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MULTI-LEVEL PROGRAMMING

Wilfred Candler and Roger Norton*

1. | ntroduction

The subject of this paper is the following problem: the behavior
of a system nay be adequately described by a mathematical programming model,
but there may be external conditional controls imposed on the system. |f
the controls are conditional in the sense that their values depend upon the
system's reactions to them, then they cannot be represented by exogenous
constraints on the mathematical programming model. To solve the problem,
an algorithm is required which permits the simultaneous and interdependent

functioning of two optimization processes.

This problem is relevant to biology, engineering, and other dis-
ciplines, but economics IS the context here. The problem already has been

confronted in various guises in economics, as indicated below.

Mathematical programmihg‘models of economic systems are frequently

used to represent maximization of policy objectives, subject to technical

constraints (such as;input—output accounts) and a limited number of

-
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1
behavioral constraints (such as a consumption function).—/ Policy instru-
ments to achieve the objectives are included with widely varying degrees

of specificity.

More recently, programming models have been used to simulate the

response of decentralized behavior to policies rather than to maximize a
nolicy function directly. 1In this case, a market structure is specified
(competitive, monopolistic) and individual decision rules may also be
stated (profit maximization, risk aversion, etc.), and the optimization
procedure is employed as a device to ensure that the model's solutions
reflect that behavior. This use of mathematical programming was first
suggested by Samuelson [16], and later it was implemented in models for

agriculture [5, 18].

In the first case, a policy objective function is maximized, and

in the second case a behavioral objective function is maximized. When the

latter is done, the "policy space” is searched informally at a discrete
number of points by conducting solutions under alternative exogenous values
of the policy instruments. In neither case, however, is the policy problem

completely formulated. A full statement of the policy problem recognizes

explicitly two sub-problems: a) the behavioral simulation subproblem, or

the question of forecasting the reactions to plicies of decentralized

decision makers, and b) the policy oytimizqti& subproblem itself, which

is the question of choosing according to a set of policy preferences. |[n

other terms, they are the positive and normative subproblems, respectively.

L/ At the economy-wide level, some early and well-known examples are the
models of Sandee [17) and Manne [14].



In some situations, especially in agriculture, the behavioral
simulation subproblem is most adequately formulated in terms of maximiza—
tion subject to inequality constraints, or mathematical programming. How-
ever, when this is so, replz;cing the behavioral objective function by a
policy objective function would destroy the behavioral formulation. The
model of reactions to policies would no longer have a clear conceptual. er

cmpirical basis, and to that extent the policy results from the model woul d

2
be less meaningful, —

'This paper offers a procedure for combining the policy subprohlem
and the behaviorai simulation subproblem in a programming model which con-
tains two distinct and operative objective functions. When formulated in
this way, the procedure is seen to be a generalization of mathematical
programming. AS mathematical programming algorithms cannot solve this
problem, a new algorithm has been doveloped. It is summarized in section

4 below, dnd a numerical example is reported in section 5.

Previous treatments of the problem of two objective functions, in

the context of the multi-level planning literatur~, all have been concerned
[ ]

with specifications which could in principle be represented as a single

WA

2/ The same argument holds for imposing on the behavioral simulation
model o set of pokicy-motivated constraints which have neither =
behavioral nor teghnical interpretation. The model's meaning is e
not clear when n brehavioral objcctive function is maximized subject™
to say, a minimum employment constraint. (How iS the constraint
enforced in reality?) The meaning is clear, however, if the
behavioral maximization takes place subject to, say, a wage subsidy
which is designed to promote employment.



: _ 3/ :
(large- scale) mathematical prograimiug problem [9, p.210].= For various
reasons, including lack of full information at the outset, solution
procedures have been sought through a sequence of mathematical programs

[10, 13]‘.3/

Other proposed methods, such as ''goal programming”, in effect
address the problem of choosing weights in the policy objective [12], but

5/

they suppress the two-way interaction between the objective functions.—

The notion of two interdependent groups of economic actors has

been expressed by Theil, in the context of ecoriometric estimate:; of

behavior [19, pp. 372-75]. |f the behavioral structure has been maintained

over time, and if there has been adequate experience over the relevant

3/ In this respect, of course, the previous problem specifications
differ from the one given in this paper. The multi-level planning
methods use the iterations as a device for successively tracing
out points in the feasible space of the behavioral subproblem;
however, the control over both behavioral and policy variables is
retained at the level of the policy subproblem. By contrast, in
multi-level programming, as defined in this paper, control over
behavioral variables, in reaction to any policy option, is left at
the (decentralized) behavioral level.

4/ In any event, the iterative multi-level planning procedured are so
cumbersome that in practice an acceptable rate of numerical
convergence IS rarely attained. In fact, guaranteed convergence

of the sequence of iterations has been proven only for particular
statements of the objective function and only for the infinite-
iteration case [8, 13]. In recognition of these practical
difficulties Kornai [9] has suggested abandoning convergence as
an aim, arguing that in practice only a fe® iterations would be
carried out if the two objective functions'were specified in a

realistic way. (For an example of numerical multi-level planning
procedures, see [6].)

5/ "Reactive programming" [20], while recognizing two groups of
economic actors, is an iterative procedure for attaining a
solution to just the behavioral simulation problem.



range of policy variables, then the eccnometric approach can yield very
satisfactory estimates of the optimal values of the policy variables.
Also in the context of econometrics, Marschak gave a very clear definition

of the multi--level programming problem in a classic early work [15, pp.1-2].

The multi-level programming problem also is closely related to
game theory. It is shown below (secticn 4) that, in terms of problem
formulation, the Stackelberg game is a special case of multi-level program-
ming. However, there is a very important difference in that solution of a

game requires explicit knowledge of "reaction functions,” whereas they are
allowed to be implicit in the activity-analysis format of multi-Ilevel

programming.

In the following sections of this paper, multi-level programming

is explicitly defined, its relation to conventional mathematical programming

i5 given, an algorithm is offered for its solution when there are only two
objective functions and when all functions are linear, and a small
numerical example is presented. In conclusion, some remarks are made

about uniqueness of solutions. The algorithm is a modified version of the
[ t

simplex algorithm. The numerical example is adapted from Louwes, Boot,

and Wage's analysis of the optimal pricing of milk products in the

NetheZlands [11].

