The Benefits and Costs of Official Export Credit Programs of Industrialized Countries
An Analysis
Heywood Fleisig
Catharine Hill

FILE COPY

WORLD BANK STAFF WORKING PAPERS
Number 659
The Benefits and Costs of Official Export Credit Programs of Industrialized Countries
An Analysis

Heywood Fleisig
Catharine Hill

The World Bank
Washington, D.C., U.S.A.
This is a working document published informally by the World Bank. To present the results of research with the least possible delay, the typescript has not been prepared in accordance with the procedures appropriate to formal printed texts, and the World Bank accepts no responsibility for errors. The publication is supplied at a token charge to defray part of the cost of manufacture and distribution.

The views and interpretations in this document are those of the author(s) and should not be attributed to the World Bank, to its affiliated organizations, or to any individual acting on their behalf. Any maps used have been prepared solely for the convenience of the readers; the denominations used and the boundaries shown do not imply, on the part of the World Bank and its affiliates, any judgment on the legal status of any territory or any endorsement or acceptance of such boundaries.

The full range of World Bank publications, both free and for sale, is described in the Catalog of Publications; the continuing research program is outlined in Abstracts of Current Studies. Both booklets are updated annually; the most recent edition of each is available without charge from the Publications Sales Unit, Department T, The World Bank, 1818 H Street, N.W., Washington, D.C. 20433, U.S.A., or from the European Office of the Bank, 66 avenue d’Iéna, 75116 Paris, France.

Heywood Fleisig is a senior economist in, and Catharine Hill a consultant to, the Economic Analysis and Projections Department of the World Bank.

Library of Congress Cataloging in Publication Data

Fleisig, Heywood W.

The benefits and costs of official export credit programs of industrialized countries.

(World Bank staff working papers ; no. 659)

Bibliography: p.

1. Export credit. I. Hill, Catharine, 1954-

II. Series.

HG3753.F57 1984 382'.63 84-13211

ABSTRACT

This paper analyzes the benefits and costs of official direct export credit and subsidy programs. It estimates that the subsidy in the direct loan and subsidy programs of seven major lending industrial countries ranged from $1.5 billion to $3.5 billion in 1980. Of this amount, developing countries received between $500 million and $2.4 billion allowing for export price changes. The paper analyzes several problems in estimating the subsidy. In particular, it shows how market factors determine the subsidy's effect on export prices and volumes and, thereby, the ultimate division of the subsidy between borrowers and lenders. Finally, the paper assesses the world social benefits and costs that result from the subsidy and ensuing changes in export prices and volumes.

ACKNOWLEDGMENTS

We are grateful to J. Michael Finger, Ben Crain and David Dod for numerous helpful comments, encouragement and support during this project. Nicholas Hope, Jeffrey Katz and Thomas Klein of the World Bank, and Bevan Stein of the Organisation for Economic Co-operation and Development, provided comments and invaluable guidance during the analysis of the data. Mark Connell provided excellent research assistance. Any errors of fact or logic remain our responsibility, as do the views expressed in this paper, which are not necessarily those of the World Bank.

EXTRACTO

En este trabajo se analizan los costos y beneficios de los programas oficiales de crédito directo y de subsidio a la exportación. Se estima que en programas de préstamos directos y subvenciones de siete importantes países prestamistas el subsidio fluctuó entre US$1.500 millones y US$3.500 millones en 1980. De esta suma, los países en desarrollo recibieron entre US$500 millones y US$2.400 millones, tomando en cuenta las variaciones de los precios de exportación. En este trabajo se examinan diversos problemas que presenta la estimación del subsidio. En particular, se indican la forma en que los factores del mercado determinan el efecto del subsidio en los precios y volúmenes de exportación y, a través de éste, cómo se divide finalmente el subsidio entre prestatarios y prestamistas. Por último, en este trabajo se analiza la asignación de los costos y beneficios sociales mundiales resultantes del subsidio y de las variaciones consecuentes de los precios y volúmenes de exportación.

Ce document analyse les coûts et avantages des programmes officiels d'octroi de crédit et de subventions directs à l'exportation. Les auteurs estiment que l'élément de subvention des programmes d'octroi de prêts et de subventions directs de sept grands pays prêteurs se situait entre 1,5 et 3,5 milliards de dollars en 1980. Les pays en développement ont reçu entre 500 millions et 2,4 milliards de dollars, compte tenu des variations des prix à l'exportation. Ce document analyse plusieurs des problèmes que soulève l'estimation de l'élément de subvention. Il montre en particulier comment les facteurs du marché déterminent l'effet de l'élément de subvention sur le prix et le volume des exportations et, partant, comment il se répartit en fin de compte entre emprunteurs et prêteurs. Enfin, les auteurs examinent le calcul des coûts et avantages sociaux mondiaux qui résultent de l'élément de subvention et des variations qu'il engendre dans le prix et le volume des exportations.
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction and Summary</td>
</tr>
<tr>
<td>II. Measuring the Subsidy on Official Export Credit Programs</td>
</tr>
<tr>
<td>Methods of Calculating the Subsidy on Official Export Credits</td>
</tr>
<tr>
<td>Empirical Findings</td>
</tr>
<tr>
<td>III. Benefits and Costs of Export Credit Subsidy Programs</td>
</tr>
<tr>
<td>The Distribution of the Subsidy between Borrowers and Exporters: Price Increases by Exporters Recapture Part of the Subsidy</td>
</tr>
<tr>
<td>Nonsubsidized Citizens Pay the Subsidy When There is no Market Failure</td>
</tr>
<tr>
<td>Other Benefits and Costs to Borrowing Countries</td>
</tr>
<tr>
<td>Other Benefits and Costs to Lending Countries</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. International Controls of Officially Supported Export Credits</td>
</tr>
<tr>
<td>B. Efficiency Losses and Income Redistribution Arising from Export Credit Subsidization</td>
</tr>
<tr>
<td>C. The Macroeconomics of the Size and Distribution of the Cost of Export Credit Subsidies</td>
</tr>
<tr>
<td>D. Estimating the Annual Costs of Export Credit Subsidies</td>
</tr>
<tr>
<td>E. Glossary</td>
</tr>
<tr>
<td>F. Data on Official Export Credits</td>
</tr>
</tbody>
</table>

1. Organization for Economic Cooperation and Development | 56 |
2. World Bank | 57 |
3. Berne Union | 57 |
4. Export-Import Bank of the United States | 59 |

Footnotes

| 60 |

Bibliography

| 66 |
I. INTRODUCTION AND SUMMARY

Governments support export credits in, broadly, two ways: through direct loan and subsidy programs, on the one hand, and insurance and guarantee programs on the other. This paper considers the first set of programs. Under direct loan programs, government institutions extend export credits directly, often in association with private financing. Under subsidy programs, governments operate indirectly on export credits by extending preferential refinancing and interest subsidies to private lenders. In the United States, Canada, and Japan, official export institutions lend directly to both domestic exporters and foreign importers at fixed subsidized rates. In Germany, France, the United Kingdom, and Italy, official institutions combine direct lending, refinancing of private export credits at preferential rates, and interest rate subsidies to achieve similar results.

The subsidy in officially-supported export credits arises in several ways: loans are made at fixed rates to borrowers who would normally qualify only for variable-rate loans, at maturities generally longer than available in the private market for comparable loans to such borrowers, and at lower rates than these borrowers would otherwise pay.

Industrial countries have often attempted to limit the subsidy on official export credits. In April 1978, the major industrial exporters agreed in the Arrangement on Guidelines for Officially Supported Export Credit to specify minimum interest rates, minimum down-payments, and maximum periods of repayment. The Arrangement specifies the minimum interest rates irrespective of currency denomination, despite the effect of
different national rates of inflation producing different nominal interest rates in lending countries. Therefore, the Arrangement actually allows credit subsidization to vary over time and across countries. Since market rates have increased relative to the Arrangement's fixed minimum interest rates, the Arrangement's permitted subsidies have risen. For similar reasons, countries with high market interest rates have been able to offer larger subsidies than countries with low market rates.

Attempts to reform the Arrangement to better reflect market interest rates in member countries and to reduce levels of subsidization have typically not succeeded. Arrangement signatories have increased minimum interest rates several times by small amounts, but subsidies in 1982 continued at high levels and still varied considerably from currency to currency. Negotiations to limit export credit subsidies, therefore, continue.

This paper analyzes the costs and benefits of the direct loan and subsidy programs. It estimates that the subsidy in the direct loan and subsidy programs ranged from $1.5 billion to $3.5 billion in 1980. Of this amount, the paper estimates that, after export price changes, developing countries received between $500 million and $2.4 billion.

After discussing issues in estimating the subsidy, the paper sets forth the market factors that determine the subsidy's effect on export prices and volumes and, thereby, the ultimate division of the subsidy between borrowers and lenders. It finds that borrowers receive between 50 and 100 percent of the subsidy, depending on the supply, demand, and market structure of the export industries receiving subsidized credit. In situations without external costs or benefits it finds, in both competitive
and most common monopolistic export markets, that borrowers cannot lose from accepting export credit subsidies and that lenders cannot gain from giving them.

The paper then raises a variety of issues relevant in assessing the social costs and benefits to borrowers and lenders resulting from the subsidy and ensuing changes in export prices and volumes:

- Some developing countries may lose from subsidized export credit if their own export industries must compete against subsidized credit;

- Some developing countries might be forced away from the best currency composition of their debt portfolios if export credit programs limit their choice of currency denominations;

- Some lending countries might achieve offsetting gains in employment, to the extent that subsidized exports persistently come out of otherwise unemployed resources;

- The redistribution of income toward low-income countries and away from high-income countries makes it more difficult to measure the welfare loss associated with the efficiency loss.
II. MEASURING THE SUBSIDY ON OFFICIAL EXPORT CREDIT PROGRAMS

Outstanding direct and subsidized export credits of the major lending countries (Canada, France, Germany, Italy, Japan, the United Kingdom and the United States) amounted to nearly $55 billion at the end of 1978. These lenders offered substantial subsidies, charging interest rates between 7 and 8 per cent, at the same time that private lenders charged rates between 5 and 15 per cent.

This section estimates that the subsidy paid by official export credit granting institutions ranged between $1.5 billion and $3.5 billion in 1980. The subsidy equals the difference between the rate charged by the lender and the rate the borrower would have paid had the borrower gone to the private market. Depending on supply, demand, and market structure in the subsidized export sector, exporters in lending countries recapture between 50 and 100 percent of the subsidy. Of the amount transferred to borrowers, about 70 percent of the subsidy went to developing countries, 25 percent to centrally planned economies, and the balance to developed countries.

Methods of Calculating the Subsidy on Official Export Credits

Calculating the subsidy on official export credits requires first making a judgment about the private rate that the borrower would have paid. This rate will always exceed the government borrowing rate, but beyond that will depend on the characteristics of both the borrower and the loan. The subsidy element may be calculated as an annual interest differential or as the present value of future interest differentials over the life of the loan.
The Private Interest Rate Must Exceed the Government Borrowing Rate

The subsidy a borrower receives equals the difference between the official export credit institution's rate and the rate charged in the private market for the same type of loan and borrower. Some estimates compute the subsidy by comparing the government borrowing rate with the official export credit rate. Such computations underestimate the subsidy, however, because importers will always pay a higher interest rate on their loans, given currency denomination and maturity, than will the government of the country issuing the currency because:

- Privately-granted export credit is tailored to the individual transaction--a retail transaction--with a low volume and a high overhead. In contrast, government debt is marketed in large volumes, and in standardized units and maturities.

- Privately-granted export credit, because of this individual tailoring, is harder to resell; by contrast, liquid markets exist at most maturities for government debt.

- Only the government of the currency-issuing country can absolutely guarantee the payment of bonds denominated in its own currency because only that government can legally create that currency at will. Since no private or foreign government borrower can make the same guarantee about his debt, lenders will always require additional compensation for this added risk.
The market interest rate measures the cost to society of granting export credit when its productive resources are fully employed (see Appendixes B and C). The government interest rate, at full employment, will always fall short of the private market rate for the same maturities, for the reasons discussed above. At full employment, the subsidy is the difference between the export credit agency's rate and the market rate. The difference between the export credit agency's rate and the government interest rate provides only some peripheral information relating to the budgeted cost -- not the social cost -- of the export-credit granting agency.

Estimating the Subsidy Using the Private Interest Rate That the Importer Would Have Paid

Borrowers can pay interest on their loans at interest rates fixed over the life of the loan, or at interest rates that float above the wholesale bank rate. Typically, good credit risks can borrow at either rate, while riskier borrowers must take floating rate loans.

This paper computes the subsidy under both of these assumptions about the riskiness of the borrower. It estimates the subsidy for borrowers who would otherwise have financed their imports with a floating rate loan by multiplying the outstanding portfolio of officially supported export credits by the interest rate differential between the lending country's short-term market rate and the average interest rate actually received on the portfolio.\(^2\)

The paper estimates the subsidy for borrowers who otherwise would have borrowed at fixed rates by multiplying the loans granted in each year by the difference between the bond rate at which they could have borrowed and the interest rate charged on the direct export credit. It derives the
total subsidy on the loan portfolio by adding the subsidies on all loans still outstanding. (Appendix D discusses the estimation of fixed and floating rate subsidies.)

