PURPOSE

The Joint UNDP/World Bank Energy Sector Management Assistance Programme (ESMAP) is a special global technical assistance program run as part of the World Bank’s Energy, Mining and Telecommunications Department. ESMAP provides advice to governments on sustainable energy development. Established with the support of UNDP and bilateral official donors in 1983, it focuses on the role of energy in the development process with the objective of contributing to poverty alleviation, improving living conditions and preserving the environment in developing countries and transition economies. ESMAP centers its interventions on three priority areas: sector reform and restructuring; access to modern energy for the poorest; and promotion of sustainable energy practices.

GOVERNANCE AND OPERATIONS

ESMAP is governed by a Consultative Group (ESMAP CG) composed of representatives of the UNDP and World Bank, other donors, and development experts from regions benefiting from ESMAP’s assistance. The ESMAP CG is chaired by a World Bank Vice President, and advised by a Technical Advisory Group (TAG) of four independent energy experts that reviews the Programme’s strategic agenda, its work plan, and its achievements. ESMAP relies on a cadre of engineers, energy planners, and economists from the World Bank to conduct its activities under the guidance of the Manager of ESMAP, responsible for administering the Programme.

FUNDING

ESMAP is a cooperative effort supported over the years by the World Bank, the UNDP and other United Nations agencies, the European Union, the Organization of American States (OAS), the Latin American Energy Organization (OLADE), and public and private donors from countries including Australia, Belgium, Canada, Denmark, Germany, Finland, France, Iceland, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Sweden, Switzerland, the United Kingdom, and the United States of America.

FURTHER INFORMATION

An up-to-date listing of completed ESMAP projects is appended to this report. For further information, a copy of the ESMAP Annual Report, or copies of project reports, contact:

ESMAP

c/o Energy, Mining and Telecommunications Department
The World Bank
1818 H Street, NW
Washington, DC 20433
U.S.A.
Increasing the Efficiency of Heating Systems in Central and Eastern Europe and the Former Soviet Union

August 2000

Joint UNDP/World Bank Energy Sector Management Assistance Programme (ESMAP)
CONTENTS

Contents ... i
Preface ... v
Acknowledgments ... vii
Abbreviations and Acronyms ... ix
Units of Measure ... x
Energy Unit Conversion ... x
Currency Equivalents ... x
Executive Summary .. 1

Introduction .. 9

1.1 The Problem ... 9
1.2 World Bank Activities in the Heating Sector ... 11
1.3 Purpose of this Report .. 12
1.4 Issues and Opportunities to Improve Efficiency in the Heating Sector: A Guide to this Report 12

Restructuring the Heating Sector in CEE/FSU: An Overview 15

2.1 The Inherited Structure of Heat Supply and Demand ... 15
2.2 The Future of Heat Markets in CEE/FSU ... 19
2.3 Integration of Supply Side and Demand Side Options ... 20
2.4 A New Paradigm for Heat Supply and Demand ... 20

Technical Requirements and Investment Strategies for a More Efficient Heating Sector: District Heating, Decentralized Heating Options and Buildings 23

3.1 District Heating Systems ... 23
3.1.1 Determining the Optimum Size of District Heating Systems 23
3.1.2 Rehabilitating and Modernizing District Heating Systems 25
3.1.3 Typical Large-City District Heating Systems and Connected Buildings: A Description ... 25
3.1.4 Investments to Optimize Heat Generation Capacity ... 31
3.1.5 Investments to Reduce Technical Losses in Transmission and Distribution 35
3.1.6 The Economics of Investments in More Efficient System Regulation 45
3.1.7 Rationalization of Steam Supply .. 48
3.2 Modernization and Expansion of Natural Gas Systems ... 49
3.2.1 The Need to Modernize Gas Distribution Systems .. 49
3.2.2 Technical Options for Gas Use in the Residential Sector 52
3.2.3 The Costs of Expanding the Use of Natural Gas ... 54
3.3 Options for Energy Savings in Buildings ... 56
3.3.1 Energy Efficiency Measures .. 57
3.3.2 Integrated Combinations of Retrofit Measures .. 58

