECHARGE TO GOOD AREA 3.393 2.005 1.582 1.792 2.656 3.165 2.613 2.944 3.664 5.129 5.660 4.402 39.006 NET CHANGE -- GOOD AREA -1.287 -0.578 -0.564 -0.837 -1.885 -0.054 1.428 1.139 0.234 0.925 0.418 -0.736 -1.796 PUMP CAPACITY BAD AREA 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 16.176 PUMPED TO DRAINAGE 0.724 0.427 0.381 0.4Z0 0.446 0.452 0.457 0.640 0.869 1.047 1.055 0.928 7.844 EVAPORATION BAD AREA 0.594 0.351 0.316 0.309 0.454 0.435 0.326 0.879 1.266 1.612 1.589 0.974 9.186 RECHARGE TO BAD AREA 1.214 0.750 0.694 0.8U6 0.944 0.938 0.886 1.473 2.042 2.600 2.607 1.836 16.790 NET CHANGE BAD AREA -0.104 -0.028 -0.002 -0.OU4 0.045 0.051 0.102 -0.045 -0.093 -0.059 -0.036 -0.066 -0.240 DRAIN STORAGt CONTENT 6.482 6.524 6.574 6.641 6.711 6.793 6.878 6.966 7.080 7.203 7.313 7.432 82.598 ENERbY (MILLION KWH) TOTAL PUMP LOAD 464.30 276.51 241.61 295.87 480.51 356-33 138.56 203.68 374.72 458.95 560.34 541.46 4392.83 TOTAL BASE LOAD 1363.00 1364.00 1377.00 1380.U0 1355.00 1352.00 1411.00 1457.00 1488.00 1497.00 1527.00 1534.00 17105.00 TOTAL ENERGY LOAD 1827.30 1640.51 1618.61 1675.87 1835.51 1708.33 1549.56 1660.68 1862.72 1955.95 2087.34 2075.46 21497.83 HYDRO ENERGY TO LOAD 1746.74 1257.01 1114.30 1297.86 1231.27 882.48 779.77 856.12 1019.97 1772.27 1885.54 1790.99 15634.32 THERMAL ENERUY TO LOAD 80.42 383.39 504.21 377.90 604.11 825.74 769.7n 804.46 842.63 183.54 201.65 284.32 5862.07 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 258.45 371.58 369.92 353.00 556.13 613.64 594.19 386.96 3503.87 POWER (MEGAWATTS) PEAK PUMP LOAD 765.26 606.63 563.21 619.95 840.38 712.69 343.71 465.77 721.78 827.40 916.12 889.21 8272.10 PEAK BASE LOAD 3022.00 3008.00 3038.00 3055.00 3008.00 3000.00 3134.00 3243.00 3304.00 3319.00 3380.00 3406.00 37917.00 TOTAL PEAK LOAD 3787.26 3614.63 3601.21 3674.95 3848.38 3712.69 3477.71 370A.77 4025.78 4146.40 4296.12 4295.21 46189.10 HYDRO CAPACITY TO LOAD 3360.08 3239.63 3131.27 2906.35 2472.94 1853.97 1605.47 1656.49 2171.41 3268.71 3397.23 3411.77 32475.31 THERMAL CAPACITY TO LOAD 427.18 375.00 469.94 768.60 1375.44 1858.72 1872.24 2057.27 1854.37 877.69 898.90 883.44 13713.79 FIRM CAPACITY TRANSFtR 0.00 0-00 0.00 o.uo 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 2209.82 2262.00 2167.06 2018.40 1411.56 928.28 914.76 734.73 932.63 1909.31 1888.10 1903.56 19280.21 B-51 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1065 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1983 NORTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.066 1.279 1.298 2.o00 3.116 2.337 0.381 -0.599 -4.939 -5.539 -o.325 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.108 0.013 0.010 0.011 0.015 0.018 0.015 0.173 0.237 0.179 0.195 0.167 1.142 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 .0OU2 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.328 TO RIVEP OUTtLOW 2.568 1.464 1.076 1.536 1.505 1.515 2.534 6.139 9.295 16.837 18.849 9.202 72.520 TO RIVER LOSS -1.479 0.093 0.218 0.5U8 0.368 0.521 0.913 2.488 2.643 5.620 3.424 -2.457 12.860 TO LINK LOSS 0.508 0.427 0.388 0.393 0.486 0.533 0.536 0.382 0.358 0.312 0.334 0.376 5.o33 TO CANAL LOSS 1.449 1.048 1.032 1.036 1.321 1.448 1.349 1.367 1.433 1.302 1.465 1.480 15.731 TO WATERCOURSE 3.786 1.667 1.578 1.555 2.650 4.095 4.038 3.749 4.300 3.034 4.610 4.987 40.049 FROM GROUND WATER 4.661 2.204 1.384 1.810 3.493 2.952 1.125 1.791 3.096 3.606 4.472 4.496 35.090 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 8.447 3.871 2.962 3.365 6.143 7.047 5.163 5.540 7.396 6.640 9.082 9.483 75.139 PUMP CAPACITY GOOD AREA 5.394 2.849 2.143 2.407 4.397 4.888 3.825 4.021 5.071 4.661 5.389 5.542 5n.588 PUJMPED FROM GOOD AREA 4.661 2.204 1.384 1.810 3.493 2.952 1.125 1.791 3.096 3.606 4.472 4.496 35.090 EVAPORATION 600D AREA 0.000 0.000 0.000 0.0uO 0.000 0.000 0.000 0.000 0.006 0.056 0.046 0.010 0.118 RECHARGE TO GOOD AREA 3.076 1.827 1.469 1.592 2.486 2.971 2.397 2.567 3.117 4.359 4.879 3,800 34.540 NET CHANGE -- GOOD AREA -1.585 -0.377 0.085 -0.218 -1.006 0.019 1.273 0.775 0.014 0.697 0.361 -0.706 -0.668 PUMP CAPACITY BAD AREA 0.549 n.549 0.549 0.549 0.549 0.549 0.549 0,549 0.549 0.549 0.549 0.549 6.588 PUMPED TO DRAINAGE 0.204 n.068 0.060 0.013 0.100 0.101 0.101 0.262 0.352 0.303 0.307 0.288 2.219- EVAPORATION BAD AREA 0.243 0.166 0.153 0.166 0.223 0.280 0.216 0.199 0.240 0.350 0.386 0.287 2.911 RECHARGE TO BAD AREA 0.452 0.270 0.261 0.280 0.377 0.442 0.350 0.377 0.459 0.630 0.681 0.539 5.119 NET CHANGE BAD AREA 0.005 0.035 0.049 0.041 0.054 0.061 0.033 -0.084 -0.133 -0.024 -0.012 -0.036 -0.011 DRAIN STORAGt CONTENT 7.528 7.584 7.634 7.696 7.781 7.865 7.950 8.039 8.154 8.278 8.389 8.510 95.408 ENERbY (MILLION KWH) TOTAL PUMP LOAD 437.77 206.88 131.81 170.85 329.34 281.42 110.94 179.60 306.81 344.44 422.91 425.91 3348.69 TOTAL BASE LOAD 675.00 683.00 700.00 711.U0 711.00 6f5.00 720.00 747.00 765.00 765.00 783.00 783.00 8728.00 TOTAL ENERGY LOAD 1112.77 889-88 831.81 881.85 1040.34 966.42 830.94 926.60 1071.81 1109.44 1205.91 1208.91 12076.69 HYDRO ENERGY TO LOAD 1112.69 889.83 831.77 881.81 1040.27 966.37 830.07 920.02 1071.75 1109.37 1205.82 1208.82 12068.60 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 o.uo 0.00 0.00 0.83 6.53 0.00 0.00 0.00 0.00 7.36 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0-00 0.00 INTERZONE ENERGY TRANSFER 631.85 365.13 278.25 408.85 362.94 0.00 0.00 0.00 7.54 867.40 894.52 646.60 4463.08 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 77.04 283.95 318.43 390.75 649.34 694.50 674.72 616.53 3705.26 POWER (MEGAWATTS) PEAK PUMP LOAD 721.21 490.75 367.95 431.89 621.86 580.82 296.11 420.85 591.71 632.89 704.96 708.90 6569.90 PEAK BASE LOAD 1562.00 1579.00 1613.00 1649.00 1649.00 1595.00 1667.00 1739.00 1776.00 1776.00 1812.00 1812.00 20229.00 TOTAL PEAK LOAD 2283-21 2069-75 1980.95 2080.89 2270.86 2175-82 1963.11 2159-85 2367-71 2408.89 2516.96 2520.90 26798.90 HYDRO CAPACITY TO LOAD 2283.Z1 2069.75 1980.95 2080.89 2270.86 2073.01 1778.10 1795.75 2367.71 2408.89 2516.96 2520.90 26146.99 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 o.uo 0.00 102.81 185.01 364.10 0.00 0.00 0.00 0.00 651.91 FIRM CAPACITY TRANSFER 1478.54 1575-21 1546.67 1188-42 497-18 0.00 0.00 0.00 10.33 1250-75 1284.87 1293.66 10125.62 PEAK RESERVE 1915.54 2012.21 1983.67 1625.42 934.18 334.19 251.99 72.90 447.33 1687.75 1721.87 1730.66 14717.71 B-52 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.568 1.464 1.076 1.536 1.505 1.515 2.534 6.139 9.295 16.837 18.849 9.202 72.520 FROM STORAGE RELEASE -1.628 -0.131 0.438 0.594 0.726 0.000 0.000 0.000 0.000 0.000 -1.100 -1.100 -2.200 FROM TRIBUTARIES 0.000 0.000 0.000 O.0U0 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 FROM DRAINS 3.924 1.896 1.044 1.402 1.497 1.869 3.158 7.798 11.836 26.391 31.631 15.565 108.011 TO RESERVOIR EVAPORATION .0.096 0.081 0.064 0.054 0.026 '0,000 0.000 0.000 0.000 0.000 0.098 0.122 0.540 TO RIVER OUTFLOW 0.439 0.002 0.080 0.0o5 0.077 0.000 0.110 1.077 1.806 7.017 9.493 5.234 25.419 TO RIVER LOSS -1.949 -0.172 -0.058 0.072 0.055 0.099 0.250 0.875 0.918 3.011 1.752 -1.888 2.965 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.647 0.422 0.432 0.556 0.582 0.442 0.694 1.158 1.271 1.271 1.271 1.035 9.782 TO WATERCOURSE 1.615 0.910 0.906 1.273 1.404 0.884 1.390 2.937 5.209 5.447 5.044 3.509 30.529 FROM GROUND WATER 0.837 0.624 0.587 0.679 0.699 0.609 0.065 0.156 0.253 0.371 0.570 0.533 5.982 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OU0 0.000 0.000 0.000 0.000 0.005 0.006 0.006 0.000 0-017 WATERCOURSE REQT. 2.452 1.534 1.493 1.952 2.103 1.493 1.455 3.093 5.467 5.824 5.620 4.042 36.528 PUMP CAPACITY GOOD AREA 0.843 0.632 0.612 0.751 0.811 0.618 0.574 0.782 0.918 0.918 0.918 0.918 9.325 PUMPED FROM GOOD AREA 0.837 0.624 0.587 0.679 0.699 0.609 0.065 0.156 0.253 0.371 0.570 0.533 5.982 EVAPORATION bOOD AREA 0.000 n.000 0.000 o.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.015 0.039 RECHARGE TO GOOD AREA 0.364 0.214 0.214 0.304 0.313 0.234 0.317 0.500 0.688 0.919 0.957 0.750 5.775 NET CHANGE -- GOOD AREA -0.472 -0.410 -0.373 -0.376 -0.386 -0.375 0.252 0.344 0.435 0.548 0.364 0.202 -0.246 PUMP CAPACITY BAD AREA 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090. 1.090 1.090 1.090 1.090 13.080 PUMPED TO DRAINAGE 0.875 0.764 0.710 0.7i1 0.737 0.571 0.617 0.692 0.797 0.950 0.969 0.887 9.301 EVAPORATION DAD AREA 0.210 0.055 0.047 0.069 0.097 0.074 0.027 0.590 0.923 1.082 1.018 0.533 4.745 RECHARGE TO BAD AREA 0.765 0.488 0.481 0.594 0.640 0.513 0.588 1.171 1.680 7.073 2.037 1.391 12.422 NET CHANGE BAD AREA -0.321 -0.331 -0.275 -0.2Z6 -0.194 -0.133 -0.056 -0.112 -0.039 0.041 0.051 -0.029 -1.623 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY IMILLION KWH) TOTAL PUMP LOAD 139-02 115.10 112.66 128-U9 135-24 114.80 47.11 60.44 77.82 101.91 122.20 104.94 1259-34 TOTAL BASF LOAD 807.00 799.00 796.00 786.00 768.00 782.00 820.00 842.00 859.00 866.00 882.00 883.00 9890.00 TOTAL ENERGY LOAD 946.02 914.10 908.66 914.09 903.24 896.80 867.11 902.44 936-82 967.91 1004.20 987.94 11149.34 HYDRO ENERGY TO LOAD 631.85 365.13 278.25 408.85 362.94 0.00 0.00 0.00 7.54 867.40 894.52 646.60 4463.08 THERMAL ENERbY TO LOAD 314.10 548.90 630.34 505.17 540.24 896.74 867.04 902.38 929.21 100.45 109.61 341.26 6685.44 ENERGY DEFICIENCY 0.00 0-00 0.00 o.uo 0-00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0-00 INTERZONE ENERGY TRANSFER-631.85 -365.13 -278.25 -408.85 -362.94 0.00 0.00 0.00 -7.54 -867.40 -894.52 -646.60 -4463.08 HYDRO ENERGY SURPLUS O.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 210.80 187.47 187.34 202.92 212.78 189.89 72.77 9n.72 119.22 147.35 194.92 155.24 1971.42 PEAK BASE LOAD 1721.00 1690.00 1687.00 1681.U0 1627.00 1677.00 1753.00 1812.00 1845.00 1857.00 1886.00 1887.00 21123.00 TOTAL PEAK LOAD 1931.80 1877.47 1874.34 1883.92 1839.78 1866-89 1825.77 1902.72 1964.22 2004.35 2080.92 2042.24 23094.42 HYDRO CAPACITY TO LOAD 1478.54 1575.21 1546.67 1188.42 497.18 0.00 0.00 0.00 10.33 1250.75 1284.87 1293.66 10125.62 THERMAL CAPACITY TO LOAD 453.26 302.26 327.67 695.50 1342.61 1866.89 1825.77 1902.72 1953.89 753.60 796.05 748.58 12968.80 FIRM CAPACITY TRANSFER -1478.54-1575.21-1546.67-1188-42 -497.18 0.00 0.00 0.00 -10.33-1250.75-1284.87-1293.66 -10125.62 PEAK RESERVE 418.20 472.53 475.66 706.U8 750.22 723.11 764.23 687.28 625.78 585.65 509.08 547.76 7265.58 B-53 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOT4L FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE -0.561 1.149 1.737 2.644 3.842 2.337 0.381 -0.599 -4.939 -5.539 -1.425 -1.093 -2.068 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 4.033 1.909 1.054 1.413 1.511 1.887 3.173 7.972 12.073 26.570 31.826 15.731 109.153 TO RESERVOIR EVAPORATION 0.149 0.104 0.076 0.056 0.036 0.012 0.016 0.040 0.070 0.036 0.126 0.148 0.869 TO RIVER OUlTtLOW 0.439 0.00Z 0.080 0.085 0.077 0.000 0.110 1.077 1.806 7.017 9.493 5.234 25.419 TO RIVER LOSS -3.428 -0.080 0.160 0.5a0 0.423 0.620 1.163 3.364 3.561 8.632 5.176 -4.346 15.825 TO LINK LOSS 0.599 0.518 0.479 0.483 0.577 o.624 0.627 0.473 0.449 0.403 0.424 0.467 6.123 TO CANAL LOSS 2.096 1.471 1.464 1.593 1.903 1.890 2.043 2.525 2.704 2.573 2.736 2.515 25.513 TO WATERCOURSE 5.402 2.577 2.484 2.828 4.055 4.978 5.429 6.686 9.509 8.480 9.654 8.496 70.578 FROM GROUND WATER 5.497 2.8z8 1.971 2.489 4.191 3.562 1.189 1.947 3.349 3.977 5.042 5.029 41.072 SHORTAGE AT WATERCOIURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.006 0.006 0.000 0.017 WATERCOURSE REOT. 10.899 5.405 4-455 5.317 8-246 8.540 6.618 8.633 12.863 12.464 14.702 13.525 111.667 PUMP CAPACITY GOOD AREA 6.237 3.481 2.755 3.188 5.209 5.506 4.399 4.802 5.989 5.579 6.307 6.460 59.912 PUMPED FROM GOOD AREA 5.497 2.828 1.971 2.4a9 4.191 3.562 1.189 1.947 3.349 3.977 5.042 5.029 41.072 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.056 0-070 0.025 0.157 RECHARGE TO GOOD AREA 3.440 2.041 1.683 1.896 2.799 3.205 2.714 3.067 3.804 5.279 5.836 4.550 40.315 NET CHANGE -- GOOD AREA -2.058 -0.787 -0.288 -0.593 -1.392 -0.357 1.525 1.120 0.449 1.245 0.724 -0.504 -0.914 PUMP CAPACITY BAD ARtA 1.639 1.639 1.639 1.6J9 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668 PUMPED TO DRAINAGE 1.080 0.832 0.770 0.8U4 0.837 0.672 0.718 0.955 1.149 1.254 1.276 1.175 11.520 EVAPORATION BAD AREA 0.453 0.221 0.200 0.255 0.320 0.355 0.244 0.789 1.163 1.432 1.404 0.821 7.655 RECHARGE TO BAD AREA 1.217 0.758 0.743 0.874 1.018 0.955 0.938 1.548 2.139 2.702 2.718 1.931 17.541 NET CHANGE BAD AREA -0.316 -0.295 -0.226 -0.185 -0.140 -0.072 -0.023 -0.196 -0.173 0.017 0.039 -0.065 -1.634 URAIN STORAGt CONTENT 7.528 7.584 7.634 7.696 7.781 7.865 7.950 8.039 8.154 8.278 8.389 8.510 95.408 ENERbY (MILLION KWH) TOTAL PUMP LOAD 576.79 321.97 244.47 298.94 464.58 396-23 158.05 240.04 384.64 446.36 545.11 530.84 4608.02 TOTAL BASE LOAD 1482.00 1482.00 1496.00 1497.00 1479.00 1467.00 1540.00 1589.00 1624.00 1631.00 1665.00 1666.00 18618.00 TOTAL ENERGY LOAD 2058.79 1803.97 1740.47 1795.94 1943.58 1863.23 1698.05 1829.04 2008.64 2077.36 2210.11 2196.84 23226.02 HYDRO ENERGY TO LOAD 1744.53 1254.96 1110.02 1290.66 1403.21 966.37 830.07 920.02 1079.29 1976.77 2100.34 1855.42 16531.68 THERMAL ENERGY TO LOAD 314.10 548.90 630.34 505.17 540.24 896.74 867.88 908.91 929.21 100.45 109.61 341.26 6692.79 ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O0.0 0.00 0.00 0.00 0.00 0.00 0.00 o.0o 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.O0 0.00 0.00 77.04 283.95 318.43 390.75 649.34 694.50 674.72 616.53 3705.26 POWER (MEGAWATTS) PEAK PUMP LOAD 932.01 678.22 555.29 634.al 834.64 770.71 368.87 511.57 710.93 780.24 899.89 864.13 8541.33 PEAK BASE LOAD 3283.00 3269.00 3300.00 3330.00 3276.00 3272.00 3420.00 3551.00 3621.00 3633.00 3698.00 3699.00 41352.00 TOTAL PEAK LUAD 4215.01 3947.22 3855.29 3964.a1 4110.64 4042.71 3788.87 4062.57 4331.93 4413.24 4597.89 4563.13 49593.32 HYDRO CAPACITY TO LOAD 3761.76 3644.96 3527.62 3269.30 2768.04 2073.01 1778.10 1795.75 2378.04 3659.64 3801.83 3814.56 36272.61 THERMAL CAPACITY TO LOAD 453.26 302.26 327.67 695.50 1342.61 1969.70 2010.77 2266.82 1953.89 753.60 796.05 748.58 13620.71 FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 0.UO 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00 PEAK RESERVE 2333.74 2454.74 2459.33 2331.50 1684.39 1057.30 1016.23 760.18 1073.11 2273.40 2230.95 2278.42 21983.28 B-54 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1984 NnRTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2-780 2.7b0 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.062 1.269 1.285 2.027 3.084 2.313 0.373 -0.601 -4.887 -5.475 -o.323 0.007 0.i32 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1,100 1.090 0.840 1.340 0.930 0.550 7.730 FROM BRAINS 0.110 0.013 0.010 0.010 0-015 0.018 0.016 0.174 0.247 0.181 0.197 0.170 1.161 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0-002 O.OlO 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTFLOW 2.377 1.324 1.279 1.497 1.579 1.615 2.512 6.014 9.197 16.628 18.721 9.071 71.816 TO RIVER LOSS -1.433 0.082 0.274 0.472 0.393 0.528 0.896 2.435 2.653 5.554 3-440 -2.490 12.805 TO LINK LOSS 0.504 0.441 0.355 0.383 0.475 0.528 0.539 0.395 0.363 0.313 0.338 0.393 5.n27 TO CANAL LOSS 1.448 1.061 0.944 1.069 1.306 1.467 1.359 1.390 1.445 1.319 1.480 1.494 15.780 TO WATERCOURSE 3.933 1.781 1.428 1.553 2.545 3.949 4.057 3.889 4.433 3.356 4-706 5.122 40.783 FROM GROUND WATER 4.604 2.132 1.557 1.8U4 3.619 3.113 1.194 1.7S4 3.076 3.385 4.562 4.548 35.347 SllORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOUtRSE REOT. 8.537 3.913 2.985 3.3a7 6.164 7.062 5.251 5.643 7.509 6.741 9.268 9.670 76.130 PUMP CAPACITY GOOD AREA 5.421 2.886 2.167 2.435 4.434 4.936 3.894 4.1o5 5.165 4.766 5.430 5.571 51.21o PUMPED FROM GOOD AREA 4.604 2.132 1.557 1.804 3.619 3.113 1.194 1.754 3.076 3.385 4.562 4.548 35.347 EVAPORATION GOOD AREA o.ouo 0.000 0.000 O.ouo 0.000 0.000 0.000 0.000 0.004 0.055 0.046 0.009 0.114 RECHARGE TO GOOD AREA 3.093 1.842 1.420 1.614 2.477 2.987 2.421 2.605 3.148 4.392 4.928 3.849 34.775 NET CHANGE -- GOOD AREA -1.511 -n.290 -0.138 -0.159 -1.141 -0.125 1.227 0.851 0.068 0.951 0.321 -0.709 -0.686 PUMP CAPACITY BAD AREA 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 6.588 PUMPED TO DRAINAGE 0.207 0.058 0.059 o.o09 0.101 0.103 0.102 0.264 0.363 0.306 0.310 0.292 2.243 EVAPORATION BAD AREA 0.243 0.159 0.144 0.160 0.211 0.280 0-214 0.200 0.241 0.351 0-387 0.288 2.877 RECHARGE TO BAD AREA 0.455 0.275 0.246 0.2ag 0.379 0.444 0.354 0.381 0.463 0.634 0.687 0.545 5.150 NET CHANGE BAD AREA 0.005 0.057 0.044 0.049 0.068 0.061 0.038 -0.082 -0.140 -0.023 -0.010 -0.035 0.030 DRAIN STORAGE CONTFNT 8.606 8.65? 