These methods produce an ex post measure of the subsidy that represents the savings in debt service in any given year under different assumptions about the alternative borrowing possibilities available to the borrowing country. The two measures of the subsidy may differ from ex ante expectations of the subsidy. In the fixed-rate calculation, the savings in interest payments in future years are set at the time the loan is committed and, if the borrower does not refinance, the expected and actual future interest subsidy are equal. In the floating rate case, the subsidy in any year will change with movements in the short-term interest rate. The expected subsidy and the actual subsidy will, therefore, only be equal if borrowers realize their expectations of movements in the floating rate.

An Alternative Method for Calculating the Subsidy

The subsidy may also be expressed as the discounted present value of the fixed-rate subsidy on loans authorized in any one year. The subsidy would equal the difference between the face value of the subsidized loan and the present value of the repayment stream computed at the market rate of interest.\(^3\) Computing the present discounted value of the subsidy permits representing and analyzing the interest subsidy in a price-equivalent form: borrowers should be indifferent between receiving the interest subsidy and a decrease in the price of the good equal to the present discounted value of the interest subsidy. However, official institutions lend only a portion of the purchase price of an export; since that portion differs both between countries and within countries among
different goods and, since some important countries do not report these
data, computing the price-equivalent subsidy still does not permit
comparing its size to export prices or unit values.

The present value of the subsidy, moreover, is difficult to
compute because its calculation requires information on people's beliefs
about the future course of interest rates (for a floating-rate loan) or
about their refinancing plans (for a fixed-rate loan). By contrast, the
method presented in the previous section avoids this problem by calculating
the interest subsidy for one year on all loans outstanding in that year.

Empirical Findings

Subject to some important qualification discussed below, the paper
finds that the subsidy ranged between $1.5 billion and $3.5 billion in 1980
for borrowers whose financing alternatives were, respectively, fixed and
floating rate loans.

Computing the subsidy requires knowing the maturity structure of
the portfolio of outstanding loans, the year in which each loan was made,
and the interest rate charged on each loan. Extremely severe data
limitations required strong simplifying assumptions. (Appendix D discusses
these issues). Problems exist both in comparing the diverse national
institutional arrangements and in penetrating the secrecy that lending
countries maintain about the volume of lending and the degree of
subsidization reflected in loan terms.

Subject to these data limitations, the paper estimates that the
total subsidy amounted to about $1.5 billion in 1980 if the borrower's
alternative was, in actuality, a fixed-rate loan (see Table 1). A negative
Table 1: ESTIMATE OF THE SUBSIDY WHEN BORROWERS' ALTERNATIVE IS A FIXED-RATE LOAN ($ Million)a,b

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>14.6</td>
<td>13.7</td>
<td>24.6</td>
<td>(27.3)c</td>
<td>(46.9)</td>
</tr>
<tr>
<td>France</td>
<td>n.a.</td>
<td>n.a.</td>
<td>420.5</td>
<td>(464.8)</td>
<td>(552.4)</td>
</tr>
<tr>
<td>Germany</td>
<td>23.9</td>
<td>6.3</td>
<td>(-5.4)</td>
<td>(-16.2)</td>
<td>(-17.5)</td>
</tr>
<tr>
<td>Italy</td>
<td>53.3</td>
<td>74.0</td>
<td>94.2</td>
<td>(110.9)</td>
<td>(128.8)</td>
</tr>
<tr>
<td>Japan</td>
<td>36.7</td>
<td>31.7</td>
<td>21.2</td>
<td>15.4</td>
<td>(55.6)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>289.7</td>
<td>358.7</td>
<td>423.9</td>
<td>(499.9)</td>
<td>(543.1)</td>
</tr>
<tr>
<td>United States</td>
<td>108.3</td>
<td>81.6</td>
<td>57.5</td>
<td>85.2</td>
<td>213.5</td>
</tr>
<tr>
<td>Total</td>
<td>526.5</td>
<td>566.0</td>
<td>1,036.5</td>
<td>1,187.3</td>
<td>1,522.8</td>
</tr>
</tbody>
</table>

a. The estimates are based on data obtained from the Export-Import Bank of the United States. For a detailed discussion of the data, see Appendix F.
b. For a detailed description of the estimating procedure, see Appendix D.
c. The numbers in parentheses were calculated assuming outstanding loans remained constant over the previous year. This was done when data were not available for recent years. Since most programs have been growing, this should provide a lower bound on the estimate of the subsidy.

Entry in this table implies that a borrower took an official loan at a rate in excess of the market bond rate. Since a sensible borrower would not willingly do that, negative entries rather indicate that the typical recipient of official export credits, contrary to assumption, could not borrow at the fixed bond rate assumed and that the estimate of $1.5 billion is too low.

If the typical recipient of official export credit would have borrowed at floating rates in the absence of official lending, the
estimated subsidy rises to about $3.5 billion in 1980 (see Table 2). Negative subsidies, as shown in the table, can arise either where borrowers are unable or unwilling to refinance their fixed-rate official loans at lower floating rates. Borrowers might be unable to refinance at the spreads assumed in Table 2 (50 basis points over the three month interbank rate in the country where the loan is made). In that case, Table 2 underestimates the subsidy. On the other hand, borrowers might be

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>-14.8</td>
<td>-23.6</td>
<td>91.0</td>
<td>(151.2)</td>
<td>(288.4)</td>
</tr>
<tr>
<td>France</td>
<td>n.a.</td>
<td>n.a.</td>
<td>152.5</td>
<td>(336.4)</td>
<td>(725.1)</td>
</tr>
<tr>
<td>Germany</td>
<td>-76.2</td>
<td>-44.4</td>
<td>(-113.1)</td>
<td>(-40.3)</td>
<td>(39.5)</td>
</tr>
<tr>
<td>Italy</td>
<td>169.5</td>
<td>134.4</td>
<td>81.4</td>
<td>(92.8)</td>
<td>(222.0)</td>
</tr>
<tr>
<td>Japan</td>
<td>95.4</td>
<td>-35.2</td>
<td>-253.7</td>
<td>-107.9</td>
<td>(471.5)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>243.0</td>
<td>37.4</td>
<td>118.4</td>
<td>(533.0)</td>
<td>(855.9)</td>
</tr>
<tr>
<td>United States</td>
<td>-86.4</td>
<td>-44.6</td>
<td>189.8</td>
<td>546.3</td>
<td>992.2</td>
</tr>
<tr>
<td>Total</td>
<td>330.5</td>
<td>24.0</td>
<td>266.3</td>
<td>1,511.5</td>
<td>3,524.6</td>
</tr>
</tbody>
</table>

a. The estimates are based on data obtained from the Export-Import Bank of the United States. For a discussion of the data, see Appendix F.

b. For a detailed description of the estimating procedure, see Appendix D.

c. The numbers in parentheses were calculated assuming outstanding loans remained constant over the previous year. This was done when data were not available for recent years. Since most programs have been growing, this should provide a lower bound on the estimate of the subsidy.
unwilling to refinance longer-term fixed rate commitments at lower, floating short-term rates if they foresaw a pattern of short-term rates over the life of the longer-term loan that would make it unprofitable for them to refinance; it is difficult to imagine an operational test of this explanation.

Lacking direct information on the regional distribution of the subsidy by type of borrower, the paper estimates it by assuming that lenders subsidize all borrowers by approximately the same amount. Then the distribution of the loans by type of borrower would be the same as the distribution of the subsidy by type of borrower. Table 3 shows the distribution of loans by type of borrower: about 69 percent of the loans went to developing countries, about 24 percent to Eastern Europe and China, and the remainder to other developed countries.5

The entire subsidy is not transferred to foreign borrowers, however, because domestic exporters in the lending country can raise prices and recapture part of the subsidy's benefits. The next section discusses why recapture probably ranges between zero and one-half in most typical markets. Applying these recapture rates to the estimated range of total subsidy granted by the export credit — $1.5 to $3.5 billion — yields an estimate of subsidy actually transferred to $.75 to $3.5 billion.

Assuming that the transferred subsidy is distributed by type of borrower in the same proportion as the pattern of lending implies that developing countries would have received about 70 percent of the total subsidy, or $.5 to $2.4 billion. Because the Arrangement permits lower interest rates and longer maturities for low income countries, 70 percent is a conservative estimate of the proportion of the subsidy going to developing countries.
Table 3: GEOGRAPHIC DISTRIBUTION OF SUBSIDIZED EXPORT CREDITS

<table>
<thead>
<tr>
<th>Lender</th>
<th>Borrower</th>
<th>1978 (percentage)</th>
<th>1979 (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Developed Countries</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe and China</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Germany</td>
<td>Developed Countries</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe and China</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Italy a</td>
<td>Developed Countries</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe b</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>48</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Japan</td>
<td>Developed Countries</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe and China</td>
<td>26</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Developed Countries</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe and China</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>53</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>United States</td>
<td>Developed Countries</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe and China</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>83</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>Developed Countries</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe and China</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Less Developed Countries</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

a. The figures for Italy only include credits with a repayment term over five years.
b. Figures for Italy do not include loans to China.

III. THE BENEFITS AND COSTS OF EXPORT CREDIT SUBSIDY PROGRAMS

In both competitive and most common monopolistic export markets, recipients of subsidized export credits cannot lose while, symmetrically, providers of subsidized export credits cannot gain, so long as there are no external costs or benefits. This section first considers how the market reaction of export prices and volumes to the subsidy determines the final distribution of the subsidy between lending-country exporters, lending-country citizens who provide the subsidy, and the borrowing-country importers. It then considers a variety of external costs and benefits that affect the social costs and benefits arising from various redistributive and efficiency aspects of the program.

The Distribution of the Subsidy between Borrowers and Exporters: Price Increases by Exporters Recapture Part of the Subsidy

The distribution of the subsidy will depend on supply, demand, and market organization in the markets receiving subsidized export credit (see Appendix B). In a competitive market, when officially supported export credits increase demand for a good whose supply is totally inelastic, subsidized buyers bid up the price above its previous level. Since the quantity sold remains constant, by assumption, buyers can only be satisfied when the price has risen by enough to extinguish the extra demand created by the subsidy. The export price must rise then by the full amount of the subsidy. The domestic exporting industry, therefore, recaptures the entire subsidy through higher prices and the borrowing country gains nothing. If the price of the export is fixed on world markets, whatever the supply conditions, the entire subsidy is also transferred to the domestic exporting industry. The existence of many perfect substitutes for the
subsidizing country's exports means that only a slight price advantage suffices to capture much of the market. Subsidy recipients will bid up the price of the subsidizing country's exports by nearly the full amount of the subsidy and still willingly buy the same or greater amounts than before.

If supply is less than totally inelastic and the price of the export is not given on world markets, however, some of the subsidy must be transferred to the borrowing country to induce them to purchase more. When supply curves are infinitely elastic over the range of the subsidy, all of the subsidy is transferred to the borrowing country importers.

If the exporter in the lending country is a monopolist, some of the subsidy must be transferred to the borrowing-country importer. The monopolist always operates in the elastic portion of his demand curve, and can always increase profits by expanding sales volume when his demand curve shifts out.

Given available information on supply, demand, and market organization in the markets receiving subsidized export credit, this paper estimates that borrowers receive between 50 and 100 percent of the subsidy (see Appendix B). In competitive markets, existing estimates of elasticities of supply and demand (Stern 1976) suggest that almost all of the subsidy is transferred to the borrower. If the exporters in lending countries are monopolists, this paper estimates that borrowers get half of the subsidy, though this finding rests on assumed values for the second derivatives of demand and marginal cost functions.

Nonsubsidized Citizens Pay the Subsidy When There Is No Market Failure

If official export credit lending does not solve a market failure within the lending country, and markets are competitive, then overall
efficiency or output cannot rise. If the subsidy eliminates no market
failure but, at the same time, makes borrowing country importers and
lending country exporters better off, then it must make other citizens of
lending countries worse off. If borrowing-country importers receive any of
the subsidy, as is likely, the lending country as a whole must lose.
Depending on whether the price or volume of exports rises, nonsubsidized
citizens in lending countries bear the cost in different ways.

In a fully-employed economy, real net exports can rise only by
reducing real domestic investment, consumption, or government expenditure
(see Appendix C for further discussion). If the rise in net exports forces
a decline in domestic investment projects, the lending country citizens
lose the market rate of interest on the foregone investment, while the
lending country government receives the lower, subsidized interest rate on
the same quantity of exports. The loss to the lending country government
and its nonsubsidized citizens amounts to the difference between the market
rate and the lower subsidized rate. These losses may, however, be partly
offset by terms-of-trade gains that increase exporters' profits when the
subsidized loan increases demand. As discussed above, however, the lending
country typically will not recover part of this subsidy; that part will be
transferred to the borrowing-country and lost through the inefficient use
of resources.