2. Msti-level Programing: The Two-Level Case 2

-

The essence of the multi-level programming problem is that policy
makers are attempting to maximize a policy objective function, while con-

trolling only a sub-set of the variables. The variables controlled by

policy makers are called policy variables, the variables which enter the
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policy makers' objective function are called impact variables, while the

variables which are controlled by other decision makers are referred to

as behavioral variables. All three classes of variables are endogenous.

In the two-level case, the multi-level programming problem may be stated

as follows.

Find a vector x = (x;, x,) such that:

fp 7 mgr (e ® W
=2
subject to
= ' . ‘ . : )
£ = me: Y | (2)
_ x, Ix, _
and
Ax < b 3)
x > 0 (4)

where Xq is a vector of behavioral and impact variables,

x, 1S a vector of policy variables, and

2

A, b, cis and &) are appropriate matrices and vectors
2 & .

of constants.

For a given leve!l »f X (2), (3), and (4) define a linear pro-

grarnrning problem. However, (1) through (4) is not a linear pcogramming
problem; hence the need for a new name and a new algorithm. Extensionz
of the proposed algorithm if (1) or (2) is quadratic, or if x is mixed

integer, should not represent a major problem.



As for linear programming, any ncu-negative vector x is called
a solution. Any solution satisfying (3) and (4) is called a (primal)

feasible solution. Any feasible solution maximizing (2) for given Xy is

called a behavioral optimal solution. Any behavioral optimal solution,

maximizing (1) is called a policy optimal solution.

This formulation of the problem may be compared readily with
Theil's approach in the reference cited abeve [19]. The nomenclature

comparisons are as follows:

Theil Multi-level Programming
1. dinstrument or control variable policy variable
2. non-control variable behavioral variable
3. exogenous variable [reflected in model structure,
especially right-hand side
values]
4. [no specific name but quoted in impact variable

his example]

Interestingly, Theil refers to values of the non-control variables as

[ ]
being estimated by "an econometric model of the 'benavioral' aspect".

o

3. Typical Problem Structures

Amilifying the notation slightly by introducing the;partitioning
*» -

X, = ()_co, >_(1), a typical multi-level programming problem would look as
follows: ~

fz = mix (E Eo)' , . o ‘ ‘(S)‘,



: . = (6)
subject to: £ max (e, %))
’.‘1'152
AL XS 4+ A _x. < b ' (D
11 -1 12 2200 - =
| * | ®)
Ix, t oA x 2% % °
x >0 o NC)
where now X5 is a vector of impact variables,

x*l is a vector of behavioral variables, and

X5 is a vector of policy variables

This partitioning 1s meant to represent a fairly common situation

in which:

(1) Only the impact variables X, affect the policy makers'

objective function;

* -
(11) oOnly the behavioral choice variables >_(1'and (possibly

some of) the impact variables X, affect the behavioral

objective function;

(111) All is a technological gatrix of resource requirements;

(iv) The matrix A12 expresses the effect of the policy

variables x. on resource availability (a policy

2

which increases resource availability, such as
investment in new irrigation supplies, is represe ted

by a negative element of .
Ajo)s



(v) The vector b represents the level of resource

availability prior to policy intervention;

(vi) A')l is a matrix of the effects of the behavioral
2 *

variables .3 on the impact variables >_<O; and

(vii) A22 is a matrix of the direct effects of the
policy variables X, oOn the impact variables
X (in many cases this matrix would be zero and

so policies woulu have to achieve their impacts

indirectly, viz., through the matrices A]_2 and A21).

4. Mathematical Programming as a Sﬁecial Case

Mathematical Programming, Pl

A mathematical programming problem: Pl may be written in general

as:’
Find x such that
f(x) - max
subjeot to: gi(;_c) = 0 1=1, ... ,m
= Muliti-Level Programming, P2
2
A multi-level programming problem: P2 may he written in general
? as: o
Find §j , jJ=1, ..., n, such that

ij()_(j l)_(k, k=3+1, ... ,n) >max, j =1, ...,nk
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subject to:
gi(fj . j:l, e ,n):o, |:1, e o, Do

Mathematical prograrming (P1), can be seen as a special case of

Multi—IEVEl programing (PZ)’ since if n=1, then P2 Dbeccmes:

Find >_{l such that

fl(gl) +  max

subject to:

gi(i:l) = 09 i = 1) AL ’ m’
which is P1, mathematical programming.

If n= 2, then P2 becomes the following problem:

Find x X such that

X3 %5
fz(l‘z) > max
subject to: £,(x; 1 x,) * max
and 81(3_!1',_)_() = 0 1i=1, ...', m

This last problem is multi-Ilevel programming in the two-.level case, as
i ]

spelled out in section 2 aboVe.—G-/ The problem P2 is multi-level

programmin® in general.

S8/ In this statement of the problem, it is important to recognize that
the policy choice variables ("control varxables") which are manipu-
lated to maximize are not identical with the set of impact
variables ("target variables" or "state variables") x,. Lf they
were identical, then the problem collapses to mathemafical
programming, because then the second objective function £, would
have no influence on the outcome. The domain over which maximization
occurs is made clear in the problem descriptions in section 3 and 4
above, so this qualifier is not needed there.
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The Stackelberg game is another special case when n=2 and when

the objective function represents the behavior of the "leader™ and

£

fl represents the behavior of the "follower™. As noted above, however,

multi-level programming deals with cases i n which the reaction functions
of game theory are not known and kance game-theoretic solution procedures
are inapplicable. Nevertheless, insofar as multi-level programming is a
relevant formulation for numerical analysis of macro-economic policy

problems, then it can be seen that the leader-follower version of the

Stackelberg game is an apt conceptual analogy to the nolicy problem.

The usefulness of multi-Itvel pcogramming depends very much on
having an algorithm which will guarantee numerical solutions,, so the next
section is devoted to developasaent of such an algorithm. No doubt others
could develop more efficient algorithms; the concern here is to show that

at least one solution procednre exists and to prove that it converges.

