This paper is not for publication. The views are those of the authors S"W P 126 and not necessarily thooLe of the Bani VOL. 2 INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT INTERNATIONAL DEVELOPMENT AS90CIATION Economic Staff Working Paper No. 126A OPTIMUM DEELOPMEI1T OF IHE ELECTRIC POWER SECTOR IN TURKEY - A case study using Linear Programming February 1972 ANNEXES Dennis Anderson Orhan Tarkan (Consultant) Assisted by Narong Thananart (Computing Activities) Economi.cs Department ?.ransportation and Public Utilities Division OPTIMUM DEVELOPMENT OF THE ELECTRIC POWER SECTOR IN TURKEY ANNEX 1 THE LINEAR PROGRAMMING MODEL, EXTENSIONS AND DEVELOPMENTS DGnrLis Anderson Narong Thananart I BRD zconomics Departiment Transportation and Public Utilities Division Contents Page MODEL Objective Function 1 Peak Demand Constraints 1 Operating Constraints 2 Limits to Hydro Output and Cap-%city 2 Restrictions.on Hydro-Thermal Balance 3 Limits to Resource.Availability 3 Max-Min Policy Constraints 3 Notes on t!e Cost Coofficients h Note on the Z-Substitutes 4 FOR4 OF INPUT AND OUTPUT Specimen of computer print out 5 EXTENSIONS AND DEVELOPMENTS Use of Capital Recovery Factor 5 Cutting Down Further on the Number of Constraints 6 A Simulation Version of the Mode' 9 A Combined Global-Simulation Model 9 ANhIEX I MEi LINEAR PROGRAMMING MODEL, EXTENSIONS AND DEVELOPMENTS 1. The load duration curve is broken down into p - 1, 2, ...P discrete rectangular blocks, each spanning a time interval Op. Objective: J T J T t P Minimize £cvv + FX E EtvUjt -(1) j=l v-l j=l t-l v--V p=1 X = decision variable denoting capacity of plant type j (j 1..J) Jv vintage v; Cjv = corresponding capital cost. Ujtv = decision variable denoting output of j, vintage v, in year t and block p on the load duration curve; Fjtv = corresponding operating cost. (This does not vary with p.). 2. Note that we minimize capital plus operating costs over the interval t = 1... T; but that we must also operate the 'inherited' plant, vintages v = -V to 0. Peak De,nand Constraint: Available installed capacity >L Peak Demand at all times J t L Ž aJvXjv D> Qtp(l . m! t = 1 .....................................Q.t .T - (2) j =1 v=-V Qtp (for p = 1) is the peak demand in year p, and m is a margin for demands above the' mean expectation. X. v a -V to 0 defines the known, initial capital stock, i.e. Lhe 'inheritediv !lant; ajv is the availability of plant ij v. . See Economics Department Working Paper No. 91 for a fuller discussion. ANNEX 1 -2- Operating Constraintss Total Output > Instantaneous Demand, at all times J t X L UJuitvp 2 Qtp t = 1..T T- -, Y- ~~~~~~ p P ~ ~(3) jl v=-V Qtp is the demand in year t, block p on the load duration curve. jtvp, v - -V to 0 defines the unknown output from the 