When the economy is fully employed, but where an increase in
imports offsets the rise in exports so that net exports remain unchanged,
the net cost to the subsidizing country is the same as before. Purchasers
of imported goods pay the higher world market interest rate to finance
their additional imports, while their government receives the lower,
subsidized interest rate on the additional exports it financed. As before, gains to exporters partly offset this loss, but the rest of the subsidy is retained by borrowing country importers or absorbed by the higher cost of less efficient production.

Other Benefits and Costs to Borrowing Countries

While borrowing countries generally gain from the subsidy on export credits even after prices adjust, other costs, difficult to quantify, may offset the gain. Restrictions on the currency denomination of the export credit may distort the currency denomination of the borrowing country's debt and, thereby, offset part of the gain from the subsidy to the borrowing country. The subsidy calculation may also overstate the gain to borrowing countries if they compete in third markets against exports from industrialized countries that receive subsidized credit.

Currency Choice Limitations May Produce a Suboptimal Debt Portfolio

Just as a country will choose a portfolio of international reserve currencies that, by various accounts, produces some optimal risk-return combination in the light of that country's future consumption and investment plans, so a country will desire a portfolio of international debt denominated in different currencies that achieves the same end.

If the borrowing-country's acceptance of the export credit leads to denominated additional debt at market rates in a currency that moves the borrowing country away from its optimal debt portfolio, then the above estimate of the interest subsidy overestimates the gain to the borrower. The gain to the borrower cannot be negative, however, since the subsidy expands the choices available to the borrower, and the borrower need not accept the subsidized credit to purchase the export.
The seriousness of this problem depends on several imponderables. First, export-credit granting agencies do denominate loans in currencies other than their domestic currencies, though they offer less choice than do international banks. Second, the individual firm has some opportunity to rearrange the currency denomination of its other assets and liabilities, so it need not restrict its entire portfolio by the initial choice of export-credit instrument. Finally, the entire country has even more freedom to rearrange its assets and liabilities to compensate for any deviations from an optimal debt structure that the currency composition of the subsidized export credit might produce.

Terms of Trade Effects in Third Markets May Offset the Gain to Developing Countries of Official Export Credit Subsidies

The gain to borrowing countries from subsidized export credit may be offset if the borrowing countries also export goods to third markets which compete with exports from industrial countries that receive subsidies. When a developing country's exports compete with goods which receive subsidies from industrial countries, its terms of trade deteriorate. The fact that many developing countries have instituted official export credit programs to match industrial country subsidies suggests that these countries do export goods competitive with subsidized industrial country exports. In particular, some evidence exists that developing countries have become increasingly competitive at producing customized capital goods.

When developing countries compete against industrial country exports to other developing countries that receive subsidized credit, the distribution of the subsidy among individual developing countries changes,
but the estimate of the transfer to all developing countries does not. Subsidies granted or price reductions on developing country exports to industrial countries could, however, reduce the estimates of the transfer presented here. Developing country exports competing against industrial countries exports that receive most subsidized export credits (SITC category 7), however, amounted to only $14 billion in 1980, while industrial country export credits go primarily to developing countries. Given this, terms of trade for developing country exports would have to deteriorate far beyond those ever experienced to reverse the estimates of the flows given above. At most, even assuming that all developing country exports of such goods to industrial countries compete against goods receiving subsidized credits, the subsidy estimate would be reduced by about 25 percent.\(^8\)

Other Benefits and Costs to Lending Countries

The exporter generally recaptures only part of the export credit subsidy through higher prices. Whether the lending country as a whole gains from the subsidy, therefore, depends on whether the official export credit solves a market failure within the lending country. A variety of externalities on which export credit subsidies could act have been advanced by proponents of officially supported credits. Even where these arguments have merit, however, in few cases are export credit subsidies the best means of achieving a given goal.

The Effects of Officially Supported Export Credits on Employment

Export subsidies can increase employment in export industries. However, when the economy is already at full employment, employment in the subsidized export industry rises at the expense of employment elsewhere.
Since total employment cannot increase beyond full employment, and the resulting resource shift may temporarily aggravate inflation, employment gains in export industries provide no net social gain for the subsidizing country.

In the face of general unemployment, an export subsidy can increase total employment. However, so can monetary and fiscal policies. Moreover, as general tools to regulate the economy, monetary and fiscal policies may be superior to export subsidies. The export credit subsidy normally increases the production of exports relative to other domestically produced goods, increasing the relative cost of the export goods to domestic consumers. Unless considerations other than a general increase in employment prompt the use of subsidies, other policies—such as monetary and fiscal policies—could increase employment and output without these side-effects on relative prices and sectoral outputs. No reason exists, moreover, to believe that an export subsidy will provide a stronger or less inflationary stimulus to employment than other forms of budgetary spending or tax reductions.

In addition, if export credits do not vary over the business cycle, their beneficial effects in reducing unemployment in recessions will bear a cost later when they contribute to overheating the economy during booms. Since export credits are often committed far in advance of actual transactions and are usually extended over periods that are longer than any one stage of the cycle, and since future cycles cannot be perfectly foreseen, great difficulties beset the use of export credits for stabilization purposes. These rigidities enhance the desirability of alternative policies to deal with unemployment and inflation.
Export subsidies could be used to support employment in chronically depressed industries or regions. The subsidy could serve as an alternative to unemployment payments if it were clear that, in the absence of the subsidy, the unemployed labor in a particular industry or region would not be employed elsewhere. However, pursuing such a policy for a long time would result in increasing losses to the country by extending the period of time during which resources were used inefficiently.

Official Export Credits and Capital Market Imperfections

Sometimes the absence of private market credit may indicate a market imperfection that prevents the gains from trade from being fully realized. In such a case, the government can correct the market deficiency by providing credit, making society's use of resources more efficient.¹⁰

The absence of private market loans, however, does not prove that the market is imperfect. Some less-developed countries, for example, cannot float bonds in the bond market. Many reasons exist for this, all relating to the absence of the kind of creditworthiness and volume of credit demand that makes floating a bond issue worthwhile. Likewise, many corporations cannot raise funds by selling bonds. Instead, they and smaller partnerships and individuals must ordinarily finance their business loans by borrowing from a retail bank at higher rates of interest than bond issuers pay.

Most less developed countries raise funds by borrowing from banks in the Eurodollar market or in national banking markets. Their loans typically have interest rates that float at a predetermined number of basis points (hundredths of a percentage point) over a benchmark interest rate such as the prime rate or the London Interbank Offer Rate (LIBOR). When an
official export credit institution lends to such a borrower at, for example, a rate comparable to a lower corporate bond rate, it grants that country a subsidy equal to the difference between the retail rate it would have been charged because of the greater risk, and the rate charged by the official institution.

When a bank refuses credit to a foreign borrower at market rates because of the condition of the country or of the borrower within the country, then the risk attached to the loan exceeds that represented by the retail rates that banks typically charge these countries. The subsidy granted by the official institution is greater than the difference between the rate it charges and the market rate because it is taking a risk larger than the one reflected in the market rate.

When the private sector responds to risky loans by charging higher rates or by refusing to make them at all, this does not, as noted, necessarily mean that a market imperfection exists. When such imperfections are absent, official loans at below-market rates cannot raise total income or increase efficiency. Without solving a market imperfection, such practices can only redistribute income away from non-subsidized citizens and toward domestic exporters or citizens of a borrowing country.

Matching Foreign Subsidized Credit Programs

If a foreign government permanently subsidizes an export product, the policy that would yield the largest income for another country's citizens as a group would permit the foreign producer to supply the good. In this way, the country that does not match the foreign subsidy can earn larger quantities of foreign exchange and import more goods by reallocating domestic resources from the production of the foreign-subsidized good to
the next-most-productive sector. The receipts from the sales of these next-best exports will be only marginally lower, and the subsidy to foreigners will no longer be necessary. Although neither workers nor equipment can be reallocated without costs, reallocation involves a one-time cost whereas matching subsidies involve a permanent stream of costs. For that reason, the reallocation of resources may be cheaper when the foreign subsidy program is expected to last a long time.

If it is known, however, that the foreign country's subsidy is only temporary, then the lending country may gain by competing with a matching subsidy. Whether a country will benefit from matching subsidies depends on whether the costs of competing in the short run are outweighed by the benefits of not having to shift productive resources first out of and then back into the affected export sector.

Any one lending country might use subsidized export credits to bring pressure on other countries that refuse to curb their own subsidized lending through an international agreement. Whether this would produce a benefit for any one country would depend on the cost to the country of continued subsidization of exports by other countries.

Common views of fairness may also dictate matching foreign subsidies. When one government subsidizes export credits, it injures the producers in other countries who are competing directly with those subsidized products in both the foreign and domestic markets. Because neither workers nor equipment can be reallocated without cost, citizens in the non-subsidizing country as a whole may temporarily lose income and wealth. The workers and capital owners in the industry will typically bear these costs, but costs will be spread to other citizens through programs
such as unemployment insurance. These risks are quite similar to those borne by other groups of industrialists and workers who face weather changes, technical changes in foreign countries, demand changes, input price changes, and changes in local governments' subsidies and tax exemptions. Nonetheless, when one government makes a conscious decision aimed largely and necessarily at damaging exporters in other countries, the fellow citizens of damaged exporters may believe this commercial misfortune is more inequitable than the others described above. In this case, a country may be willing to sacrifice some efficiency to attain an outcome it sees as more equitable. The total costs of the subsidy must be weighed against the equity considerations.

The Effect of Officially Supported Export Credits on the Exchange Rate

Increased exports can produce exchange rate appreciation. Where small interest rate subsidies produce a large increase in the total value of exports, an export credit subsidy program may result in exchange rate appreciation. However, where comparatively large interest rate subsidies fail to produce a much larger increase in exports, any appreciation may be quickly reversed.

After the merchandise sale, however, the receipt of interest payments on the subsidized loan will fall short of the payments on foreign loans made by citizens who were originally crowded out of the national capital market. This net drain on interest payments will reduce the current account. Therefore, after the initial, temporary rise in export receipts, the subsidized loan may produce a current account deficit and exchange rate depreciation that counteracts the initial trade surplus and exchange rate appreciation.
Even when subsidized loans produce exchange-rate appreciation, such appreciation is not always desirable. Whether appreciation benefits a country will depend on general economic conditions and on the objectives of economic policy. If the economy as a whole is near full employment, inflationary pressures are high, and export industries and import-competitive domestic industries are in good condition, a subsidized export-credit program may help reduce inflation by producing exchange rate appreciation over and above that warranted by monetary conditions. The gain to the exporter obtaining the subsidized loan, however, will be offset by other losses from exchange-rate appreciation. Exchange-rate appreciation raises export prices in foreign markets, reducing sales of nonsubsidized exports. At the same time, it lowers foreign prices and increases the pressure on import-competitive industries.

The Benefits of an Increase in Exports

A rise in exports can reflect a socially desirable increase in productivity or in savings, but subsidizing exports does not force this relation to operate in reverse. For example, exports may increase because productivity rises in the export industries. If the exchange rate does not change, exporters will either supply more exports at the old price, undersell their competitors, or deliver a higher quality product at the same price. The rise in productivity would be a clear benefit to the country, with more output resulting from a given quantity of inputs. However, the rise in exports would only reflect these gains; it would not produce them.

Similarly, higher saving rates can increase net exports, but subsidizing exports need not raise total national saving. A rise in saving
will reduce the consumption of imported goods and free up more domestic
goods to be exported, thus increasing the current account surplus. Such an
increase in the current account surplus means citizens are accumulating
capital in foreign countries. Accumulation of foreign assets passes on a
larger total capital stock to future generations of citizens. Although the
future generation's consumption gain is partly offset by the current
generation's loss, so long as both generations fully undertake this shift,
no external cost warrants using public policy to undo the savings decision.

In economies at full employment, however, a subsidized rise in
exports can occur only at the expense of some domestic activity—consump-
tion, investment, or government expenditure—or when offset by a corre-
sponding rise in imports. If imports rise to provide the goods absorbed by
the increase in exports, then the subsidy has produced no rise in net
exports. If the subsidy does increase net exports at the expense of
domestic consumption or government spending, then the subsidy may ulti-
mately raise the total of domestic and foreign investment. However, the
domestic expenditure most likely to fall as a consequence of subsidy-
induced rises in borrowing rates is domestic investment. In this case,
there will be no net increase in capital passed on to future generations,
although future generations will get more capital located in foreign
countries. Citizens as a group will gain no obvious advantage from such a
shift.

A Foreign Policy or National Security Role for Official Export Credits

Official export credits are sometimes justified as a way of
protecting industries that are important for national defense, and as a way
of transferring resources to foreign countries that need economic aid. It
is doubtful, however, that export credit subsidies are an efficient way of achieving either of these ends.

If a country wished to preserve an industrial activity within its borders on national security grounds, it could achieve that by subsidizing the exports of that industry. Secondary national defense benefits may also accrue from having a larger pool of skilled workers in a given industry. It must be shown, however, that an export credit subsidy is a relatively inexpensive way to achieve this end. For example, if maintaining a core of trained technicians and a manufacturing capacity in naval nuclear generating units is an important national defense objective, then a standing annual order for such devices might be cheaper than subsidizing the export of entire nuclear power plants, which include mostly goods and services that are unrelated to defense preparedness.