Identification of Least-Cost Heating Options: Results of the Six Case Studies 61

4.1 Factors Affecting the Cost Advantage of District Heating 61
4.1.1 Sources of Competitive Advantage and Disadvantage of District Heating: An Overview ... 61
4.1.2 Factors Affecting the Cost of Heat Production ... 62
4.1.3 Factors Affecting the Cost of Heat Distribution ... 67
4.1.4 Sunk Cost Advantage of District Heating in CEE/FSU .. 71
4.2 Least-Cost Supply of Heat in the Six Cities .. 72
4.2.1 Scope of Analysis ... 72
4.2.2 Heat Supply Options: The Results ... 73
4.2.3 The Impact of Demand Side Investments on the Ranking of Heating Options 75
4.3 The Impact of Environmental Valuation on the Ranking of Heating Options 78
4.3.1 The Environmental Effects of Alternative Heating Options ... 78
4.3.2 The Economic Costs of Air Pollution ... 81
4.3.3 Results for the Six Case Studies .. 83

Organizational Requirements for a More Efficient Heating Sector 85
5.1 Ongoing Reforms ... 85
5.2 Specific Issues and Lessons for Organizational Restructuring .. 87
5.2.1 Introduction .. 87
5.2.2 Promotion of Competition: and Privatization in District Heating 94
5.2.3 Promotion of Interfuel Competition: The Role of Heat Planning 94
5.2.4 Introducing Metering, Cost-based Tariffs, and Targeted Subsidy Schemes 98
5.2.5 Economic Regulation of the Heating Sector .. 107
5.2.6 Institutional Aspects of Energy Efficiency Investments in the Building Sector 113
5.2.7 Identification of New Sources of Finance .. 114

Conclusions: Recommendations for Heating Sector Policies and Projects 119
6.1 Competitiveness of District Heating with Alternative Heating Options 120
6.2 Policies and Organizational Reforms for Improved Heat Supply and Demand 123
6.3 The Need for Transitional Strategies .. 125
6.3.1 Financial and Fiscal Measures .. 126
6.3.2 Streamlining of Business Activities .. 129
6.3.3 Streamlining the Organization of District Heating Companies 131
6.4 Role of the World Bank Group .. 132

ANNEXES

Annex A: World Bank Activities in the Heating Sector .. A1
Annex B: Determination of Heat Demand: A Market Analysis ... B9
Annex D: Technologies for Heat Distribution .. D21
Annex E: Energy Efficiency Investments in the Building Sector ... E29
Annex H: Definitions ... H53
References .. R59
Table F-3: Difference in Cost of Heat Production: CHP-DH Versus Building Boilers as Function of Heat Losses... A-42
Table F-4: Difference in Cost of Heat Production: HOB-DH Versus Building Boiler as Function of Heat Losses... A-43

FIGURES

Figure 3.1: Schematic View of Typical District Heating System in CEE/FSU 26
Figure 4.1: District Heating Versus Building Boilers: Cost Advantage at Plant Level 68
Figure 4.2: Screening Curves for Heat Supply Options .. 70
Figure 4.3: Orenburg: Annual Heat Costs per Dwelling, Excluding and Including Environmental Costs .. 84
Figure 4.4: Wroclaw: Annual Heat Costs per Dwelling, Excluding and Including Environmental Costs .. 84
Figure 6.1: Divisional Structure for a District Heating Company 131
Figure B-1: Heat Losses in the District Heating System, Timisoara, 1995 B-11
Figure B-2: Estimated Heat Losses in the District Heating System, Timisoara, 2015 A-12
Figure C-1: Energy Balance of Separate and Cogeneration of Power and Heat (for Solid Fuels) ... C-17
Figure D-1: Direct DH Connection with Hydro-elevator Supplying Mixed Supply and Return Water to Radiators Connected in Series D-23
Figure D-2: Indirect DH Connection (with radiators connected in parallel) A-24
Figure F-1: Heat Density and Network Architecture ... F-45
Figure F-2: Cost of Investment and Heat Losses as a Function of Pipe Diameter F-45
Figure F-3: Demand Density and Cost of Investment in District Heating F-46
Figure F-4: Orenburg: Total Annual Heat Costs per Dwelling Excluding and Including Environmental Costs .. F-47
Figure F-5: Wroclaw: Total Annual Heat Costs per Dwelling Excluding and Including Environmental Costs .. F-47
Preface