8.700 8.710 8,856 8.941 9.027 9.117 9.232 9.357 9-470 9.592 108.320 ENERbY (MILLION KWH) TOTAL PUMP LOAD 436-00 200-73 147.99 171.84 342.86 298-91 117.93 177.47 308.39 327.11 433.63 433.78 3396.63 TOTAL BASE LOAD 729.00 738.00 756.00 762.UO 762.00 734.00 772.00 801.00 819.00 819.00 839.00 839.00 9370.00 TOTAL ENERGY LOAD 1165-00 938.73 903.99 933-.4 1104.86 1032.91 889.93 978.47 1127.39 1146.11 1272.63 1272.78 12766.63 HYDRO ENERGY TO LOAD 1164.92 938-68 903.94 933.co 1104.79 1031.18 885.76 965.12 1127.32 1146.03 1272.54 1272.69 12746.77 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 o.uo 0.00 1.67 4.13 10.13 0.00 0.00 0.00 0.00 15.92 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 -1.22 0.00 0.00 0.00 0.00 -3-22 INTERZONE ENERGY TRANSFER 577.67 313.65 201.98 349.63 269.78 0.00 0.00 n.00 0.00 835.42 837.29 646.60 4032.02 HYDRO ENERGY SURPLIIS 0.00 0.00 0.00 o.uo 96.60 215.46 260.53 349.06 603.14 690.97 665.27 552.66 3433.69 POWER (MEGAWATTS) PEAK PUMP LOAD 720.03 468.46 406.97 437.38 636.42 602.48 308.14 414.30 597.05 615.17 717.54 719,01 6642.93 PEAK BASE LOAD 1685.00 1703.00 1739.00 1763.00 1763.00 1705.00 1782.00 1859.00 1898.00 1898.00 1937o00 1937 00 21669.00 TOTAL PEAK LOAD 2405-03 2171-46 2145-97 2200-.8 2399-42 2307-48 2090.14 2273.30 249S.05 2513.17 2654.54 2656.01 28311.93 HYDRO CAPACllY TO LOAD 2405.03 2171.46 2145.97 2200.38 2399.42 2075.71 1780.19 1796.09 2378.02 2513.17 2654.54 2656.01 27175.98 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 231.76 309.95 437.00 117.03 0.00 000 0.00 1095.74 FIRM CAPACITY TRANSFtR 1355-97 1475-25 1382.55 1069-58 369.56 0.00 0.00 -40.21 0.00 1148.04 1147.35 1158.55 9066.66 PEAK RESERVE 1792.97 1912.25 1819.55 1506.58 8O6.56 205.24 127.05 -40.21 319.97 1585.04 1584.35 1595.55 13214.92 B-55 WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.377 1.324 1.279 1.497 1.579 1,615 2.512 6.014 9.197 16.628 18.721 9.071 71.816 FROM STORAGE RELEASE 0.000 0.220 0.660 0,594 0.726 0.000 0.000 0.000 0.000 0.000 -1.100 -1.100 -0.000 FROM TRIBUTARIES 0.000 0.000 0.000 O.0U0 0-000 0-000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 FROM DRAINS 2.814 1.444 1.107 1.449 1.554 2.041 3*063 7.488 11.507 26.077 31.483 15.268 105.294 TO RESERVOIR EVAPORATION 0.129 0.087 0.066 0.054 0.026 0.000 0.000 0.000 0.000 0.000 0.098 0.122 0.580 TO RIVER OUTtLOW 1.051 0.031 0-022 -0.0U1 -0.003 -0.000 0.006 0.913 1.540 6.724 9.261 4.986 24.530 TO RIVER LOSS -1.840 -0.190 0-002 0.088 0.058 0.125 0-205 0.833 0.893 3.006 1.772 -1.915 3.016 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.794 0.496 0.584 0.510 0.596 0.475 0.729 1.172 1.291 1.291 1-288 1.052 10.339 TO WATERCOURSE 2.154 1.030 1.174 1.313 1.537 0.925 1.483 3.005 5.382 5.516 5.110 3.636 32.265 FROM GROUND WATER 0.394 0.602 0.426 0.777 0.710 0.638 0.059 0.179 0.236 0.525 0.736 0.622 5.904 SHORTAGE AT WATERCOURSE 0.000 0.000 0-000 0.0U0 0-000 0.000 0.000 0.000 0-002 0.000 0-000 0.000 0.002 WATERCOURSE REQT. 2.548 1.632 1.600 2.090 2.247 1.563 1.542 3.184 5.620 6.041 5.846 4.258 38.171 PUMP CAPACITY GOOD AREA 0.869 0.654 0.631 0.799 0.833 0,646 0.597 0.807 0.918 0.918 0.918 0.918 9.508 PUMPED FROM GOOD AREA 0.394 0.602 0.426 0.717 0.710 0.638 0.059 0.179 0.236 0.525 0.736 0.622 5.904 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.019 0.059 RECHARGE TO GOOD AREA 0.447 0.258 0.289 0.318 0.336 0.260 0.343 0.524 0.716 0.952 0.990 0.781 6.214 NET CHANGE -- GOOD AREA 0.052 -0.344 -0.137 -0.459 -0.374 -0.378 0.284 0.345 0.480 0.428 0.214 0.141 0.251 PUMP CAPACITY BAD AREA 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 13.080 PUMPED TO DRAINAGE 0.781 0.647 0.583 0.628 0.632 0.556 0.511 0.587 0.730 0.964 0.985 0.875 8.478 EVAPORATION BAD AREA 0.207 0.083 0.056 0.100 0.090 0.073 0.027 0.592 0.934 1.096 1.030 0.544 4.832 RECHARGE TO BAD AREA 0.822 0.526 0.552 0.6Z3 0.662 0.530 0.610 1.179 1.704 2.107 2.072 1.424 12.810 NET CHANGE BAD AREA -0.167 -0.203 -0.087 -0.105 -0.060 -0.099 0.073 -0.000 0.040 0.047 0.057 0.005 -0.500 DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ENERUY (MILLION KWH) TOTAL PUMP LOAD 85.40 111.26 94.24 133-39 131.60 119-74 41.66 57.28 71-25 123-16 142-21 118.42 1229.61 TOTAL BASE LOAD 869.00 848.00 845.00 854.00 839.00 852.00 894.00 919.00 937.00 945.00 962.00 963.00 10727.00 TOTAL ENERGY LOAD 954.40 959.26 939.24 987.39 970-60 971.74 935.66 976.28 1008.25 1068.16 1104.21 1081.42 11956.61 HYDRO ENERGY TO LOAD 577.67 313.65 201.98 349.63 269.78 0.00 0.00 0.00 0.00 835.42 837.29 646.60 4032.02 THERMAL ENERGY TO LOAD 376.67 645.54 737.19 637.68 700.75 971.67 935.59 976.21 1008.18 232.66 266.84 434.75 7923.73 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INTERZONE ENERGY TRANSFER-577.67 -313.65 -201.98 -349.63 -269.78 0.00 0.00 0.00 0.00 -835.42 -837.29 -646.60 _4032.02 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.U0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER IMEGAWATTSI PEAK PUMP LOAD 130.42 181.84 163.95 204.U3 205.48 192.56 65.57 85.55 107.25 194.34 223.37 186.69 1941.06 PEAK BASE LOAD 1859.00 1813.00 1809.00 1835.00 1776.00 1831.00 1911.00 1979.00 2015.00 2030.00 2061.00 2061.00 22980.00 TOTAL PEAK LOAD 1989.42 1994.84 1972-95 2039-03 1981.48 2023-56 1976.57 2064.55 2122.25 2224.34 2284.37 2247.69 24921.05 HYDRO CAPACITY TO LOAD 1355.97 1475.25 1382.55 1069.58 369.56 0.00 0.00 0.00 0.00 1148.04 1147.35 1156.55 9106.67 THERMAL CAPACITY TO LOAD 633.44 519.59 590.40 969.45 1611.92 2023.56 1976.57 2064.55 2122.25 1076.30 1137.02 1089.14 15814.19 FIRM CAPACITY TRANSFER -1355.97-1475.25-1382.55-1069.58 -369.56 0.00 0.00 40.21 0.00-1148.04-1147.35-1158.55 -9066.66 PEAK RESERVE 600.58 595.16 617.05 1030.Y7 1088.52 1046.44 1093.43 1005.45 947.75 845.66 785.63 822.31 10478.94 B-56 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.062 1.489 1.945 2.6ZI 3.810 2.313 0.373 -0.601 -4.887 -5.475 -1.423 -1.093 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 2.925 1.457 1.117 1.459 1.569 2.059 3.078 7.662 11.754 26.259 31.680 15.437 106.455 TO RESERVOIR EVAPORATION .0.182 0.110 o.o07 0.056 0.036 0.012 0.016 0.040 0.070 0.036 0.126 0.148 0.908 TO RIVER OUTtLOW 1.051 0.031 0.022 -0.001 -0.003 -0.000 0.006 0.913 1.540 6.724 9.261 4.986 24.530 TO RIVER LOSS -3.274 -0.108 0.276 0.540 0.451 o.652 1.100 3,268 3.547 8.560 5.212 -4.405 15.821 TO LINK LOSS 0.595 0.532 0.446 0.474 0.566 0.619 0.629 0.486 0.453 0.404 0.429 0.484 6.116 TO CANAL LOSS 2.242 1.557 1.528 1.639 1.902 1.942 2.088 2.563 2.736 2.610 2.768 2.546 26.119 TO WATERCOURSE 6.087 2.811 2.601 2.897 4.083 4.874 5.540 6.894 9.816 8.873 9.817 8.758 73.048 FROM GROUND WATER 4.998 2.734 1.984 2.580 4.328 3.751 1.253 1.933 3.312 3.909 5.297 5.170 41.251 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.002 0.000 0-000 0.000 0.002 WATERCOURSE REOT. 11.085 5.545 4.585 5.477 8.411 8.625 6.793 8.827 13.129 12.782 15.114 13.928 114.301 PUMP CAPACITY GOOD AREA 6.259 3.539 2.798 3.234 5.267 5.582 4.492 4.912 6.083 5.684 6.348 6.489 60.719 PUMPED FROM GOOD AREA 4.998 2.734 1-984 2.580 4.328 3.751 1.253 1.933 3.312 3.909 5.297 5.170 41.251 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.055 0.086 0.028 0.173 RECHARGE TO GOOD AREA 3.540 2.100 1.709 1.932 2.813 3.247 2.764 3.129 3.864 5.344 5.918 4.630 40.990 NET CHANGE -- GOOD AREA -1.459 -0.634 -0.275 -0.648 -1.515 -0.504 1.511 1.195 0.548 1.379 0.534 -0.568 -0.434 PUMP CAPACITY BAD AREA 1.639 1.639 1.639 1.6J9 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668 PUMPED TO DRAINAGE 0.988 0.705 0.641 0.7U7 0.733 0.659 0.612 0.851 1.092 1.270 1.295 1.167 10.721 EVAPORATION BAD AREA 0.450 0.242 0.200 0.259 0.300 0.353 0.241 0.792 1.175 1.447 1.417 0.833 7.709 RECHARGE TO BAD ARFA 1.276 0.801 0.798 0.911 1.041 0.974 0.964 1.561 2.167 2.741 2.758 1.969 17.960 NET CHANGE BAD AREA -0.162 -0.146 -0.044 -0.055 0.008 -0.039 0.111 -0.082 -0.100 0.024 0.047 -0.031 -0.469 DRAIN STORAGE CONTENT 8.606 8.652 8.700 8.770 8.856 8.941 9.027 9.117 9.232 9.357 9.470 9.592 108.320 ENERGY (MILLION KWH) TOTAL PUMP LOAD 521.41 311.98 242.22 305.Z3 474.47 418.65 159.59 Z34.75 379.64 450.27 575.84 552.20 4626.25 TOTAL BASE LOAD 1598.00 1586.00 1601.00 1616.00 1601.00 1586.00 1666.00 1720.00 1756.00 1764.00 1801.00 1802.00 20097100 TOTAL ENERGY LOAD 2119.41 1897.98 1843.22 1921.Z3 2075.47 2004.65 1825.59 1954.75 2135.64 2214.27 2376.84 2354.20 24723.25 HYDRO ENERGY TO LOAD 1742.58 1252.33 1105.93 1283.43 1374.57 1031.18 885.76 965.12 1127.32 1981.45 2109.83 1919.29 16778.79 THERMAL ENERGY TO LOAD 376.67 645.54 737.19 637.68 700.75 973.34 939.72 986.34 1008.18 232.66 266.84 434.75 7939.65 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 -3-22 0-00 0.00 0.00 0.00 -3-22 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0°.00 0.00 6.60 215.46 260.53 349.06 603.14 690.97 665.27 552.66 3433.69 POWER (MEGAWATTS) PEAK PUMP LOAD 850.44 650.29 570.92 641.41 841.90 795.04 373.71 499.85 704.30 809.51 940.91 905.70 8583.99 PEAK BASE LOAD 3544.00 3516.00 3548.00 3598.uo 3539.00 3536.00 3693.00 3838.00 3913.00 3928.00 3998.00 3998.00 44649.00 TOTAL PEAK LOAn 4394.44 4166.29 4118.92 4239.41 4380.90 4331.04 4066.71 4337.85 4617.30 4737.51 4938.91 4903.70 53232.99 HYDRO CAPACITY TO LOAD 3761.00 3646.70 3528.52 3269.97 2768.98 2075.71 1780.19 1796.09 2378.02 3661.21 3801.89 3814.56 36282.85 THERMAL CAPACITY TO LOAD 633.44 519.59 590.40 969.45 1611.92 2255.33 2286.52 2501.55 2239.28 1076.30 1137.02 1089.14 16909.92 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 -0-00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 2393.56 2507.41 2436.60 2537.55 1895.08 1251.67 1220.48 965.24 1267.72 2430.70 2369.98 2417.86 236q3.86 B-57 WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION STUDY NUMBER 6685072110 YEAR 1985 NORTH ZONE SUMMARY WATER (MAFt ocr NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG sEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.057 1.258 1.272 2.003 3.052 2.289 0.364 -0.602 -4.834 -5.412 -0.322 0.007 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730 FROM DRAINS 0.136 0.013 0.010 0.011 0.014 0.018 0.016 0.197 0.309 0.229 0.245 0.218 1.416 TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329 TO RIVER OUTMLOW 2.350 1.422 1.161 1.6'0 1.632 1.697 2.340 5.955 9.187 16.511 18.632 8.989 71.516 TO RIVER LOS5 -1.392 0.108 0.215 0.522 0.380 0.541 0.835 2.465 2.656 5.504 3.437 -2.508 12.763 TO LINK LOSS 0.499 0.403 0.386 0.354 0.475 0.524 0.542 0.404 0.367 0.318 0.342 0.405 5.019 TO CANAL LOSS 1.462 1.062 0.975 0.990 1.309 1.467 1.445 1.380 1.481 1.338 1.506 1.518 15.933 TO WATERCOURSE 3.935 1.683 1.529 1.476 2.470 3.836 4.193 3.942 4.514 3.610 4.817 5.234 41.239 FROM GROUND WATER 4.690 2.280 1.464 1.941 3.714 3.238 1.146 1.805 3.108 3.237 4.636 4.619 35.898 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 WATERCOURSE REQT. 8.625 3.963 3.013 3.417 6.184 7.074 5.339 5.747 7.622 6.847 9.453 9.853 77.131 PUMP CAPACITY GOOD AREA 5.439 2.923 2.189 2.459 4.451 4.953 3.954 4.177 5.224 4.848 5.463 5.592 51.672 PUMPED FROM GOOD AREA 4.690 2.280 1.484 1.941 3.714 3.238 1.146 1.805 3.108 3.237 4.636 4.619 35.898 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.055 0.045 0.009 0.112 RECHARGE To GOOD AREA 3.121 1.853 1.447 1.572 2.482 2.988 2.500 2.618 3.197 4.427 4.984 3.903 35.093 NET CHANGE -- GOOD AREA -1.570 -0.427 -0.037 -0.369 -1.232 -0.250 1.353 0.813 0.087 1.135 0.304 -0.724 -0.917 PUMP CAPACITY BAD ARtA 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 7.128 PUMPED TO DRAINAGE 0.233 0.060 0.057 0.051 0.087 0.104 0.102 0.287 0.426 0.355 0.358 0.341 2.491 EVAPORATION BAD AREA 0.243 0.159 0.145 0.160 0.207 0.261 0.221 0.199 0.242 0.351 0.389 0.289 2.866 RECHARGE TO BAD AREA 0.459 0.276 0.250 0.274 0.381 0.447 0.364 0.384 0.469 0.638 0.693 0.551 5.187 NET CHANGE BAD AREA -0.017 0.057 0.048 0.034 0.087 0.081 0.041 -0.103 -0.199 -0.068 -0.054 -0.079 -0.171 DRAIN STORAGE CONTENT 9.659 9.735 9.783 9.853 9.926 10.012 10.099 10.189 10.305 10.431 10.544 10.667 121.233 ENERoY (MILLION KWH) TOTAL PUMP LOAD 448.83 215.65 142.40 185.59 353.72 313.88 114.96 184.82 318.73 319.59 447.59 448.10 3493.85 TOTAL BASE LOAD 781.00 791.00 810.00 822.00 822.00 791.00 832.00 863.00 883.00 883.00 904.00 904.00 10086.00 TOTAL ENERGY LOAD 1229.03 1006.65 952.40 1007.59 1175.72 1104.88 946.96 1047.82 1201.73 1202.59 1351.59 1352.10 13579.85 HYDRO ENERGY TO LOAD 1229.13 1006.60 952.36 1007.54 1175.64 1098.25 942.48 1036.50 1201.66 1202.51 1351.49 1352.00 13556.75 THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.00 0.00 6.57 4.43 7.59 0.00 0.00 0.00 0.00 18.59 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.72 0.00 0.00 0.00 0.00 -3.72 INTERZONE ENERGY TRANSFER 510.77 243.45 149.14 267.61 170.17 0.00 0.00 0.00 0.00 37.84 822.39 643.18 2844.54 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0-00 118.36 143.31 283.41 395.08 530.57 726-55 648.86 476.77 3322.90 POWER (MEGAWATTS) PEAK PUMP LOAD 738.15 507.57 388.24 453.12 646.66 624.48 308.89 425.80 607.36 604.54 735.67 737.38 6777.87 PEAK BASE LOAD 1801.00 1821.00 1859.00 1893.00 1893.00 1830.00 1914.00 1997.00 2038.00 2038.00 2080.00 2080.00 23244.00 TOTAL PEAK LOAD 2539.15 2325.57 2247.24 2346.12 2539.66 2454.48 2222.89 2422.80 2645.36 2642.54 2815.67 2817.38 30021.87 HYDRO CAPACITY TO LOAD 2539.15 2328.57 2247.24 2346.12 2539.66 2076.28 1892.52 1956.23 2581.66 2642.54 2815.67 2817.38 28783.03 THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 378.20 330.36 437.00 63.70 0.00 0.00 0.00 1209.27 FIRM CAPACITY TRANSFER 1220.92 1320.52 1281.71 923.Z6 233.11 0.00 0.00 -29.57 0.00 1262.28 1251.64 1265.71 8729.58 PEAK RESERVE 1657.92 1757.52 1718.71 1360.26 670.11 58.80 106.64 -29.57 373.30 1699.28 1688.64 1702.71 12764.32 B-58 SOUTH ZONE SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL FROM RIVER INFLOW 2.350 1.422 1.161 1.640 1.632 1.697 2.340 5.955 9.187 16.511 18.632 8.989 71.516 FROM STORAGE RELEASE 0.000 0.220 0.660 0.594 0.726 0.000 0.000 0.000 0.000 0.000 -1.100 -1.100 -0.000 FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM DRAINS 2.686 1.725 1.128 1.664 1,586 2.184 2.757 7.269 11.420 25.625 30.981 15.035 104.060 TO RESERVOIR EVAPORATION .0.129 0.087 0.066 0.053 0.026 0.000 0.000 0.000 0.000 0.000 0.098 0.122 0.579 TO RIVER OUTtLOW 0.955 0.018 0.040 -O.OUO -0.003 0.000 -0.000 0.732 1.403 6.443 8.921 4.738 23.249 TO RIVER LOSS -1.815 -0.124 -0.024 0.093 0.038 0.140 0.148 0.810 0.915 2.934 1.747 -1.879 2.983 TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089 TO CANAL LOSS 0.792 0.513 0.538 0.588 0-609 0.504 0.698 1.193 1.304 1.304 1.304 1.076 10.424 TO WATERCOURSE 2.198 1.056 1.111 1.409 1.597 0.962 1.402 3.130 5.475 5.738 5.372 3.742 33.192 FROM GROUND WATER 0.403 0.649 0.567 0.704 0.754 0.645 0.199 0.118 0.256 0.458 0.648 0.677 6.158 SHORTAGE AT WATERCOUJRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 WATERCOURSE REQT. 2.601 1.705 1.678 2.193 2.351 1.607 1.601 3.248 5.731 6.196 6.020 4.419 39.350 PUMP CAPACITY GOOD AREA 0.870 0.658 0.631 0.793 0.827 0.658 0.606 0.811 0.918 0.918 0.918 0.918 9.526 PUMPED FROM GOOD AREA 0.403 0.649 0.567 0.784 0.754 0.645 0.199 0.118 0.256 0.458 0.648 0.677 6.158 EVAPORATION 6OOD APEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.022 0.071 RECHARGE TO GOOD AREA 0.463 0.268 0.271 0.3J6 0.353 0.279 0.343 0.545 0.734 0.973 1.014 0.806 6.385 NET CHANGE -- GOOD AREA 0.060 -0.380 -0.296 -0.449 -0.401 -0.366 0.144 0.427 0.478 0.516 0.316 0.108 0.156 PUMP CAPACITY BAD AREA 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 15.480 PUMPED TO DRAINAGE 0.714 0.564 0.499 0.5T0 0.589 0.472 0.522 0.574 0.736 0.967 0.991 0.893 8.091 EVAPORATION BAD AREA 0.202 0.083 0.051 0.086 0.090 0.074 0.028 0.600 0.946 1.109 1.043 0.561 4.875 RECHARGE TO BAD AREA 0.816 n.547 0.551 0.644 0-678 0.544 0.600 1.189 1.722 2.132 2.100 1.455 12.978 NET CHANGE BAD AREA -0.100 -0.101 0.000 -0.012 -0.000 -0.002 0.051 0.015 0.039 0.056 0.066 0.001 0.013 DRAIN STORAGE CONTENT 0.000 0.000 0-000 O-OUO 0.000 0-000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 ENERbY (MILLION KWH) TOTAL PUMP LOAD 82.75 110.14 101.73 131.46 133.79 115.27 58.17 51.26 74.78 116.48 134.61 126.75 1237.20 TOTAL BASE LOAD 946.00 923.00 920.00 930.U0 913.00 929.00 976.00 1001.00 1023.00 1031.00 1048.00 1048.00 11688.00 TOTAL ENERGY LOAD 1028.75 1033.14 1021.73 1061.46 1046.79 1044.27 1034.17 1052.26 1097.78 1147.48 1182.61 1174.75 12925.20 HYDRO ENERGY TO LOAD 510.77 243.45 149.14 267.61 170.17 0.00 0.00 0.00 0.00 37.84 822.39 643.18 2844.54 THERMAL ENERGY TO LOAD 517.91 789.62 872.52 793.77 876.54 1044.20 1034.10 1052.19 1097.70 1109.56 360.13 531.49 10079.73 ENERGY DEFICIENCY 0.00 0-00 0.00 o.uO 0-00 0-00 0.00 0-00 0-00 0-00 0.00 0-00 0-00 INTERZONE ENtRGY TRANSFER-510.17 -243.45 -149.14 -267.61 -170.17 0.00 0.00 0.00 0.00 -37.84 -822.39 -643.18 _2844.54 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 POWER (MEGAWATTS) PEAK PUMP LOAD 126.71 176.23 170.33 199.81 206.18 184.81 103.92 79.23 118.58 186.26 205.37 195.00 1952.44 PEAK BASE LOAD 2031.00 1979.00 1976.00 2009.00 1944.00 2000.00 2095.00 2165.00 2205.00 2215.00 2251.00 2251.00 25121.00 TOTAL PEAK LOAD 2157.71 2155.23 2146.33 2208.81 2150.18 2184.81 2198.92 2244.23 2323.58 2401.26 2456.37 2446.00 27073.44 HYDRO CAPACITY TO LOAD 1220.92 1320.52 1281.71 923.16 233.11 0.00 0.00 0.00 o.00 1262.28 1251.64 1265.71 8759.16 THERMAL CAPACITY TO LOAD 936.80 834.70 864.62 1285.55 1917.07 2184.81 2198.92 2244.23 2323.58 1138.99 1204.73 1180.29 18314.29 FIRM CAPACITY TRANSFtR -1220.92-1320.52-1281.71 -923.Z6 -233.11 0.00 0.00 29-57 0.00-1262.28-1251.64-1265.71 -8729-58 PEAK RESERVE 912.29 914.77 923.67 1101.19 1159.82 1125.19 1111.08 1065.77 986.42 908.74 853.63 864.00 11926.56 B-59 SYSTEM SUMMARY WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AIJC, SEPT TOTAL FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2-970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520 FROM STORAGE RELEASE 1.057 1.478 1.932 2.597 3.778 2.289 0.364 -0.602 -4.834 -5.412 -1.422 -I.o93 0.132 FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1-340 0.930 0.550 7.730 FROM DRAINS 2.823 1.738 1.138 1.6r5 1.600 2.202 2.773 7.466 11.730 25.853 31.226 15.253 105.476 TO RESERVOIR EVAPORATION 0.182 0.110 0.077 0.055 0.036 0.012 0-016 0.040 0.070 0.036 0.126 0.148 0.)oa TO RIVER OUTtLOW 0.955 0.018 0.040 -0.000 -0.003 0.000 -0.000 0.732 1.403 6.443 8.921 4.738 23.249 TO RIVER LOSS -3.207 -0.016 0.191 0.615 0.418 0.681 0.983 3.275 3.571 8.438 5.183 -4.387 15.746 TO LINK LOSS 0.589 0.494 0.476 0.444 0.566 0.615 0.633 0.494 0.458 0.409 0.433 0.496 6.108 TO CANAL LOSS 2.254 1.576 1.513 1.518 1-918 1.971 2.143 2.572 2.785 2.643 2.810 2.594 26.357 TO WATERCOURbE 6.133 2.739 2.640 2.884 4.067 4.798 5.595 7.072 9.989 9.348 10.189 8.976 74.431 FROM GROUND wATER 5.093 2.929 2.051 2.726 4.468 3.883 1.345 1.923 3.364 3.695 5.284 5.296 42.056 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WATERCOURSE REQT. 11.226 5.668 4-691 5.610 8.535 8.681 6.940 8.995 13.353 13.043 15.473 14.272 116.487 PUMP CAPACITY GOOD AREA 6.308 3.581 2.820 3.252 5.278 5.611 4.560 4.989 6.142 5.766 6.381 6.510 61.198 PUMPED FROM GOOD AREA 5.093 2.929 2.051 2.726 4.468 3.883 1.345 1.923 3.364 3.695 5.284 5.296 42.056 EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.055 0.095 0.030 0.183 RECHARGE TO GOOD AREA 3.584 2.121 1.718 1.908 2.835 3.267 2.842 3.163 3.931 5.401 5.998 4.710 41.479 NET CHANGE -- GOOD AREA -1.510 -0.808 -0.333 -0.817 -1.632 -0.616 1.498 1.240 0.565 1.650 0.619 -0.617 -0-761 PUMP CAPACITY BAD AREA 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 22.608 PUMPED TO DRAINAGE 0.947 0-624 0.556 0.651 0.676 0.576 0.624 0.861 1.162 1.321 1.34q 1.233 10.582 EVAPORATION BAD AREA 0.445 0.243 0.197 0.246 0.297 0.335 0.249 0.799 1.188 1.460 1.432 0.851 7.741 RECHARGE TO BAD ARFA 1.275 0.823 0.801 0.918 1.060 0.990 0.964 1.573 2.191 2.770 2.793 2.006 18.165 NET CHANGE BAD AREA -0.117 -0.044 0.048 0.021 0.087 0.079 0.092 -0.087 -0.159 -0.011 0.012 -0.078 -0.158 DRAIN STORAGE CONTENT 9.689 9.735 9.783 9.853 9,926 10.012 10.099 10.189 10.305 10.431 10.544 10.667 121.233 ENERbY (MILLION KWH) TOTAL PUMP LOAD 531.58 325.79 244.13 317.04 487.51 429.16 173.13 236.08 393.52 436.07 582.19 574.85 4731.05 TOTAL BASE LOAD 1727.00 1714.00 1730.00 1752.00 1735.00 1720.00 1808.00 1864.00 1906.00 1914.00 1952.00 1952.00 21774.00 TOTAL ENERGY LOAD 2258.58 2039.79 1974.13 2069.U4 2222.51 2149.16 1981.13 2100.08 2299.52 2350.07 2534.19 2526.85 26505.04 HYDRO ENERGY TO LOAD 1740.50 1250.05 1101.49 1275.15 1345.82 1098.25 942.48 1036.50 1201.66 1240.35 2173.88 1995.18 16401.29 THERMAL ENERGY TO LOAD 517-91 789.62 872.52 793.77 876-54 1050.77 1038.54 1059-78 1097.70 1109.56 360.13 531.49 10098.32 ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.72 0.00 0.00 0.00 0.00 -3.72 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 118.36 143.31 283.41 395.08 530-57 726.55 648.86 476.77 3322.90 POWER (MEGAWATTS) PEAK PUMP LOAD 864.87 683.80 558.57 652.93 852.84 809.29 412.81 505.04 725.94 790.80 941.04 932.38 8730.31 PEAK BASE LOAD 3832.00 3800.00 3835.00 390Z.00 3837.00 3830.00 4009.00 4162.00 4243.00 4253.00 4331.00 4331.00 48365.00 TOTAL PEAK LOAD 4696.87 4483.80 4393.57 4554.93 4689.84 4639.29 4421.81 4667.04 4968.94 5043.80 5272.04 5263.38 57095.31 HYDRO CAPACITY TO LOAD 3760.07 3649.10 3528.95 3269.38 2772.77 2076.28 1892.52 1956.23 2581.66 3904.82 4067.32 4083.08 37542.19 THERMAL CAPACITY TO LOAD 936.80 834.70 864.62 1285.55 1917.07 2563.01 2529.29 2681.23 2387.29 1138.99 1204.73 1180.29 19523.55 FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 2570-20 2672.30 2642.38 2461.45 1829.93 1183-99 1217.71 1036.19 1359.71 2608.01 2542.27 2566.71 24690.87 B-60 APPENDIX C FIRST HISTORIC SEQUENCE SYSTEM SIMARIES 1966-85 SYSTEM SUMMARY ___ _ _ _ _ _ _ _ ~~~~1966___ _ _ _ _ _ _ - wAU~~~T~~4J~~F1 OLu 1 NOV Jn L JAN FtM AR lP 1Y UE JUYG1!T TT.L -TR-U R IVL' 1NlLUW _ 5.37ia '.U oe7 .U14 e.aub e.jlU1 1.3i3 r.1 le.cutJ1 6.90! 25.925 Je.IUi7 17.2ii -rJT3T.rzq FROM STORAGE FkELE6SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FROM TRIRflTA1VIE7S -0-.z8u0.0eU-W-.Z7G- U.210 U.e ~ .1 1.IU00 9U 0 W'.'8'4O7W T -3 4U U(T -Ue55W77 1( FROM DRAINS 4,405 2 .4?, 1.552 1.83'. 1.121 1.600 5.473 9.829 IJ.b22 25.397 37.381 23.U00 1?7.b53 TU' REUSFRVOT WT_VAYORATO4 0`fO`_0.T0u- UU0owo Y ova----U -Uw U 1 ou0-;Dg 00 GO0 700 TO kIVER OUTFLOW 2.152 0 . se, 0.103 0.243 0.025 0.000 1.222 2.3 J.577 7.999 13.763 10.710 42.922 TU) RIVER LOSS -2.*454 -0.261 -Ueu43 U.4ZL (J.U6 U.liUe if.J1J 1. .-3vq 3.136 1. 1,3Ifr 8.173 -3.004 £0.Y?S T C LINK LOSS 0.212 0.164. 0.153 0.106 0.129 0.267 0.376 U.377 0.397 0.371 0.369 0.368 3. ~39) T15 CANAL 'LO'S5- I*bi I*U 1 T U. 16a u.a07 I e * £9-173VY -~ 378 -Z-eU-O--7-3f6- --- ZTW- 175e TO w,ATFHCOURSE 4.096 2.62~: 2.0694 1.412 1.512 2.756 3.029 5 0 33) 7.1753 t6.822 8.426 7.423 54.949 FROM4 OUA - -- UNl- ATEI. SIu 01 - 1T U 6 7 3 U T 0 8 4 . 1 7_7 SHIORTAGE AT 6.ATERCCURSE 0.900 0.64 3 0.3-3A 0.447 0.942 0.198 0.158 0.000 0.000 0.000 0.001 0.000 J.687 WATLRLOUURbt 'ktu1. 6. 315 4.CUe, 3.04 ' . £*-3 J. 3L5 J.965 4.13 5. 76d 1 6.4 IJ 9.406b 9.1 38 8*e5u P68.686 PUIMP CAPAVI-TV-1GOnD AREA -Y1Jt0 u. 14 ? U.1 By-_ 0.114 0. 610 1.031 £. U6T.0IFF.1g I. U 9I -F. -U9__l1_T177DIW1 U8 PUMPFD FROM G00OD AdEA 1.110 0.932 U.807 0.706 n.811 1.031 0.944 0.7z9 0.9720 0.644 0.711 0 .t52 7 10.051 FvAPOm-ATrUKNlCUU1 APE-A -----U o.ige. U,178 U*lzq u.l5ie 0.115 0.210u 0.405 0.11a -1.535 1.o7 -Z .22 _ 7z__T.137F_ RLCI.ARGE TO (.0Gbj AAREA 2.071 -1.443 1.135 0.966 1.142 1.912 1.831 2.306 2.916 4.739 4.70t6 3.389 28.SG7) N1,T CfiiNG -- (POsJ ARtA U.74U 0.Jn U.15u 0.1:51 U.UIP9 u.(u6 0.07l '.17e~ 1.478 e )Ou e.ess 1.140 J1.4.F3 PUMP CAPACITY BAD AREA 0.000 0. 000 __o0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPOiRATTUI. ADAI Ai%EA 0.543 0.4.60 0.375 0.2Zii 0.374. 0.375 0.424 U.762 1.299 1.7141 1.761 1.8178 RFLCHOAiGE TO TFA11 A9F_A U. I 03W W;0U4D__G.V 0. U450 0_6iW0 (J 1 .063I.6_ Z.Ti'I 7T T772 Nt T CHANGE 6ALU Arl.A 0,4i9 0.171 0.135 0.121 0.0 75 0.176 0.231 0.301 0.383 0.593 0. 463 0.e9b e46 _lURrrNST?T7wrGUT-T TTNT - u.uuu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 u0.oul 0000oo 0.000 0.000 TOTAL PUJMP LOADi 58.29 48.12 42 .54 35.9c 45.99 55.13 53.90 41.69 39.12 32.1Z 33.55 3A.72 923.67 TOTAL BASIE LPA1] 2-ST.00 739.rnl 247i2U- -2- -W-OG zj -ZG-23-.00- -VI.O 749.00 Z54.fl0 254.00 - Z576-40a6ebeUO79,29 UY TOTAL FNFfRGY LOAD 297.29 287.11 284.5'. 268.90 275.99 286.73 294.90 289.69 ZY3.12 2bb.12 289.55 300.72 3'454.6 I Tt'FYMAL ENFHrY TO LOADr 178.i0 191.71 Z01.42 191.73 21le82 181.98 15m.66 156.Oi 154.69 155.81 158.26 169.14 .95r INTIRIONE ENERGY TRANSFEk 0.00 0.00 0.0 0.00 0.00 0.00 0.00 uO 0.00 0.00O 0.00 0.00 0.00 0.00 HynnP FRYU 1[[-80 0 -- oooooo -; ou 0.00 . oo - o.e oo 0 07ov - o -o - PFA~ PUImP LOAUI 1U1.l7 85.51) 1 82. 0, 75.a0 95. 36 98.59 96. 07 d6. -5 13. 41 13.02 75.25 81.46 I024.54 PrAK OlASF -OATi -550.00 -5-6VgQ -5T0. 00 3VI_00 571~0 .-ID3W.-U0_ 545;U0 56j2.00 5T7h_00 TOTAL PLAK LOAD 651.c.7 654.55 652 .fo 616a10 606.36 616.5-i 641.07 648.05 6,7.4-2 64ti.02 658.25 613.46 -7714.54 HYnR~O CAPAC-1TTY TO LOAD 16?.74 -16Y t1 152.718 150.69 1-43.-BI 0 8V9 186.63 T83.10 -189. 63 1785017§D I 80_.2-_747fl`r7'y_ THFkMAL CAPACITY TO LuAi. 447. 77 4.46.512 447.51 443.52 443.64 433.66 454.44 46~4. '45 4t.>7.79 469.152 4 7Lk. 40 493.22 5)'91.00 -FTP-RCAPALITY TRAlIU.l)f 0.0 0 j .00 0.-00 0.00 0.00 0.00 0.00 0.00 0.00 U.0U 0.00 0.00 0.00 PE2A~. RESEiivE 135 U.77 127.3n~ 125.76 15 -8 162.44 191.32 17nI.Sb --171.05 170.21 168.48 112.60 157.78 1q14.?2 c-1 SYSTFM SUMIMARY 1967 _____ 0r ATF-WMF- (y nCT FLW N - E J - t MAR- -- FAi- -JlJTF lu-JU------T-L -FRnM-R7Vy, sNtttJu- --- b6.4 b J 1; ?B . b6 Z b I Sf.@4C3 :.#j 997q-: .o J q>F2Tf-- t6,9a-lU78t --rZ. FInm STORAGE F ELEASE 0.000 0.000 U.GOu 0.000 0.000 0.000 0.000 -1.4'I -l.148 -1.4Z7 -0.391 O.UO1 -4.92b FROM TRIPUTArE-S 0.ZO --7-0r1 eaZJ---u-Zn - .40 -1I U-.-93C 0-5507----7-1T30 FROM IURAI?4N 7.944U, 2.5't 4 1.333 1.540 1.080 1.429 3.791 5.924 7.792 25.930 33.364 13.133 lOh.398 TO RF5FRV3TR--FVAFFP T-TO?N 0 - U- UU D ou UfU0OW IF.0z 0 033 0 -0Z5* 0. On 0--W 0t0 TO RTVER OUTFLOW. 4.401 1.13 9 0.130 0.133 -0.002 -0.000 0.633 0.u^4 1.074 7.459 12.368 7.018 15.337 -TP-RIVfI Lt]5'. -4. i 4 -1.194 -U.09J4 Uhk6 u.l?I U.5QB 1 049F4 I .tHt 057r I*0.10 6.194 -5.29 111?75- TO LINK LOSS 0.2A5 0.14u U.152 U.lOt 0.18 0 .190 0.280 0.350 U.337 0.369 0.367 0.401 3.114 TO CANAL LO57 L-U7V. 92- U78U83-Tt0-tZ4-5 1.671- -2;.ZZ9 z-- TO W.ATRRCIJRSt 4.612 2.461 1.927 1.399 1.535 2.682 2.867 4'.277 .354 ti.344 6.267 7.391 51.l16 FROM uPWtNfFIJUTEIP 173 7s- U- W5 -UO.2Z---3TI -.7 1;u4-4 -1.239 1.I- 1.154- I- .I71 -T 1SA'.- SlinkTAGE AT z,ATLRCOURSF 0.401 0.622 0.42q 0.422 1.010 0.777 0.261 0.1I'7 0.830 0.000 0.004 0.000 4.ih7 -WAT7ErC0LIRZ)L btOl. b.gc-4 4.Il5e J.ZA1i Z.b5Uv 3.649R 4-317 4.17Zi 5.7T1 4.511 v.39 9.37 8.,3hZ 7 U.;Tr*7 PjM P CAFACTTY-OOl-AR--A- -T;371 1.O1T U.9ZU * ? -386 -T' .-TZ7-VI3ZTV W 1. T75 14. 362 PUMPEd jROM CUOI) AREA 1.375 1.U75 0.925 0.129 1.103 1.258 1.044 1.239 1 .387 1.054 1.104 1.171 IJ.564 UVAPORAT fN-GUU0APE-r0-- --U.63Z O.J77 *4--37WU7T43b6 -- 4W U.478-071 0 --l.--T - 2-02W TiiTVD i; 10.ir- RLCfiARC4 TO GOOD AREA 2.243 1.400 1.131 0.981 1.i19 1.789 1.760 2.169 e.133 4.720 4.747 3.444 e.-135 NtT CHANFit - UL)U(JU ARtA J,355 -U.u5c _U.163 - U1ZI -U.zu 0.086 U.e.ZI U. le 1.6i6 1.463 '.63I 4.U60 PUMP CAPACITY RAU ARFA 0.200 O.iOU 0.200 0.200 0.200 0.200 0.200 0.200 0.200 O.200 0.200 0.200 2.400 P(iVJF.PU Tf-lWTWATT-N1 U00 -U0U19'4 U.039 UT03T . .i 4 UUFC o.n 0 o. O FVAPORATION I,AP AFEA 0.608 0.484 0.377 0.28' 0.389 0.39A 0.440 0.870 1.461 1.964 1.891 1.435 IO.rol RUCHA`R n'U"ARt-VV-A 0- -2076-07 TU74 T0. <59 0.636 -T- -148-6Z7- Z.ZZ ---1.6WW 3 T.71 NET CHANGE BAD APLA 0.019 -0.05b 0.080 0.0O5 0.020 0.167 0.156 0.111 Y.141 0.303 0.277 0.196 1.*19 IJHAIN MUNAbt LUNTN'41 u.uuo o.uou u.ouo u.ou0 u.nuo u.uuu u.uuu u.uoo o.uou u.uuu u.ouu 0.000 0.000 ~tNFh6 r tLTOK wi __IN-__ _ W___ TOTAL PUMP LOAD 89.19 74.44 56.15 48.87 66.60 75.77 61.14 74.99 83.30 56.82 57.08 61.29 80U.64 TOTAL DAS7TI-nA1 -- -21 *0-aO--0222*61 -- -00 -7T7 -2h370e6U UU 2b.I2W 770-26 - 8T.U0 28 - -T-----H W -0 TOTAL ENERGY LOAD 350.19 336.44 327.15 311.87 326.60 335.77 333.14 353.99 370.30 343.82 347.08 357.29 40s3.64 YITINO LNtNbT 1U tLuAu 134.20 0r.i r1 9.61 MM Si b. Il) v6.3 134.53 J38.93 lJJ.az LJC.rD 235.64 e'4C e b!4.h) T'ERMAL ENERGY 10 LOAIJ 715.96 248.62 237.19 232.89 259.48 239.44 193.58 214.93 238.46 111.04 111.22 114.84 2417.6b ENtWYUV- UtDr CTF C v -U.UZ -U.04 -0.34 - 21 -0.4u -U.Ue Oz .u. -U .rz- U----UU- .uO - .