Official export credits may also serve a foreign aid function. This does not, however, appear to have been their primary purpose. In the United States, for example, official export credits have been more concentrated in Europe than is foreign aid, and do not bear much relation to the pattern of foreign aid disbursement in areas outside Europe (see Table 4). If official export credits are distributed differently from other foreign assistance, it is unclear how to evaluate them as effective foreign aid instruments. It might be that an addition to foreign aid would be voted by lending-countries' governments in exactly the way it is spent by official export credit institutions; but, on the other hand, it might not be. Official export credits are also an inefficient form of foreign aid since they are tied to the export of particular goods. As discussed
above, part of the subsidy is absorbed in the inefficient use of resources, lost to both domestic citizens and foreigners alike.

On occasion, the granting of export credits might also be valuable as a foreign policy device if it enabled a government to take quicker action. This was the case in the United States in the past, when the Eximbank was set up to finance trade with the Soviet Union in the 1930s and later used to assist in European recovery after World War II.

Other Externalities

A variety of other purposes for subsidized export credits could be advanced. In all cases, however, not only does the existence of an externality justifying government involvement need to be proved, but the use of export credit subsidies rather than other policies must be shown to be optimal. For example, subsidized export credits might be part of a successful industrial policy program. The case for adopting an industrial policy would first have to be made, however, and only then could the relative efficacy of subsidized export credit relative to other policies be evaluated. The different economic performances of intensive users of official export credit -- the United Kingdom and Japan, for example -- suggest caution in adopting easy generalities.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Economic Assistance</td>
<td>Eximbank Loans</td>
<td>Economic Assistance</td>
<td>Eximbank Loans</td>
</tr>
<tr>
<td>Near East and South Asia</td>
<td>38.2</td>
<td>11.4</td>
<td>63.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Latin America</td>
<td>19.4</td>
<td>22.0</td>
<td>9.3</td>
<td>21.1</td>
</tr>
<tr>
<td>East Asia</td>
<td>28.7</td>
<td>20.6</td>
<td>9.0</td>
<td>33.2</td>
</tr>
<tr>
<td>Africa</td>
<td>10.3</td>
<td>5.6</td>
<td>11.1</td>
<td>19.8</td>
</tr>
<tr>
<td>Europe</td>
<td>2.1</td>
<td>32.6</td>
<td>4.1</td>
<td>21.5</td>
</tr>
<tr>
<td>Canada</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Oceania</td>
<td>1.3</td>
<td>6.0</td>
<td>3.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Total a</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Columns may not add to totals because of rounding.
Countries have attempted to control subsidized export credit terms since the 1930s. The Berne Union (the International Union of Credit and Investment Insurers) was formed in 1934 to provide a forum for the discussion and exchange of information among member export credit insurance agencies, now numbering 35 member agencies from 27 countries. Over the years, the Berne Union has made non-binding recommendations on the regulation of export credit policies. For example, in 1953, the member nations agreed to limit maturities to five years on export credit for heavy capital goods, and to three years on all other export credit. Beginning in the late 1960s, members increasingly disregarded these guidelines.

In 1963, the Organization for Economic Cooperation and Development (OECD) Trade Committee established a Group on Export Credits and Credit Guarantees. The Export Credit Group, as it is known, organized an information exchange system in 1972, which provided for prior consultation on credit of longer than five years. At the same time, the OECD reached agreement on credit terms for ships and aircraft.

Negotiations continued for a more comprehensive agreement on export credits. On October 27, 1974 the Export Credit Group concluded an informal agreement which has come to be known as the "Gentlemen's Agreement." It stipulated a minimum interest rate of 7-1/2 percent on
credits of over five years, and a maximum repayment period of three years on credits granted to wealthy nations.

Jurisdictional confusion slowed the negotiations in 1975, when both the European Commission and the individual governments claimed the right to negotiate on commercial policy for European Community (EC) members. Because the European Court of Justice awarded this authority to the European Commission, the export credit agreement concluded on July 1, 1976 was enacted as a series of unilateral declarations by the nations involved in its negotiation, rather than as a formal agreement. These nations—Canada, France, Germany, Italy, Japan, the United Kingdom and the United States—agreed to a matrix of minimum interest rates and maximum repayment terms for officially-supported credit of two years or more for three different income categories of recipient nations. This 1976 agreement, known as the "Consensus," was accepted by 13 additional OECD members during the succeeding year.

Table 5: INITIAL CONSENSUS MINIMUM INTEREST RATES

<table>
<thead>
<tr>
<th>Category of Country: Per Capita Income</th>
<th>Repayment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-5 years</td>
</tr>
<tr>
<td>Relatively Poor:</td>
<td></td>
</tr>
<tr>
<td>Under $1,000</td>
<td>7.25</td>
</tr>
<tr>
<td>Intermediate:</td>
<td></td>
</tr>
<tr>
<td>$1,000 - $3,000</td>
<td>7.25</td>
</tr>
<tr>
<td>Relatively Rich:</td>
<td></td>
</tr>
<tr>
<td>Above $3,000</td>
<td>7.75</td>
</tr>
</tbody>
</table>
The dispute with the European Commission was resolved by 1977, and on April 1, 1978 the "Arrangement on Guidelines for Officially Supported Export Credit" was concluded, superseding the Consensus. The members of the European Economic Community participated as a single unit. The Arrangement reiterated the conditions specified in the Consensus, and continued as a voluntary set of guidelines.

Because the Arrangement specifies the same minimum interest rates for credit denominated in all currencies, it permits actual credit subsidization to vary both over time and across countries. As market rates increased over time, the fixed minimum interest rates permitted a greater subsidy. The same fixed minimum rates permitted countries with high market interest rates to offer larger subsidies than could countries with low market rates.

At the request of participants in the OECD Arrangement, Mr. Axel Wallen, former Chairman of the OECD Export Credits Group, examined alternatives to the existing Arrangement. This study (Organization for Economic Cooperation and Development, 1980) discussed two alternatives to the fixed matrix: a "Uniform Moving Matrix" and a "Differentiated Rate System." The Uniform Moving Matrix would link Arrangement minimum rates to a basket of market interest rates of participant countries. The minimum interest rate would be identical for all currencies but the level would be tied to some average of market rates. If market interest rates increased, therefore, the minimum rate on officially supported export credits would also increase, preventing the subsidy on officially supported export credits from automatically increasing. As with the existing Arrangement, however, subsidization
rates would vary considerably from currency to currency, depending on the individual currency's market interest rates relative to the Arrangement minima.

The Differentiated Rate System would specify different minimum interest rates for each currency. Rather than equalize nominal interest rates, this system would attempt to equalize interest rate subsidization. If minimum interest rates were defined to equal comparable market rates for each currency, subsidies would be eliminated. Alternatively, minimum rates could be specified so as to allow for an agreed absolute or proportional rate of subsidization.

Despite a great deal of pressure, principally from the United States, little progress has been made in reforming the Arrangement according to either of the alternatives suggested in the Wallen Report. In the summer of 1980 at the Venice Summit, the United States supported the Differentiated Rate System, but was unable to reach agreement with the European Community. Instead, Arrangement signatories modestly increased the minimum interest rates, and stated their intention to pursue a better solution.

Additional increases in the Arrangement minimum interest rates were negotiated in November 1981 and July 1982. The next round of negotiations is scheduled for May 1983, but because of the recent easing of interest rates, a further increase in the Arrangement rates appears unlikely.

The principle features of the present Arrangement are:

Cash payment: A minimum 15 per cent cash payment is required on all contracts, no part of which may be provided by the donor agency.
Interest rates: Recipient countries are divided into three categories—category 1 contains those with per capita GNP over U.S.$4,000; category 2 contains those with per capita GNP under $4,000 but not eligible for IDA assistance; and category 3 contains those eligible for IDA assistance. Minimum interest rates vary according to the category of country and term of the loan (Table 6).

Maturity terms: Category 3 countries must repay loans within 10 years; all others must repay within 8 1/2 years.

Table 6: CURRENT ARRANGEMENT MINIMUM INTEREST RATES
(as of January 1, 1983)

<table>
<thead>
<tr>
<th>Category of Country</th>
<th>Repayment Term 2-5 years</th>
<th>Repayment Term 5-10 years</th>
<th>Repayment Term 5-8 1/2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 3 (relatively poor)</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Category 2<sup>a</sup> (intermediate)</td>
<td>10.85</td>
<td>-</td>
<td>11.35</td>
</tr>
<tr>
<td>Category 1 (relatively rich)</td>
<td>12.15</td>
<td>-</td>
<td>12.40</td>
</tr>
</tbody>
</table>

^a Countries which recently graduated to Category 2 (e.g. Algeria, Colombia, Malaysia, Nigeria) are eligible for export credit at 11.35 percent with repayment terms up to 10 years, rather than 8 1/2.

Exceptions: The Arrangement exempts agricultural commodities, military equipment, commercial jet aircraft, and nuclear power plants. Partial exceptions allow extended repayment terms for satellite ground stations, conventional power plants and cryogenic (liquefied natural gas) tankers.
Local-cost support: The Arrangement pertains to financing the foreign-exchange cost of export goods from the lending country, not to local costs incurred in installing equipment in the borrowing country. The Arrangement prohibits local-cost financing in relatively rich countries, but permits local-cost insurance and guarantees.

Mixed Credit: Export credits generally involve less than a 5 per cent grant element. All credits with a grant element below 15 per cent require prior notification of other Arrangement signatories. Credits involving a 15 to 25 per cent grant element require prompt notification, while those with more than a 25 per cent grant element are considered Official Development Assistance and are exempted from notification requirements.
APPENDIX B

EFFICIENCY LOSSES AND INCOME REDISTRIBUTION ARISING FROM EXPORT CREDIT SUBSIDIZATION

For both competitive and most common monopolistic export markets, where external gains and losses are absent, a lending country cannot make itself better off by providing export credits at subsidized rates; nor can a borrowing country make itself worse off by accepting them. Under typical supply, demand, and cost conditions, subsidizing export credit produces a combination of some loss in efficiency together with redistribution of income away from citizens providing the subsidy and toward domestic exporters and foreign importers. These effects become extreme at the limit: a lending country offering exports in perfectly price-inelastic supply or facing perfectly price-elastic excess demand will transfer nothing to the borrowing country; on the other hand, a lending country offering exports in perfectly price-elastic supply will transfer nothing to its home exporters from the subsidy program.

This analysis examines equilibrium reached in the market for the export good as prices and quantities adjust to a change in the export credit subsidy. We have not used a more general equilibrium framework for two reasons. First, the smallness of these programs relative to the economies providing the loans would make the computation of the effects econometrically non-operational. Second, proper expansion to more general effects would require a major escalation in complexity, since analyzing export credits perforce requires dropping
the assumption that trade is balanced and introducing instead a framework that optimizes over time.

The subsidy, \(s \), is the present value of the interest rate subsidy expressed per unit of quantity demanded. The demand curve is entirely a foreign demand curve, so only the export market is shown. In equilibrium, the demand price and supply price will differ by the amount of the subsidy, so

\[P_S(Q_S) = P_D(Q_D) + s \]

(1)

In a competitive market, the social gain to the lending country, \(GL \), from subsidizing the export credit equals the producers' surplus less the cost of the subsidy. For inverse supply curves whose integral is defined over the closed interval \([0, Q^*]\), social gain, \(GL \), will be

\[GL = P_S Q^* - \int_0^{Q^*} P_S(Q) dQ - sQ^* \]

(2)

Totally differentiating expression (2), the change in the gain with respect to the subsidy will be

\[\frac{dGL}{ds} = Q^* \frac{dP_S}{ds} - (s - 1) \frac{dQ^*}{ds} \]

(3)

The social gain to the borrowing country, \(GB \), equals the consumers' surplus plus the subsidy. For inverse demand curves whose integral is defined over the closed interval \([0, Q^*]\), the social gain, \(GB \), will be

\[GB = \int_0^{Q^*} P_D(Q) dQ - P_S Q^* + sQ^* \]

(4)
Totally differentiating expression (4), the change in gain to the borrowing country with respect to the subsidy will be

\[
\frac{dGB}{ds} = -Q^* \left(\frac{dP_S}{ds} - 1 \right)
\]

Endogenous Price, Upward-Sloping Supply Curve, Downward-Sloping Demand Curve

Where prices are endogenous, the changes in the quantities of exports supplied equal those demanded in equilibrium, so that \(dQ_S = dQ_D = dQ^*\). The change in the equilibrium quantity of exports \((Q^*)\) with respect to the subsidy \((s)\) can be derived from (1) and will be

\[
\frac{dQ^*}{ds} = \frac{1}{\frac{\partial P_S}{\partial Q_S} - \frac{\partial P_D}{\partial Q_D}} > 0
\]

Given that \(Q_S(P_S) = Q_D(P_D)\) and \(P_S = P_D + s\), the change in the equilibrium supply price will fall between zero and one:

\[
\frac{dP_S}{ds} = \frac{-\frac{\partial Q_D}{\partial P_D}}{\frac{\partial Q_S}{\partial P_S} - \frac{\partial Q_D}{\partial P_D}}, \quad 0 < \frac{dP_S}{ds} < 1
\]

Evaluating (3) by expressions (6) and (7) indicates that the lending country cannot gain from the credit subsidy \((\frac{dGL}{ds} < 0)\), while similarly evaluating (5) indicates that the borrowing country cannot lose from the credit subsidy \((\frac{dGB}{ds} > 0)\).
Endogenous Price, Horizontal Supply Curve

If the supply curve is horizontal ($P_S(Q_S) = k$), substitution of \(\frac{\partial P_S}{\partial Q_S} = 0 \) in (6) implies

\[
\frac{dQ^*}{ds} = \frac{1}{\frac{\partial P_D}{\partial Q_D}} > 0
\]

while, by assumption,

\[
\frac{dP_S}{ds} = 0
\]

Evaluating expression (3) with the values shown in (8) and (9) indicates that the lender must lose \((dGL < 0)\), while similarly evaluating expression (5) indicates that the borrower must gain the entire subsidy \((dGB = Q^*ds)\).