5. Optimality Conditions for the Algorithm

The suggested algorithm is developed in the context of an updated
simplex. tableau, where all functions are assumed linear, continuous and

convex. That is, the algorithm revolves around the question of which

‘variables to bring into the basis at eath iteration. The linear case is
-2
addressed, and the notation of section 2 is adopted. For simplicity the

8 vectors gé and gi are stacked on thg matrix A to give:
. 2
T = & (10)
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The initial simplex tableau can be written

Q

vq

(kS

(R

For the kth iteration, X can be partitioned into %, and X, » where
the basic variables appear in Xy and the other, non-basic, variables

appear in X, -

Making a corresponding partition of T into Tb and T, allows

us to express the basic variables in terms of the non-basic variables:

ja |
5, = Tyb | Ty Tx o (12)

It is the elements on the right of (12) which we refer to as

the updated tableau at the kth iteration. It is convenient to represent

these elements schematically as in Table 1.

It is also convenient, for algebraic purposes to refer to the

elements in Table 1 as tij , Where j=I for right-hand side elements,
L ]

j=2, ... , € for non-policy, non-basic variablesz/ and j = etl, ..., n

for non-basic policy variables. Also, i-1 for the policy cbjettive and

i=2 for the behavioral objective, and other subscripts have interpretations

.scigred to the! in the text. ’"..

7/ The 1label "non-policy" variables embraces behavioral, impact,
and disposal (slack) variables.
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Table 1: Schematic Representation of kth
Iteration Tableau

S Non-Basic Activities ]
Basic activities RH Non- Policy Policy
Policy objective + + - + - + - + -
Behavioral objective + ( + + - - + + - -
Non-policy variables + + + + -
+ 4 .
Policy variables o+ + - + + +
g ) Lo

"standard" form in Table

The updated tableau is represented in
1. 'I'nc first two rows are taken to refer to the updated coefficients in
the policy and behavioral objective functions respectively. Then come two
sets of basie rows for non-policy and policy variables r(.a'spectively. The
"right hand side" of mathematical programming appears on the left, followed
by two set:; of non-basic activities for non-policy and policy variables
respectively. The RHS signs are meant t9 indicate that once feasibility has
been attained, the basic behavioral vari(_elbles will be non-negative. Also,
in general, the coefficients elsewhere in the tableau may be zero or may
tnkc positive or negative signs. It is assumed throughout that where an

actlvitv is selected to enter the basis, a simplex iteration is carried

out in such a way as to maintain the (primal) feasibility of the basic
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behavioral, disposal and policy variables. Once primal feasibility is

attained, it is maintained.

The modelling convention used means that bringing in an activity
with a negative coefficient increases the right hand side value for the

corresponding variable. (In particular, the behavioral objective function
fl is at a maximum, for given values of the policy variables, when all non-

policy coefficients in the second row of the table are non-negative).

Degeneracy problems are assumed handled by the addition of " small™

disturbances;, which uniquely resolve any ties [3 ], without affecting the

significant figures in the solution.

Conditions for Optimality

Before developing the algorithm, it is useful to develop

sufficient conditions optimality. Given a basic feasible solution in

standard form, then [4, Theorem 2]:

“ufflcient Condition for Behavioral Optimality:

T T KT R

This simply says that it is not possible to increase the value of the
-éliohnvioral objective function by bringing into the basis any non-basic
~non-policy variables x,, ... x = 0. -
® 2 ' e ]

Two necessary conditions for policy optimality can he stated

as foll ows:

Nrcessary Conditian 1: That the solution be a behavioral
optimal solution.
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Necessary Condition 2: tIj >0 j=e+1, ... ,n

This second condition follcws from the same theorem of Dantzig [4,
Theorem 2], and states that for non-basic policy variables X¢=+1""’Xn:O'
it is not possible to improve the value of the policy objective function

by increasing the level of one of those variables.

A third necessary condition relates to changing the levels of
tl.e basic policy variables when a new variable enters the basis. Let us
suppose that the basic policy variables are found in the last rows of the

tableau; so that their current values are given by ¢t i=gq, qrl,...,m.

11’
Then the effect on the levels of the basic policy variables of introducing
activity j into the basis is measured by tij’ i=q, q+1, ... , m. The
effect of this change on the level of the policy objective is measured by
tlj’ while the effect on the behavioral objective is measured by t2j .
(The possibility of increasing the policy objectfve by changing the level

of non-basic policy variables, has alieacy been covered by Necessary

Condition 2.)

t- , ses 5 & in the level
b4 ’

q,p 'q+1’P m,p

of the basic policy variables (induced by the introduction cf a non-basic

For any small change, t

activity p), the non-basic non-policy variable, j , which will be brought
= P
-2
into the basis for a behd&vioral optimal solution is identified by the
condition: ;
5 lwin f — €23 ‘f - - )
= m =2, 4,
Ip ;| e j=q 13T heme o as
Loepty |
i=q p 1]
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where for a policy opcimal solution we know that t2j > 0, from Necessary

Condition 1. This allows us to state the third necessary condition:

Ncccssary Condition 3: Given Nocessary Conditions 1 and 2,

where jp is defined in (13)

tk can be expressed

. . . k
Proof: Any change in the solution tll’ et YIn

x . |If

as a linear combination of the non-basic variables x2, ree s X

Necessary Condition 2 holds, the net contribution of xe+1, . xn to
the policy objective will be non-positive. Hence, we only require that
the contribution of variables Xgr v, X, also be non-positive. 3ut

i f Necessary Condition 3 holds for all jP satisfying (13), then the

contribution of activities Xo wne Xe will also be non-negative.

Sufficient Condition for Local Optimum

Necessary conditions 1, 2 and 3 taken together- are sufficient

for a local optimup to the policy problem. .

Sufficient Condition for Global Optimum

The convexity assumption ensures that an}; local optimum to the

policy problem is a global optimum.
[ ]

»

6. ixed and Free Policy Variab Zes

s

Fixing the Levels of the Policy Variables

The algorithm calls for the policy variables to ba temporarily
fixed in values from time to time. In terms of Table 1, it is only
nccessary to store the (positive) levels of the basic policy variables

elsewhere and replace the corresponding right hand side entries by zeros.
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This is represented schematically in Table 2, where the " storage location™

is the section below the double line.

Table 2: Tableau with Policy Variables Fixed
Non-basic activities
Basic activities RHS Non-policy Policy
Free Fixed
Policy objective + + - + - + - + - 0 o
Behavioral objective - + + - - + + - - 0 O
Non-policy variables 4 + + = O O
- + - - 0] 0
Policy variables 0 - t + t 1 0
0 - - t - o 1
Fixed policy
variables 0O 0 0 O + +
) To keep the policy variables at the fevels indicated in Table 2,
it is only necessary for any non-policy variables entering the basis to

pivot on the policy rows,

This preferential pivoting is an instruction in this phase of the algorithm.