- INTERZONE ENERGY TRANSFIR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 rYU 1 -FG r, - NrOVCy SuR-PT- Ous 0.0UU O.UO -07--u u.oo O. U0 U U-W- 3.o1a 94.05 9 -i67Ar6W FUWLN IP'tUAWATII4 PEAK PtIJP LOAD 140.21 123.14 102.55 94.77 112.17 122.09 101.22 121.q2 133.09 104.86 104.89 110.41 1371.32 PEAK 8A3T-LIOAT- '580 OU -39 F-0U -61Z*-UU OVU o7O-w7v b2XV61 6U5**U --4bUU 65&.Uu bS7< 9IU- TOTAL PEAK LOAD 728.21 714.14 714.55 699.77 699.17 705.09 713.22 752.92 1r8.09 750.86 760.89 775.41 874?.3Z HYDRO rCAPACITY TOThOAIY T8Tv6 153.32 15Z.666-- .-9-69- I4t 171- 6 91916 99U3T03Y--iW69 W3Z5W-51 4,390 65- TilEkMAL CAPACITY TO LOAI, 526.55 527.014 511322 504.03 505.76 509-53 517.30 523.14 590.30 318.03 308.95 317.02 5660.87 FIRM CAFACITY TI4ANSPtR 0.00 o0.o 0.00 o0u. 0.00 00uu 0.U0 0.00 0.0u 0.u0 O.00 0-00 0.00 PEAK RESE'.VE 106.65 90.18 89.11 100.93 96.14 117.47 128.94 86.41 115.50 456.97 466.05 457.98 Z314.34 C-2 SYSTEM SUMmARY ______ ~~~~~~ ~~1968 _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ iWnVTIUMT---- CC;T NOV DLL TJAN UI'1 AR jPW---NUTJULT AT SLPTTTATL FR~OM STORAGE RELEA5E 1.133 O. 73'4 0.493 0.493 1.182 0.177 -0.132 -0.633 _1.bI8 -1.420 -0.391 00004 0.077 FROM Tltr9TTAV WrS5----- u.vio 0.2uu U-22U U.2100-(r24. 0.130 1.100 1 . 090f U.80q 1.Jqu u - 0 U . 55u I 1.30 FPOM :)RATN~S 4.365 1.781 1.310 1.619 2.024 4.054 8.621 16.149 24.3J67 33.046 27.16$ 15.237 1J3. 74? Tr, RFESRVVIR1UVA7UWATTDN` .U?_ U.UIU 0.000OU6 uuuoi o.UUos U.uus> 0.00 0v ? U.U?JTu.3- o.UZ' .4 7--T7r TO tRIVrR OCITFLO,O 2.013 0.360, 0,015 0.1538 0.222 0.921 2.650 5.151 6.114 12.025 11.e53 6.894 49.154 TO NIVti LUbb -2.15y -U.79r U.U0i? U04.17 U.MUU 1.J14 2.v'o 5. tU44 b.u51 f.u3u U .5bnp -17 U./il TOl LINK LOSS 0.279 0.224 0.1q5 0.151 0.279 0.292 0.334 0.313 0.360 0.359 0.359 0.364 3.50i- TO CA N4A L_ LUT5W --e.ig 1.i i,u6. t79¶2m L.275 T.313 L ..3oeT6y6l 1zZWZi ".es z.3 1T9.'8g 9 TO) %A T IRCUURJSt 4.464 2.615 2.107 1.688 3.017 3.040 3.147 4.501 1.173 7.997 8.209 7.384 55.641 FRMR-GRO-IJVT1YATTWq- 1.779 1 . e1I O4 U. 9z0 1.UZ3 ---.573-Tr.U Yu 1.17 1-136r.,!81 1 5. 6-61 SHIORTAGFE AT 4ATERCOUR,5f 0.505 0.0iq3 U. 202 U.157 0.000 0.155 0.000 0.000 0.000 0.000 0.OOd 0.002 1.122 --WATIPtOuR.-L SLQI. 0. 14a 4.2 3.J135 C. 1bt 4.uqp '4. f9 4.ver g 5. 6,U d. rlVo 9.J39.2 907U4 8. 96 T e. WY-- PUIMP CApAITiY1OTWr -AWEA---- j. ir5 I.l u . 9( go -- 1-3ba it5ssb1.J,e ~.'.49 I7 I 5Z T1 1 .5 I e. ler- PuMPFI;, FROM (.001) AR~EA 1.779 1.dll 0.994 0.970 1.073 1.523 1.090 1.179 1.471 1.396 1,487 1.581 15.b6l RFChiAHGE TO GOOli ARZEA 2.256 1 .633 1.275 1.181 1.734 2.083 1.852 2.160 2.942 4.703 4.792 3 .1 I1 3(1)*31 NIt CriANbL- ,uOuLJ AF~LA -0#p19 -IJU *0 1 -U.1~4 -u.Ufb U.eb -. 6 U. 04 .16 UofL U*3 l.09 U 9.951 0.ZZ9 i. Pi,MP CAPACITI R.AU AkFA 0.200 0.z0U 0.200 -0.200 0.200 0.200 0.200 0.200 o.200 0.200 0.20$. 0.200 ______0_ Pii"PFIT TO -WAMAGE' --DU1 U.Uq4J u70W4* U *U3 U~ .U46 U .041 0 -- U 47q0W0- U6EF .0U-.UNT 0. 561 EVAPOR~AT!0. f9AD Af~EA O.8s2 0.510 G. 41I) 0.317 0.428 0.509 0.515 0.ci23 1.546 2.095 Z.002 1 . 1 9 1I.t.35 REC4;ARr3f T-A' -~ o1r-ur----s-. 3I obb .1,-0.43 9 6 1., 0.6 Wz--Ius7- T__ V- - -; ----.-y- r-j--n -- NET CH-ANGEL BALI ARItA 0.127 0.1le 0*05') 0.096 0.139 0.1L44 0.107 04i 0. ~ 1096 0.1I68 0. I7/- 0.123 1.433 1TT-TW sjun;HPjt (LUN[tNT 0.000 0.000 0.000 0.UUU 0.000 0.000 0.000u 0--.000 0.000 0.00 0.000- 0.000 0.000 TOTAL PUMP LOAD 111.48 76.84 63.46 57.17 56.12 95.95 60.86 66.34 64.95 79*3i l$S.10 91.06 91e9.29 TOiTAL SIASE LG;AT-V- -- vI0 200003DTU .o.u .suq.ou -IU3DW37033--S 37134.J TnDUO TOTAL FNEHCAY LOAIJ 404.4a 372.84 369.48 363.77 358.12 399.95 375.86 389.34 416.95 411.33 423.1U 434.n6 M719,79 TiPkMAL FNlR6Y TO LOAD 128.07 126.7J 131.21 133.61 119.39 133.51 130.99 132.71 134.33 131.57 134.49 136.90 1513.55 E7_t1Gy Ur rTCruiCv _. - .O 0.00 u * pp 7- g.pp 0.00 Ua0 ua 0-WJuo 00 0.00 INTER0ONE ENERGY TRAN5FIR 0.00 .00 0.00 0 .00 0 .00 0 .00 0 .00QOO 0.00 0.00 0.00 0.00 0.00 0.00 -TiYURO ENfERrGV5URP11JS - 30.02~ T6w 3Z UT I3. a4F 71 5 ~ I . Z1 ~ T 7 7 PEAK PLIMP LOAL 1esO.07 144.36 131.56 125 *2 14 118.47 162.95 124.92 133.24 155.12 144.493 151.22 169.79 1r31.41 PEAK -BASE U-OIATi OT 6.o 6s uI89 IW 67g.00610T~W~3.0 74-6u -00 -.U- 7`T7-0W Y-i~o. D- TOTAL PEAK LnAU A41.1$7 809.36 819.56 820.78 791.47 839.95 832.92 8o5.24 902.12 892.43 909.22 931.79 16?b1.41 HmynlTo CAPAr1TTYTO LOA 4.. D8Wi167 J7.04s 1 7.,4, -WTM-9Z--4 9V-Z- 50371U V_67-3 _Z47 L 5. T09? 0e'. TMfRMAL CAPACITY 70 LOA., 400.14 400.91 433.32 448.98 343.91 422.52 415.99 416.q5 398.36 216.0? 2?80.90 289.08 .05Z 7.C9 _TTR7WLAPAFL[TY THAN5FER 0.00 0.00 0.o00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00u PLAK kIESEIPVE 374.86 374.0i) 341.68 349.02 454.09 388.48 408.01 4U1.05 4e5.64 604.a1 629.98 613.30 5371.00 SYSTIM SUMMARY 1969 _______ _ _ WATUWR1¶AFT - rT NUV JAN FA 1 W 1R -- uJUN JUL -5 T f'RO H] VL JNt Luw 4,9 jz 3. 22 t 3.CS2 if.5 1 1 t. 5,;h 14. 'j U b-412 ^fl.24 5 1 t t4 If,h> --1W. t65. -142 IZ~s FROM STORArE kELEA5E 1.127 0.7U U.490 0.4Q0 1.176 0.635 -0.145 -1.077 -1.61' -1.418 -0.386 0.002 0.(1t. FROM TR ERUTAR-i5 -0 U.ZUU O.ZZ U 72U 0u.rJuI- r- TU-U- -T4 . 0930 .5S0 - e8 U - FROM DRAINS 5.121 2.101 1.411 1.571 1.U58 2.202 4.796 6.714 13.036 23.4Z7 33.792 19.786 12U.U23 -TC RTSfRVLR- tVAVIuwATIUI--- .22 O.O1U U7 O,UUI-U.OU', U.UFU4 UU6 U.U2U 07 f X.UZ- -W- Z7 - (. 0I-- - ;r'r-- TO RIVFR OUTFLOW 2.393 0.t15 U.065 0.17Z 0.019 0.2U7 1.110 1.409 J.025 7.256 14.05Z 9.759 40.urk4 - TTI klVtl? L(3bb -3.345 -0Oh35 0.1014 0.-l" 0.191 C@}r .'II S ilS L.656 14.6Z.3 6.5 Ius u0. 409_, ds . To LliK LOSS 0.462 0.332 0.283 0.236 0.373 0.42 7 0.341 0.335 U.40i 0.390 0.403 0.447 3a 1- TANAL--TLTSS -- - 3 -----* 1.16 l '1 0.931 s6 *- i r z -- .9 - 7- z7U0 'iJv77 To aATFRCULiRSt 5.068 2.67U 2.37h 1.6q2 2.255 3.305 3.133 4.267 711i 1.517 h.067 7.2I7 S4.a1l -fRM-RU l U j -17910-A 1.3a89 0.Fq T1 . I3I T1.T TlTF3B0 169V -T6Th T.7555- ZWJ5- --rwr- SHORTAGE AT W.ATEPCOURSF 0.000 0.000 0,000 0.034 0.4e1 0.000 0-000 0.000 0.000 0.000 0.004 0.003 0.46e WATLRf.UUR4t PtUl- l.O35 11.U5') 3.c9t z 15,3 i A 4,Uh. >-UB( 4.c5 f. es. Uu 7.423 9, 9Cb 9.C95 T..i. v e F%MF~~~~~~~~~~~~~~~~~~~~~~~~~~ CAAC 9UD-XF- f.J U.q I, llO I.2 -~.7 .o .71-5 zC.-15 b 1.'V7 - Z,1q9 Z-.Z,Z75 ---Z Cl.433 PUMPED FROM GOO AFEA 1.970 1.389 0.918 1.112 1.730 1.782 1.112 1.0o0 1.699 1.67A 1.855 2.005 18.549 --rV-FnwxTJ0R (,U rsu-XktA 0.170o 0.468 U. 456 U.,039 -u,43u - 0.500 0-.$05 U.6K .B-Z- Z. I e. 332 1.-TD56 1I*1 76 RLCHARGE TO GOOD APEA 2.417 1.601 1.33') 1.210 1.6)7 Z.718 1.e40 2.111 Z.929 4.667 4,824 3.556 30.406 NEL (lHANbL -- GUUlJ AFtA -0.3e"* -0 Mi> -u.034 -u.04U -U.46a -U*UP4 u.czj U.14J U.149 U.bld u.6j6 -U.107 U.484 PUMP CAPACITY BAD ARFA 0.200 0.200 0,200 0.200 0.200 0.'00 0.200 0,200 0.200 0.200 0.200 0.000 PU9E13 -TO7-DV` 0A I1 N A U.-1u.u4e0 U.UJJ. U.--00 UYU5r- U,06U U.u5 u.5s4 FVAPORATION BAn AkEA 0.916 0.530 0,445 0.357 0.4t1 0.515 0.537 0.928 1.545 2.091 2.006 1.5?6 11.886 -RtX-A EGL *t tJ AR F 10 u 3,,067 0.641 ' 05 g, u *0.55 0*116 0.op I7t50t6V0 Z7t17 c.23W -rz- 13 -r7T NET C0iANGE bAD ARFA 0.099 0.067 0.0sd 0.050 0.025 0.168 0.072 0.0 0.098 0.163 0.173 0.123 1.17ti UKAIN SJUKAUt LUNIrt1 u.UUU U.O1JU U.Uu uuuu . u .uuu U.UUU U.uUU U.UUU U.Uuu u,uuu U.UUU U.UUU -- ~ EH 1 EN R T TtT N sLiO ___I_______ TOTAL PUMP LOA 124.00 90.92 55.57 72.23 114.A3 113.98 6L.40 78.39 106.24 104.14 116.02 126.66 lIbS.40 -T0TAL 8A 3toA D3 3-42.00 J4J.UU-ag.0U lg5.UU 46.uU0 34.00 J61TU J7UUU0-. 3ye.3 7YD60 Z9 0 5 '46b.UU.0 TOTAL ENERGY LOAD 466.nO 433.42 411.57 420.73 460.83 459.98 423.40 448.39 484.24 4e3.14 501.02 518.66 5511.40 MyTiJk tNttl, Tu Lu tOAu 31.4 Z00.G1 e266e.4 23.49 3026 2ve.6 27.F3 co5.R3 V1.44 jcu.rc J3-.48 jv.b3 J3O2.3b THERMAL ENERGY TO LOAD 147.50 145.29 144.91 146.22 152.53 167.39 164.64 162.54 162.77 162.39 165.51 169.00 1690.68 ENtEFG otEILJLCECY U.uu u.uu o.uu u.uu .u o. 0u u0.uu ou u.uu ------u0.uo INTERZONE ENERGY rRANSF(R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0*00 0.00 0.00 1yYDRU NERGY SURPLUS £01a.1 IS.rO 1Tg.3o 111J 4e.uj 35. I 4r1 q.y Jo J0.9J £15.50 169.J LI.rT J '4JO3w.3 ruwtF iMtuIAWAI IS1 PEAK PUMP LOAO! 220.15 185.18 136.18 163.85 210.57 209.41 126.62 164.41 Z03.50 196*72 207*51 222.46 2?46.56 P-EAK BASE LUAU ro6.uu 1u9.00 794.00 11.0 TP6.U0 80D.00 5Ill00 pU *Up eo.U oze.uU 8.4a.uua 9r3%.p00 tOTAL PEAK LOAD 986.15 954.18 930.18 968.55 981.51 977.41 931.62 992.41 1049.50 1044.72 1067.51 1096.46 11980.56 HYUOO CAPA'LITT lI LUAD 698.93 PJ8a12 553970 5a.rl 44Y.02 41V93 *L 50UJ3. y9l.zv Pbe.U5 I1a.05 7rL.L1 133.5r THEkMAL CAPACITY TO LOAU 306.35 316.04 312.10 385.15 452.79 527.59 511.99 48S88 458.23 382e67 346.67 375935 4665.83 FIRM CAPALITY THANbPtL 0.00 0U.u U0UU .0UU U.0U U.UU U0UU .U0U 00U U0UU 0*UU U0.U U0UU PEAK RESEkYE 536.78 507.96 511.90 517.85 450.21 375.41 391.01 414.12 444.77 520.33 554.33 527.65 sr5Z.31 SYSTEM SUMMARY 1970 - TER-UAFF-- -- T NUV - UL' JAN Ft8 MAK APR MAY JUNE JULY AU5 SEPT TOTAL rtUM NlYtk lNrLUi% b.6jg 3,794 3.541 3.b S -O32 C.*Ce .U9 llOJ- 15.3J1 23.Jb! SUJ79 zo. 425 I1.uu3 1V7*0ju FFOM SlORAA,E NELEASE 1.124 0.133 0.488 0.488 1.172 0.186 -0.101 -0.668 -lb04 -1.404 -0.386 0.001 0.02Z9 FROH TRitiTAFLtS - 0.2Io O.?uo o.2zo o.zlU 0.Z40 0.1JU 1.1° -1U 1. &j4u 9 U.93U U.b550 -/3'U FROMI DRAINS 7.264 3.291 2.044 2.466 1.654 5.261 12.25T 17.564 Z3.235 46.T66 36.365 14.081 17?.;s1 TO RT 1u.ueD UuVu TC---u.uuC 0.010 OOU( u.uu 0.005 Qu.OU O.uuv UO.zq u.'Jz U.u3, o.uZ/ U.UUz U.167 TO RIVER OUTFLOW 3.817 1.367 0.462 0.586 0.236 1.333 4.101 6.118 7.'i60 16.736 16.115 7.768 660.00 i1Jtii KLv LOSS -J3.1J -O..XZ _ . 5 0 U*Q Z'#lZ ItJlZ9 J.2 . 7IZ14 P J2b -U. J4 -5.921 2U.Zbb TO LINK LOSS 0.459 0.349 0.30' 0.271 0...49 0.405 0.307 0.302 0.399 0*360 0.391 0.455 4.453 -Tu CARLC-tTjs_s, - - .1b I.176 1.130 °.S,9C l*Z96 1. 1r5 1.211r 1. 519 z.!az 2.15 Z.sv Ozu Z.197 l9.-Z13 T( WATFhCUURS[ 5.132 2.891 2.341 1.943 3.082 3.596 2.870 3.86r 6.610 6.890 7.610 7.055 54.159 FRONM tiRUN T7ATERR-1---- -----7t2W8 17T50.939 U.9a4- 1.7ZZ I.894 1.39O 10577 Z.U1I C.Z19 2 49 . 1 7 Z1.161U ShOpTAGE AT wATLRCOURSF 0.000 0.000 0.000 0.000 0.000 0.300 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 WATLRCUUPOF HUI. I 1.350 J.97j 3.Cah (C. 9Z 4.0JU4 2 o1490 4.CtO ).449 8,87 til ,1UY lU.161 9.b3e 7531 PUMPt-AP-ACTTY-OGUD AREA- -Z.59 1.48'9 - 1.21Z 1,Z55 z.llU2.113 z.Jj 1.3 ..U T.'75 e.Z61 2.54T- Z.b89 Z4.613 PUJMPEU FPOM UUO0; APIA 2.218 1.078 0.939 0.9M4 1.722 1.894 1.396 1.577 Z.061 2.219 2.495 2.577 21.160 tVAF(UTICN-UfLtP -AFEA---- .brl 0. 447 0.394 U,331 U.159 U.W18 0.466 U,517 15.89 1.9U1 Z.U58 1.'11 l U.UI3 REChARGE TO G000 AREA 2.494 1.60' 1.351 1.2s2 1.910 2.315 1.814 2.040U .918 "550 4.840 3.618 .10.1T? Nl.T CHANbt -- LUUO ARtA -U.394 .Uff' U.u1IF -_U.U1I -U.111 -U.IU1 -U.U4T8 -U.ll -U.3.16 U.45.) U.8 -U.37U -aJ.WU PUMP CAPACITY bAD AWEA o0.200 0.on 0.200 0.200 0.200 0.200 00200 0.200 200U 0.00 0200 0.200 O.400 FU)5F _TG uRITjNA5 _ -U. U.,1 .4 .4 U.U47 U.U49 U.U,43 U3S-JJ4 .r MU56 UUU -J5 0. 65T5 WU~PEUT0-UR~~UE-- .u~ uu4VU~UT~u.u'r o.uu.uvT j u.u.16 UWFI 1 0 U 6 U U FvAPOf.ATION bAD Ak4A 0,975 0.532 0 ,45 0.350 0.492 0.582 0.531 0.915 1.544 2.083 2.010 1.533 11.949 RECI;AR G-E -AREW - 1.079 U. b7e UDP U,54b 0.4¶5 U.8631 U.73Z O.t3t J T.C17- Z 2.296 z r 1 1Ze 13 .t.91 NtT ChiANGE BAL APEA 0.103 0,054 0.051 0.060 0.091 0.107 0.071 Q.0j1 u.100 0.159 0.174 0.1?6 1.317 -TiTN 5TCHKA1t CUNItNt 1O.UUU 0uou. U.U UU00 u.uuu .000 .000 UOo 0.00U U.u0U 0.001 0.000 U.0oo U. oo - -E1ERIT --rE1LT UeN K-WVr TOTAL PUMP LOAD 149-45 67.34 59.94 62.90 113.31 124.85 89.72 106.03 1J9.Z8 152.85 172.22 177.50 1415.40 TIJTAL BAST-LOAD -- -- 38-n-w00--390O.0 -4V.100 -44. uu-wrD0u0 uo- 44-.00uo- w52. o 4 45-.CU--4H C.UDO 46-l.uu 51". UO TOTAL ENERr.Y LOAO 53A.45 457.34 462.94 476.90 531.31 534.85 519.72 S47.03 5v1.?8 597.85 636.2Z 645.50 6539.40 HYUM(J tNtHfiY II) Li)5qu 5hq.1IY 284.08 2Y0.12 C90.1C 3t2.95 311.43 JUO.20 329.20 369.O1 39:7. c 4e .1.9 *zb.91 't3-.T8 T*ERMAL ENERGY TO LOAI] 17v,.63 173.?3 172.79 186.75 198.33 217.39 213.49 217.80 221.43 201.99 214.88 218.48 2415.18 ENTFRG? fEtitrLTICY - - f-.uU U.o U .OO -O U-7- U U .UU 7-0--.D- U.U UUU OF.0W 1U.OU O.UO INTERIONE ENEkGY TPA1JSFLP 0.00 0.00 . 0.00 0.00 0.00 0.00 3.0OU 0.00 0.00 0.00 0.00 0.00 0.00 IYIRO ENERGY-3wU1(PLUS 15U71T 16a.03-T438.- ITI----33iV--- 34.9 4h.4'-- 57.6-17--b-3-W 98.0u iU-.U 191 1?53 P1AK PUMP LOALi 267.96 145.8d 140.27 141.78 Z31.10 245.79 181.97 218.94 259.61 269.4Z 287.46 291.44 2i81.61 PFAk -BASE U1A-C - 70 87.UU- q.1 '9ZU-`WI--YN9T-01--3 gu.uu 95U1.uU- S0.YUD 9Y"15. uu 1uUr.UUY-U3.UUru-D4W -Tr3w3.U0 TOTAL PEAK LOAD 1137.96 1017.86 3041.21 1061.7e 1141.10 1153.79 1131.97 1198.94 1257.61 1276.42 1320.46 1335.44 14074.61 RnYTRO CAPACTTY Tn LCAC 4p b3.4 u 6-52 9.0Z- t23.8a t7I.,p v15.317 7ZU.61 rZe;l. 7U ThERMAL CAPACITY To LOA,. 438.44 371.59 423.18 473.33 596.94 670.98 648.91 669.02 663.73 599.86 605.15 614.71 6775.91 !1RFM LAVALJ I Y IxAPNHN 0.3 U-UU U.UU U.UU U.UU U1UU UT3 U.UU 1Mu 1 80 U.UU 0U 0.U U-UU1U.UO PEAK RESERVE 464.56 S31.41 479.82 578.67 455.06 381.02 403.09 182.o 3a8.Z7 452.14 446.85 437.23 5401.09 C-5 SYSTEM SUMtIARY ________ ________ __ _____1 971 _ _ _ WA-TER 1MATI1 - nCrN vU t EI~ -pr - 'TV jt11 -JT- uwo r r cu FROM STORA(,E IiEL-149 1.117 0. 72,8 0.4836 0 a4136 1.165 0.~,54 -0.414 -1.020) -1.597 -1.396 -0.38) 0.001 E.0i FROM TR IB1UTXiRIFS 0 .2 7 t U2UZf TW UI 0-~U1 J84 T1.3V(J0-(Y. 930 - FROM UR4!I'S 4.6'2 2.421 1.5?7 1.479 0.984 1.408 5.193 10'.014 15.449 J1.940 36.80Oi 18.e54 1.10.172 TV Rf 5FRVaTIR t"'P ORATI ON 00i 0D7Z 1U 0.0 ? T .D 7U 0D5U 7 V3T- O UT WU2 1~~ TUj RIvER 0UTFLOw 2.228 0 .7 ?6 O.i75 0.143 0.004 -0.000 1.198 2.614. 4.265 10.540 14.37U 9.129 45..193 TO LINK LOSS 0.436 0.329 0.263 0.29.3 0.409 0.469 0.388 0.% U.418 o.39u Q.4?.3 0.'#59 tc2 T5 CA3N AL t U5S - -694 I VatL. m0679.3v rr1-35337--.1 (. T8 - iz. r-6- z;-1-- Z. I 977463 TO jATERCOURSE 4.326 2.42M 1.919 1.7194 2.347 3.2i84 3.300 4.455 7.,e6a 7.219 7.846 7.2e80 ~Jst R?VD!--RU1JTNW~TEW FR- Z9' I5 1.111 T1. TY z .475z75 1 TI6 -1.92 - DI1V253T -Z.)535 ei.tifi,4 SviOkTAGE AT ;.-ATLRCOURSF 0.4?4 0.000 0.072 0.000 0.4?6 0.04t1 0.000 0.000 0.000 0.000 0.000 0.000 0."169 PUtJMP CPAtTTY-UUMiAREW 79 i..t8 f 1.J66bL.43Z i!.4e'j if.fez 2.0.11 I 7T 7Z 86 1.9 s.1- 567 PUJMPEU FROM iU0OU ARLA 2.945 1.611 1.356 1.3m2 2.4?5 2.o525 1.136 1.266 I.'421 2.016 2.6,53 2.535 7J.b&9 EWAFCIR'ATFUON UW0-AWUA- ----36 0.3"' 0J' 02s o J 4 WW 0 4 2 3 0 5 i T e 1.821 -1.194 8.3 RCCiAIRGE TO (GOOdJ AREA 2.438 1.61,j 1.26,4 1.Zqg 1.867 2.408 1.950 2.173 3.013 '4.621 4.879 3. t88 VI.el'1, NtT CtIANOt --UUUI ARtA -1.L43 -U .3.359 -U.456 -U*3613 -U.V3e -U . 55 uo.gu U.J69 U.41'h UO3 uo5ao -U.U4Z -1 . T87 PUMP CAPACITY B3AD AREA 0.270 ?u 0.270 0.270 0.210 0.210 0. 270 0.270 0.210 0.0 0.270 0.270 0.270 3.2e4U VpuMPE U Tr-uRWANAUrT- U * I - 0 .iz uii U-. 