Endogenous Price, Vertical Supply Curve

Since \(dQ_S = dQ_D \) when the price is endogenous, a vertical supply curve implies that \(dQ_S = dQ_D = dQ^* = 0 \). Totally differentiating the inverse demand curve shown in (1), given that \(dP_D = 0 \) because \(dQ_D = 0 \), indicates that

\[
\frac{dP_S}{ds} = 1
\]

Evaluating expression (3) given \(dQ^* = 0 \) and \(dP_S = ds \) indicates that the lending country on net loses nothing \((dGL = 0)\); rather, inelastic supply forces the transfer of the subsidy from domestic taxpayers to domestic producers of the subsidized export product. Similarly evaluating expression (5) with those values indicates that the borrowing
country gains nothing \(\frac{dGB}{ds} = 0 \), but rather returns the entire subsidy to the lending country by paying a higher price for the product.

Exogenous Price, or Horizontal Demand Curve

If a country is a relatively small supplier in the international market, it can take the world market price as given. In this case, \(P_S = P_W + s \), for a constant \(P_W \). Recalling that domestic purchasers are not eligible for the loan subsidy,

\[
\frac{dP_S}{ds} = 1
\]

while

\[
\frac{dQ^*}{ds} = \frac{1}{\frac{\partial P_S}{\partial Q_S}} > 0
\]

Substituting the values of expressions (11) and (12) into expression (3), the subsidizing country must lose because of the inefficiency resulting from the increase in production \(\frac{dGL}{ds} < 0 \). Substitution in (5), however, indicates that the borrowing country does not gain because the export price rises by the amount necessary to absorb the subsidy \(\frac{dGB}{ds} = 0 \).

Monopolist Exporter

If a country's export market is monopolistic, the monopolist will set the market price at a level that maximizes profit. The monopolist's total cost curve is assumed to be \(C = C(Q) \). In the presence of a subsidy, the price charged by the monopolist will be

\[
P_M = P_D(Q) + s
\]
Assuming the monopolist sells only in the export market, monopolist profits will be

\[\pi = QP_M - C(Q) = QP_D(Q) + sQ - C(Q) \quad (14) \]

If the monopolist maximizes profits,

\[\frac{\partial \pi}{\partial Q} = \frac{Q \partial P_D}{\partial Q} + P_D + S - \frac{\partial C}{\partial Q} = 0 \quad (15) \]

The second order condition will be

\[\frac{\partial^2 \pi}{\partial Q^2} = Q \frac{\partial^2 P_D}{\partial Q^2} + 2 \frac{\partial P_D}{\partial Q} - \frac{\partial^2 C}{\partial Q^2} < 0 \quad (16) \]

The change in the quantity of exports \((Q^*)\) with respect to the subsidy \((s)\) can be derived by totally differentiating (15) and will be

\[\frac{dQ^*}{ds} = \frac{-1}{Q \frac{\partial^2 P_D}{\partial Q^2} + 2 \frac{\partial P_D}{\partial Q} - \frac{\partial^2 C}{\partial Q^2}} > 0 \quad (17) \]

This is greater than zero by the second order condition, expression (16). From (13) and (17)

\[\frac{dP_M}{ds} = -\frac{\partial P_D}{\partial Q} \frac{\partial^2 P_D}{\partial Q^2} + 1 + \frac{\partial P_D}{\partial Q} - \frac{\partial^2 C}{\partial Q^2} \quad (18) \]

or, by the second order condition and \(\frac{\partial P_D}{\partial Q} < 0\)
Note that \(\frac{dP_M}{ds} \) is not necessarily positive. If the numerator in (19) is greater than zero, then \(\frac{dP_M}{ds} \) will be negative.

Assuming that the monopolist sells only in the foreign market, the social gain to the lending country, \(GL \), will equal the producer's surplus less the cost of the subsidy. For monopolist cost curves whose integral is defined over the closed interval \([0, Q^*]\), social gain will be

\[
(20) \quad GL_M = P_MQ^* - \int_0^{Q^*} MC(Q)dQ - sQ^* = \frac{\delta c}{\delta Q} = MC(Q)
\]

Totally differentiating expression (20), the change in the gain with respect to the subsidy will be

\[
(21) \quad \frac{dGL_M}{ds} = Q^* \frac{dP_M}{ds} + P_M \frac{dQ}{ds} - MC(Q) \frac{dQ}{ds} - Q^* - s \frac{dQ}{ds}
\]

\[
= Q^* (\frac{dP_M}{ds} - 1) + (P_M - s - MC(Q)) \frac{dQ}{ds}
\]

\[
= Q^* (\frac{dP}{ds} - 1) + (P_D - MC(Q)) \frac{dQ}{ds}
\]

Using (15), (17) and (18) and noting the second order condition,
Therefore, the lending country loses from the credit subsidy \(\frac{dGL}{ds} < 0 \).

The expression for the gain to the borrower facing a monopolistic exporter is the same as in the competitive case (expression (4)). Evaluating the change in the gain to the borrowing country, expression (5), with expression (19), indicates that the borrowing country gains from the credit subsidy \(\frac{dGB}{ds} > 0 \).

Empirical Estimates of the Distribution of the Subsidy between Borrowers and Exporters

In the competitive case, expression (5) shows the gain to the borrower resulting from the subsidy. Representing the gain in relation to the total subsidy yields

\[
\frac{dGB}{Qds} = 1 - \frac{dPs}{ds}
\]

Substituting for \(\frac{dPs}{ds} \) from expression (7) yields

\[
\frac{dGB}{Qds} = \frac{\partial Q_s}{\partial P_s} \left(\frac{\partial Q_s - \partial Q_d}{\partial P_s - \partial P_d} \right)
\]

Using \(Q_s = Q_d \) and assuming that \(P_s = P_d \) before the subsidy is introduced, \(\frac{dGB}{Qds} \) can be written as
\[
\frac{\partial G_B}{\partial Q_{ds}} = \frac{\varepsilon}{\varepsilon - \eta}, \quad \varepsilon > 0 \text{ and } \eta < 0
\]

where \(\varepsilon\) and \(\eta\) are the elasticities of supply and demand for exports respectively.

Using previously estimated supply and demand elasticities (Stern 1976), \(\frac{\partial G_B}{\partial Q_{ds}}\) ranges approximately between three-quarters and one and, therefore, most of the subsidy is transferred to the borrower.

In the monopolist case, the gain to the borrower as a result of the subsidy as a proportion of the total subsidy is

\[
\frac{\partial G_B}{\partial Q_{ds}} = 1 - \frac{\partial P_M}{\partial s}
\]

Substituting for \(\frac{\partial P_M}{\partial s}\) from expression (19) yields

\[
\frac{\partial G_B}{\partial Q_{ds}} = 1 - \frac{\frac{\partial^2 P_D}{\partial Q^2} + \frac{\partial P_D}{\partial Q} - \frac{\partial^2 C}{\partial Q^2}}{\frac{\partial^2 P_D}{\partial Q^2} + 2 \frac{\partial P_D}{\partial Q} - \frac{\partial^2 C}{\partial Q^2}}
\]

Evaluation of the sign or the magnitude of this expression is impossible without estimates of the second derivatives of the demand and cost curves. If we assume the demand and marginal cost curves are linear, as the intermediate case between the convex and concave alternatives, then \(\frac{\partial G_B}{\partial Q_{ds}} = 1/2\) and the borrower receives half of the subsidy.

Therefore, admittedly in the presence of some potentially large gaps, present knowledge about competitive and monopolistic market structure of industries receiving subsidized export credits suggests that borrowers receive between half and all of the subsidy on official export credits.
APPENDIX C

THE MACROECONOMICS OF THE SIZE AND DISTRIBUTION
OF THE COST OF EXPORT CREDIT SUBSIDIES

Appendix B analyzed the distribution of costs and benefits of the export subsidy program in a microeconomic framework. Since, at full employment, domestic exporters and foreign importers must gain from subsidized credit, while total domestic output cannot rise, the subsidizing taxpayers must lose from the program. This appendix shows this outcome in terms of the GNP accounts; the results are similar.

Case 1: Export Subsidies That Result in Additional Export Volumes at Full Employment

Suppose that when the export subsidy increases foreign demand for exports, the export price remains unchanged but the volume of exports rises. Rearranging the national income identity produces:

\[\bar{Y} - C - I - G + M = X \]

If the economy is at full employment, so that \(Y \) is at its maximum (\(Y = \bar{Y} \)), the rise in exports cannot occur out of additional production; instead, consumption, investment, or government expenditure must fall, or imports must rise.

If the rise in exports is achieved by increasing imports, no change occurs initially in the trade balance. The lending country gains an asset—the export credit that bears interest at the lower, subsidized rate; at the same time, lending country citizens incur an identical liability to finance additional imports, but they pay interest at the
unsubsidized world interest rate. The lending country net debt position does not change, but the lending country loses the difference between the subsidized and the unsubsidized interest rates. Exporters sell a larger volume of their products, but total lending country national output remains unchanged. Foreign importers pay the lower, subsidized interest rate to the lending country, while lending country importers pay the higher market interest rate and a larger total interest bill to foreigners.

Suppose now that imports remain unchanged, so that exports and the trade balance increase by reducing domestic investment. At the margin, domestic investment earns the domestic, unsubsidized rate of interest. By giving up the domestic investment project, lending country investors lose the unsubsidized rate of interest on the foregone domestic investment project now devoted to exports; in exchange, the lending country receives the lower, subsidized rate of interest on the rise in exports. If consumers require the same marginal return on a unit of consumption that they require on a unit of investment, then a rise in exports at the expense of domestic consumption produces the same net loss for society. If the government requires the same marginal return on government expenditure that its private citizens receive on private investment, then a rise in exports at the expense of government expenditure produces the same net loss for society.

Case 2: Export Credit Subsidies That Increase Export Values and Unit Values but Leave Export Volumes Unchanged

If the volume of exports does not change, export promotion incurs no real cost to the economy as a whole. The preceding discussion
rests on the assumption that there is such a real cost, and that it is borne by investors, consumers or the government. This section establishes that, even in the absence of such a real cost, the loss to the nonsubsidized sector will exactly equal the gain to the subsidized sector.

With constant real exports, resulting from a vertical export supply curve, the export price \(P_X \) will rise by the change in the present value of the interest subsidy per unit of sales (Appendix B, expression 10):

\[
dP_X = ds
\]

Assume, for simplicity, that there are two types of goods—those produced for home consumption, \(H \), and those produced for export, \(X \). The geometrically-weighted GNP deflator would then be

\[
P_Y = p_H^a p_X^{1-a}
\]

Assume now that the central bank pursues credit policies that prevent the GNP deflator from rising despite the credit subsidy's initial upward impact on export prices, so that the rate of change of the GNP deflator is

\[
P_Y = aP_H + (1-a)P_X = 0
\]

The real value of exporters' output measured in terms of GNP is

\[
V_1 = \frac{XP_X}{P_Y}
\]

The change in that value as a result of the subsidy is
(6) \[dV_1 = \frac{XP}{PY} = \frac{Xds}{PY} \]

The real value of products produced for home consumption measured in terms of GNP is

(7) \[V_2 = \frac{HP_H}{PY} \]

and this will fall by the same amount as the rise in the real value of exports

(8) \[dV_2 = \frac{-Xds}{PY} \]
APPENDIX D

ESTIMATING THE ANNUAL COSTS OF EXPORT CREDIT SUBSIDIES

The annual value of the subsidy can only be calculated when the rate that would have been charged in the market to each borrower is known. However, each borrower has different characteristics, so the total subsidy can only be roughly estimated.

This appendix discusses the procedure that this paper uses to estimate the subsidy on official export finance for one year, 1980, using the Export-Import Bank of the United States as an example. Equivalent calculations were done for the remaining six countries discussed in the text.