'inherited' plant. Output From Each Plant < Available Capacity of the Plant. Ujtvp - ajvXjv t 1...T v =-V...t where aiv is the availability of plant j, v. 3. To cut down on the large number of operating constraints in the above formulation, Z - substitutes are used. Y Limits to Hydro Output and Capacity Energy Output of Hydro Plant < Available Energy at all times p £c7 ujtvp . - b X - (5) p=l with t = 1...T and jv spanning all types and vintages of hydro plant. bj is the load factor of hydro plant type j. Hydro Plant Installed C Potential Hydro Capacity T f xjv 4L%), and for lifetimes 7 this magnitude, the above formulae is approximately: CRF rv r.I - (16) If v is the vintage of plant and T is the time horizon of the s'udy the present worth of charges (rents) on capital is then, approximately T -, E§ r.(l + r) .I It= v which meane that our previous equation (10) for capital costs can bo written as: - ~~l- -1 -2 -T* Note that I - CRF /0. + r) + (1 + r) .... F (1 + r) 7; that ie, the present worth of the sum or the CRF's, over the lifetime of the plant, equals its capital cost. Table 1A: Annex 1 - Specimen Print-Out - Data Annex 1 LI) JOb A6 -- APPROAIHATION RUN P5 NATkIA GENERATOR INPUI DATA )OISCOUNT RATE .120 '.NUMUER OF PLANT TYPES 8 )NUMBER et. hYoRO PLANTS * 5 CAPITAL COST OPEKATIl.G COS, ANNUAL RATE OF INITIAL LOAD MAAIMUM COEFFICIENT COEFFICIENT COST DECREASE CAPACITY AVAIL- FACION CAPACITY TYPE M:LLIUWJ/Mw MILLIONS/14*-YR CAPITAL OPERATING MW AbILITY LII41T Hw HYDKO I 1.4I0 .*90 0.000 0.000 0.0 1.0 .40 600.0 HYOIO 2 3.10 .1)90 0.000 U.000 0.0 1.0 .4f0 2?00.V mYODO 3 3.00 .o00 0.000 0.000 1943.0 1.0 .6u 3500.0 MYU,O 4 4.20 .0to 0.00( 0.000 0.0 1.0 .60 1750.0 HYDRO 5 3.00 ) !o 0 .G0I 0.000 0.0 1.0 .o0 140.0 FUEL OIL 2.60 .900 .020 .005 900.0 1.0 1.00 99999.0 LIGIlITE 2.60 .'20 .020 .005 1017.0 .9 1.00 6000.0 NUCLEA.R 6.50 .260 .030 .005 0.0 .b 1.00 99999.0 PEAK RESERVE HEQUINEMENTS(P0OPURT1ON OF PEAK DEMAND) = .050 MAAIMUM AG6REGATE HYDRO CAPACITY IN ANY YEAR(PKOPORTION OF PEAK OEMAND) = .000 NUMr$ER OF PERIODS = 4 LENGTH OF EACH PE9IOU.YFARS z 5 5 5 20 THE MIDDLE YEAR = 3.0 3.0 3.0 12.0 NUMBER Of LOAD-INTtRVALS ON LOAD DUi'A1ION CURVE = 3 DOURATION DEMANO IN EACH PLklUD LOAD INTERVAL HUOUS/YELA 1 2 3 4 1 526. 4f02* 7 754. 13ubb. 4571e. 2 5b0. 3113. .,245. 8838. 309e1. 3 2b2b. 2079. 3503. b902. 20bb0. MINIMUM - MAXIMUM POLICY CONSIkAINTS MIN. CA-ACITY MAX. CAPACITY TYM.E VINTAGE M Mv Table lA continued. Specimen Print-Out-Results Annex 1 JOb A6 -- APPROXIMATION kUN POWE^'-DISPATCH '-HEOULE£FOk PERIOD 1 ULhJSED CAP- INTEHVAL (P) TYPE VINTAGE ACITY AT PEAK 1 2 3 Hmy)qo 1 0 0. 0. 0. 0. hYOqO I 1 0. 600. 319. 0. nrDUO 2 0 0. 0. 0. C. HYUqo 2 1 0. 0. 0. 0. NYDwO 3 0 0. 1943. 1344. o29. mYoaOo 3 1 -0. 739. 424. 424. hYI)PO 4 0 0. 0. 0. 