Bringing in non-policy variables (with negative entries in the behavioral

if possible,

regardless of the sign of the pivot.

w o

|:' "

objective function) it is possible to maximize the behavioral obfective, as

shown in Table 3. There may, or may not,

in the basis. |In this phase, certainly any free policy variables that

be policy variables remaining




YL

il

remain in the basiswill be at zero level.

Table 3 is referred to as

behavioral optimal, since it maximizes the value of the behavioral

objective function, given the levels of the fixed policy variables.

Table 3: A "Behavioral Optimal" Tableau

18.

Non-basic activities

Basic activities RHS - Non-policy Policy o
: : . Free Fixed
Policy objective + o+ + - 4+ - + O
_ — -
Behavioral objective + + + + - - + 0
Son-policy variables + + + = + 0
+ _ - -
+ - -
_ + - +
+ - + 0 ]
Policy variables 0
= — o0 | + +7
Fixed policy variables o - .

Freeing the Level of a Policy Variable

Since the algorithm calls for the fixing, or removal, of policy

variables from the basis, provision also needs to be made for the "freeing",

or re-entry of fixed variables into the basis.

two fixed policy variables,

right. One is in the basis at level zero, and the other is non-basic.

In Table 3 there are

represented by the two columns on the extreme

To "free"™ the basic policy variable it is only necessary to replace the

zero in the "right hand side™ with the fixed value of the variable.
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For the non-basic fixed variable, things are a little more compli-
cated since we may wish to increase or decrease the value of this variable. To
increase its value, we pivot on an appropriate positive pivot, and when the

variable is basic add the fixed value to the right-hand side in the row for

that variable.

To decrease a fixed policy variable Xj we estimate:

6. = min (-t t ‘ < 0)

] i -il/ i f1j
where tij is the element in the ith rowv and jth column of the currently
updated tableau. |If ej is less than or equal to the fixed value, we
pivot on the tij used to define ej, and then add the fixed value to

the right hand side, once activity j is basic.

If Oj is greater than the fixed value, Ei, we simply change

o

the right hand side to where:

1
ti1

' = t .
ti1 117 Yy

and reset the fixed value t to zero.

The Algorithm

Overall, thg algorithm consists of five steps which can
be understood in the context of simplex operations and the foregoing
discussion. The five?fsteps are as follows:
1. Set up the problem in simplex tableau form. Find a feasible
solution using any linear programming algorithm. Go to Step 2.
2. Fix the level of the policy variables and find the corresponding

behavioral optimal solution. Go to Step 3.
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Proof

Free the levels of the policy variables, and bring into
(or eliminate from) the basis any policy variables for
which the entries in both the objective functions are
negative (or positive). |f no change of basis is

required, go to Step 4; otherwise return to Step 2.

Optimize with respect to the policy variables and
policy objective function. |f no change of basis is

required, go to Step 5; otherwise go to Step 2.

Free the policy variables, calculate jP for all

p=2, =x: , €. |If tlj <0 for some p=2, ... , €,
p N

intrcduce activity jp into the basis, fix the level

of the levels of the policy variables and return to

Step 4. If t,., >0 for all p=2, ... , e, stop.
lJp—

of Convergence

20,

The algorithm allows for the policy variables to be held at fixed

levels, and hence to be reduced in subsequent steps of the algorithm.

The

same effect could be achieved by impssing upper and lower bounds on the

policy variables and " fixing" the policy variables by appropriate changes

to these bounds. This latter approach would allow any change of basgs' to

be interpreted as ificreasing the level of a non-basic activity.

8

It Is
>

convenient to discuss convergence on the assumption that all changesin

the level of the basic variables result From increasing the level of a non-

basic variable (using a positive pivot).
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Further, it is convenient to assume that only one activity enters
the basis in Steps 2 and 3, ard only one activity in Step 4. There is no
loss of generality from this assumption since the entry of several activi-
ties into the basis can also be represented as the entry of one activity

made up of a suitable linear combination of the several activities actually

entering the basis.

Step 1 of the algorithm finds a (primal) feasible solution.
Primal feasibility depends only on the constraints (3) and (4); hence
exactly the same procedure for finding a feasible solution (or proving that
one does not exist) can be used for multi-level programming as for linear

programming.

Steps 2 and 3 involve bringing in activities which increase the
value of the behavioral objective function. In Step 2, the policy objective
may increase or decrease, while in Step 3, it will increase monotonically,
since in Step 3 the coefficients in the policy and objective functions

have the same sign for activities entering the basis.

On completion of Step 3, we have a behavioral optiftal solution
(all non-basic, non-policy variables have non-negative entries in the
behavioral objective row), and in this solution non-basic policy variables

with a negative entry in the policy objective have a positive entry in the

o
behavioral objcctivc. .
To reiterate, on completion of Step 3 t2j > 0 =2 ...,6€
d = e + i t,.
and for J e 1, «v. , n if 1j < 0, then t2j > 0.



Several non-basic policy variables may be iatroduced into the
basis in Step 4, but for simplicity we assume an appropriate linear
combination of these activities is formed, and hence only one iteration
is needed using the pilvot trp > 0. After this iteration the new

behavioral objective function elements can be written

( t2- trk : .
th = ty - ——{}-——- ;5 k=2, ..., e (14)
I'p'

according to the standard rules of Gauss elimination.

Let us then form any linear combination of these non-basic non-
policy activities, such that introduction of the linear combination would
ircrease the behaviorial objective function:

X ' < . : 0+« = :
LA €y <0 5 A >05 ] N =1 (15)

k=2 o _ k=2

Substituting from (14) in (15) we have

% ' E S ‘t22'trk |
D W SR A_t'—;'.l -— < 0
k2 K2R oy kT2 G kot
" where we know
- e
2 ; A Sy 20
=2
- »
- > [ 4
: typ 2 0
. .
rp -
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Hence

e .

-7 at < 0
s k rk
E .

ot > 0.
k=2 k‘ rk
Since the t-rk refer to tableau elements at the end of Step 3,

the corresponding element at the end of Step 4 may be defined as

t' =
%

Il t~100

1.1
K=<

.
Ak trk_‘/ trp 0.