1o7 ITzDV-U.1r W 0.I39 J --U-.W U u *.1 Ui~a .IUU ~ ' FvAPORAtI0'- OAAI3 AkEA 0.89)6 0.49.5 0.435 0.3954 0.492 0.498 0.501 0.9313 1.!o3b Z.062 2.136 1.590 11.933 REC~HARGE T 7A A1UZ Z Y3 U.~ 0qe .577 U. 117 U. b50YT.T1W ~. I 3 2 F 7 . j 5 13.115 NET CHANGF bAji AHLA 0.044 0.018 -0.016 0.021 -09034 0.137 0.085 0.069 0.086 0.132 09002 -0.006 0.539 DRNAIN STO1'AGL LUNItNT 0.000 0.000 0.000 0.000 0.000 0.000 U.UU0 0.000 0.000 0.000 U.UUU 0.000 0.000 TOTAL PUMP LOAD 720.46 123.03 105.14 107.34 188.35 194.88 78.92 91.04 139.76 148.48 190.66 166.87 1776.9Z TOTAL OASt LOAD 41WV.uO- --Z'kT4T#;Oo -45 uu 60 * 0 W.Ses * u u v8ou-. -Wz .fO- 3-T.-U0---U7 * 0W r W0 uw- TOTAL ENENRGY LOAD 681.46 1585.0.3 S79.14 566.34 654.35 652.88 558.92 585.04. 642.76 655.48 708.66 708.87 7S78.q2 RiyUNU) tNtKI~T iUi LuAu 45. lb 63o.50 M M.a M M 3'sj.49 evv~.4b jg&.12 jgs.52 39.3 4(.LO 4u.ui 45T %79 THEkMAL ENERGY TO LOAD 226.26 221.39 230.23 220.53 306.81 353.37 237.16 236.46 243.37 243.28 248.59 251.37 3018.84 -ENERI;Y EJtrIE,ILNLY 0.00-U 0.00 0.00 0700 0.00 0.00 0.00WuU U 07 D 7 D o 0.000 INTERZONE ENFkC.Y TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '*KYDR UNLHIjy upb 5U ' U 4l8.~ 0.00UU 453.60 OM0 -U.uu r5.66 125.1b6 13V.15B- 191.31 166.03 17U.91 103357SFl F'UWLK~ iMiLiAWAI ISI PEAK PUMP LOAD___ 362.41 264.11 244.97 242.40 333.69 341.60 161.55 183.81 216.59 268.72 337.11 332.65 334.9,66 -7FA-ArSrT01-M 1U T10UR.00 4055.00 1036.00ou Ltll.00 1009.00 10270U 1086.00 1108.00 1111.00 1146.00 115.U 0D 7W747UU0 TOTAL PEAK LOAD 1383.41 1266.11 1299.97 1278.40 1344.69 1350.60 1216.55 1269.81 1384.59 1385.72 1483.11 1490.65 16173.66 --vn-D T-ApACTTT-TOTOWUF 833.62 173.46 663.7Z MM.0 059.68 '31U.VU f1. 6'6.eu 731.ub ezb.rb 857.055 860.85 86 T .-3v THERMAL CAPACITY TO LOAU 549.79 512.11 636.25 570.37 685.02 779.69 669.18 623.61 653.53 558.96 625.43 629.80 7494.32 FIRMI CAPA.ITT INAN5ItLK 0.00 0.00 0.0 0.0 0.00 0.00 0.00 0.00 0.00 U.uu 0.Q0 0.00 0.00 PEAK RESERVE 502.21 539.9 436 02963 4a7.98 393.31 503.82 549.39 519.47 614.04 547.57 S43.20 b2136.53 c-6 SYSTEM SUMMARY 1972 -~1TVWU ) - AlL-- OLT NUV nOL JAN FEn MAK AFR MAY JUNt JULY AUG 5FPi TUTAL r HUiM RI Vtf IN? LUW S.tC ,_i9t J.y . 1139 C. tea oc. IZ9 5*.8C4 7 .I 1 9.851 eU.94U 36.lU I Z9.J51 10.960Ci 3 'il.9Tt FROM STORAGE kELEA5E 1.111 0.775 0.483 0.4a3 1.159 0-869 -0.386 -1.061 -1.589 -1.392 -0.38z 0.000 0.0p0 FROM-TRT0UTARI'WlTU ----- if nu U.i .zU U,Z1U0 O.e40 U.710 1.LUU l.U9U U.84u 1.34U 0.9U U.55Ci 7.730 FROM DRAINS 6.383 2.533 1.249 1.049 0.851 1.593 4.493 6.510 16.061 40.435 39.563 16.078 136.199 TO RTstEvvlR EvAFDUATTJ------ 0.OZ7 0.Glu O.U-6 vf1 0.005 0.00cl 0.0U5 U.019 U.uji 0U0Z'4 U.CT U*U UZ U.156 TO RIvER OUTFLOw 3.3Z1 1.0St, 0.149 -0.000 0.000 0.000 0.935 1.240 3.952 13.468 16,.283 8.821 49.226 Yu NIVER LU35 -3.019 -U.9',3 -U.IU6 U.199 U.214 U0.b9 1.5Z5 1.9UU b.z9j jJ.5U8 J.534 -b.*19 17.192 TO LINK LOSS 0.5F0 0.400 0.344 0.369 0.456 0.552 0.461 0.380 O.41e 0.369 0.401i 0.466 5.174 - D-C iNAL un55 -----If3 *Z l.aU8 1.03Y 1.1u .g 48 1.599 104Ul 1.756 Z c.CI e.07 ra ----27 Z. 145 19.779J To wATFNC0URSL 5.376 2.5qU 7.015 1.837 2.329 3.924 3.508 4.599 7.335 6.634 7.469 6.644 54.46U R0W GROUNU '.ATLR 4.616 175031 e53U---15 2.Z.5 1.U78 1.378 Z.lZ6 Z.au7 3.0Uq 3.U37 Z51.510 SHORTAGE AT WATERCOURSE 0.00 0.000 0.000 0.03 0.505 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.5A? WATLRCLUR3t RIOT- 1.999 4.U91 3.396 3.4U9 .O6 Z 6.019 4. 586 5.971 9.461 9*%%1 1U.565 9.a85 au.)58 PUMP CAPALITY G(UtlJAEAv-- 3.31' l.h5h 1.509 1.bU7 Ze.37 3.U58 2.C67 Z.318 J.Cz1 C.97C 3.436 3#589 31.683 PUMPFE FROM GOOD AFEA 2.618 1.503 l.331 1.509 2.728 Z.Z55 1.078 1.378 W.126 2.807 3.091 3.037 2S.51( -TFvpArrTnWA --Ttuu AREr U.561 - U.56 O.IZ$ U.e84 0.346 U.4Uo U.3TU -0D4;7T U.669 1.191 13b4 u.96u 7.310 REChARGE 10 GOOb AREA 2.694 1.677 1.354 1.364 1.937 2.611 2.On5 2.241 3.050 4.577 4.918 3.709 3i'.137 NtT IHANOt -- bUuD ARKA U0.4"5 -0.L82e -U.Z88b -u.4e' 1.137 -U.U70 U.5 I U.lqL U..55 0.2ro U.qae -0.eaa -U.bA3 PUMP CAPACITY BAV ARfA 0.3?0 0.320 0.320 0.320 0.320 0.320 0.320 0.320 U.320 0.320 0.320 0.j20 3..e40 WU1MPF!TTUURAT^NAUF 0.14h U.13t) U.1IU 0.U98 0.U93 u.u55 U.Ugu 0.U95 ".111 U.153 U.16U 0.13U 1.363 EVAPOR4TIUN iAD AREA 0.976 0.541 0.480 0.469 0.571 0.565 0.578 1.05U 1.624 2.158 2.090 1.507 17.b16 RFth[RGtNI) l:AU Al;EA 1.089 O.6714 U5S 0.7U9 0.542 U.r14 U. 69 1.117 7 j737 I .J13 c.ZOZ 1.638 13.848 NFT CHANGE bAL ARIA -0.035 -0.04. -0.047 -0.058 -0.121 0.154 0.011 0.00 0.002 0.002 0.004 0.001 -0.133 UkAI1 5TUt(MIt LUNUtNTIN U.UUU 0.UOb t.U0u U.UUU O.VUO U.0UU U.UUU 0.00 U.UUU 0.UUV 0.OUU U.UOO 0.000 [NttmGT tI-MLLION KH TOTAL PUMf' LOAD 202.07 118.12 110.88 120.91 216.10 171.Z0 78.60 103.94 lbO.26 221.36 242.3'1 134.68 1 90.72 iTTAt BASSFLrA11 514.00 515.0V 570.I 511U 5TTOD-50T.0V07--531 7- -5-W.lo-- 557_O0 -bZ-Ou 5 M4. u -O0. uO 741oUU TOTAL ENERGY LOAD 716.07 633.3? 639.d8 631.91 732.10 678.20 609.60 648."'4 717.26 783.36 516.39 814.66 8421.7Z ITljmU LNtLGT TO LOAD 44b.l4 3gu. B I 3cs.v jouso' Sac .1l9 405.U 37Fj.to 38'. 99 452.24 qV0.13 523.c2 5r1.42 SU4j.IcO TliERMAL ENUROY TO LOAU 269.87 262.47 272.88 271.03 369.11 272.45 253.39 259.90 2o4.97 285.17 293.11 297.40 3371.95 ENER6Y DEO1CNC - U.UU U .o0 Ou 7U0 U.uU U0.U U.UU -0 U.UU0 -D-. UUf u.uu O.UU U.0U00 U.U0- INTERZONE ENERGY TPANSFLR 0.00 0.00 0.00 0.00 0.00 0.00 U.OU 0.00 0.00 U.00 0.00 0.00 0.00 -HYDR-n VER YUVUWPtrS --a89.11 96.1 7Ttf ll,U .uu 1U.. 1U8 w3W .r4 I J. rT 297.21 19.90 13bs.51 'LWLW 1MtUAWATIP5 PEAK PUJMP LOAO 370.23 265.90 2b7.04 276.82 183.52 325.88 166.62 226.j7 319.63 387.15 409.83 198.53 3797.53 PTIAK -ASI tU1II -Z 3.uO 1136.00 117 .UwrI520. 1200 1119.uu 1169.uu lZU3.WT22U77 Z37U10U WT2&3.00 14Z.OUO.0 TOTAL PEAK LOAD 1504.23 1401.90 1439.04 1428.82 1505.52 1444.a8 1335.62 1429.37 1546.63 1623.15 1678.83 1681.53 Iti019.53 HYURO PAPaCTTY Tt O- - R34. 3 a 7 79.6 1 692 .WTU.z e S1 -35 .VT0 44 W1Z4TU IZs.36 10(U41.6U THFRiMAL CAPACITf Tu LOA. 669.60 622.21 7%6.36 724.53 843.51 762.45 688.73 636.67 611.22 565.90 581.33 592.98 8045.50 fIRM CAPALITY TFAN5tO1 0.0U U.UU U.0u O.U0 O.UO U.uU u 0.u 0.00 u.ou u.00 o.uu 0.oo 0.- PEAK RESERVE 503.40 550.79 470.26 537.47 413.49 494.55 560.27 620.33 645.76 691.Z9 702.Z8 704.83 6897.69 C-7 SYSTEM SUMMAkY wAitm WA-F~~ (ICI NUV lit'- JAN I tLi m¶At PIuq - - - Rw---UNr-iUi v AUG e T.' I u AL FROM STOpAr,E kELEASE 1.106 0. 722 U.481 0.4FFI 1.15'. 0.6si5 -0.344 -1.05to -1.579 -1.384 -0,377 0.001 0.03U FR0-C[M rUTWE~- 0" 0.2011 0.220 O.-nu 0740 u.i.ju L.IUU - tuqu - u.a4u I.iqu U09su U*55 soj FROM ORAINS 3.556 1.375 1.083 0.878 0.792 0.973 2.153 7.889 21.924 39.734 42.099 ?1.237 143.h93 it q:) V)I7vr0RA1TON u.U22 0U*UL U.006 U.Uui 0.005 U.UU14 U.uuto U. U T0U1 0.03 1'.0Z U*017 U.UUZ~ -U7oT6T- TO kIVER OUTFLOW 2.078 0.i291 -0.004. o.oao o.aoo 0.000 0.077 1.421 6.09, 13.807 17.001 10.873 51.637 Yu LINK LOSS 0.574 0.40U 0.346 0.358 0.387 0.533 0.503 0.311 0.410 0.375 0.405 0.421 5.084 -TOCA-NAL LE1J5 L.61 1 L. eI JU0e9 U.93U 1.01I L.'tje 168i I. 911 i 2.22! .3 z.az,3 3 z 19.I7u TO WATFRCOURSL 4.992 2.358 1.791 1.580 2.090 3.690 3.8o0 5.159 7.774 7.285 7.767 6.611 55.,096 PROM UROU'LJ WATtL j.zij !.(Sze A.bUJ 1*I6Z J.019 Z.b!U U.vaf I. 3 O30 -2. C.JY ~3 , U ) J.56) ifI uU8z StiORTAGE AT 6'ATERCOURSE 0.107 0.000 0.081 0.345 0.876 0.2a4 0.000 0.000 0.000 0.000 0.000 0.000 1.q WATLICLUKN3r XtUI. .*3-3 g. LFq' ¾. 'I' 3.88!~. 6D b.76'I 4.1af8 b*Z5' 9.15eO Y.05'. 1u,a5z l0.06! 11 fqt.1 P'UMP CAPACITY IiUUUj ARIA 3.653 £.U2' i.14 .b , -rn - 1 3.02 8J9 £.466 2466 J.216 ioz 3,7146 3.901 3 .)9 PUMPED FROM G000 ARE.A 3.283 1,822 1.603 1.162 3.019 2.610 0.984 1.130 Z.054 2.399 3.0a5 3.256 27.U0Os rVA`PTTRWTT0lC4 OUUU AR-Er U. 5 I 0.3za U.290 U.210 0.31#1 U.Jai U.316 U.144U 0.041 1.0!! 1.193 U.84.1 b5 RECHARGE. TO G00U AREA 2.726 1.693 1.310 1.309 1.865 2.595 2.156 2.405 3.086 4.651 4.972 3.742 32.51U NEI~T ltiANut -- IUOUU AMLA -1.0150 9*'.-5 -U.50r -0.131 -1. '.'fn -0.3H1 U.0.3b 0.d, U. 38: a.a,, U b -U ,3.) 4 -J.1!.3 PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0,320 0.320 3.0M4U EVAPORATION BAD AREA 0.984 0.540 0.485 0.482 0.543 0.543 0.515 1.100 1.649 2.174 2.115 1.465 12.592 .EC1A"Qt 1u L¶Au REIA 1.LInq 0.b35 0523 0.418 ja U.Z O.ba: 0.69) 1.Cij I.! v-Z. J4St it~Y 1Z .613 13.688 NET CHANGE BAD AREA -0.003 0.003 -0.044 -0.092 -0.092 0.102 0.129 0.009 0.002 0.003 0.004 0.001 0.02.5 IjRAI?4 SIUKAUt CLUfNIL'I 0.000 U.UUu 0.000 U.Uuuu u.0uo u.uuu U*UUU U.OUU U.uu.uuu u.uuu u.ou uuuu U.Uua t"4t.iuY MIILLIUrN K~Wfl TOTAL PuMP LOAD 262.69 150.13 134.27 148.60 252.57 217.54 74.01 90.24 163.50 197.05 25loZv 262.77 2204.66 rflL I1ASL LUiAu 713.U 7!J.3.0 5ea.uu 712.00 715.00 "oo.uu 5,!1*0 601.00 uc'..uu 629.00 o3.v.u o'6.e.0 uo9.0 TOTAL ENERGY LOAD 835.69 723.13 722.27 720.60 827.57 785.54 669.01 697.24 787.50 a26.05 8a0.29 906.77 9393.66 nITUNU LNtKG'T [U tUAD 53,.02 q&o.au 3io.56 309.0& '6.30.i 3c.10., jv.3u 3'p's,i9' q14,'fp 50.7 2)9,o1 56.90 93iu.89 THERMAL ENERGY TO LOAD 300.57 304.22 405.67 411.55 363.20 397.76 295.87 302.35 312.53 516.50 330.35 341.72 4082.33 tLRNtY utJLCiENC.Y 0.00 0.0U 0.00 0.00 U.U0 0.00U U.U0 Do0g 0.00 0.U 0.0 .0 0 INTERLONE ENERGY TRANSFER 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 .00 0.0o0 0.00 0.00 0.00 I1'VUO ENtNKIT 4UKrLUb 114.01 0.0.0 0.UU 0.00 1.4-1 ovaU p0.11 z00.55 C20.1Y £10.51 262.3c 220 1360.3-3- ---OFWEN iM1tjAwA I I i PEAK PUMP LOAD 439.97 336.21 315.86 330.89 436.38 402.05 155.55 181.16 310.86 364.01 437.20 442.33 4152.54 FtAK AbAt LUAIU SC)8.00 I£b0.00 IzvaouU levi*uu 1255.0U 11)4.00 1312*0U 1352.0U 13(0.00 liaJouU 14'.00.U 1435,00 1!113.uu TOTAL PEAK LOAD 1697.97 1596.27 1613.86 1627*a9 1691.38 1656.05 1467.55 1533.16 1686.8* 1751.01 1866.20 1877.33 20065.54 JITUNO CAPALI~~iT LOAU 10Y1.4v 119.1Z 6A4.y1 02.60U 601.44 094scZ b20.)3 815.09 954.U0 1060.50 4&Lp.'. 112Y.Jb Z013Y.11 THERMAL CAPACITY TO LOAD 606.47 796.57 998.95 1012.30 1029.14 961.82 811.02 717.47 722.7a 682.1 739.72 747.97 9826,37 TAN!9 LAPACITY 1NANSFEN 0.00 0.00 0.00 0.00 U.00 0.00 0.1.1 Doug 0.U 0.0 0.00 0.0 0.00v- PEAK RESERVE 650.53 657.98 584.04 626.80 513.67 400.16 550.98 644.53 639.22 679.85 622.28 614.03 7184.09 c-8 6-D O I IoiEc Zb 65j s OftO9S 2u IZZL W1-09 L6-6qt 9LOL9C 96*1QZ LQ-89b LLt sh 6 00@8so s, t9S9 99-109 3AM2S3H IV3d Oplo OO-D nnto - nnnn on- n on-n nn nonn_ nonn nnon aODn nnno nnoa N14qkval Allntrdwl rH 8J-szlT1 EL ZEZt 09tS6 tsfaaL 99It99 #O-&OZt bZ-btplt WOSWI CT*EXO1 9-9'9#ll ts-LIttt I-t*sOL ##C'09L I'V01 Oi AillDVdv lVWY3Nli csngrotT Ti rbw 96-tTil Jo-ccnt ni-*r&f r ITC* rfbocc fi6jo 19tiSs 6*6c fibnQQ zq-=tot OsZi*LOt _QtQ1kx- (ini-L s- vv #P ' sscEz fb'190? 9G*990? Go'GiQT G4-sTGY tt'ES6t LtinOOV cosit6i oooZ991 bri9oiT lQ-LLlt 05-lLt 4pt55itT avul jv3d lV101 nnno st nn96c-r lEs nn,rbcT nn Trcis nnXfinci OnefcbtJ n c Tffs t On6T nonisbt no9t 0nOb O-OI Q0l]iQMb tpEiEsx/ *to Sg QS@59g qo-20fi SW-S2 #Y1 OSW LtOTft E8sts6 00199b IECgs9 19-6EE nS-LIE bt IESb nvol dwfld 1V3d QE*bSI WM- 9<*t2t2 Q7*97 Zs on-n t-on QOO- nn onnn 00*0 _rn,j OF134r 4Cfj.HtStisA9Y3N1, 08fljAH 00-0 00,0 00,0 0000 00,0 00-0 000n 00-0_ 0000 00-0 0000 00#0 00-0 89dSNV81 A083N] 3NO7d3i1t9 ri9ea- nn-on 0* no-n onnn nnlo nnon ren.- nnon non noon on-n Oonn _ zuzj1 sH 8LV6611S 99-58f OnX bsC 6a459E br9 z4C L54LZS ZV'6ZtP 1b'6LS #PC LSb tO-L9b 40'9#15 69IsCE tL'SOIE aVOl oi A98IN3 ivwH3HI F.FbO ;Pc 7nlF, az£0 COtXn ca,ob ,o*b j&-i,C gbac&C CC-A9E LnC^9h n&-Qlr 927-0e 94*9tb 61-gCg Sn (ii U1qjN, n-OnA^ rt'9#P%Ot 60-b66h eLL96 ht-bS Eh-'T #Q 5L-9t6 Zb*bZg t9-6*6 OV1926t XCbflo S6-26L 6L-89L W190e avol Agh3N3 lt10i 5fX It i£L__tL!lZL_ nn-cTL n -n-QL_-n-cfz ___Q-aUnLL On,bgg noocrg nnonbg onn c.Ce an,Q noo C_ on-Esr A_ D _frL S 5l_ t I C (5s? 60'QLZ #L )LZ2 6ESIOq W96-9 SCL'9f2 26'09t 1909tt Ot,922sp +5691 S61fyol fL'Scy E6'Lilz UEtOl dwnld IV10f onfnon nnnXn nnnon nnn-n nonnn nno,n nnn6n nnnon onnnn nnnon nonnn nnnGn nnnon ININi!)n icivma s n EZnoo oooo0- 4)00* E OOOO LaTIN ttt'O- 110Z'0 C11O ObO-O0- t6Zt*0- OS0*0- tOO-O ZOOOO V3dV nvO 39NVH:) LIN 746*f or bc-S4 RZt7? Care? YCt*T _6btIi --b69o 9;Q q a ZECCn n&!20n nrtsio j;qO bf' I 1wiHt we nwO nHtHz3 I?O.9 I ?t ioE Y I 2Eti@2 66tOZ S*9-T &'Pt I X94t0 0 95@0 99SO0 CCG*0 9bbl0 6W5W S66b0 V3HV abSi NOILVHOdVA3 T Zc IT sT9ln ZiTIn nsTen &ZTIn ?zlTin Ttron rctO Tgn*n 91in*a E6060 00rJ0 FreOn lntmxjtu1aatl 0Ia 1nAS 0 ti9 WOFO WOzO OZcO 02E*n 02E0o OZ*OO oZEto Ozti oEo 02Eo oco 02Eo oZElO V38v nVg AlIaVdV) dWnd 6 RC' 1- c77on- 29lon 2p n s0 7 CO&Ibn ocovn- tinon Ircet- nb)T- A7§*0- %cceo- Q1tt.b 7c*0- W3NV n(lon -- 3ANWW3 11N- L90-E9: OLLIE MICA Q5L* SZv IOsi S02^111 G Z 4GSOZ 9ZhXt 99E*t Ttf-I 19LOT 9161Z v3dv U009 DI 39UVHD3d 9LLV6Z Z9Ze eFit'F FLLOt 1tL'T 60S9' 2 LOOI Cbgsc bcCEC 9L6T 969*t 0969' L6602 V3mV 000O WOUJ O3dWnd 2?*7Lg bt7*nl rb*T? t *CA a C77rT? 7tOq Qlb*b ninoi Pct*9 QOh*£ L6ic IQ7'* %A bng lnih lsHnnoHolvA r9ol? 00OX0 000'O nooo1 cooos 90?10 00060 91100 9t09t 92#**0 LhO0 00010 00010 3SHno)M31Vm 1V 39VlhOHS gLI-62 97Q7c C6ht1 rtlT TTI'1 hO942 QLQot r&bO* 6cstI QoLbt afb9*t n&ot Ibh T _16ht! nmOH9 WDN4 Z50o,C - ZL6*9 oG6*L h9t-9 ht Se;0 LT8-E OOtfC b6fiS 0 LLo*Z 9-°S-t ;QL*t L5s-2 ZTQ5 3sHnav3jvm ol tL c 6s T tt t .n C202 667X2 jCt47 ZTILt Q*stl catt 9TO-T bw6*n Tcoot btrlt lShi- C SSZ laNvn at h0OrE I ty0 0 h04O tOtOo SZhon 9Lh'O qttlo 694#-10 18E*O 69EO Oc* 6 o *"0 1h*90 SS01 XNI1 Oi QTc.rT &hbr-c- ntCln - tit*TT T°Q*Q %It,? Golfo *02 0 0 Cs OtsI6 oG* C7040 IT00T- 047- - cSszl hlAIH ni 6 Z L¢ 9 % L919 L9012ZT9t9,2t 99001s OOOC- 00000- 000*0 000*0 OOOO0- Z5000 6IL0O SLOC wgolJLnn 83Ad Ol blion Tn* 12n*n 62non TCn-n nzo0- n conn0 hnnn cnIOq ln*no gnn*n nOSO' Z70 0 . uo0nV]Slb33- 910n4WTT 2911'CT E99*QZ 6izt9C 0V66jj 62902 CT9It OOLOO ZSLOO 99L0O ZOOlt 95A90 bt9*5s SN%V"u W08J ncLel nss nr6on nbe*1 nti sn ni, o*t nnatX nreon ntz In nT2-Q n22?n ac?'O 0QVO _ __ -aMA4EL i C964b_ 690,10 90*';- OOC6I- bLgOT- tSOOI- 29CO0- 09900 Lbll 91 Lb-O 9W10 LILOO OOT*t 3SV313Y 3z9vdolS W08i ATConcl colT@t QC9494 lbhQr Olo.cz xf%nl 7&b2*c QC °^2p CC7.2 79clp cICOZ 10Zat 1h:-4 MnIJNT w-AAIM Utmj lVlol ld3S9 gnv Alnr l]Nnr AVW 8tt mtwu U1S Nwr -in AQN I na ____t 1 N J I _ kmvwwns~~ _ _sA SYS5TEM SUMMARY -~~ iTERI~~~¶1~~TT ~0 1,T NUV VIL. JAN ILK MA ----A X T J JU Y A U U ---TP1 II P1AL FROM STORA~GE kELEASE 1.002 0 .66i I.U77 2.095 3. 019 1 .523 -0.445 -0.601 -6. 096 -6.025 -0.322 0.006 -4 . I01 FROM -TR TRUTAWrr Uu u * f u 0 U7.W UTU;4Owa0 .rurnJu-D. I * sgui u *93U- -.55UWT r.T3-U FkOM ORAINS 2.120 1.20b 1 .220 1.9552 1.173 8 1 .638 4.062 9 . )5 0 1. 848 29. 325 38.2a0 117. 112 115.1751L = R`tbirR VO N t V RT10 0 .0U 4 -e U-e * u 0 I u- u . T0U u uaZ 1UO 07t1TU-V70T --. 0 o r UUTUt3uo~zuu . -3~3T-- TO RIVER OUTFLOw 1.311 0.It.0 -0.003 0.010 -0.000 -0.000 0.502 2.020 1.288 8.463 14.140 8.853 37.044 TU RIVtR LU3b-.v, -092 . il' ti.J49 U.OU4 U.5Luu u.jI1 Z.IU2 3.901 0.yla 11.bj7 f.U35 -b.Sjj j1 7 -Ts To LINK LOSS 0.573 0.'.16 0.3R8 0.466 0.562 0.586 0.415 0.3119 U.4.36 O..3a2 U.408 0.4152 5.531 TU vWATERCOURSE 5.418 2.197 1.989 2.445 3.720 4.16b 4.245 5.e71b 8.379 7.531 7.851 6.);04 60.1756 rwnr.