Fixed-Rate Estimate of the Value of the Subsidy: Assume That Eximbank Borrowers Could Have Sold Aaa Corporate Bonds

Only the best of Eximbank's borrowers could have borrowed at the U.S. Aaa corporate bond rate. Assuming that all borrowers from Eximbank could have obtained loans at the Aaa corporate bank rate results in the fixed-rate estimate of the value of the subsidy. Given detailed information on the loans in the outstanding portfolio, the fixed-rate subsidy can be calculated as

\[1980 \sum_{t=T}^{1980} A_t (r_{AA}^t - r_t^t) \]

\[A_t = \text{Authorizations made in } t \text{ still outstanding in 1980} \]

\[r_{AA}^t = \text{Corporate Aaa bond rate in } t \]

\[r_t = \text{Average interest rate on loans authorized in } t \]

\[T = \text{Year during which oldest outstanding loans were authorized.} \]
Table 7 shows the amount of direct loans authorized and the weighted average interest rate charged. The Aaa corporate bond is also shown, as is the amount saved annually by Eximbank borrowers—the subsidy. The total subsidy on Eximbank’s loan portfolio in any year is the sum of the subsidies on the debt still outstanding from earlier years.

Table 7: ESTIMATION OF THE EXIMBANK LOAN SUBSIDIES

<table>
<thead>
<tr>
<th>Year</th>
<th>Weighted Average Interest Rate on Direct Loans</th>
<th>New Direct Loan Authorizations (millions of dollars)</th>
<th>Aaa Corporate Bond Yield</th>
<th>Estimated Subsidy (millions of dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>6.00</td>
<td>2,300</td>
<td>7.39</td>
<td>32.0</td>
</tr>
<tr>
<td>1972</td>
<td>6.00</td>
<td>2,200</td>
<td>7.21</td>
<td>26.6</td>
</tr>
<tr>
<td>1973</td>
<td>6.00</td>
<td>2,900</td>
<td>7.44</td>
<td>41.8</td>
</tr>
<tr>
<td>1974</td>
<td>6.38</td>
<td>4,300</td>
<td>8.57</td>
<td>94.2</td>
</tr>
<tr>
<td>1975</td>
<td>7.90</td>
<td>2,300</td>
<td>8.83</td>
<td>21.4</td>
</tr>
<tr>
<td>1976</td>
<td>8.42</td>
<td>2,100</td>
<td>8.43</td>
<td>0.2</td>
</tr>
<tr>
<td>1977</td>
<td>8.50</td>
<td>800</td>
<td>8.02</td>
<td>-3.8</td>
</tr>
<tr>
<td>1978</td>
<td>8.38</td>
<td>2,900</td>
<td>8.73</td>
<td>10.2</td>
</tr>
<tr>
<td>1979</td>
<td>8.28</td>
<td>4,300</td>
<td>9.63</td>
<td>58.1</td>
</tr>
<tr>
<td>1980</td>
<td>8.44</td>
<td>3,600</td>
<td>11.94</td>
<td>126.0</td>
</tr>
</tbody>
</table>

Sources: Weighted-average interest rates were supplied by Eximbank staff. The Aaa corporate bond yield was taken from the Federal Reserve Board, Annual Statistical Digest and Federal Reserve Bulletin, various issues.

If the data on the percent of past authorizations still outstanding are not available, these estimates assume that all loans authorized in a given year have a maturity equal to the average and that \(\frac{t}{T} \) percent (where \(T = \text{average maturity} \) and \(t \) ranges from 1 to \(T \)) of loans authorized \(T + 1 - t \) years in the past are still outstanding. For example, \(\frac{1}{9} \)-th of loans authorized 9 years ago would still be
outstanding, given $T = 9$. These estimates weight the resulting subsidy so that the weighted average of loan authorizations made in the past equals the total outstanding export credits. Using this procedure for Eximbank yields a fixed-rate estimate of the subsidy equal to 213.5 million for 1980.

If the data on past authorizations are not available, these estimates assume that authorizations have remained constant over time. Since authorizations have generally been increasing for the countries considered, this assumption will yield a lower bound for the fixed-rate estimate. For example, using this procedure for Eximbank yields an estimate of the subsidy of 171.2 million for 1980.

Floating-Rate Estimate of the Value of the Subsidy:

Assume that borrowers would have borrowed at rates floating with the Eurocurrency rate.

The floating-rate comparison is appropriate in cases where the borrowers are not creditworthy enough to secure fixed-interest loans by selling bonds. Instead, they borrow at rates that follow the Eurocurrency rates. In 1980, on a portfolio of 13.8 billion, Eximbank earned a return of 7.31 percent. Comparable floating rate on Eurodollar loans for that year bore an average rate of 14.5 percent, so the subsidy was 7.19 percent on 13.8 billion, or 992 million. The floating-rate subsidy in 1980 is calculated as

\[
(2) \quad \bar{A}_{1980} (r_E^{1980} - \bar{r}_{1980})
\]

\[
\bar{A}_{1980} = \text{Total outstanding official export credits in 1980}
\]

\[
r_E^{1980} = \text{Eurocurrency loan rate in 1980}
\]

\[
\bar{r}_{1980} = \text{Average interest rate on total outstanding official export credits in 1980.}
\]
Computing the subsidy requires knowing the weighted average interest rate on the entire portfolio. Sometimes the lending agency supplies that information, but in other cases the lending agency supplies only the average interest rate for each year's authorizations. In the latter case, computing the average interest rate on the entire portfolio requires knowing the volume of each year's authorizations still outstanding. Where the lending agency also does not supply that information, we estimate the authorizations still outstanding, by year, as we did for the fixed-rate estimate of the subsidy (see above).

Other Problems in Estimating the Value of the Subsidy

In calculating the value of the subsidy on official export credits, this estimate assumes that borrowers faced, as an alternative, the market rate on loans denominated in the same currency as the subsidized export credit. Recently, countries have begun providing officially-supported export credits in foreign currencies. In such cases, the subsidy for any one country is the difference between the subsidized rate and the market rates for loans in the currencies in which the subsidized export credits are made. This procedure was used for the calculation of the subsidy for Canada, where a large proportion of loans are denominated in U.S. dollars. Although several other countries have started to provide official export credits in foreign currencies, inadequate data prevented our taking this into account in the subsidy calculations. The error introduced is probably small, however, both because foreign currency authorizations have only become important in the last few years and because authorizations are not immediately reflected in outstanding loans.
Bond Insurance - A recently available type of insurance offered by some agencies. Importers of capital goods and projects often require exporters to give bonds to ensure compliance with contracts, or in cases of non-compliance, to ensure reimbursement of advance payments. Private bond issuers can purchase insurance to cover the risks incurred.

Buyer Credits - Credits extended directly by a bank or other financial institution in the supplier's country to the foreign buyer or to a bank in the buyer's country. (The terms "supplier" and "exporter" and the terms "buyer" and "importer" are interchangeable.)

Commercial Risk - The risk of non-payment arising from default by, as well as the insolvency of, an importer in his home currency (as compared to risk arising from an inability to convert local currency into the currency in which the debt is denominated).

Down Payments - Buyers receiving export credit support are obliged to make payments prior to shipment. Currently they amount to about 15 per cent of the contract value, to be paid either at the time of contract signing or during the course of manufacture.

Commitment - A contract or agreement representing a firm obligation to provide funds. The term "authorization" is used interchangeably with commitment.
Disbursement - The actual international transfer of funds. In practice, the disbursement of funds can occur a number of years after the funds are committed and can occur in several installments.

Exchange Risk Insurance - Insurance covering exporters against losses which may be incurred when the contract payment is denominated in a foreign currency and that currency depreciates relative to the domestic currency.

Export Credits - Loans directly tied to exports and ranging in maturity from under 90 days to extended terms of 10 years and more. Short-term credits (often termed "trade credits") are generally interpreted as those under 180 days and receive little or no support from governments, with the important exception of insurance protection against political and commercial risks. Medium-term credits have a maturity of up to five years, while long-term credits refer to maturities of over five years.

Forfaiting - The purchase (discounting) of buyer notes from an exporter, with the assumption of the credit risk on the notes by the purchasing institution.

Grace Periods - Export credits do not have explicit grace periods, since the term of the credit is calculated from the delivery of the goods or from the date of project completion. In general, buyers must make the first principal payment within six months, and subsequent payments in equal semi-annual installments.

Grant Element - A measure of the subsidy component ("concessionality") of a loan. It is defined as the difference between the face value of the loan and the present value of the stream of repayments on
that loan (discounted at the market rate), expressed as a percentage of the face value. Thus, a loan made at market rates has a zero grant element, while a grant — a loan made at zero percent interest with an infinite maturity — has a 100 percent grant element.

Guarantee - A type of insurance offered to financial institutions that issue export credits covering both political and commercial risks of non-payment by the buyer.

Inflation Risk Insurance - Insurance covering exporters against domestic cost increases on capital goods and projects occurring during a lengthy production period.

Insurance - Insurance is offered to exporters who lend to importers directly and covers both political and commercial risks of non-payment by the buyer. The term is often used interchangeably with guarantees.

Local Cost Support - Support for costs associated with an export transaction incurred in the currency of the importer. Export credit support is normally limited to the foreign exchange costs involved. However, export credit agencies sometimes provide insurance and financing for up to 15 percent of the local or on-site costs associated with the export contract.

Mixed Credits - The combination of government foreign aid funds with official export credits to produce concessional financing packages having a grant element between official export credits and official development assistance (ODA).

Official Development Assistance (ODA) - The OECD defines ODA as funds provided for the promotion of economic development in recipient
countries that contain at least a 25 percent grant element. ODA is theoretically distinct from official export credits, which are provided for the purchase of exports from the donor country and carry a grant element of generally less than 5 percent. The increased use of mixed credit financing has blurred the distinction between ODA and export credits.

Official Export Credits — Credits extended directly by some governments either to their own exporters or to foreign buyers, often in association with private financing, to support export transactions requiring long maturities and large amounts of credit. Both in purpose and in the nature of the terms provided, official export credits are generally equivalent to private buyer credits supported with preferential refinancing and interest subsidies by governments.

Political Risk — The risk of borrower country government actions which prevent, or delay, the repayment of export credits. Such actions presuppose that the importer has deposited on time the amounts due in local currency. Many export credit insurance agencies also include under political risk such events as war, revolution, or other military-civil disturbances which prevent or delay contractual payments. Some also include physical disasters such as cyclones, floods or earthquakes.

Sovereign Risk — See political risk.

Supplier Credits — Export credits extended by a supplier (exporter) to a foreign buyer (importer) for, typically, maturities of up to five years. Supplier credits normally finance the bulk of manufactured exports outside of capital goods.
APPENDIX F

DATA ON OFFICIAL EXPORT CREDITS

(1) Organization for Economic Cooperation and Development

The Development Assistance Committee (DAC) of the OECD collects information on transfers of long-term financial resources from DAC member countries to developing countries. DAC reports data for officially-supported export credits comprising directly-extended official export credits and officially insured or guaranteed private export credits. Guaranteed private export credits, in turn, include financial credits and supplier credits. Supplier credits are private export credits extended by an exporter. Financial credits refer to credits by a bank or other financial institution extended to a foreign buyer. Included under guaranteed private export credits are credits on which an export creditor receives official support, including discounting of an export credit at preferential terms by an official agency or provision of a subsidy to an export creditor to reduce the interest rate charged by him to the borrower.

Data reporting procedures raise problems in calculating the subsidy. When official support for export credits takes forms other than direct credits (e.g. - the United Kingdom's interest make-up scheme or France's rediscounting facilities), program activities show up in data for guaranteed private export credits. As a result, while OECD data permit deriving figures on total officially supported export
credits, they do not permit isolating those programs equivalent to the direct loan program of the U.S. Eximbank.

The OECD Trade Committee's Group on Exports Credits and Credit Guarantees also collects data on officially-supported export credits. These data do not, however, differentiate among types of systems used to support export credits and, therefore, do not permit breaking out the equivalent of direct loan programs only.

(2) World Bank

Under the Debtor Reporting System (DRS), the World Bank collects information on the external debt of developing economies that have received either IBRD loans or IDA credits. Countries report changes in their long-term external public and publicly-guaranteed debt to the DRS. For the World Debt Tables, several other sources supplement these data, including the OECD's Creditor Reporting System (CRS) and the World Bank's Capital Markets System (CMS). Available data on private debt without public guarantees are also included. The data are broken down by official and private creditors. Officially-extended buyer export credits can be identified for the United States, Germany, Japan and Canada. As with the OECD data, however, credits receiving support through refinancing at preferential rates or interest rate make-up schemes are included in private-source loans and cannot be distinguished from other private credits.

(3) Berne Union

The Berne Union (The International Union of Credit and Investment Insurers) collects data on export credit insurance and
guarantees issued 35 export credit and insurance agencies from 27 countries.

Berne Union data cover commitments and offers. Commitments are export credits for which insurance or guarantees have been issued by Berne Union member agencies. They are reported on an outstanding basis, net of repayments, and include undisbursed amounts. Commitments are broken into short-term credits and payments due on an annual basis. Offers, reported separately, are potential export credits which have not yet reached the contract stage and for which insurance and guarantees have not been issued. The Berne Union presents data organized by recipient country, and by Berne Union member agency, updated on a quarterly basis.