Also, the first action in Step 2 would be to fix the basic policy
variable in row I, hence resetting trl = 0. Thus ti,* would be the
pivot if this linear combination of activities was introduced inco the
basis, and it could enter the basis only at a zero level. Thus we can

state:

(i) Any linear combination of non-policy non-basic activities

introduced into the basis in Steps 2 and 3, following

Step 4, which would increase the level of the behavioral

objective function, will come in at a zero level.

(ii) And therefore th;e policy objective increases in Step 4

)

and (after the Mrst round) does not decrease in Steps
2 and 3.
Step 5 finds a direction (if one exists; in whish the Lacic policy

variables can be changed without destroying behavioral optimality. Hence
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Step 4 is again entered form a behavioral optimal solution, and the proof

of convergence with respect to Steps 2,3 and 4 continues to apply.

Since the number of extreme points is finite, the algorithm must

either find a maximum to the policy objective, or show that the problem is

“unbounded.

In conclusion, it can be seen that relatively minor adjustment
of existing linear programming computer codes will permit them also to

solve multi-level programming problems.

N A humerieal Excrple

This section provides a small numerical example of multi- level
programming, in which the behavioral subproblem is characterize? by
maximization of a linear objective function subject to the inequality
constraints and non-negativity restrictions of linear programming.él
The example is based on a well-known problem formulated and solved by
Louwes, Boot, and Wage with quadratic programming techniques [1, 11].

By re—castirlg their problem in multi-level programming, their solution can

be assessed in a broader policy context.

In their analysis, the behavioral .gecision maker is a n tional

cooperative of dairy producers, and the poligy decision maker is the

E 3 .
Dutch government. Four dailry products are pdstulated, milk (xl), butter

. +
(x,), fat cheese (x,), and 40 checse (xé), which can be produced subject

P

e e ————— e

83/ lLarger. more complex examples are renorted and analvzed 1in a
subsequent paper.
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to available supplies of fat and dry matter, according to the following

technology matrix:

.026x, + .8x, + .306x, + .245x, < 121 (fat)

1 2 3 4
- (16)
.086xl + .02x2 + .297x3- + .371x4 < 250 (dry matter)
Linear demand functions are specified:
X, = 2671 - l.5413pl (milk)
Xy o~ 135 - .0203p2 (butter)
(17)
Xy = 103 - .0136p, + .0015p,  (fat cheese)
+ - : +
X, = 19 .0016p3 .00271,4 (40 cheese)
Monopolistic pricing is assumed, thus the behavioral objective
function is
S ? Py %y H
Substituting for X;» w8 get a problem in the pi : -
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Max £ ] 2671p1 - 1.5413p% + 135p, ~ .0203p> + 103p, - .0136p;
+ .oo31p3p4’+ 199, - .0027pi
subject to: ‘
- .0401p, - .0162p, - -0038p; -~ .0002p, < - 92.6
- .1326pl - -0004p, - ».0034p3 - .oooaPA-'g =201 ¢ (18)
1;5413pl' < 267i
.0203p2- 5' 135
.0136p, - .0015p, < 103
| —.§01§p3 + .ooz7p4' 5' 19
> 0

P1» Pys Pyr Py

The original authors start by assuming that the price levels them-
selves arc: policy variables. Simple monopolistic profit maximization leads

to unacceptably high price levels, however, and a policy constraint is
[ ]

imposed on the price index for dairy products:

< k+10 . (19)

,oisopi‘ + .0004p, -+ .0005p, + .0002p,

Eehaviorally optimal solutions are then dbtained for various
levels of k, and an optimal pricing strategy is selected by inspection
in the light of the resulting product prices, consumpticy levels, and total

revenue. Ceterus paribus, the lower is k, the lower is the "average

price level" and the better the solution from the policy viewpoint. A

complete policy objective Function is not specified, however, nor are other

instruments for influencing the dairy industry admitted.
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Equations (21) and (22) together yield a new constraint on the behavioral

problem, the material balance for butter:

x. = 135 - .ozo’3p2' - X

5 2.!

whii~h replaces the fourth inequality restriction of the original problem

(18).

Imported butter may be assumed to be available at an international
price of 1500, so that butter is available domestically from import sources
at 1500 + ¥,» where Yo is the import duty on butter; and we have the
following additional constraint:
< 1500 + Ya

)

Taken together, these revisions yield the following restatement

of the behavioral optimizatis. ~~voblem:

. A _ | . 2 '  _ s - _ . ‘ o2
Max fl = 2.67lp1 , l.SAIJpl + PyX, 1 103P3 ' .Ol36p3
+ .0031p,p, : 19p, - .ooz7pz + '267‘1yl —‘1.54vl3ylpl'
SuGioct to:
- .0401p, + .8x, - .0038p, - .0002p, < 15.4
- .13261')1 +.02x, - '30034p3 - .0006p, < =174
1.5413p, < S < 2671
- - @
.0136p, - .0015p. < 103
3 4 - -
- .(_)016p3’ ¥ .0027p, <19
Pyt 75 <. 1500
.0203?2 + X, +‘x5_ = 135

p1) pz) p3) P-[‘, XZ, XS. ‘- .>. 0 : J
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Problem (23) contains two policy variables, ¥ and Yoo and one new

behavioral variable, Xs-

For given values of vy and y,» this is a quadratic programming
problem which explicitly includes those policy variables. W must note,
however, that this statement of the problem gives no guidance as to desir-

able levels of the policy variables.

Multiple goals

The essential feature of multi-level programming is that it embeds
a behavioral problem, with endogenous behavioral variables (p:L to P, and XS)
within a program aimed at selecting the optimal values for policy variables
(yl and y2). To define these optimal values, it is first necessary to
explicitly define the goals which policy makers wish to pursue. At ieast

four goals suggest themselves in this case:

) Since a subsidy on liquid milk production has been
assumed, we may equally assume that a low price of

milk (pl) to the consumer is thought desirable.
[}

ii) The original authors indicated a goal of keeping

weighted price rises to a minimum.