¶5wUuJNErwATE7w3~~~~~~.540 175t63i5F-J43 1.UJ33 i 9 Z.317 1 3.664 3.619 'D.6 SilORTAGE AT WATIRCOURSF 0.436 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.48U -PUMfPCLA PA LII Y G OO1liA Rt - ".341 r 239g 1.Vbti .eI J.(13 I7to 4 e." '.7 3.u,u 4.023 3 2 a &g i #5 %6 g1.U1 a PUMPEUi FROM G,OOD AREA 3.540 2,?33 1.765 1.961 3.3 5L 3.439 1.033 1.1'98 k.317 2.7,5 3.664 3.619 -iO6715 RECHARGE TO0(GOOD AREA 2.900 1,721 1.428 1.670 2.495 2.914 2.257 2.524 3.245 4.759 5.041 3.836 34.te03 NLT C.tAN(jE -- GjuuU AILA *U.V9'v' .oebbb -u,q9d 02p. I . IU5 -0. 0b U.vbi 1.ulq U.14'j1 1.15j u.QOj -U .Jdb6 - u.9 V-3 PuMAP CAPACITY 8AIJ AREA 0.3810 0.380 0.380 0.380 0.380 0.380 0.380 0.3110 U.380 0.380 O.3a0 0.380 4.b60 PuPLmtZ W-TflTNRAT A1tO7 0.161 U.154 U,L69 U.T9U 0.Stl 0.16I U.192 U.Z UZ5 U,2o66 0 241r f041 EvAPORATION BAD AREFA 0.975 0.51y 0.486 0.578 0.610 0.109 0.560 1.166 1.647 2.134 2.095 1.356 12.894 --RtC-H RuE-10 BAn,166 U.-669 U.b1e U.gfib 0.853 U . W# U. yq5 1.363 1.OSD 1. .3' 1. 595 i.0 NET CHANGE BAD AREA -0.019 -0-.011 -0.028 -0.011 -0.007 0.001 0.024 0.005 0.025 0.034 0.013 -0.002 0.024 UXAIN 7JTUNAIL LUNIitNJ U.Uf6 0.120 0.1a0 U.e9u U.Juu 0.360 0.geu U..'!iU U u.,)%U U.bUU U.0bu U. r?u 4o6 --- - --EnERW1T t1-¶TtL-tU-rtwM TOTAL PUMP LOAn 309,*45 201.93 164.11 184.21 308.36 315.79 93.23 108.78 2j0.20 250.05 329.51 324.n4 2799.13 TTTOT1 V StIT1D1 ..D 0 7ZT 12 rcz F O U8.0 fiii Uu r3C400'C-nyU00T8 8tY7UgTVyuu u 50 u0 a i.,J a uvu TOTAL ENEkGy LOAD 1015.45 906.93 885.11 905.21 1016.36 1026.19 821.23 813.18 990.20 1030.05 1128.51 1132.04 11737.73 ?1IURU triKr'i,y tO ~Au 78. 32.8j.p 334.q.u 33.5 7jp.pp 49C.6L %J'.68 404.D'9 71.5 101.1i IbI.4y !V.34C 637 THERMAL ENERGY TO LOAD 43G.17 510.03 545.99 561.93 491.41 513.73 39Z.50 391.08 415.58 326.21 360.99 358.64 5366.31 tNtRGiY UtFICZENC.T (1. GO D0U U 0.00 U.uu -u.g ~- U.uu uU-.U-U. DUU7 -uu, u.u0 U.OU --U4 INTLRLONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -HYDRO LNNtX, ,HL u.uu ouu0o.uu---W Uuu U. ie49.14~VZ T4W3UTr534 3W5.3e 10U3.141 13f4*9 PUL (PLbAWAII.,J PEAKI PUJMP LOAD 518.65 427.72 379.81 405.36 539.69 548.57 193.04 222.06 414.52 472.51 555.45 545.86 5223.28 1560.00 1551.0U 1599.00 15va.00 1b363. 5UU i~Uo lJ3*Uur807DWT5U 1759.0 L711.000 19732.00 TOTAL PEAK LnAD 2018.65 1978.7? 1978.al 2003.36 2102.69 211.0.51 1626.04 1904.06 2136.52 2198.51 2314.45 2322.a6 24955.28 FIVDRU CAPArLTY-TO LUAIJ 553.94 149 . 5 V133J"8 743.aO U 5iiW3OT5 ie. 3I 1O. I--9ZT-.4 1'-rjc .gg9 &q:o..u ascs.se ISJC.lD zcuiorei' THERMAL CAPACITY TO LOALU 1194.71 1229.14 1242.99 1259.56 1224.39 1262.63 1064.93 976.64 1008.05 741.VT 785.19 190.71 12181.51 t i PM 1ArA.I TY TANA?t tN Uo.t 0.uu o.ou U*Uo U.UU -U.UU u.ouu U.Oo U.UU u.u0 0.00 U-au 0.00 PEAK RESERVE 526.98 534.18 415.50 562.99 431.61 303.14 597.01 685.36 653.95 920.03 576.21 871.29 7445.50 C-10 SYSTEM SUMMARY 1976 - - ~~~TTtRrNArr FiL~~~~~lt iuV LJLYh. JR'V rt MAR~ 41R M A Y JUNE JULY AU(U 3? P T TOTAL FROM STORAGE RELEASE 1.092 1.350 1.386 2.207 3.327 1.825 0.721 -0.192 -5.280 -5.964 -0.348 0.009 0.134 VFlMM ThBUUTARTtF 0.2'iu 0,tuu u.-Zu- -0. zi u.2gu u.13U 1.zuuo p.09u U.au Iojgu u.9.iu U.515u 707 FROM DRAINS 3.081 1.975 1.556 1.543 1.730 3.397 6.665 16.167 22.180 25.650 27.244. 16.665 1?8.009 -TOtRESfRvOpIR tvArUINA1LuN 0.1J,J 0.023 00U1e-0.0U2 - O.-CIO u.01%pg U.UCU U.U4* U.IJ7i U.Vjo 0.028 uquzb Uo TO RIVER OUTFLOW 1.962 0 39 7 0.9037 -0.003 -0.000 0.479 1.555 4.754 7.066 8.947 9.976 7.?67 142.738 Iii XIllt( tus3 J*.q65 10.0II U.z%u U.v 0.4'f 1.621 L.196 6.J3'D 9#.Vqb 4.q J. -2.uuq 10.*b7? TO LINK LOSS 0.5A0 09455 0.401 0.434 0.559 0.53e 0.4se 0.3n5 0.1428 0.377 0.409 0.439 5.464 1WLCANAL LU3 - i..v13 !.34o 2 t 1. 3~a.ia i.o0& l. i.o&uo- .U'I7 £.L3 £.1c a l e.4O 4.0pp C1*!81 TOwArERCOIJRSL 5.518 Z.591 2 39 241 354 5.589 4.041 5.783 8.297 7.518 8.1,7 7.126 b2.c124 -FR`ON1-GRuN1 w~A1tA 3. g34 g - v &,U .SuU -*U"3 -3.18 £f. I aU I . 1 5 I.63'4 2 -1 I.3 3.65d 3. 8 63 jz.UB8 SHORTAGE AT dJATLRCOUR5E 0.174 0.000 0.000 0.047 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.222 PUMPED FROM GOOU AREA 3.934 2.003 1.500 2.053 3.718 2.1a0 1.405 1.634 2.810 3.13a 3.852 3.863 32.0688 -EVA-P0WxATTWUUUI) ARtA U.-C9 U IJU U,V11.177 13.19Z u.euO U.165 0.2235 U.13.231 0.597 0.750 0.496 3.711 RECHARGIE TO tGOOD AREA 3.000 1.821 1.466 1.659 2.486 3.006 2.271 2.58Z a.Zau 4* 7b4 5.121 3.899 35.357 mtiJ CmANG(L -- Gul.jL AKIA *L.21b -y..312 -Ij.lg, -0.51 -1.geg U # &f U.1UC U.!1t U j1L.~ U.Scu -U.46u --u944e PUMP CAPACITY 8A0 AREA 0.380 0.380 0.380 0.380 0.380 0.360 0.380 0.380 a.350 0.380 0.380 00380 4.560 etmptu Tu DRINAGE~ wocI6 0.IIi '.166 0. 1 F U.!Vb .L~ U1! .95 U.z2ti U.gb2 U-z~ -U.eg9 FVAPORATION BAD AREA 0.968 0.538 0.508 0.593 0.678 0708 0.590 1.210 1.679 ?.168 2.138 1.392 1J.1 71 RttF{A-GET i BAD AREA 1.111 0.4 u.61'8 vor'L Uj. o0 U.'Vj9 1318 L.'4I 1. 927 2. 7 42U 1.619 150t NET CHANGE 5AIi AREA -0.007 -0.014 -0.027 -0.021 -0.013 0.037 -0.000 0.004 0.026 0.035 0.007 -0.002 0% UKALFI STUINAGL CUPdILNI 0 Ptfo1 13.840 IJ.'9U uo'ftv A.2ut 1.uU L.54U 1.20U L.40u 1.3cIJ 1.3813 1.4413 1 3.3213, TOTAL PUMP LOAD w351.69 £83.03 139.11 194.04 345o99 198.94 129.06 149.46 256.45 286.96 350.32 350.31 2935.31 TUTAT~~~~~~t~~AD~~~ T~ouluO 7Tjp-D0 ,'96.uu r'.euu 18u.uu reo&uo uup.uuo 540.0 05 iU 5!8.131 0555.31 93 i'S 3uu TOjTAL ENERGY LOAD 1131.69 961.03 935.11 986.04 1125.99 979,94 931.06 989.46 1112.45 1144.96 1228.32 123A.31 12770.31 'IHIJm LrvL'tuy iu LUNLI arr.tl5 9~1.21 pi,u.7 11r.0r Syr* ru 78p.v9 71oq 7 Y 60.8.c 931.v1 102C3.raI LU13 a. oe-2 Tw V4.Z THERMAL ENERGY TO LOADJ 253.74 43.81 134.49 206.31 428.21 410.88 421.55 439.44 471.76 21Z.97 204.45 199.60 3429.21 LNLImby utFJIL u*uu 13.11 U.1U0 U.uu 0 .013 UOuu U.uu U.UU a.uo o .ouu O.oo 0.00 T;zp0 INTERZONE ENFRGY TRANSFER 0.00 0.00 0.00 o*oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HiTURO tfmp'bYbUNLU 331.135 131.20 pIp.Uf 813.16 C13.IU 1y-.U02 259.148 213.43 355.9838. 3375.5 23.uz ,I92U O 6 VUWLK IFMfURWAIiSl PLAK PuIMP LOAD 587.13 403.79 347.81 425.a7 58.5 392.31 274.02 305.56 493.14 518.80 590.14 585.54 5513.61 'PE-K8TSE-UAIPW--- 1128.10 1122-.UU -17 b 3.UU-TTTJS.0VU 116 . U U 1718.001 17ve.ou1 18513.031 L9tOJU. DVT9DU7UW1VI 9 37 UUT 19 55T i.ou TOTAL PEAK LOAD 2315.13 2125.791 2107.81 2163.m7 2305.57 2108.31 207Z.02 2155.56 2393.14 241a.50 2527.14 1540.54 21233.67 URlmC~wA7CTYTy-LUAD- T1764.- 1 r U1 . ? i-71.'. 1UUI17 .eu &.i 3a ,oa iie I . U rTU0Y9 i0.53 iq3q.93 1 r~od. '4 THERMAL CAPACITY TO LOA., 1530.60 324.5"4 436. 17 561.A0 870.68 906.93 951.01 1027.53 1047.83 615.61 606.61 605.61 e4b4.-43 11IMM eCAFAv T TMPNbtLK ouou U.uu U.Ug o.uu aUOU 13.01 U-.-UV 13.013 13.11 13.01 0.00 13.10 0.0i -PEAK R-ESERVE 1242.a2 L337.46 1276.7A 1100.ZO 791.32 755.07 710.99 634.47 b34.17 1046.39 1055.39 1056.39 11641.44 e-u. SYSTEM SUMMARY 1977 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~ATFWTMA~~~~ I ULI !4~~~~(JV UtlL JAN MAR FRM MAY J1 EJULT AUGi 5EPT TOTAL FROM STOR4GE RELEASE 1.0A85 1.339 1.373 2,184 3.295 2.4.71 0.367 -0.517 -5.235 -5.913 -0.350 0.006 0.10!) r-R"J-Tw I 5U IAN I S 0.i ~TT .220 u.Ziu 0.4 U. r.,u I.-IU ---- a-. ;wu70 for3s FROM URAINS 2.905 1.412 1.49'. 1.498 1.720 1.545 4.983 12.056 1544 21.221 23.8a2 11.559 99.5~19 -Tl-R~ESMIR EVAVUKAIJUN~ 070SJ)- u.u?3 -U-.ui 0.UU2 0.010 u.ulz 0.0LO 0 . U4 1- U-.UTWO- -D. u 3 0,8 U.UZ6 0.#3 3 0 TO RIVER OUTFLO* 1.723 0.207 -0.000 -0.004 -0.004 -0.005 1.047 3.120 '..150 6.4141 8.151 5.030 29.ti60 TO LINK LOSS 0.573 0,463 0.427 0.460 0.561 0.5a5 0.520 0.411 0.438 0.386 0.4144 0.516 5.61J TJCI1WA~~~~Lt-OS5 ~~~~~1.9i.5 1 .3 1.d8'Jeg 1,4U4 1.619 1.6ab 1 *63~ 2.v9## e.466 1- .1795-22az41 I .010 geI 71.45 TO WATERCOURSE 5.544 2.509 2,289 2.525 3.725 4.418 4.261 5.827 8.373 7.696 8.l82 7.008- 62.356 -FW0WMGW0UNU W.ATtM '4.1)0 2.1 '7155 1.Sz 3.b99 J4.'4 1.i1.6158 4.9u!> 3.1le 4.158 id11 J~ 4.673 ShORTAGE AT wATERCOURSE 0.149 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.002 0,154 FUMP CAPALITY (1UUU ~~~~NLA '4.591 C.11'4 C,'LL 2AZ.59 4. 1Js3 g.4449 3.1aU 3.499 4.643 '4.171 '4.006 .O U v--T PuMPED FROM GOOD ARLA 4.150 2.215 1.656 2.122 3.699 3.494 1.367 1.658 2.905 3.112 4.158 4.275 34.?'T3 ~~EAP0~'4i1UrI LUULJA~~~tA~ U. 1O0b 0.0 u9 U 0 .063 0.1'j0 0.19 U0.j' U.t 0.15iJ U. '9j U. 505 00501 0.181 i.171 RECHARGE TO 600D ARLA 3.049 1.634 1.500 1,707 2.532 2.938 2.313 2.611 3.307 4.832 5.178 3057 35.758 NLT LMANbL - GOpOD ARtlA 1.3uO -u.'*F1 -0.2JV -0.566 1&.196 -u.8au U.O4'9 u0.60 Usl1U9 1.171 0.456 -01uu -1.909 PUMP CAPACITY BAD AREA 0.480 0.480 0.480 0.4a0 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 15.160 r u TPt u Iu LIRATNA-G~ 0. 31 5 0.214 0.189 0.IMU0 0.-C19 0.1'e'4 t 0.1 0.11U 8 ') 0.3CCZ 0.307 U0.5! U0353 J* U21 EVAPORATION BAD AREA 0.872 0.448 0.419 0.5u2 0.583 0.611 0.496 1.090 1.563 2.083 2.058 1.302 12.027 NICHAXIJE 10 tIRO ~~~~~I~~tA 1.180 -u.! u.661 0,179 0.009 0.915 0.186 1.3wF 1.q14 C. 45 t 14%Z I 1bSlg 15.I!0 NLT CHANGE BAD AREA -0.004 -0.020 -0.021 -0.024 -0.010 0.010 0.014 0.006 0.040 0.032 0.006 -0.003 0.021 UkI~RN SIUXAtL LUN4LIti 1.500 1.260 1.610 1.050 &,.1'U 1.1513 1.000 1.It'U 1.900 1.040 lC.1uu 2.160 Z1190u TOTAL PUMP LOAD 380.86 210.86 162.11 209.36 353.55 336.63 132.94 158.18 277.00 303.09 391.81 402.83 3319.26 -TTurAXl-ST1-LnA1Tt 865.00 074.00 811.U0 GF4.00 500.00 862.00 092.00 92F.UU vqq'.uo vq1.uu vsv.uo vau.uo 1uo3b.00 TOTAL ENERGY LOAD 1236.86 1064.86 1033.11 1083.36 1213.5S 1198.63 1024.94 1085.18 1221.00 1250.09 1360.87 1352.83 14155.26 IITUMO tNIMOUT ,u LUAU i12.c0 1ula.it i04&.22 avz.za r3.o sve.o'4 72c.04 sb.9i sviv.45 £113.90 tr10.10 lezo.40 1&UJ.61 THERMAL ENERGY TO LOAD 19.56 6.68a 11.83 191401 475.44 505.70 472.03 488.20 526.41 126.04 133.98 162.52 3119047 LNLNOY Ut! ILILNLY 0.00~~u:uo 0.00 0.00 0.00 0.00 .0 .0 u o U 0 uu .u u. .o INTERZONE ENERGY TRANSFER 00 0.0 0.00 0.00 0.00 0.00 (100 000 0.0 .0 0.00 0.00 0.00 -RYLRD ENEMbY 'SUH7LU5~ £05.11 112.11, 1160.9 140.v0 301.15 137.0 %4.1151 1.1 1.5 JOU 4.11 e9 1 4.61Y7 ---UPwER MIGARAITSY PEAK PUMP LOAD 640.33 470.06 405.67 456.58 620.51 583.19 291.29 331.35 530.01 563.60 856.94 660.76 6210.68 FLAK UA5t LIMU 1902.00 15-99.0U 1930.00 11923.OU S599.00 19U1.uu 1951.00 2045.00 2ugq.u0 9099.00 4139.uu if100.00 2398f4*UO TOTAL PEAK LOAD 2542.33 2369.06 2341.67 2379.88 2519.51 2484.19 2278.29 2376.35 2624.07 2662.60 2795.94 2820.16 30194.68 lIYURO CAPALITY 10 LUAU) 2161.30 2174.46 2104.98 1ais.91 1103.441 1303.51 411.30j 1208.43 1513.a0 g131.40 9243.51 fz33.36 21851.23T- THERMAL CAPACITY TO LOAD 281.0 194.60 236.68 543.97 816.07 1160.32 1140.99 Z167.92 1105.21 531.14 352.07 557.143 8331.45 FIRM CAFALITY TMANSrEN 0.00 0.00 0.00 u*0. 000 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1380.96 1467.40 1425.32 1374.09 970.93 606.68 646.01 619.08 681.19 12515.a6 1317.93 1299.05 13005.09 C-12 SYSTEM SUMMARY 1978 - -- WAltR tMAr1 ! UtT ]uV -Ut'c JAN FtU MAR AFR . .A. JUNt JU(.T AUV SEPT WTiAL PNUM tlVtK IJFIWLUW J-.bf 2 .'O C.'iUq t.UJi 3.009 5..31 Y.OU3 21.410 44.IiU df*%Ox zo.46 lU.C10 lfU.vo0 FROM STORAGE RELEASE 1.R0A 1.330 1.363 2.166 3.270 2.001 0.446 -0.150 -5.189 .5.8593 -0.330 0.005 0.139 1WUIM TRINUU1ARIFS U.ZeS' U.IUU UQZ2u ll.ZIU 11.2U U.130 1.1OlJ 1.09U 11.*qU 1.*U U.930 U.55U0 7.750 FROM DRAINS 1.370 I.ZII 1.852 1.551 1.676 1.634 7.533 20,402 20.612 24.785 29.91 12.931 125.475 TJ ktR5RVOIN fVAPORAMA1TON 0.05U 00023 u.01C O.UUZ 0 .010 U1.013 U.02 U.*U4 0.071 U*.03 0.0Z8 U.U26 U.338 TO RIVER OUTFLOw 0.694 0,023 0.035 -0.001 -0.000 0.000 1.926 6.a95 6.976 8.347 10.663 6.165 41.125 10 ftIVtJ LUS5 -2L.59 0.3Ca 0,564 0.3I0 0.449 0.1J1 J3.2O 1.04 2'44."1I 5.JP9 -7.010 10.l1.0 70 LINK LOSS 0.578 0,486 0.383 0,498 0.566 0.6Z2 0.422 0.392 0.424 0.376 0.411 0.566 5.1Z3 TO L.ANAL tu0 ) 1.8cC 1.302 1.iO' 1.23U 1.594 1.b3 *.595 Z 2.083 4.29! 2.106 Z .Zy2 2.U93 Zl.199 TO WATFRCOURSL 4,709 2.342 2.300 2.819 3.915 5.251 4.136 5.74.9 6.825 7.495 8.211 7.041 62.25 rROM (jRoU'ud WATtI 4.914 2.489 1.t2 v.925 3.611 Z. 10r 1.39 1.919 3J.21 36C At 4. 89 4.053 Jb.965 SHIORTAGE AT WATERCOURSE 0.389 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.001 0.000 .0.000 0.000 0.419 wAtLRCuuwat Htui. 1.01Z f*lJl 4.02Q '.fiI 7.224 a*.12 P 5.1/5 1.668 11.530 1S.1CJ 12.IUU 1.62Z4 99,bu9 7UMr CAI'AIITr IOUj AKLA 5.l92 2.9OC 2.356 C.614 ' .326- b.645 3.510 3.430 *'.06 -.510 5.219 5.03 '9.299 PUMPED FROM GOOD AREA 4.914 2.489 1.724 1.928 3.611 2.764 1.639 1.919 3.276 3.6Za 4.449 4.563 36.965 tyAPRHAiUION GUI ARFtA 0.069 O,U000 0.016 U.azr O.Ous uU O.U14 O,U1Z U.114 U.3Z6 U.314 U.23b RECHARGE TO GOOU AREA 3.037 1.045 1.437 1.606 2.538 3.011 2.315 2.641 3.368 4.863 5.26a 4.025 36.155 NET CRaNmu -- GuuU AREA -1.940 -0.649 -u.3Ug _0s, -1.ull U.ZZ9 U.061 u.rus *u.Uf22z u*.sus U.46 -UV*I95 -1.962 PUMP CAPACITY BAD AREA 0.724 0.124 0.724 0O724 0.2* 0.724 0.724 0.7Z4 0.712 007Z4 0.724 00.724 8.688 PUtMPEU to DRAINAGE O-.5Z1 U.1435 U.z2l 0.343 0.556 1.)369 -0.357 y.74 U.56b U.blU U.623 U.bUU 5. 706 EVAPORATION BAD AREA 0.776 0.422 0,393 0.509 0.608 0.561 0.442 0.983 1.406 1.901 1.865 1.157 11.044 lREt`HAGW TO BAUG ` A 1.1A5Sa7 0.006 O.7tRl 0.805 0.929 0.1 - 1.330 T9*C C.5UO 2.411 1.661 15.067 NET CNANGE BAD AREA -0.141 -0.185 -0.149 -0.071 -0.100 -0.021 -0.042 -0.059 -0.032 -0*011 .0,017 -0.075 -0.864 UHAIN 3TUHARL LUIILRIT C2.R0 2.40u 2.520 i. b9 z.76U Zg.5a 3.OUO J.COu j.ZvU -30JDU 3.4au 3.600 .55.(aU - tFbRY ("ILL1014 KWH} TOTAL PUMP LOAD 472.76 253.39 174.41 203.25 360.1 278.36 163.64 191.52 32a.18 364.65 445.45 453.66 3669.38 ~TWTA1--BAy-LflAIF950.005TW945.00 2.UU Y0 a.uU S4r.00 94Y.00 955.U03~0t 01031T.U IU5,OrlX4JO 1018.00 14.00 91994.00 TOTAL ENERGY LOAO 1422.76 1198.39 1136.41 1171.25 1307.11 1227.36 1148.6* 1221.52 1373.18 1415.65 1523.45 1537.66 15683.38 HnyK LIRIIY *o LUtIAu lcel.60 119g.32 1136.3'9 i61.00 m7l.52 IL6.41 521.11 8613.3 023.71 563.70 96U.2l 5tol.-1 psu-93 THERMAL ENERG,Y 70 LOAD 141.05 0.00 0.00 10.17 449.49 500.87 526.80 548.06 549.52 551.97 563.12 250.33 4091.38 tNLHGY utLiLiZTCT 0.00 O.UU O.UU 0.00 U.U0 OTDD 0.00 0.O0 0.0O U-OU 0.00 U.0O 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0*00 -RTVDRT'tNJEYSUT PL1U 12.6u 15-.65 w81V28.