Commitments include supplier credits extended directly by the exporter (which are said to be "insured") and buyer credits or financial credits extended by private banks (which are said to be "guaranteed"). Commitments also include export credits extended directly by two member agencies, the U.S. Eximbank and Canada's EDG. Berne Union data also indirectly include official export credit support supplied by the remaining five countries discussed in the paper (Germany, France, Italy, Japan and the United Kingdom), since each country requires insurance or guarantees for official support. The Berne Union data as reported cannot, however, be used as reported to calculate the subsidy element on direct official export credits; although they include such credits, they are aggregated with other export credits for which insurance and guarantees have been issued by Berne Union member agencies.
(4) Export-Import Bank of the United States

The Export-Import Bank of the United States submits a semi-annual report to Congress on competition in the provision of officially supported export credit and financing ("Report to the U.S. Congress on Export Credit Competition and the Export-Import Bank of the United States"). Until recently, data on official export credit financing programs were reported for the seven countries considered in this paper. Financing programs include both direct credits, such as those extended by the U.S. Eximbank and Canada's EDC, and refinancing facilities and interest rate subsidy programs (programs comparable to direct export credits).
FOOTNOTES

1 Governments also subsidize exports through loan insurance and guarantee programs, when they sell insurance and guarantees at prices below their true market value. When a government guarantees or insures a loan made to finance an export, it creates a financial instrument against which the lending institution, either a bank or an exporter, can borrow at rates close to the government borrowing rate. The potential profit on a guaranteed or insured loan to the lender equals the rate at which the importer could have borrowed in the private market without insurance or a guarantee, and the rate at which the lender can borrow against the guaranteed loan, minus any insurance or guarantee fees.

All of the countries considered have institutions that extend export credit insurance or guarantees. Through these institutions the government assumes a large proportion of the credit risk on loans to foreign buyers. Although the subsidy element on an insured or guaranteed loan is generally smaller than on a directly supported export credit, there are about three times more insured or guaranteed export credits outstanding than direct loans. Therefore, the total subsidy on such programs may still be substantial.

2 We assume that the borrower alternatively could borrow at the market rate in the same currency as the subsidized export credit. Following sections discuss problems with this assumption in greater detail.

3 J. H. Boyd (Boyd 1982) defines subsidy in this way, while R. E. Feinberg (Feinberg 1982) discusses three estimates of this concept of the subsidy. Boyd estimated the present value of the interest subsidy
on loans authorized by the Eximbank for each year between 1976 and 1980. He took into consideration variations in the repayment schedules of Eximbank loans over time and attempted to calculate the appropriate discount rate. Rather than deriving the discount rate directly from the rates charged in the private market for comparable loans, Boyd estimated what the marginal cost of Eximbank's capital would have been had Eximbank been a private financial intermediary; Boyd used this rate as a proxy for the appropriate private market discount rate.

Feinberg reviews three estimates of the interest subsidy implicit in the Eximbank's authorizations in a given year: Those of the U.S. Office of Management and Budget, the Joint Economic Committee of the U.S. Congress, and J. Hovarth (Hovarth 1975). All three estimates were based on the present discounted value technique. They differ in their consideration of such things as average maturity and grace periods of loans. In all three cases, estimates employ a single discount rate to represent the equivalent rate on private market loans.

4 A 50-basis points spread probably underestimates the cost of export credit, particularly to developing countries. If the spread is increased to 200 basis points, the estimate of the subsidy increases from $3.5 billion to $4.5 billion and most of the entries in the table turn positive.
Table 8: **ESTIMATE OF THE SUBSIDY WHEN BORROWERS’ ALTERNATIVE IS A FLOATING-RATE LOAN ($Million)**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>7.1</td>
<td>5.3</td>
<td>164.9</td>
<td>207.9</td>
<td>344.6</td>
</tr>
<tr>
<td>France</td>
<td>n.a.</td>
<td>n.a.</td>
<td>359.5</td>
<td>564.8</td>
<td>955.2</td>
</tr>
<tr>
<td>Germany</td>
<td>-41.0</td>
<td>-24.4</td>
<td>-72.3</td>
<td>4.5</td>
<td>84.7</td>
</tr>
<tr>
<td>Italy</td>
<td>197.4</td>
<td>164.7</td>
<td>116.5</td>
<td>129.3</td>
<td>257.4</td>
</tr>
<tr>
<td>Japan</td>
<td>200.7</td>
<td>96.9</td>
<td>-75.9</td>
<td>57.2</td>
<td>630.4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>325.1</td>
<td>132.5</td>
<td>234.5</td>
<td>669.9</td>
<td>1,002.8</td>
</tr>
<tr>
<td>United States</td>
<td>76.0</td>
<td>128.2</td>
<td>362.3</td>
<td>723.3</td>
<td>1,199.2</td>
</tr>
<tr>
<td>Total</td>
<td>765.3</td>
<td>503.2</td>
<td>1,089.5</td>
<td>2,356.9</td>
<td>4,474.3</td>
</tr>
</tbody>
</table>

We might calculate the subsidy more accurately by using available data on the actual risk premia that borrowers receiving officially subsidized export credit pay in the private market. If most borrowers pay a higher spread than we have assumed, or if some borrowers receiving subsidized export credits are not creditworthy enough to borrow in the private market, then we have underestimated the actual subsidy.

5 Currently, we do not have data on the geographic distribution of direct and subsidized loan programs. We assumed, therefore, that such programs were distributed geographically in the same pattern as the sum of direct and subsidized loan programs and guarantee programs. In addition, no information was available on the geographic distribution of
Canadian official export credits. We assumed, therefore, that it equaled the average of the other lending countries.

6 We thank Robert Lawrence for suggesting this extension to us.

7 If private citizens and the government choose additional consumption and investment expenditures so that the returns on those expenditures equaled those on additional investment projects, the cost of the additional exports to society would be the same whether investment, consumption or government expenditure is displaced.

8 We thank Helen Hughes for bringing this point to our attention and Ernst Lutz for providing the trade data.

9 In the United States, the evidence suggests that export credits have not been used countercyclically. Instead, direct loan authorizations have been high when unemployment has been low.

10 The original impetus for the formation of the Eximbank arose in such a situation. The Eximbank was set up during President Franklin D. Roosevelt's administration to finance trade with the Soviet Union. The administration viewed opening diplomatic relations with the Soviet Union as an important political objective. At the same time, it wished to alleviate the constricting effects that the 1931 Hawley-Smoot Tariff had on trade and to promote exports as a means of increasing domestic employment. Since the economy was in a depression, these were all important policy objectives. The Soviet Union, unlike many other countries, was agreeable to increasing imports at that point.

At the same time, the private market was unlikely to finance trade with the Soviets. The lack of diplomatic recognition had slowed the development of commercial ties, and unofficial State Department policy,
together with the Johnson Debt Default Act, operated to block loans to countries that had defaulted on war debts. Unlike the present situation, there was much evidence then to support the view that the private market would not have lent sufficiently to secure the side-effects that were considered desirable on political and economic grounds.

Similarly, after World War II, when the U.S. government viewed the level of private lending to Europe as insufficient to prevent economic difficulties and consequent political disorder that could have seriously compromised the NATO alliance, the Eximbank was one of the institutions used to channel government loans to Europe.

11 Aircraft producers receive one of the largest shares of official export lending. Military considerations do not generally govern such loans, though. Subsidized loans are made for civilian aircraft that are generally not used by the military. In the United States, for example, most military airframes are made by other companies, and when the government finance sales of those planes, it does so with loans from other programs. Indeed, Appendix II, Section 5 of the Export-Import Bank Act of 1945, as amended through November 10, 1978, states that the "Bank shall not extend loans, guarantees, or insurance under this Act in connection with the sale of defense articles or defense services."

12 In several special cases paying an export subsidy, as compared to levying a tariff or doing nothing, may increase domestic welfare. When domestic product markets are imperfectly competitive, and producers sell in both the home and foreign markets, an export subsidy rather than a
A tariff may increase domestic welfare. For example, if a domestic monopolist has a decreasing marginal cost curve, an export subsidy will lead to increased output and lower average costs. If the monopolist can discriminate between the domestic and foreign markets, the falling marginal cost of total output will lead the monopolist to reduce prices in the domestic market and increase the welfare of domestic consumers. The optimal export subsidy will balance the cost of the subsidy against the increased consumer surplus. Even if the monopolist cannot discriminate between the two markets, an export subsidy may increase welfare under certain elasticities of demand in the home and foreign markets (Auquier and Caves 1979).

These results do raise the possibility that policymakers, in structuring an export credit subsidy program, could identify industries with increasing returns, or base subsidies on different home and foreign demand conditions.

However, two serious problems greatly weaken this case for export subsidization: first, the argument artificially restricts policymakers' choices, thereby neglecting the even superior welfare outcome that the subsidizing government could achieve by simply regulating the home monopolist's home market price; and second, the rise in the monopolist's real output that contributes to the rise in home welfare must, under full employment, incur costs that reduce other output whose loss is not accounted for in the calculation.

Organization for Economic Cooperation and Development. 1982. The export credit financing systems in OECD member countries. Paris: Director of Information, OECD.

World Bank Publications of Related Interest

Adjustment to External Shocks in Developing Economies
Bela Balassa
Stock No. WP 0472. $3.

Adjustment Policies and Problems in Developed Countries
Martin Wolf
Stock No. WP 0349. $10.

Britain’s Pattern of Specialization in Manufactured Goods with Developing Countries and Trade Protection
Vincent Cable and Ivonia Rebelo
Stock No. WP 0425. $3.

Bureaucracies and the Political Economy of Protection: Reflections of a Continental European
Patrick Messerlin
Analyzes three factors that influence the “bureaus” (bureaucrats) in their decisions affecting protectionism in France.

Capital-Importing Oil Exporters: Adjustment Issues and Policy Choices
Alan H. Gelb
Stock No. WP 0475. $3.

The Developing Countries and International Shipping
Harald Hansen
Stock No. WP 0502. $5.

NEW

Economics and the Politics of Protection: Some Case Studies of Industries
Vincent Cable
Looks at factors which effect an industry’s attitude toward protection by analyzing four of Great Britain’s industries: footwear, knitwear, cutlery, and consumer electronics. Case studies examine import competition from developing countries and protectionist behavior among industries and a discussion of the politics of decision making in regard to trade policy.

Effects of Non-Tariff Barriers to Trade on Prices, Employment, and Imports: The Case of the Swedish Textile and Clothing Industry
Carl Hamilton
Stock No. WP 0429. $3.

Energy, International Trade, and Economic Growth
Alan S. Manne and Sehun Kim
Stock No. WP 0474. $3.

European Community Protection against Manufactured Imports from Developing Countries: A Case Study in the Political Economy of Protection
E. Verreydt and J. Waelbroeck
Stock No. WP 0432. $3.

Export Promotion Policies
Barend A. de Vries
Stock No. WP 0313. $3.

NEW

Exports of Capital Goods and Related Services from the Republic of Korea
Larry E. Westphal, Yung W. Rhee, Linsu Kim, Alice Amsden
Examines Korea’s spectacular export growth—from $50 million of goods in 1962 to $25 billion in 1982. Five kinds of project-related exports are characterized (overseas construction, plant exports, direct investments, consulting services, licensing and technical agreements). Discusses the role of these exports in Korea’s strategy for development. Shows how these strategies conform to the country’s dynamic comparative advantage by enlarging its industrial base.

On Exports and Economic Growth
Gershon Feder
Stock No. WP 0508. $3.

India’s Exports
Martin Wolf
Despite improved performance, the growth of India’s exports continues to lag behind need, potential, and the achievements of several of its competitors. This study examines India’s overall export performance in the 1960s and 1970s, with emphasis on the central role of incentives. The major problems and policies are discussed, as well as current strategic options.
Oxford University Press. 1982. 224 pages (including index).

Industrial Country Policy and Adjustment to Imports from Developing Countries
J. M. Finger
Stock No. WP 0470. $3.
Italian Commercial Policies in the 1970s
Enzo R. Grilli
Stock No. WP 0428. $3.

Korea’s Competitive Edge: Managing Entry into World Markets
Yung Whee Rhee, Bruce Ross-Larson, and Garry Pursell
How did Korea manage to expand its exports from less than $100 million a year in the early 1960s to more than $20 billion a year in the early 1980s? To find out about the underpinnings of Korea’s competitive edge, the authors asked more than 100 major Korean exporters what had been important for them in institutional support, technological development, and marketing overseas. The findings show that there is a strong interaction between exporting and the effectiveness of a country’s economic institutions, both public and private. Without effective institutions, a country may not be able to implement effective policies for export promotion. Conversely, successful exporting appears to give economic institutions more vitality and effectiveness. The findings also show how Korea’s selectivity—in the acquisition of technology and in the marketing of products overseas—has been an important part of Korea’s success in the world marketplace.

On the Political Economy of Protection in Germany
H. H. Glismann and F. D. Weiss
Stock No. WP 0427. $3.

The Political Economy of Protection in Italy: Some Empirical Evidence
Enzo Grilli and Mauro La Noce
This analysis is based on a model that specifies the demand side of the market. Examines 35 industrial subsectors in terms of EEC tariff protection and Italy’s domestic subsidy assistance. Finds that tariffs protect Italian exports in the EEC markets but have less effect in keeping out non-EEC imports.