YR

iii) Othe¥ things equal, a high farm income is a sensible =
»

8
goalr And -

iv) Since the subsidy entails a cost to the government,
while the butter import tax would generate income,

policy makers can be expected tuv ve interested in
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the gross outlays of government revenue implied by policies,

9/

cven though the butter import tax would generate income.—

Representatinn of these goals as programming variables (wi to w.,)

lo oroelativaly straijatiorwazd:

_ : . = [¢]
Y1 P1 - ,
- ‘ . . + . = 10
v, + ._Ol60pl + OOOAp2 + | OOOSp3 0002p4
f Wy T 26711:)1 + l.}5413pl lO3p3
+ .0136p> - .0031 - 19p, + .0027p>
- g ' E _ : = '
_?.671)7l + l._,l+13ylpl : v 0
- yl - 413y - | E ' =
v, + 26,lyl l.$4-3ylpl YoXs . .0

As discussed elsewhere [2 ], it is extremely unlikely .that policy
makers' indifference systems are known ex ante, or indeed that they are
fnvariate over time. “hus, in practice, discovery of good policy and
definition of the indifference system in the neighbourhood of this "good"

- s

policy should proceed simultaneously. For this example,*we may also assume

that, ceterus paribus, the policy makers prefer:

1) w the price of milk to be as small as possible;
1’

ii) the change in the price 1®vel, to be as small
w2! -

-

as possible;

9/ In a more sophisticated analysis, the percentage of higher farm incomes
returned to the government in taxes could be included in goal (iv);
but in the present case, this would unnecessarily complicate an already
too complex numerical example.
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iii) Wi farm income, to be as large as possible; and

iv) g net subsidy to the dairy industry, to be as

small as pcssible.

31.

where "as small as pcssible" means "as close to minus infinity as possible".

It turns out, as shown below, that an interesting set of policy variations

is generated by experimenting with weights of +1 on the four "impact

variables" (goals), w to w

1 4 °




32.

Model Restatcment

Gathering the various equations together, the model may be

restated now in multi-level programming form:

\
Max f2 _ dlwl + d2w2 _ d3w3 + .d4w4
subiect to:
£~ 26715 - 1 5413p2 + p.x + 103 - 0136p2
1 ! "o 1 2%2 P3 = 3
, 2 - . SO
+ .\)O31p3p4+ l9p4 » .0027p4 + 267lyl - | l.5413plyl a max
and
.0401pl .8x2 .0038p3 .0002p4 v < 15.4
1.5413p, < 2139
.0136p, - .0015p4 < 103
(24)
| - .00lépy + .0027p, < 19 (
.0?_‘03p2> + X, e + %, . = 135
- wl + pl = 0
- Wy ‘+ .0160pl g— .OOOAp‘2 + ‘.0005p2' + .OOOZpa = 10
wy - 2671p, 31 5413p> X 103p, + -0136p2
3 RSUE T 1 P2*y P3 *VOPPs
:0031pgp, - 19p, + .0027p, - 2671y, + 1.5413p;y; =0
Yy, + 267lyl - 1.5413p1y1 ‘—- yzx'5 | =0
and
pl-' pz' p3’ pa’ x2) XS’ y1, yz _>_ 0
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where wl’ Wy Wg and w, are unrestricted impact variables,

and d d d, and d4 are policy makers' relative weights on the

17 727 73

W and  wy

values of the impact variables wl, wz, 3

Although problem (24) is quadratic, it was approximated in a
linear programming format in order to make it amenable to solution with
the algorithm reported in this paper. The approximation involves a
grid linearization applied across variables entering into the quadratic
terms, and it can be made an arbitrarily close approximation to the

original nonlinear problem ({7].

The top rows (above row fz) in Table 4 illustrate the settings of
the variables used to construct the convex combination sets of activities
for the linearized terms. The row f2 is the policy objective fucction,
while the row fl is the behavioral objective function. For given levels
of the policy variables, the function fl is to be maximized (section 4
above). The control rows ensure that a convex combination of the
appropriate activities enters the basis for the linearized terms. The fat
and dry matter #nd import duty restraints are the normal types ‘of linear
restralnts, the next four roWs refer to the fc.)ur“goal f'unbctbic.ms, and the

final row refers to the level of y,» one of th; policy parameters.

(comnonly referred to as the "right-hand side™). Columns 2 to 13 refer

The first column in Table 4 gives the ;evel of the restraints

to convex combination of Py and Y columns 14 to 26 refer to levels of
Py and Xg 3 and columns 27 to 38 refer to levels of Py and p; - Columns
39 to 42 refer to the impact variables, and columns 43 and 44 refer to

levels of the policy variables vy and Yy
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For want of better estimates, the policy weights d]_ to d, were

4
initially set at the values - 1 -1, 1 and -1, respectively. These

sample values are sliown as coefficients in row f2 of Table 4.

Numerical Kesults

In addition to the initial objective of weights of 4; on each
s;oal (impact variable), the model also was run eight more times, first
maximizing, then minimizing, each impact variable individually. Of the
nine solutions, only four were distinct, and these four are summarized in
Table 5. Table 6 defines the relationships between the nine policy weight

combinations and the four distinct solutions.

The first thing to notice in Tables 5 and 6 is that solution 3,
which gives a weight only to the impact variable v, (percentage change
in the price index for the four products), closely approximates the Louwes-
Boot-Wage quadratic solution *n which they ccnstrained w, to equal 8.35%.
The approximation is within about 4% in the price variables (owing to the
linearization) and it is exact in terms of the value of the behavioral
objective function. While the Louwes-Boot and Wage solutions are certainly
technically feasible, and could even be obtained, for example by price
control, it is significant to notice that if the government is limited to

the twin policy instruments of milk subsidy and butter imports, then the

price level change can only take four distinct value?.

This illustrates a point, mentioned elsewhere, but which seems
worthy of reemphasis even within the context of this overly long paper,
namely that the politically feasible solution set may be much smaller than

the technically feasible. If the government was unwilling to introduce
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price controls, then knowing the price levels which would maximize jncome
holding the pricz rise to 5%is acsdemic in tha bad sense. What is

required is a colution which maximises the policy maker's objectives in the

light of the policy instruments under his control.

The interaction between the impact variables, the behavioral
objective function, and the choice of policy variables is clearly illus-
trated in the first four rows of Table 5. With neither a milk subsidy nor
a tariff{ (solution 2), farm income would be at a level of 158.3. Use of
cither policy instrument raises farm incomes. |Imposition of a milk subsidy

also lowers the milk price and thereiore lowers the price index, but incurs

treasury costs.

Table 6: Correspondence Between Policy Functions
and Solutions

Policy Weights | Optimum
_dl \ d2 | d3 _ d4 Solution*
1 1
« e
1 . 4
1 - 3
K
-1 ’_ 2
-1 1
-1 2
-1 4
-1 -1 -1 1 4

*  These solution numbers are the ones used in the

upper section of Table 5.