%4 '933.65 306.32- *10.07 352.32 * 50- 5.e9 '9*5.92 34.z3 ^36U. ruwLN IMLURAwiJS1 PEAK PUMP LOAD 761.3a 530.75 414.23 452.60 656.31 543.85 355.04 403.82 623.37 654.73 736.ak 735.05 6867.97 WUW8TStEU A s E - -2T02.ao-2u97.a Q U139.00 2I 3W0Kt Z1092 .00 oSn< 2r96 r* Zr60U z3225-Z32- U 1`0Z3Z U 237.0U TOTAL PEAK LoAn 2863.38 2627.75 2553.23 2587.60 2748.31 2639.65 2556.04 2670.a2 2943.37 2976.73 3111.82 3129.05 3340T.97 MYTJrDcApA^FFtJrTTT1LUOA 2201.62 2290.'9&Z511.U9 Z3$0.Z £978.32 1,06.r9 pgjr.oo 1,o,.l1 Ju77.22 2U5139 21(6.Zo £Z431679 24562.Z THERMAL CAPACITY TO LOAuJ 575.76 37.31 42.15 237.3B 769.99 1011.36 1119.04 1265.61 1171.95 919.34 935.56 697.26 8642.71 rIRM LAPALITY IHANrLNR UU. .U0U U0. .OUO 0.0 U-UU U.UU U-00 U.UU U0UU 0.UU U.00 U.0 PEAK RESERVE 1622.34 1749.69 1744.85 17*9.62 1247.35 915.64 867.96 721.39 815.05 1545.12 1592.7w 1598.44 16170.17 C-13 SYSTFM SUMMARY _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 19 9_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -- WATFRKAFf UCT NOV D Lt. JAI TEB MAN WR t- UNV JuoY AUG -SEPT TOTAL FRmu NvLEK 1NFluw 4.434 2.fbU C.316 2,cuc 3.5Z a.zi9 -- .su 1.4so co-Y95 jlqc j.gu 13J.6JU 14b.8u FROM STORAGE kELEASE 1.076 1.318 1.349 2.142 3.237 1.748 0.782 -0.268 -5.132 -5.772 -0.343 0,U09 0.146 fROM TRMRUTA1E7S - uO.nuu 0,20u0.22u U.lzu -07240 U.orsu r1r I u- -F. 09 U.84U0 T-.jU .s3 0 U.b5U 7.30u FROM ORAINS 1.632 1.455 1.460 1.597 1.793 5.094 8.542 16.595 21.93f 30.468 28.464 16.374 135.410 -TioRtsERvIRt REvAPORAPRON 0.05 3 uu 0, u OC 0.01 0.u010 0u.U£. v .u£' o.arl .UUZb u .33Yg.e TO RIOFR OUTFLOV 0.919 0.0I? 0.000 -0.005 0.002 1.068 2.656 5.139 t.984 10.414 10.818 7.210 45.Z36 Tu Rivtm COSS -2.1521 0.212 0.Js0 0,5354 0.04b e.llb a.o .s -"oi .s e.qv9 -zo5Lq ZU.RlA TO L11NK LOSS 0.579 0,447 0.361 0.407 0.578 0.056 0.454 U,40Z 0.431 0.301 0.410 0.485 5.541 -WTCXANAL-t1SbF i *35 1,Zi4 1.145 *. ael l.rlr *;ni6--t. eOT -1 c ZVZZ5- *,3Zb 2,110o *l.f3b TO wATERCOURSt 5.187 2.361 2.046 2.325 4.071 5.155 4.053 5.815 e.J55 7.526 8.220 7.162 62.?77 -TF]R`O-GoUN-D--wAE-R` 14 r .572 2.048 %6 Z955i-- C..-74 z.O30 c J .W4Z5 48354 4 o30J 39.177 SHORTAGF DT uATERCOUP'E 0.211 0,000 0.005 0.089 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.333 WATtRLUURat LUI.- L0.11 g.93,3 4.099 4.63j I.6be a.Slu 5,.9 F 7.,45 l1r.5 1j.J3f lJ.U54 11.965 lul.158 p-Yp-CAAtCITY GUUu ARtA 5o465 3.039 2.45C TZ1Sr 4.5Z8 4. 85 J .Ir. J.97Z 5. 150 g,1rJ 5 51' 5,b86 51.895 PUMPFU FROM GOOD AREA 4.759 2.572 2,048 2.424 3.611 2.955 1.874 2.030 3.425 3.844 4.834 4.803 39.177 --EVAPURAT1LA0030l AFtA UOOUO 0UOUU -U0UT D--I 0 C.U500.WU go -Uuu . 09 - -0U UT3 U. 13.3 7.08 o0.0e48 0.345 RECHARGE TO GOOD AREA 3.130 1.788 1.430 1.630 2.640 3.042 2.336 2.674 3.417 4.929 5.352 4.103 36.471 NLt CHANUE -- bUUU AHLA -1.62c -U.15 -_0.035 -U.1la -U.'DL UsUal U.451 U.b3b -U.UJ4 U.iDJ U.43# -U ty! - .u05 PUMP CAPACIIY BAD AREA 0.824 0.824 0.824 0,824 0.824 0.8Z4 0.824 0.824 0.624 0.824 0.824 0.824 9.888 PUMPTD - TU uNAINAIL U.ee 0 O.a53 U.JS U 38u 0.404 U35.100 7UI1 U.14z Y 5683 U.03 U.689 0.671 50yoo EVAPORATION PAD ARFA 0.742 0,420 0.397 0.464 0.549 0.557 0.436 0.983 1.377 1.750 1.711 1.078 10.464 RLtHRAR6t TO OAU AA Xs1.119 u,699-0-.658 U 0.7bO U u.95% U.IJI 1. uU V.5TZ z.zz . 49I 1.1 1 16.0Z3 NET CHANGE BAD AREA -0.185 -0.104 -0.089 -0.084 -0.055 0.029 0.020 -0.009 -0.004 0.079 0.097 -0.045 -0*349 UHAIN SIONAGt LUNItNl 3.1(0 a.r1 3.810 3,GoV .v 1.u F 4 .0 rO g.1j 4*2c 4.31 41r '..52 45,1'896 -tNERG-1YMILLIlON KWHI- TOTAL PUMP LOAD 467.29 260.19 217.89 263.82 379.07 287.80 185.76 203.52 354.86 403.15 496.78 494.55 4014.69 --tOTAL:--AStnAD -03-6 bOO-1O07 .0 O 0 t03 1JO0- 0 810-t13DI00 11480 fL5A70Q-l -T' .00 * 1190.00 J1153.uU TOTAL FNERGY LOAD 1501.29 1296.19 1274.89 1325.02 1416.07 1328.80 1266.76 1333.52 1502.86 1556.15 1680.78 1684.55 17167.69 ITUNMO tNtfObT TO LOAD 1470.n2 llG9.1u 1035.10 1199.0U 0lp.00 1571.1 orrU5 *15.49 0ju.42 1jp,.1o 192.Yq 1490.04 1JU515.b6 THERMAL ENERGY TO LOAD 30.36 127.01 239.72 126.66 604.17 571.31 589.64 617.94 672.33 168.28 174.71 185.78 4107.91 E M NEHGY uEtICsEhCt FUsO 0.00 OCr u * ou ii * uTUU. uO- O.uO* 00 u*UU o.JD uuU O.UU0 U U.O - INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYUR0E1ERG-"SUPL U 12.9U 0.00 0.0 Zw. 47c5y34 Zt3JF 8un-.3 FZr-1.7'Zl zc4 . uo '.9 2. SC1.L UWLf IMLIGAWAWISI PEAK PUMP LOAD 777.01 561.67 514.65 562.24 700.75 553.17 401.83 423.60 674,45 720.30 812.72 802.52 7506.91 -F -"A-SE tD u UU £197*0 c qg 0U 0-2 034D.O 3 2o6U 2305.00 24Zl1O0l Z.Z50Wz33.-0WZO Zz32.uO z918s0uu TOTAL PEAK LOAD 3083.01 2858.67 2058.65 22g.Z4 3000.75 Z560.17 t82Z.83 Z915.60 3t26.45 3283.30 3423.72 3434.52 36689.91 -mYMmfCAPACITYTTVt01-D ZO1 T9 27lT4.9l £190.19 232ic 4T-9i8.36 103.71 1431.0 "4017t0 - z5.oa £118.54 cr7u.u3 isioJ.Zl THERMAL CAPACITY TO LOAD 381.23 590.73 661.76 597.60 1013.39 1256.46 1391.83 1514.50 1451.79 699.69 705.10 729.49 10986.64 F IRM CAPALITT .KANSFEK U-.U U.UU U.UU U.UU U.0U U.UU U.UU C.UU U.UU UwUU U.U0 U.OU U.00 PEAK RESENVE 1605.77 1718.23 1635.26 1339.40 1135.56 660.54 745.17 622.50 665.21 1437.31 1431.02 1442.96 14879.74 C-14 SYSTEM SUMMARY ____ ___ ~~~~~~ ~~ ~~~~~1980_ _ _ _ _ _ _ _ _ _ _ _ _ -- -wAitR IjMAfp Iuc:I ?IUV Lj ~ JAN t mAR( ArI MAY JUNE JuLY AUEi btrT T UT.A FkOM STORAGE RELEASE 1.072 1.306 1.334 2.116 3.201 2.401 0.410 -0.568 -5.9082 -5.724 -0.349 0.a003 0.099 fRQfM ImHijulARUS. 0.2130 U.2%r 0.220 u.2lu O.Z14 U .I1,u 1.LU 10~ U.640 L.jRU U.930JU5 o 1.30 FROM DRAINS 4.063 1,799 1.346 1.6*6 1.809 1.496 3.375 6.409 15.6a2 22.227 21.891 8.638 90.5~81 tO-RTSticyG:R tyArGpAltO?R-- O.0u3 u.023 0.1 u.uu .UU U. 0.010u U.0J9 Ufu7 U.V35 U.IJCa 0.ui!b e TO RIVER OUTFLOW 2.136 0.395 0.004 0.001 0.000 0.002 0.441 0.893 3.:513 6.662 7.U454 3.652 75.154 TO LINK LUSS 0.581 0.493 o.416 0.4*4 0.522 0.577 0.576 0.547 0.458 o.4j3 0.~444 0.556 6.o026 TO wATERCOURSE. 5.390 2.696 2.188 2.314 3.175 3.626 3.840 6.503 8.723 8.178 b.634 6.7a8 67.055 7HM0 bROUINO WATEm '4.,j1 1 2.J3iL W -250 01# u *buJ *.,53 C.56 I ou .98 3.359 4. le 5.5-18 4II Ii' Ski0RTAGE AT wATERCOURSE 0.0100 0.000 0.000 0.055 0.021 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.127 wATLRL.UURZt KLUI. 10.31r 5.021 .4. o155 '.9e9 r.199 a.euu O.U9O 8.083 A Icue UZII 0 e I l.jaOI if . i~b LUJ.a9'4 -7UMP CAPALitY IuOuti AMLA 5. 4fgi tS Z.511 ( ato' *.140 5.01I3'4 .q J.9C) Q1oJ to.5009 '.811 5.918 5Q. *LI8 PUMPED FROM GonD AREA 4.917 2.331 1 .980 2.560 4.603 4.533 2.256 1.560 3.;e98 3.389 4.727 5.538 41.712 -tEVorrUT hR OOD AR A u* o.oUU7O0 u.oo u.uii u.uoo U.ouu U.UoUU o. ofo---U7UT1 U.u~ o.9gUe'6 u.oiz --u-.T7- RECHARGE TO G00OD AREA 3.209 1.85b 1.468 1.640 2.524 2.9a0 2.421 2.74L1 3.447 4.975 5.428 4.177 36.1F.66 NLT CmANG, -- bUVI A9RLA -1.!0aUd I~f r -0.51C U0.91 -2.0f rv I.51 U.10 b ib 1.11 I .135 L .'#VI 0.631 -j.Jf ----- 5U73- PUMP CAPACITY BAD AREA 0.938 0.938 0.938 0.938 0.938 0.938 0.918 0.938 ). 9 38 0.935 0.938 0.938 ll.~5h PtMTTMP-T0l uxmALNAGt u.598 -3 0.251 , u.9, 0.~ .33 03u . 3~ 0W u;-6Z-W7ZU- U.7u, U. I !ob EvAPORATION BAD AR~EA 0.724 0.43Y 0.405 0.477 0.549 0.9557 0.426 U.994 1.368 1.13L 1.699 1.083 10.4%.' KtLMAHI,t 'U OMO AM~~~~~A 1.1M177 .0 UIJ 08! U.1 .029 -T.4171 1 96 . 31 z .518 I . r * lb,&34* NET CHANGE BAD AREA -0.135 -0.066 0.006 -0.013 0.008 0.037 0.071 -0.015 -0.013 0.080 0.103 -0.043 0.070 TOTAL PUMP LOAD 486.52 233.61 211.92 279.11 478.98 471.12 231.53 170.17 363.84 383.29 514.15 591.99 44?2.9% TOTAL ENERGY LOAD 1621.52 1370.67 1371.92 1448.17 1626.98 1617.72 1432.53 1404.17 16d5.84 1651.29 1807.15 1892.99 18870.95 "U'TUH E.NERGY IL) LU4G 150i... 1242.76 1Ci63.1i 116.11 1-JW.IJ 90.1C !bg.6C l2b.ft 00L.64 £LOi. .2 147404. aQ151.L 1 333173.55 THERMAL ENFR(,Y TO LOAD 111.29 127.82 308.14 285 . 37 668.80 712.67 664.82 677.31 74*.10 486.61 352.47 408.71 5554.10 LNMGILY ULrLLILNLT 070-0U0 UUWU1J U.0U U.UU -0.0* - F 0UU-- u.u0 0.00 p.U00.0uuU0 INTERLnNE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00o 0.00 0.00 0.00 MTtTRO TNtRG' ZUK~r LUb : - 320DTh6-0.0 - u .00- - 3373 33. Z6 a16 25W-DnZ- 1U .z53.01A u, e I~ 1. I 5--T7a')7T 110WE P 12MEGAA I I PEAK PIJMP LOAD 810.28 515.55 517.3U 597.99 813.51 808.31 504.45 386.?7 712.41 703.25 8b3.15 940.58 co1T1.64 -PTAK -OA-SYE-A1YT- 2536.0-0 2525.T 37"0Z5.U 5,*.0u 2,539.0uo 65 L,. u u21Tf5-;0 0 Z7b6.1Jo ZaU.U-W -WZ&3.u eU5b.01- TOTAL PEAK LOAD 3346.28 3040.55 3093.30 3183.99 3360.51 3347.31 3154.45 3131.21 3508.41 3513.25 3724.15~ J823.58 4U221.64 'FYWYCAA L2T-UW'--2(1-5823111.vu £j1-312rT3'i4(.q3 1IT6T1-tWZ3T17fJ l . £1 19.16 er F'4 £D !££.884 THERMAL CAPACITY TO LOAIi 644.70 606.8d 756.22 859.95 1312.16 1835.40 1786.38 1784.R4 i147.34 975.94 1004.99 108*3.1%1 144S7.91 r1MM LAPALIJY 1KANb!Ltk U.U UUU 0.00 U.00 U.0U U.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK RESERVE 1 49 2 .I0 1686.12 1550.2bV1627105 1114.84 651.60 653.77 702.16 739.66 1511.06 1482.01 1403.89 14614.74 C-15 SYSTFM SUMMARY 1981 - -WWHTE KHFT -OCNT UV 0 UL JAN FEHA MAR APR 4f -JUNE JUl AUG 1uP7 T ToTAL rFOM RlVtR iNFLUW I 5 z.27077ij 1.990 J.Ib2 6. 76 15.659 Za.b2 2'1'-C- 315J 11.316 1-t(.d0Z FROM STORAGE RELEASE 1.068 1..Zq8 1.324 2.098 3.178 2.383 0*403 -0.5A9 -5.794 -4.933 -0.336 0.005 U.105 FROM TRIBUTARIE5- 2 U 0.z0u JU U. ZU U.ZIO U.Z4U U.0 l.lUU 1. U0U u.84a.u 1.,4u U.9J0 0.55 7.-3u FROM ORAINS 1.432 1.287 1.392 1.692 1.768 1.520 2.468 9.892 13.607 18.396 23.112 11.297 ff7.922 -T-VEF Ai -WV U1.UIF 0.lZ 0.u l6 0,039 U04 --UU36 - .UZ8 U .UZ6 U , 33Z TU RIVER OUTFLOW 0.458 -0.000 0.000 -0.000 -0.000 -0.000 0.103 1.965 3.107 5.01Z 7.289 4.487 ZZ.419 -Tof RlVRSS --1. 93 O.Z68 0.3l 0.562 0.477 4.382 1.05 5 7 ; 5 470Tr 4.570 -3.0 14-.637 TO LINK LOSS 0.603 0,43? U.413 0.398 0.521 0.598 0.607 0.513 0.476 0.4Z7 0.425 0.501 5.91.3 TO CANAL LS5S 1.815 I.Z71 .114 1.Z44 1.478 1.!53 1.907- z.z55 Z.457 2Z.35, Z.471 Z.Z53 22.J7U TO WATfRCOURSE 4.182 2'*268l 1.971 2.325 2.935 3.726 4.474 6.950 9.385 8.915 9.170 7.820 64.119 T>RtW-ROURW WTER - 5.91Z Z.95---Z36U Z Y83-4.984---.1u'9 1.808 1.41 3.017- 3.U38- 4.7 5.I0'773 Zw4- SHORtAGE AT 4ATLRCOURSE 0.567 0.000 0.000 0.000 0.141 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.717 WATERCOU3R5 REI . -10.66 5,2 3-5.118- 8.-66 6.430 6.36Z 873ITQ lZ.405 j3 -27gqj IU7.770 PUMF CAPALITY GUUU ARtA t.O3r 3.J4 205U0 3.u5 U s o 5.3a1r 4.1Il 4.s' , ,.cog 6.058 0.2 , b PuMPEI FROM uOOU AREA 5.912 2.453 2.360 2.013 4.984 4.704 1.888 1.417 3.017 3.038 4.774 5.073 42.934 EVAPFRATIUN GOOU AREA -0.000 0.UO U0,00 10 C 0.000 o.oo 0.000 O.OT O.57 0.041 0.018 Ulah RECHARGE TO GOOD AREA 3.120 1.891 1.453 1.672 2.500 3.089 2.614 2.879, 3.621 5.113 5.5a8 4.3tl 37.862 -1TC--t`-ANGL -- GOOU AREA -Z.-9Z -1.061 -00T---1.141 -Z.464 -1.615 U.TZ5 1. uI2 -T90 - O;,Io -5.199 PUMP CAPACITY BAD AREA 1.306 1.308 1.308 1.30-8 1.308 1.308 1.30A 1.308 1.30a 1.308 1.308 15.696 PUMPED TO URAINAGL U.8aZ -0398 U.366 U.394 U.4Z3 0.431 U.451 0.6b07 U.*Iz U-.988 0.995 0.912 l7.hb EvAPORATION BAD AREA 0.619 O.Z98 0.285 0.374 0.444 0.430 0.331 0.696 1.285 1.631 1.614 0.992 9.199 JECITARGE 10 BADU Ah7EA 1.17T 0.7U7 0.6h4 .78 0.902 U.93T u.67Z 1.458 Z.UZ1 Z.5t3 Z.581 1.8I 4 16.4Z5. NfT CHANGE BAD AREA -0.320 0.011 0.013 0.011 0.034 0.077 0.090 -0.045 -0.076 -0.046 -0.026 -0.100 -0.380 UDAIN STORAGE CONTENT--- 5.4. 5 5*975 5.619 5.676 5.5 5.638 5,9Z6 6.O38 6.16U 6.268 6.3e6 tU.Z49 ENERHY IMiLLION [WM) TOTAL PUMP LOAD 645.20 337.24 283.87 335.71 561.67 531.23 218.84 170.26 372.20 394.47 573.76 593.82 5021.26 -TDTAL ' RAV 3t D lZ56.UU L256.0 A68.Ua 1Z69.0 1247.00 1244.00 1298.001i4TW00 1310 .00 1319.00 1406.00 1414.UU 15748.U0 TOTAL ENERGY LOAD 1901.20 1S93.24 l551.87 1607.71. 1808.67 1775.23 1516.84 1511.26 1742.20 1773.47 1979.76 2007.82 20769.26 MYORODENEGYT *OOAU 1314.1O 1132.01 995.06 1128.7 i020.1S 90. 195703 73.42 935.8Z 1200.05 1424,91 1029.92 10131.94 THERMAL ENERGY TO LOAD 586.Z7 460.53 556.11 478.83 188.38 794.94 721.12 737.75 806.27 567.30 554.64 377.75 7429.89 tNER5Y UtLILILNLY 0D.00 000 0.00 0.00 O.U0 -0.U7 -U.U4 0.U0 0.UU U0.VO UU U00 0. -0.11 INTLRZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRO ENERGY SURPLUS U.00 n.0u 0.00 5 38 27397 99.1 210.16 3Z4.09 W.ZI 405.99 346.69 37Z.45- 24U42 PUWER (MEGAWATT-- PEAK PUMP LOAD 1018.33 703.11 630.27 689.e5 938.43 913.74 493.34 386.93 741.55 720.25 962.76 916.36 9174.94 PEAK BASE LOAD Z779.00 276a0UU Z79j.0u z811.Ou 9769.UU Z10U.UU la73*.0 Z9550uu U400.u 3054.UU 31U9.UU 3134.U0 34075.00 TOTAL PEAK LOAD 3797.33 3471.11 3423.27 3500.5 31707.43 3673.74 3366.3*4 3371.93 3781.55 377i.25 4071.76 4110.38 44049.94 HYDRO CAPACITY To LOA 2694.18 Z511.44 2409.52 Z130.61 1984.41 1630.56 1432.30 1503.59 2080.91 Z69Y.9Z 2910,98 -308.99 9 1284.6r THERMAL CAPACITY TO LOAD 1102.55 939.67 1013.44 1170.18 1723.02 2031.04 1909.18 1868.34 1694.64 1074.33 1100.79 1101.40 16728.57 FIRM CAPACITY TRANSFER 0.00 a.oo 0.000 0.00 0.00 O0.00 0.00 000 PEAK RESERVE 1384.45 1608.14 1571.90 1466.82 913.98 594.12 70Z.91 768.66 942.36 1735.26 1549,54 1535.60 14773.79 C-16 SYSTEM SUMMARY 1982 WATER (MAFF- OCT NV DEV JA FEB MAR AFR MAY JUNE JULTx AUG ST TOTAL -FROM RIVEN INFLOW 516'O55 ig.17l Z.955 3930 55 *.5zes 9o69o li, r 3 Z0*19f 5 3T03 31,61ZI l5.9J 1'33*601 FROM STORAGE RELEASL 1,066 1.290 I1.314 2.079 3.152 1.906 0.461 - 0.1 9 8 -5.1U02 -5.385 -0.310 0.009 0.018 3 rH0M TRIUIIIANILS u.zt5u 0,Vuu U,ZZU u.z1u 0,1 40 # U*3U l.iuu 1.090 ueallu I .jgu u.9ju U0550 1.130u FROM 4]RAIN5 1.991 1.251 1,433 1.748 1.945 1.875 6.153 8.292 10.789 34.2393 9.297 20.958 129.953 TU NE5ERVUIR LVAFOMAT1UN 0.053 0.023 0.011 0.001 U.UIIJ 0.013 0.0120 0.04q 0.010u 0.03l 0,015 .0eb U0338 TO RivrR OUTFLOW 0.733 0.013 0.000 0.000 0.001 0.000 1.580 1.840 It,887 10.036 14.630 9.814 40.334 -MVRIVER LU35 -2.362 -0.u5Z 0.411 U*64V V.603 U0.15 2,0D5 2.591 2-.1J3 12.543q 502 -1#0350 21.623 TO LINK LOSS 0.609 0.503 0.446 0.535 0.612 0.630 0.496 0.044#2 0.447 0.402 0.416 0.439 5.975 TO CANAL LU35 2.011 1,31'4 X.JU4 1.5b0 1.5ZL Z.Oul 1.519 1.175 L.4af (.340 zo503 X*.34 73.18(9 TO WATERCOURSE 5,861 2.477 2.325 2.913 4.915 5.799 4.988 6.559 9.249 8.144 9.432 8.119 T0.450 PROM GROUNU) WATER0.91 Z.SSh 1.01 Z. 3 31; 3.249 9.bG6 1.5ul 1,944 3,34f 4t.03 -5 1 5o. Ono 39.10 Tr SHORTAGE AT WdATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 '0.000 0.000 0.000 0.000 WATEWcUUR3E RLO!. 1U*159 5,313 4,0401 5.250 a.164 aoq55 6,495 8.503 l1.596 11.141 14,Z6 53 04~p 1U09590 rUmr CAPALITY UUUU ARtA 6. 181t J,'4lz4 de# ,i3 3.Iji 5.139 50448 %.306 4*.66 aaAa :'.84 .#i6 6.lLa 6.389 58.900 PUMPED FROM GOOD APEA 4.928 2.036 2.076 2.317 3.249 2,686 1.507 ,1.944 3.347 4.003 S. 131 5.085 39i.1I10 EVAPORATION GOOL) AREA 0.000 0.000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.006 0.056 0.051 0.019 U. 1372 RECHARGE TO GOOD AREA 3.375 1.934 1.596 1.902 2.781 3.239 2.610 2.922 3.665 5.124 5.660 4.402 39.,211 -NET-7T{AWGTJ----UU -AErX-- -1-. 55 -0.903 -U.480 -U.415 -0.468 0.551 1.103 "0 18 u.JiL 1.065 0ui -----U-0,U37- PUMP CAPACITY BAD AkEA 1.348 1.348 1.346 1.348 1.348 1.3.48 1.348 1.348 1.348 1,34a 1.548 1.348 lb.176 PUMPEU TO VRIA1NA~Ei U0.e1, 0.14Z? 0.371 u.9zj V1451 U o.4 U 0 .481 0.631 0.86v 1.091 I .055 0.930 I.86 EVAPORATION BAD AREA 0.594 0.348 0,304 0.351 0.454 0.441 0.366 0.879 1.266 1.606 1.559 0.974 9.103 RECHARGE Ta OAI AREA 1.210 0.lzu 0.689 0.821 U,952 1.003 U0.53 1.'65 1.04 1,s 591 Z.007 1.836 1r6-. 827T NET CHANGE BAD AREA -0.109 -0.054 0.013 0.015 0.046 0.110 0.036 -0.045 -0.095 -0.056 -0.036 -0.069 -0.240 UkINTFSTORAGE CONTENT 6 .481I 6,._2z 6.573 b6.64 6,717 6.799 6.584 6,964 1.075 ,01 1t .311 7,430 84.605 TOTAL PUMP LOAD) 536.30 345.2,i 271.35 309.68 406.88 303.27 173.15 218.63 341.55 476.54 602.02 584.41 4619.66 _TITAlI7WART-DUAT 1363.00 1364.00 1377.00 13e0.00 1355.00 1322.0 1411.U0 1457.UU 1488.00U 149T.UU 15ZT7.00 153* .U0 II0 1110.00 TOTAL FNERGY LOAD 1599.30 1709.29 1648.35 1689.68 1761.88 1655.27 1584.75 1675.63 1819.55 1973.54 2129,02 2118.41 21124.66 HYORO ENENIjY TU LUAU 1193.4 1 114 U.j 1IT3698 1439,YJ 1U13,34 654.11 a13,9U a71.le IUZF.RJ IIVZ.11 1a55556 1119.43 1~57 TilERMAL ENERGY TO LOAD 105.74 568.80 511.27 249.s4 738.42 770.89 170.76 803.40 852.00 181.19 243.30 338.82 b134.43 tNtNIIY utlLPJCI.NLT 0.00 .00 0.00UOU 0.00 0.000 0.U0 U.UU 0.00 0.00 U.0U 0.00 V.