The World Bank as well as other multilateral and bilateral development institutions provides an important source of funding for investments to modernize the heating sector in CEE/FSU. This report aims to put these investments within the overall context of sector restructuring. It is based on the ESMAP project Improving the Efficiency of Heating Systems in CEE/FSU as well as on a wealth of experiences with district heating (DH) in both Western Europe and CEE/FSU.

ESMAP financed the present study to examine the following questions:

- Which factors determine the choice of the economically preferred heating option from a set of alternatives?
- Under which circumstances is DH, decentralized heating with natural gas, or another alternative the preferred option?
- How does the institutional environment have to change in order to foster cost-effective heat supply and demand?
- How can the preferred option be implemented when the countries in CEE/FSU are in a period of transition?

To answer these questions, case studies of the heat situation in six CEE/FSU cities were carried out in 1996: Dnipropetrovsk in Ukraine, Kaunas in Lithuania, Orenburg in Russia, Sofia in Bulgaria, Timisoara in Romania, and Wroclaw in Poland. In all six cities, DH is the dominant technology for the supply of heat.

The six case studies followed the same methodology, which emphasized the analysis of the scope for interfuel substitution between DH and alternatives such as building boilers and apartment boilers using natural gas. The issue of interfuel competition seemed to be inadequately addressed in many of the feasibility studies for DH systems that had been prepared previously. The methodology also emphasized the identification of the institutional and policy changes that are required to provide an enabling environment for cost-effective heat supply and demand.

This report summarizes the main findings from the case studies and describes the major issues encountered in the modernization of DH systems, the commercialization of companies in the heating sector, and requirements for policy changes. It provides examples of best practices in the reform efforts in CEE/FSU and of investments designed to make heating more efficient.

This report is intended to assist (1) World Bank staff, in preparing and implementing DH projects; (2) politicians and planners in CEE/FSU, in dealing with the restructuring of the heating sector; and (3) consultants, in preparing feasibility studies for investments in the heating sector.
Acknowledgments

This report was prepared by Anke Meyer and Wolfgang Mostert. It benefited from the leadership of Willem Floor and from the inputs of Henri Beaussant, Bernd Kalkum, and Peter Quaak, who were part of the core team implementing the ESMAP project. The sections on energy-efficient rehabilitation of buildings are based on the work of Eric Martinot for the World Bank. We thank our colleagues inside and outside the Bank for their collaboration during the long gestation period of this report, especially Mats Andersson, Pentti Aro, Rachid Benmessoud, John Besant-Jones, Henk Busz, Witold Cherubin, Lev Freinkman, Joe Gilling, Carolyn Gochenour, Marc Heitner, Maurits Henkemans, Tord Holmstrom, Pawel Kaminski, Dominique Lallement, Laszlo Lovei, Simon Minett, Jim Moose, Mantas Nocius, Arto Nuorkivi, Eric Peterson, Ionut Purica, Lee Schipper, Konstantin Skorik, Gary Stuggins, Yoshi Uchimura, Peggy Wilson, and Salman Zaheer.

The report is based on the results of six case studies undertaken by the consulting teams of MVV/Sofregaz, Stork Comprimo, and Tebodin/ECN/ENECO. We are grateful to the authorities in the six cities in which the case studies were carried out, as well as to the respective national governments for the support they provided. The work relied on the financial support of the Dutch Ministry of Economic Affairs, the THERMIE program of the EU Commission, and Kreditanstalt für Wiederaufbau, as well as the advice of many heating experts in Eastern and Western Europe as well as in development institutions. Without this support and advice, this project could not have been undertaken.