38.

These variations with unit policy weights constitute extremely
simple policy experiments, and in an actual decision setting many other
values would b? tried, in consultation with policy makers. Nevertheless,
even these simple experiments illustrate the potential of policies to
induce varying reactions from the producers. In the case of one product,
butter '(Xz)v’ the milk subsidy policy induces the butter :production and
price to lie well outside the range of values explored by 'Louwes, Boot,

"policy objective function" cannot be

and Wage. Thus, even though the
defined numerically a priori, multi-level programming appears to be a
powerful tool for systematically exploring the " policy space", in terms of

both the '—pact variables (goals) and the attendant reactions to policies

of producers, consumers, and other economic actors.

In more general terms, it always is possible to set up policy
problems explicitly so that the variables controlled by policy makers can
bc distinguished from the variables determined by other (behavioral)
decision makers. This, in turn, allows an explicit mapping from the policy
variable space, to the space of policy goals, with clear presentation of

& . t

trade?-of t s.

In large model systems with many policy variab}:es, the advantages
of multi-level programming would appear to be stronger. E"he traditional
procedurﬁ is to attempt to enumerate, via successive sol,ufions, a large
number of points along each poli~y variable axis, and also along many com-
binations of policy nxcs. With multi-level programming, instear’. the policy
objective function can be used to define immediately the more interesting

policy settings, e¢.g., those combinations of instrument values which

optimize according to at least one definition of the objectives of policy.
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in multi~level prcgramming, policies are no longer being constrained only
by the technologically feasible frontier, but also by the frontier of
behaviorally feasible points, giving due allowance to decentralized

decisions in reaction to policies.

10. HNotes on Sufficient Corditions for Jorvextty

The algorithm of sections 5 through 8 is dusigned to be used when
the feasible sets for bot® maximization problems are closed and convex, and
when both objective functions are quasi-concave. Multi-level programming
is open to the sare abuses that mathematical programming is, in the sense
of attempted applications when these conditions are not met. The principal
danger is that a local optimum may be mistaken for a global optimum. There-

fore a few remarks are in order about the convexity conditions.

Kormally, it is a fairly straightforward matter to insure
convexity of the feasible set Eor the behavioral problem. It: is not always
clear, however, that the feasible set Eor the policy problem also is convex.
It should be said first, in the algorithmic spirit of this paper, that there
exist unambiguous solutions to the problem of nonconvexities; they involve
usce of existing features of solution routines for mathematical programming.
One way is to declare some vf the impact variables integer and
to use branch-and-bound methods to gombine our algorithm with the mixed-
integer procedures. A more elegant method, which does not require certain
knowledge of the variables in which the nonconvexities appear, is to
utilize fea.ures of the new "special ordered sets" commercial algorithms

for mathematical programming.
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Figure 1: Feasible Sets

Flgure 1 illustrates tiie nature of the feasible sets that we are

ccncerned with. In this example, for the entire agricultural sector the
octcr frontier EF represents the technological maxima in production: it is
tt ¢ "technology frontier”. However, if consumer demands for agricultural

products have an elasticity which is less than unity in absolute value, in
some range of prices, then producers may not attain maximal. profits by

producing at the technological maximum. |If their objective function (f2)

is profits, then they nay select a point like A, in the absence of policy
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changes. |t is important to note that, in the absence of market distortions,
the point A will lie on the techrological frontier (production possibili-
tics frontier) in the full s-dimensional space of behavioral variables )_(;_
But the space of impact variables Xq is of dimensionality r<s and in
reality it is always the case that r<s. |In other words, policy makers

are interested in only a subset of the totality of economic variables in

the world. Hence any projection of the s-dimensional solution onto the
r-dimensivanal hyperplane will almost certainly lie inside the frontier in

r-space.

Policy changes can, of course, alter the absolute and relative
profitabiliry Invels of the two kinds of production shown in Figure 1.
With an unlimited ability to subsidize, the government could, very
probably, induce producers to move to the technological frontier EF. How-
ever, the domain of policy instruments is always restrict-d, and so the
maximum observable levels of production, allowing for varying policy

inducements, may be characterized by the frontier CD. The set OCD is the

fcasible set for the policy problem. |Its frontier is defined by (a) the

behavioral objective function, (b) the feasible values of polity instru-

ments, and  (c) the constraints to the behavioral problem. The frontier

may be called the policg-behavioral frontier, for short.

In the exzmipli of Figure 1, subsidizing wheat may induce produ-
cers to move from interior point A to point B on the frontier of the
policy problem's feasitle set. A subsequent redeploymect of policy instru-
ments in the direction of corr incent'ves would then move producers along

the policy-behavioral Erontier toward point G. The convexity requirement
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is that the marginal rate of substitution of corn for wheat along that

frontier be negative and decreasing.

In other words, once at point B, then with the mast efficient

10/

instrument for inducing more corn production,—" there must be decreasing

returns in corn per unit of wheat given up. This is a reasonable require-

ment .
If we define a set of reactiocn functions:
. = h. (u) all j (25)
YJ - ]
where is the level of the jth impact variable, and
f .
)J
u is the vector of policy variables,

then a very strong sufficiency condition would be that the Hessian of

partial derivatives

(26)

be negative semi-definite. Unfortunately, in maly cases conditién (26)

canpnot easily be ascertained by ex ante examination of problem structure.

Failures to meet (26) may be readily evident; but;absence of failure to

mect the sufficiency condition is difficult to establish. (Two examples
»

o
where (26) does not hold are given below.)