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 oo 0.00 0. 0 0.00 HYDRO) ENfHbY _SUR-LU5 0.00 0.0 U 7UW UVU 610.24 471.s5 46_; 381 , I3 qgap*' 616.64 597.~32 5)39.70 4123 POWER (MttJAWATT5J PEAK PUMP LOAD 913.68 710.98 614.13 645.66 796.73 681.10 418.68 489.::6 766.99 666.69 986.42 960.20 8850.51 PFAK BJASE LUAU 3011.00 3008.00 3U38.U0 30D55.0 3005.00 JUUU.UU 314.0 24.0 3304.00 3319.UU 3380.00 3406.00 37917.U0 TOTAL PEAK LOAD 3935.68 3718.98 .3652.13 3700.66 3804.73 3681.10 5552.68 3732.26 4010.99 4155.69 4366.42 %366.20 46767.51 -WMYW AtrAVTY FtLUA 32'42.90 1046.28 1Z617.78 Z798.6Z 1417.16 i923.a4 1725.9511.9 114Y101 3401.5 .54585398.59 THrRMAL CAPACITY TO LUAUi 692.77 1072. 70 10 34.35 902.04 1326.97 1751.27 1191.20 2015.29 1a99.56 885.57 964.88 1020.32 1 89 71rgFCwpwCTTYTRTANS1fER 0 .00 0.00 - T . 0 0.00 0.00 0 .00 0700 o_O 7oo 0_.00 .0 0.00 U.DOff PEAK, RESERVE 2062.02 2151.81 2120.84 1992.71 1460.03 1029.13 989.80 771.71 881.44 1901.43 1822.12 1832.57 19022.e'7 C-17 SYSTEM SUMMARY 1983 ~~- -- iER MAV 0C7 ---W -D RFr JWN -FE-- MAR APR--- E TLiTAL FRD1-RTVERTNTL`OW 572T7 -33 -37OI2 4731T- 2.754 - * e.uu6 0782a9 ZZ9 "3vn- S1.1 .148 L'4 *6. Ir FROM STORAGE RELEASE -1.139 1.495 1.955 2.641 3.834 1.757 09655 -0.Z92 -4.9?8 -5.510 -1.415 -1.092 -2.038 FROM TRIBUTARIt5 0.ZffO O.Z0U 0.22u u..ZU U.C4U U.!3U l.lUU 1.u9U U.ff9U Z.40U u.93U U.55u i.l1U FROM DRAINS 4.686 1.41l 1,432 1.4f85 1.517 1.888 4.182 5.911 IZ.52Z 32.3Z7 37.545 19.152 124.65b -`--R`r ERVUTR-EV"PUR1TT0N 0*161 o7V10 UU7T7 -Uo U 16-DUTTO 9DW U uU7i .UY1 U7XT-FfQ8 Uo 896 TO RIVER OUTFLOw 0.720 0.08U 0.260 0.108 0.079 -0.000 0.461 0.480 1.731 9.U50 12.169 7.375 32.513 -Tr v w - -,u7 08 - u,3-- U 7 7 4.519 Ityuy q 90 * -rU-57"4 &* teau -q.7 1z . TO LINK LOSS 0.608 0.524 0.417 0.537 0.592 0.636 0.590 0.75 0.448 0.404 0.425 0.447 6.103 TO CANAL L039 2.I4 1.595 1.49u 1. 9q1 1.9j4 1.615 cO"z ,.496 Z.99 b.yO C.oJu Z. L4 £b. UZ5 TO wATERCOURSE 5.686 2.946 2.581 4.000 4.074 5.485 5.146 06459 9.335 8.424 9.620 6.490 TZ.Z44 lrwOR- UNWrUWAT"- _ TY5I 8W Z131 Z.4519 - 1 DUWF-- 1.47c - [ 7TT4 5 - -- 1U4 06 5.U35 U5 SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.006 0.006 0.000 0.017 WA-ERC-U`q5E RLQT. * T0R95 W-- 455 -.5-.3VF 87Z48633 172 U--TZ; I3TZ.o44 14.7.7u--T-3-z5 111.667 PUMP CAPALITY GUUU ARtA 6..Zt f41 e 55 1 ,lao 5.eU9 vub 4J9sY . q.5'iz a1.vY D>rs b.30u b.'$u 59.Y91 PUMPED FROM 6000 AREA 5.213 Z.4S9 1.874 1.317 4.172 3.055 1.472 2.174 3.524 4.034 5.076 5.035 39,.405 E'iAPVRATION GOOD AREA 0.000 o.ffO O.Do 0UD6- 0.0 U0-0-00 0D-OW OU6 U.055 0.070 0.uz025 U .*157 RFCHARGE TO GOOD AREA 3.468 2.090 1.679 2.095 2.822 3.219 2.713 3.050 3.o01 5.257 5,833 4.550 40.57b WE VCfRAhGE -- 600 AREA -177W5-- 6 Wfyl -;U.TWU7T 8,- .d35D-- <. 17241 --0 75-- J7Z'7 J TOT6 W.587 --0510 1. U14 PUMP CAPACITY RBA AREA 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668 PUMPED TO URAINA5L 1.U8U 0.8Z8 u.783 U.8Z3 Us.45 U.b/3 U0715 U.948 &.159 I.5t4 1.Zb 1.17> 11.554 EVAPORATION BAD AREA 0.453 0.251 0.225 0.282 0.344 0.369 0,250 0.789 1.162 1,423 1,402 00820 7.769 RECHARGE TO SAD AREA - ----0-10 U.7h8 U.914 1.UU U.961 986 - --15U Z.138 Z.094 Z.716 1.93U t.*669 NET CHANGE BAD AREA -0.275 -0,270 -0.240 -0.191 -0.169 -0.081 -0.030 -0.196 -0.175 0.011 0.039 -0.065 -1.634 DRAIN STORAGE CONTENT 7.Sz6 7.>7u 1,357I --77.r6 7.773 7.550 T.94z 8OCz 0. 139 a.Zs 8.3714 8.495 97.ZTU ENLRUY IMILLION MWH- TOTAL PUMP LOAD 559.19 205.95 228.93 191.77 481.08 363.08 187.32 261.62 413.21 461.25 S64.37 548.36 4546.11 ~TOITAL eAScLOX 8012;oCr1sI4vcHr-v49I 6T0D 7I 700TvG 1 lr9;U0TW 147.B111U.0 Iwe97U0 mr 7>5 0 E nTuur Ies.u lbbb *00 1 o o vu-- TOTAL ENERGY LOAD 2041.19 1767.95 1724.93 1688.77 1960.08 1830.08 1727.32 1AS0.62 2037.21 2092.s5 22a9.36 2214.36 23164.11 HYDRO ININOT TO *OAD 17u5.-nrIU 93.6U 11?0.03 1527.Z1 1596.03 949*ul 6oU.14 9wu.-0174 05.75 1YYO.YS 2109.41 1357.79 vI0u4.3Y THERMAL ENERGY TO LOAD 317*33 414.23 5s4.80 161.40 563.11 887190 867.08 909.77 951.33 95.15 119.73 356.40 6256.23 ENERGY DELrICINfY 0O.U 0.00 0.00 0.00 a.oo D.Uo u.0u 0. W .00 u.uu 0o00 0.00 0.00 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYDRo ENEROT SURPLUS 0.OU 0.OU 0.U0 O.00 89.35 4se.z7 400.Ob 53869.5 00.sl 70u.0a 670.6u 5S9.43 3977.1Z PUWIR ImtIWAATiS PEAK PUMP LOAU 904.22 606.64 543.00 386.89 866693 74J*57 432.20 555.73 771.00 606.31 930.73 867.56 6439.70 FLAK BASE LUAU J35j.UU J9.UU J30U.00 330u.Ou 5a70.Uu 3£12.uu 3410.00 3551.UU 30au1.UU J5055. 309e.u 5U 099.UU 41355.UU TOTAL PEAK LOAD 4167.22 3855.64 3843.00 3716.89 4142.93 4020.57 3852.20 4106.73 4392.00 4439.31 4028.73 4580.56 49791.78 PTDRO CAPALITY ° LOUAD 32lJa0S g545.gg C75J.4r 80Z.2Z0 Z6a5.59 Z1sy.o5 1923.30 3 T1..-Zu 2400r14 Jbs5.75 3J06.09 *zo.I1 33811.18 THERMAL CAPACITY TO LOAD 959.17 1027*21 1084.52 834.69 1377.04 1860*69 1928.90 2288.33 1991*85 743.56 82004 1057.79 15973.99 FIRM CAPACITY TKAN3FER 0.00 O.OU 0.00 O.OU 600 U.OO U00700 0.00 OU OU.0 0.00 0.00 O.0o PEAK RESERVE 2362.75 2555.73 2475.75 2577.60 1649.96 1166.11 1098.10 738.67 1035.15 2283.44 2306.96 2255.00 22405.41 C-18 SYSTEM SUMMARY 1984 WATER uMCF) UT NOV UJL JAN LtA A ArR MAY JUNt -- JULY AUj bL T rUT T FROF RIVER- IN 5.2it 1o 3.1I5 Z.560 Z.641 Z.IOJ *4.G N.MLL L2.25 17.q36 2o.5O5 30.90 11.1YU0 121.291 FROM STORAGE RELEASE 1.055 1*482 1.939 2.612 3.796 2.302 0.372 -0.596 -4.d71 -5.462 -1.407 -1.U94 0.128 TRFW TRIMUTARIEb U.z3u .zOOu uUIZ4uU,iu u 0 U*IJU A.luu I.ullu u.pgu £J OU u,9jU O.,u -.r3 FROM DRAINS 3.920 1.260 1.125 1.462 1.568 2.035 2.308 5.656 5.'95 19.788 33.125 15.200 92.94t TO RFSERVVIR-EVAPORAT1ON O.l8e U.Llo 0.077 U.0,36 0.0j 0.01Z 0.0lb .0U59 u.- O.3O U. 1ztb 0.14U 8* TO RIVFR OUTFLOW 1.938 0.107 0.009 -0.002 -0.003 0.000 -0.000 0.045 -0.000 3.669 8.911 5.001 19.081 Tl RIVRLu -4.222 -.34r U.2)b 0 u.53 o.*' uc 91 2.49b6 0532 a33 -8-.65 -59592 life . To LINK LOSS 0*586 0.510 0.426 0.478 0.557 0.606 0.597 0.551 0.534 0.414 0.426 0.549 6.236 TO CANAL LU35 £*CJ3 1.71 1.46 £.751 L.853 15801 2.U i 6 2 C.10 C.z e. T1l £.o46 25. rbu TO wATERCOURSE 5.948 2.851 2.501 Z.823 3.903 4.228 5.626 7.233 7.72? 9.73Z 9,975 8.764 71.309 FROM -RQ-U"__!-A-TER 5 2 - Z - 5 4.390 1.167R 1.S9 O W 5.139 O. I 6W4 U4 SHORTAGE AT wATERCOURSE 0.000 0.OO0 0.000 0.000 0.000 0.007 0.000 0.000 0.642 0.000 0.000 0.000 0.649 gA-ERCOdR5F REQv. ~~~~ II U85 S. I 5_k5 w5- D. It 7 8.411 -a.6.bC5- O.19 ISI.Z-C.Z9 1. 514 -13.9ZS - S1FVyr PUMP CAPAtIrY GUUU AREA o.da9 J iZ9198 .s.c.'T 5.zi5'52 414 9 .9 o.ue. ,.ooa b.JR6 b.4aS oU.119 PUMPED FROM GOOo AREA 5.137 2.b94 2.084 2.654 4.508 4.390 1.167 1.594 4.762 30050 5.139 5.164 42.343 7VAPO-^ATION -GOOD A-RE-A- -- 0000 0.000 0.000 'J°°° OOOG 0.000 0.00W 0 0.000 U.UO4 O.U55 U.092 O.Oz U.180 RECHARGE TO 6000 AREA 3.533 2.098 1.665 1.899 2.775 3.187 2*803 3.117 3.764 5.427 5.919 4.630 40.317 NET CHANGE -- G000-AERA- -1.6u4 -0.,Qr -U 419- 0755 -1.733 -I1Cu* -17b63I ---J75l-Tuu 1ZzZ-07 e8 075Tt PUMP CAPACITY HAD AREA 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668 WUMNmU TO DRAINAGE U0d g5 U*644 u.7ur U.7Z7 U65g9 umolu 0.81.4 L U91 I 9 199 1.16 I U.665 EVAPOkAT ON llAD AREA 0.450 0.242 0.207 0.257 0.304 0.353 0.246 0.703 1.175 1.306 1.417 0.d33 7.573 R-EC}iAAGE TO-RADi-A-FA- 1 rz760 OH O191 r ' 93 I.U4O U.968 0 919 1.56r .T939 Z 0.159 1.969 17191 NET CHANGE BAU AREA -0.162 -0.128 -0.060 -0.061 0.009 -0.044 0.063 -0.030 -0.327 0.162 0.047 -0.031 -0.541 DRAIN sTO8A.r-CUN-T5T-- .9 85.o1 8.6858- a.r55 e.35 h.921 9.0ur 9.O91 9.CIC 9.331 9.45u 9.srg lub.U99 - TFLR(y {(ILLION KWMI TOTAL PUMP LOAD 552.33 321.96 264.71 326.34 514.58 500.40 181.76 205.16 570.32 392.05 589.43 579.01 4998.11 TOTAL BASE LOAD 15v8aV1W 3T60T6C1Df 1616UO 1Ul000. 1.ab-00 L6W 7ZUU l6.= 170b4.UU IalUO 160e-0W ZUU97.Uu TOTAL ENERGY LnAD 2150.33 1907.96 1865.77 1942.34 2115.58 2086.40 1847.76 1925.16 2326.32 2156.05 2390.43 W381.01 25095.11 --RYDRO ENERGY-T-O 1AD - - -1l7a.lC.so55973s lZ5h7 lary.11 1101.45 854.1 95Z.60 1214.a3 1z69.bS C1209.53 *i9.90 15993.96 THERMAL ENERGY TO LOAD 471.28 661.q9 806.29 685.55 738.33 984.81 993-52 972.45 1111.32 886.Z7 260.73 486.93 9099.46 ENERGY UtrtlItNCY 0*.u U.uu U0UU U0U. UOO U0UU u0UU -nu.5 U..uu UU UUUU -UqU5 INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0a00 1YInRO- ENERGY SUKPt13'- u.u - u0 - - - u.nO --3-7 5 c 7.06 Z33.9f 3* 4 7.- 9r l9.72.-T9-&639I77 5 b F.b193. 91 POW" TIGAWwTTSr --__ PEAK PUMP LOAD 895.82 679.37 617.40 680.29 896.17 891.81 404.59 456.6h 9b7.96 74Z.41 969.29 954.46 9156h24 PEAK HASE LUAU J 3544.UU 3516.UU j5sgouu 3593.uu 3539.UU J53j.UU 3693.UU JaJB.UU J913.UU 3998.UU 3998*UU 3995.UU 94b49.UU TOTAL PEAK LOAD 4439.82 419S.37 4165.4U 4278.29 4435.17 4427.81 4097.59 4294.68 4880.96 4670.41 4967.29 4952.46 53805.24 - YHRO CAP AtTTYVTI LOFAT - J346.319t 4 *'4 e 4.IST2784.72 3Ul1.92 276-9- 19 e0Ta0 ITTJ7OZT78W 31. Z33TWW99 80WTTW.1Z THERMAL CAPACITY TO LOAIj 1093.45 1250.89 1380.68 1266.37 I665.98 2349.11 2324*56 2475.38 2502.73 1525.41 1159.65 1216.54 20410.76 -FIRH CAPACITY T RAhNSFER- --- 07a oo 0o o0U 070W oo UTr0U 0 0D 0700 -0 W PEAK RESERVE 2346.66 2476.07 2386.70 2495.95 1841.02 1157.89 1182.44 994.13 1004.27 2492.15 2347.35 c369.10 23J94.52 C-19 SYSTL.M SUM-Pi ARY 1985 ,jA TE R - (MIAVV 1-ntT- --NUV- Ut'.. JAN ___fLEtI 'AF PJU t J U LY AUGI ?IPTITAIL FR(ntM 2UV1.UU ~Z991 - . Do 3su .."e. 334 1I. 15 T.areZ r. :ZU25.57i jv4-I3.*sIv j 4yPSf FROM STORAGE kELEASE 1.052 1.472 1.926 20589 3.765 2.279 0.363 -0.599 -4.811 -5.356 -1.42b -1.091 0.164 _TWUD TRlMUTAIkII.b 0.2ma U.2U 00 u ,eu u.tIu 0.24u U. 1,3 J.lUU A 1.U90 U.Cqu A.340 U*VJU U055u I FROM DRAINS 2.017 1.964 1.122 1.677 1.598 1.992 2.761 5.044 13.175 33.629 31.521 15.761 112.261 TO RE5ERvO7IR [WVAP-OR-ATT_OW _U,.Ts .1TO.1 Uu .36 UUi .l (U9 U U U.Jfq9o18 7' 0 TO RIvER OUTFLOw 0.662 -0.001 0*054 0.001 -0.003 -0.000 0.000 -0.000 1.536 9.2a0 9.9"60 5.038 Z6.528 TO tI41FkRLO_SS -;; 7Z25 a 0*Z8 .0T11V-- U.65U 0.380 U 4 1. 05 208 1K U di7.V U -3.8'41 16.1313 To LINK LOSS 0.559 0.3q8 0.480 0.460 0.541 0.611 0.628 0.550 00463 0.414 0.432 0.582 601513 TO CANAL LOSS z se*q1 1.9494 1.b6'9 1.110 1.009 Z*19r j.o. c.ir Z 15 .ooob e.azu Z09 £6.jIDJ TO WATERCOURSL 5.707 2.475 2.650 3.012 3.633 4.263 5.862 7,165 10.081 9.516 10.176 8.97b 13.575 FR~OM GROUXWTF_ATER --5-27W4-3 esI3ZO le 75 9 T T 35~ UI a 1.5.30 .3.','- 3.q7-5.7q7ZV- s. Z9 b D~15 SHORTAGE AT ~,ATERCO,JRSE 0.295 0.0900 -0.000 0.000 0.000 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.361 MWATERCZ)UR5F- P11W7`. T 17 26 5qWK 0691 .5 . 01 85T596T7 33 W I U * .147 14 *2 . 1Z-Tr6481 TUJW CAPALITY bUOD ANtA 6.3ua 3.!)aL t.iizu a. 23 D0o .g16 1.bLL 4 gD6 .989 c. &qe 2*0 s.3cui s. 5 u b1.195 PUMPED FROM GOOD AREA 5.224 3,ls3 2.041 2.598 4.902 4.353 1.078 1.830 3.272 3.467 5.297 5.296 '.2.551 E`VAFUWRT1UW OUTA9fW7_ 0.000 0.000000 0.OO U000 0.000 0UU00 ooo 0.000 00.002uo u.U55 070 Yf9T-.0uu 0-.181 RECHARGF TO GOOD AREA 3.524 2.003 1.707 1.9ev 2.721 3.216 -2.685 3.218 3.909 5.419 5.998 4.71.0 41.279 NET CHANGE ----V0GD -APEXA--T.T00Tuu -U.33 -U . 6 3UI 7f~t1 YT1*au 173T5jasT.s r .Ue ..T .~ PuMP CAPACITY BAD AREA 1.884 1.884 1.884 1.884 1.884 1.884 1.8a4 1.884 1.684 1.85 1.864 1.884 22.608 -PURVETWTO UNAINA(.L 0.926 00.73 0.559 U.b4q U.012 U.~t'. U.290 U0561 1.16U 1.Jg1 1*3%9 L.233 IU*'479 EvAPORATION BAD AR~EA 0.449e 0.231 fj.191 0.243 0.299 0.332 0.248 0.802 1.185 1.461 1,432 09851 7.724 R-tCHA fGE-T1T_FADWR-EWA -I , Z6 0. a lI 0.191 0.92.3 1.U05 0.901I 0.965 1.~170 2.109 des 1fi 2.19 2.006ou 15.11! NET CHANGE BAU AREA -0.110 09006 0.047 0.030 0.085 0.055 0.116 -0.0s6 -U0.15 -0.011 0.012 -0.078 -0.087 UNIN- Sr'aW~GE--tflNTWTR - 9.6 .rI,TI 9_16 V45 9.0vu v.vaq 1G.U12 1O.Ib6 Lu.Za? 10.44uo IU,5z LU.6q* 1e0.961 TOTAL PUMP LOAD 567.52 370.73 260.82 323.96 561.09 503.60 161.87 239.64 404.80 437.13 617.31 608.40 5057.66 -TO-TAL flAST-.UA1J MT1Z'T0U IlLg.uu ii30.00 I7Z.0U Iri ~00 1120.00 180a.0U 1abo.00 p90s.00 pvpq.00 1Y2Zi00 VISY*00 ZLgI*.UO TOTAL ENERG,Y LOAD 2294.52 2084.73 1990.62 207S.96 2296.09 Z223.80 1969.81 2103.64 2310.80 2351.13 2549.31 2560.40 2b831,66 --KURo ENER Y-TWtU1AD 16U0.1% 12Ip.6r 1OV7.10 1311.00 13qa.Vf 1115.50 9g1.ss 1019.06 lzz21.~132Tm.01 1194p.v5 1913.!9 16U75-03 THERMAL ENERGY TO LOAD 658.22 812.93 893.51 758.11 946996 1099.59 1048.20 1084.44 1089.11 1095.96 572.15 646.43 10796.26 tNtmoY UUriLkLNLY 0.00 0.00 0.00 0.0u 0.U0 5.032 0.00 -UO05 0.00 0.00 0.00 0.0 -.U INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.0 .0 0 00 0.00 0.00 0.0 0.00 0.00 0.00 -YURW ENEHRYSURFIV5 u.0Q 90.0 0.00 0.0u 3.88l 0.00 3b2O08 398.21 208*Z1 1342.3 569611 454.63 3098.76 PUWtW (MtE,AWATTbJ PEAK PUMP LOAD 919.31 759.35 588.63 671.32 942.83 699.71 402.61 533.13 750.99 801.55 999.11 969.69 9z64.23 Pt.AI BASE LUAU 3332.00 3300.00 j5J4.IJU J102.00 3631.00 3a30.0u 400V.00 41L6Z.u0 gr4J.U 4J.U43JL.1W 43311UU 46J53017UU TOTAL PEAK LOAD 4751.31 4559.35 4423.63 4573.32 4779.83 4729.11 4411.61 4695.13 4993.99 53060.56 5330.11 5320.69 57629.22 WMYUWU CAPAL-iiyT 1 LUAu 3441.49 3USSeOl 2591.03 3195.55 £!03.34 20,y.vl 1500.04 1Y3!.93 £791.49 3110.3Z 3916-.34 -324. to 34930.20 THERMAL CAPACITY TO LOAD 1303.82 1491.34 152.640 1357.44 2016.48 2643.47 2522.97 1731.56 24UZ.50 1852.13 1362.73 1395.91 22667.06 71rN-WPCA7.ir TRtNUN3K 0.00 0.00 aqua 0.00 cu. 0.00 u.uu 0.00 0.00 0.00 V.0U 0.00 0.00 PEAK RESERVE 2511.99 2592.57 2610.31 2447.19 1730.52 1091.16 1224.03 989.60 1344.50 Z642.S6 9475.9? 2509.40 24182,39 C-20 ANNEX 3.3 Priorities for Groundwater Development Discounted Net Benefits 1/ per Tubewell in Canal Commands or Parts of Canal Commands Rs. 200/4 cusec well Rs. 100-200/4 cusec well Rs. 100/4 cusec well Upper Swat Lower Swat (2&3) Paharpur (1) Warsak (2&3) Haveli II (1&3) Pakpattan Lower Swat (1) WIarsak (1) Haveli I (2&3) Rohri North (2) Fordwah & Eastern Sadiqia Haveli II (2) Thal (1) (1-3) Dipalpur Below BS Lower Chenab I (1) Ravi Syphon Dipalpur Link Link (1-3) Bahawal Below MB Link I (1) (1&2) Lower Bari Doab (1) Kabul River (1) Rohri South Lower Chenab I (2&3) Bahawal above MB Link Lower Bari Doab (3) Paharpur (2) Kabul River (2) Panjnad Abbasia I D.G. Khan (2) Tha' (2&3) Dadu North (2) Dipalpur above BS Link (1&2) Mailsi above SM Link Bahawal below MB Link (2&3) (1) Panjnad Abbasia II (1) Bahawal Below MB Dadu North (1) Link II (2&3) Rohri North (1) North "est (1&2) Mailsi Below SM Link Ghotki (1&2) Qaim Sidhnai II (2&3) Sidhnai II (1) Panjnad Abbasia II Lower Bari Doab (2) (2&3) Kabul River (3) Mailsi below MS D.G. Khan (1) Link (2&3) Sidhnai I (1-3) Dadu South (2) Begari Sind (1) Dipalpur above BS Link (3) Fordwah & Eastern Sadiqia I (3) Ravi Syphon Dipal- pur Link (3) IT/Discounted at 8 percent. Note: Roman numerals denot I = perennial II = non-perennial Numbers in brackets denote 1 = 1000 ppm 2 = 1000-2000 ppm 3 = 2000-3000 ppm