Output and Employment Changes in a “Trade Sensitive” Sector: Adjustment in the U.S. Footwear Industry
John H. Mutti and Malcolm D. Bale
Stock No. WP 0430. $3.

Patterns of Barriers to Trade in Sweden: A Study in the Theory of Protection
Lars Lundberg
Stock No. WP 0494. $3.

The Political Economy of Protection in Belgium
P.K.M. Tharan
Stock No. WP 0431. $3.

The Political Market for Protection in Industrial Countries: Empirical Evidence
Kym Anderson and Robert E. Baldwin
Stock No. WP 0492. $3.

On Protectionism in the Netherlands
K.A. Koekkoek, J. Kol, and L.B.M. Mennes
Stock No. WP 0493. $3.

Public Assistance to Industries and Trade Policy in France
Bernard Bobe
Describes the institutional structure through which trade policy is determined. Focuses on the evolution of France’s international commerce in the 1970s and assesses probable trends for the future.

Real Wages and Exchange Rates in the Philippines, 1956-78: An Application of the Stolper-Samuelson-Rybczynski Model of Trade
Deepak Lal
Explains the movements of real wages in the Philippines in terms of a simple regression model. Examines the country’s postwar economic performance and draws some tentative conclusions for economic policy.

Shadow Prices for Trade Strategy and Investment Planning in Egypt
John Page, Jr.

Structural Change in Trade in Manufactured Goods between Industrial and Developing Countries
Bela Balassa
Stock No. WP 0396. $3.

The Structure of International Competitiveness in the Federal Republic of Germany: An Appraisal
Frank D. Weiss
Probes the comparative trade advantage of the Federal Republic of Germany in the 1980s with surprising conclusions: developing countries are competitive with the Federal Republic of Germany in a far wider range of products than had been previously thought. Suggests probable trends, especially toward developing countries. Concludes that the faster income in developing countries grows, the faster these countries will become competitive in an even wider range of goods. Innovation, though a key factor, cannot determine comparative advantage, because innovations spread rapidly through the world economy.
The Structure of Protection in Developing Countries
Bela Balassa and others
The Johns Hopkins University Press, 1971, 394 pages (including 5 appendixes, index).

Testing for Direction of Exports: India's Exports of Manufactures in the 1970s
Ashok Khanna
Tests the hypothesis that the exports of a developing country with an advanced manufacturing sector will differ among destinations: the capital intensity of exports will be greater to the more labor abundant destinations, and the labor intensity of export will be greater to the more capital abundant destinations. India's exports of manufactures for 1973 and 1978 are used for the analysis.

The Tokyo Round: Results and Implications for Developing Countries
Ria Kemper
Stock No. WP 0372. $3.

Trade Adjustment Policies and Income Distribution in Three Archetype Developing Economies
Jaime de Melo and Sherman Robinson
Stock No. WP 0442. $3.

Trade among Developing Countries: Theory, Policy Issues, and Principal Trends
Isaiah Frank
Stock No. WP-0478. $3.

Trade and Employment Policies for Industrial Development
Keith Marsden
In the last decade, the developing countries have proved that they can compete internationally in exporting manufactured goods, as well as primary products and services. This paper examines three sets of issues: (a) whether good export performance is attributable to special characteristics of the most successful countries or whether their success can be readily replicated in other countries; (b) whether the penetration of the markets of industrial countries has reached, or will soon reach, a limit; and (c) whether trade in manufactures among the developing countries can expand further. Concludes with a discussion of the contribution of small enterprises to the creation of employment and the alleviation of poverty.
1982. 70 pages (including annex).

Trade in Non-Factor Services: Past Trends and Current Issues
Andre Sapir and Ernst Lutz
Stock No. WP 0410. $5.

Trade in Services: Economic Determinants and Development-Related Issues
Andre Sapir and Ernst Lutz
Stock No. WP 0480. $3.

Trade Policy for Developing Countries
Donald B. Keesing
Stock No. WP-0353. $10.

Trade Policy Issues for the Developing Countries in the 1980s
Isaiah Frank
Stock No. WP-0478. $3.

Why the Emperor's New Clothes Are Not Made in Colombia: A Case Study in Latin American and East Asian Manufactured Exports
David Morawetz
Focuses on the exports of a particular commodity (clothing) from a particular Latin American country (Colombia) in an attempt to understand why Latin America has been so much less successful at exporting manufactured goods to date than East Asia. It is the first study to go into great detail in examining the price, and especially the nonprice, determinants of export success.
Oxford University Press, 1981. 208 pages (including appendixes, bibliography).

Worker Adjustment to Liberalized Trade: Costs and Assistance Policies
Graham Glenday, Glenn P. Jenkins, and John C. Evans
Stock No. WP 0426. $3.

World Trade and Output of Manufactures: Structural Trends and Developing Countries' Exports
Donald B. Keesing
Staff Working Paper No. 316. 1979. 74 pages (including statistical annex).
Stock No. WP 0316. $3.

Trends in International Trade in Manufactured Goods and Structural Change in the Industrial Countries
Bela Balassa with the assistance of Kenneth Meyers
Examines recent trends in trade in manufactured goods between the industrial and the developing countries. Analyzes (a) the implications of these trends for structural change in the industrial countries and (b) changes over time in the current dollar value and the commodity composition of trade in manufactured goods. Recommends policy changes aimed at promoting international trade and structural change.
SEND TO: YOUR LOCAL DISTRIBUTOR OR TO WORLD BANK PUBLICATIONS
(See the other side of this form.)

Date __________________________

Name ___________________________ Ship to: (Enter if different from purchaser)

Title ___________________________ Name ___________________________

Firm ___________________________ Title ___________________________

Address _________________________ Firm ___________________________

City ______ State ______ Postal Code ______ Address _______________________

Country ______ Telephone ______ City ______ State ______ Postal Code ______

Purchaser Reference No. ___________ Country ______ Telephone ______

Check your method of payment. Enclosed is my □ Check □ International Money Order □ Unesco Coupons □ International Postal Coupon. Make payable to World Bank Publications for U.S. dollars unless you are ordering from your local distributor.

Charge my □ VISA □ MasterCard □ American Express □ Choice. (Credit cards accepted only for orders addressed to World Bank Publications.)

Credit Card Account Number ___________________________ Expiration Date ______ Signature ___________________________

□ Invoice me and please reference my Purchase Order No. ____________.

Please ship me the items listed below.

<table>
<thead>
<tr>
<th>Stock Number</th>
<th>Author/Title</th>
<th>Customer Internal Routing Code</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Amount $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All prices subject to change. Prices may vary by country. Allow 6-8 weeks for delivery.

Subtotal Cost $_____

Total copies ______. Air mail surcharge if desired ($2.00 each) $_____

Postage and handling for more than two complimentary items ($2.00 each) $_____

Total $_____

Thank you for your order.
Distributors of World Bank Publications

ARGENTINA
Carlos Hirsch, SRL
Attn: Ms. Monica Bustos
Florida 165 4° piso
Galeria Guemes
Buenos Aires 1307

AUSTRALIA, PAPUA NEW GUINEA, FIJI, SOLOMON ISLANDS, WESTERN SAMOA, AND VANUATU
The Australian Financial Review
Information Service (AFRIS)
Attn: Mr. David Jamieson
235-243 Jones Street
Broadway
Sydney, NSW 20001

BELGIUM
Publications des Nations Unies
Attn: Mr. Jean de Lannoy
av. du Roi 202
1060 Brussels

CANADA
Le Diffuseur
Attn: Mrs. Suzanne Vermette
C.P. 85, Boucherville J4B 5E6
Quebec

COSTA RICA
Libreria Trejos
Attn: Mr. Hugo Chamberlain
Calle 11-13, Av. Fernandez Guell
San Jose

DENMARK
Sankenslitteratur
Attn: Mr. Wilfried Roloff
Rusenders Alle 11
DK-1970 Copenhagen V.

EGYPT, Arab Republic of
Al Ahram
Attn: Mr. Sayed El-Gabri
Al Galaa Street
Cairo

FINLAND
Akateeminen Kirjakauppa
Attn: Mr. Kari Litmanen
Keskuskatu 1, SF-00100
Helsinki 10

FRANCE
World Bank Publications
66, avenue d’Iéna
75116 Paris

GERMANY, Federal Republic of
UNO-Verlag
Attn: Mr. Joachim Krause
Simrockstrasse 73
D-3000 Bonn 1

HONG KONG, MACAU
Asia 2000 Ltd.
Attn: Ms. Gretchen Wearing Smith
6 Fl., 146 Prince Edward Road
Kowloon

INDIA
UBS Publishers’ Distributors Ltd.
Attn: Mr. D.P. Veer
5 Anari Road, Post Box 7015
New Delhi 110002
(Branch offices in Bombay, Bangalore, Kanpur, Calcutta, and Madras)

INDONESIA
Pt. Indira Limited
Attn: Mr. Bambang Wahyudi
Jl. Dr. Sam Ratulangi No. 37
Jakarta Pusat

IRELAND
TDC Publishers
Attn: Mr. James Booth
12 North Frederick Street
Dublin 1

JAPAN
Eastern Book Service
Attn: Mr. Terumasa Hirano
37-3, Hongo-ku, Bunkyo-ku 113
Tokyo

KENYA
Africa Book Services (E.A.) Ltd.
Attn: Mr. M.B. Dar
P.O. Box 45245
Nairobi

KOREA, REPUBLIC OF
Pan Korean Book Corporation
Attn: Mr. Yoon-Sun Kim
P.O. Box 101, Kwanghwanmun
Seoul

MALAYSIA
University of Malaya Cooperative
Attn: Mr. Mohammed Fahim Htj
P.O. Box 1127, Jalan Pantai Baru
Kuala Lumpur

MEXICO
INFOTEC
Attn: Mr. Jorge Cepeda
San Lorenzo 153-11, Col. del Valle
Deleg. Benito Juarez
03100 Mexico, D.F.

NETHERLANDS
MBE BV
Attn: Mr. Gerhard van Bussell
Noorderwal 38
2241 BL Lochem

NORWAY
Johan Grundt Tanum A.S.
Attn: Ms. Randi Mikkelborg
P.O. Box 1177 Sentrum
Oslo 1

PANAMA
Ediciones Libreria Cultural Panamena
Attn: Mr. Luis Fernandez Fraguela R.
Av. 7, Esquina 16
Panama Zone 1

PHILIPPINES
National Book Store
Attn: Mrs. Socorro C. Ramos
701 Rizal Avenue
Manila

SAUDI ARABIA
Jarir Book Store
Attn: Mr. Akram Al-Agil
P.O. Box 3196
Riyadh

SINGAPORE, TAIWAN, BURMA
Information Publications Private Ltd.
Attn: Ms. Janet David
20-06 1st Floor, Pei-Fu Industrial Building
24 New Industrial Road
Singapore

SPAIN
Mundi-Prensa Libros, S.A.
Attn: Mr. J.M. Hernandez
Castello 37
Madrid

SRI LANKA AND THE MALDIVES
Lake House Bookshop
Attn: Mr. Victor Walatara
41 Wad Ramayake Mawatha
Colombo 2

SWEDEN
ABCE Fritzler Kungl. Hovbokhandel
Attn: Mr. Eide Segerback
Regeringsgatan 12, Box 16356
S-103 27 Stockholm

SWITZERLAND
Librairie Payot
Attn: Mr. Henri de Perrot
6, rue Grenus
1211 Geneva

TANZANIA
The Australian Financial Review
Information Service (AFRIS)
Attn: Mr. Henri de Perrot
Attn: Mr. David Jamieson
Africa Book Services (E.A.) Ltd.
6, rue Grenus
1211 Geneva

THAILAND
Central Department Store, Head Office
Attn: Mrs. Ratana
306 Silom Road
Bangkok

THAILAND Management Association
Attn: Mrs. Sunan
308 Silom Road
Bangkok

UNITED KINGDOM AND NORTHERN IRELAND
Microinfo Ltd.
Attn: Mr. Roy Selwyn
Newman Lane, P.O. Box 3
Alton, Hampshire GU34 2PG

UNITED STATES
The World Bank Book Store
600 19th Street, N.W.
Washington, D.C. 20433
(Postal address: P.O. Box 37525
Washington, D.C. 20013, U.S.A.)

Baker and Taylor Company
50 South Gladiola Avenue
Momence, Illinois, 60954

380 Edison Way
Reno, Nevada, 89564

50 Kirby Avenue
Somerville, New Jersey, 08876

Commerce, Georgia 30599

Bernan Associates
9730-E George Palmer Highway
Lanham, Maryland, 20761

Blackwell North America, Inc.
1001 Fries Mill Road
Blackwood, New Jersey 08012

Sidney Kramer Books
1722 F Street, N.W.
Washington, D.C. 20006

United Nations Bookshop
United Nations Plaza
New York, N.Y. 10017

VENEZUELA
Libreria del Este
Attn: Mr. Juan Pericas
Avda Francisco de Miranda, no. 52
Edificio Caliphan. Aptdo. 60.337
Caracas 1060-A