Using the notation of section 4, the Kuhn-Tucker necessary con-

ditions for a maximum to the one-level problem :an be written:

10/ with instruments other than the most efficient one, the new
solutions would Lie at interior points in the set OCD.
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That

Ly Cxps 2y Iy = £ Cxp [ x,)
| T (27)
o+ gkisic»_clIzz) |

be at a saddle point. That is, xO

Xq is an behavioral optimum solution

(one-level optimal) to the one-level problem if, and only if, there

o

1° such that:

exi st non-negative multipliers A

[o}

| e
Ly Cxpp A [ Xy ) L) Cxgsdy [ xp)
(28)
L. xoy A, | x,)
1" =1 =1" =2
The Kuhn-Tucker necessary conditions for a saddle- point are:
o ’ : o ’ )
X .>._ 0 2\_1 > 0
aL. 1° oL, 1°
1 <. 0 1 > 0
3 - = e
*1,3 aJ\1,1 v
, . ' I -(29)
® ’ . .
o . ‘ o)
o 3L, U X { oL, .
-1 3 - i . =
*1,3 - 1 L M1
»

Given this same notation, we can write the two-level problem

as

£, (x,) a max | (30)

\ ' a'. '_.‘
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b4,

o.
s.t. f£(x | x) - £0 X)) 2 0 (31)

5, | x) = o (32)

where 1(3_ satisfied the Kuhn-Tucker necessary conditions for the one-level

problem. Following Kuhn-Tucker, we can say that a necessary condition for

the two-level problem to be a maximum is that:

L% %55 )y 2\ %

3,0 = £ Cx) o+ A [ £ (x| X
- (33)

- 50x ]+ § b gy (X

be at a saddle-point. That is 35(1), 3_:(?? is a policy optimal (two-level

optimal) solution if, an2 only if, there exist non-negative multipliers

8]
o= 0

(o]

2.1} i=0,1, ... , m}, scch that
b ]

AO

L(*( Xy xz, 2y

Ao) < L(x

Xy Ky XD ) < 1,0 x A (34)

X1r %20 22

The necessary conditions for this saddle-point can now be written. )
t &

N
o o A o
X190 %9 2 0 .)22.>_9
sL, |° | e, ¥1°
x| - 2 kT hLE W, | 2o
oL, 1° 3L, ©
( x;y %) | 5= = 0 A = 0
210 22 22 _ .
%, - =2 | N, 4 )




The proof follows the same form as the Kuhn-Tucker one-level

pr(mf.’

of this paper ,H/
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Two examples of non-convex policy problems, due to early critics

of the algorithm are non-trivial.

A Non-Linear Son-Convex Problem

Suppose the policy makers' objective function is

Max U = fz(v, W)
W

and the behavioral objective is

W th

The behavioral objective may be thought of as the competitive

S

Max Z = X(a - = bX) - WL
L ST 20

x = 1%

P = a- bX

V o= PX- WL

imand (7], with

‘2

- X = output

L 4

- I. = labor input
P = price of the output
V = profits in production
W = wage rate

11/

(:live Bell, Shantayanan Devarajan, and Pasquale Scandizzo.

will serve to emphasize that the convexity requirements

(36)

(37,

market max-



wc have

%IZT = qat®l - @l _ oy o= o0 (41)

Now if :% , then by (41),
a 2
L= (zw + b)

_ a _ a
and X =- L '<———2w+'b)

2

Therefore A 2W(1l = a) a2/ (2w + b)2 = kW/ (2W + b)

Thus the policy-behavioral frontier in (V,W) is non-convex.
Seine portion of this non-convexity may be attributable to a partial-
equilibrium model specification, where demand is assumed independent of
income. Nevertheless (37) to (40) is the sort of model sometimes

constructed in partial analyses.

If the impact variables were (V,X) or (V,L), the sufficient
conditions woyld be satisfied in the relevant ranges. Figure 2 shows
the approximate shape of these functions, and owing to (weak) concavity
of the policy.objective function, the areas ththe left of and below the

dotted lines are irrelevant.

.lu' "
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W o X _ v

Figure 2: Policy-Behavioral Frontiers

Numerous comments can be made about the realism of this example,

alternative solution procedures, etc. The point is that, as stated in

(36) - (40), with a = L , i1t does not fit into the algorithm of sections

2
5-7. The same is true of the other illustration below.
A Discontinuous Problem n

Thi:: counter-example concerns an agricultural landlord and his
tenant farmer. The tenant can allocate his five acres of land between
cotton and beans. Yields are constant and revenue for each crop is
proportional to the acreage :n that crop. An acre of cotton yields $100
while an acre of beans yields $60. The landlord can set the share a of
cotton revenue to be paid to him, but he receives no income from beans.
Assuming both landlord and tenant attempt to maximize revenue, what should

they do? 1If the landlord sets a > 0.4, the tenant grows only beans.

el 10

19
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Hence the landlord would like to set a exactly at 0.4. But unfortunately

at that point the tenant is indifferent between growing cotton and beans,

and so the solution is indeterminate. Again, the algorithm does not apply.

11. Conclusions

This paper has defined a new class of "multi-level programming'
problems, of which mathematical programming is a subset (i.e. it isS one-
level programming). One concrete and relevant field of empirical
application relates to economic policy problems, where decision makers can
bc arranged in some sort of heirachical order and, for lower-level decision
makers, the variables under the control of higher-level decision makers

can be taken as given.

An algorithm and numerical example have been given for a very

simple case, namely where all functions are linear, and both the on‘_ej-.{ir‘lt‘fli

two-level problems are convex.

Perhaps the most important contribution of this paper, hcwever,
is to provide a formal, potentially quantitative, framework for the a
analysis of policy problems. It places in high relief the questions: whe
controls which variables? And, what motivates them to prefer one set of
values to another? This approach gives precise content to the frequent
obrervation that just because it is technically poss‘ible does not mean it

is politically possible.

This observation also relates to the use of shadow prices in

project evaluation, e.g., the case where there is severe unemployment

and a wage rate less than the market wage is used to evaluate project
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costs. The logic of this approach is impecable, where the government does
indeed control the investment decision; but if private investors are
involved they may not proceed unless the project is viable at the narket
wage. Multi-level programming allows us to address the question: what
level of our policy instruments will indeed encourage private investors
to proceed in the way desired by government policy makers, who may place

a high subjective weight on employment generation.

We have also emphasized that while the distinction between
policy and behavioral (two- and one-level) variables has been known for
many years, quantitative models explicitly reflecting this knowledge have
not been built. This means that we are into a new field, so that the
solution characteristics of even two-level problems are not well known.
We have, however, shown that even where the one-level problem is linear
and convex (a linear programming problem, in fact), and the two-level
problem involves continuous variables, yet the solution space of the two-

level problem may not be convex, and it may not be continuous either.

It is the authors' belief that the more complex the problem,
the more important it is to have a formal analytical framework witihin
which the problem can be explicitly defined. This paper is intended to

be a modBst step toward expanding the range of problems which can be

prresse3 in formal frameworks.
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