0. HYI)RU 4 1 0. U. 0. 0. HYDWO 5 0 0. 0. 0. 0. HYu4O 5 1 -0. 140. 110. 110. FUEL OIL 0 635. 26s. 0. 0. FUEL OIL I 0 0. 0. 0. LIGNITE 0 102. 915. 91b. 915. LIG.NI TE I 0. 0. 0. 0. NUCLEAR 0 0. 0. 0. u. tNIJCLEAR 1 0- 0. 0. 0. TOtAL OPERA,ING CAP ACITY 4602. 3113. 2079. OE4AND 4W00. 3113. 2079. TOTAL UNUSEO(INCL.RESRV)CAP. 737. TOTAL CAPACITY 5339. Table 1A continued: Specimen Print-Out - Results Annex 1 JOU A6 -- APPROXIrATION RUN INSTALLED CAPACIltY ltW4-. TOTAL COST = 25850. VINTAGE 0 1 2 3 4 1YD00 1 0. nOj. 0. U. 0. HYO4Q 2 0. 0. 0. (. 22eo. MY40O 3 1943. 7390. 276'. 0. 0. HY00 4 0. - U. 0. U. 1750. HYO.U S u. 1'40 0. 0. 0. FUEL OIL 900. 0. 0. 1274. 6151. LIG6NITE 1017. 0. 355. 4586. IOS9i. NUCLEAR 0. 0. 0. 29031. TUTALS bY GROUPS (MW) VINTAGE 0 1 2 3 4 ALL HYORO 1943. 3422. 6183. 6183. 10133. FUEL OIL 900J. 900. 900. 2174. b325. LIGNITE 1017. 1017. 1372. 595d. 7017. NUCLEAR 0. 0. 0. 0. 29031. TOTAL 3860. 5339. 8455. 14315. S4505. fEAK OEMAND 4602. 7754. 13066. 45712. Table 1A continued: Specimen Print-Out - Results Annex 1 JOd A6 -- APPiOALMATIUN RUN POWER-DISPATCH SCHEDULE 1uW PEHIOD 2 UNUSEU CAP- INIENVAL(P) TPE VINIAGE ACITY AT PEAA I 2 3 hYO40 1 0 U. 0. U. 0. hYO) . 1 1 0. 600. 319. ). *YUOD 1 2 u. 0. 0. 0. h,i4O 2 0 0. 0. 0. 0. hY:jiqO 2 1 0. U. U. 0. HmD O 2 2 0. 0. 0. U. NIU40 3 0 0. IV4J. Illo. llie. HY04U 3 1 -0. 739. 424. 424. mYD)PO 3 2 0. 2761. 2041. 617. HY?QO 4 0 0. 0. 0. 0. HOY0O 4 1 0. U. U. 0. 4YDU-O 4 2 0. 0. U. U. HYO005 0 0. 0. O.; 0. HYDY0 5 1 -0. 140. 11C. 110. HYo4O 5 2 0. 0. 0. 0. FUEL OIL 0 Sb4. 336. 0. U. FUEL OIL 1 0. 0. 0. U. *1.EL OIL 2 0. 0. 0. u. LIC.NITE 0 102. 'ib. 915. 915. LIGh41TE I U. 0. 0. 0. LIG'loTE 2 36. 3''. 320. 320. NUCLEAx 0 0. . 0. U. NUCLEAW 1 0. C. 0. 0. NUCLEAR 2 0. O,.o. 0. TOTAL OPE4rTING CAPACIIY 7754. 524S. 3503. DEMAND 77S4. 524S. 3503. TOTAL UNUSEU(INCL.HESRV)CAP. 701. TOTAL CAPACIrY k.ss . Table 1A continued: Specixien. Print-Out - Resu:lts Annex 1 jOo AF -- APih0A,: I:AAT ION RUN VOwfEr4-DjIPATCH SCHEDULE FOR PEEWIOO 3 U;,%UEL) CAV- IN1ENvDA.lP) TY.SL VINIAGE ACIT AIT PEAeK I 2 3 HYU40 1 0 0. 0. 0. 0. HYDwo I I 0. 600. 319. U. hTUrOu I 2 0. 0. U. 0. NYi)QO 1 3 0. 0. 0u. 0 rYU6O 2 0 0. 0. ° 0. HY04O 2 1 0. 0 0. HYOCQ 2 2 U. 0. 0 0. hfD40 2 . .0- '. hYu'O 3 0 -0 12U'. l2Ub. 92C. .-YURO 3 1 -.. 739. 424. 424. hYURO 3 ;P 0. 2761. 2330. C. mYU[O 3 3 0. . U. 0. HYlifO 4 0 0. 0. 0. 0. nY:)-40 4 1 0 . °. 0. 0. HYUHO 4 2 0. 0. 0. 0. hYt4O 4 3 0. . U. U. hyOijo 5 0 U. 0. 0. HY0@O S I -0. i40. llU. 110. tYNO 5 2 0. 0. 0. 0. HYUO 5 3 (. 0. 0. 0. FUEL CIL 0 653. 247. U. 0. FUEL OIL I U. 0. U. 0. FULL OIL d 0. 0. 0. 0. FUEL UIL 3 0. 1274. 0. 0. LIGN4I E 0 102. 915. 0. 0. LIC,?SITE I 0. 0. C. O. .. IGNITE C 36. 3CU. 320. 32u. LI GtIrE 3 459. 4127. 4127. 4107. NUCLEAR 0 0. 0. 0. 0. NUCLEAQ I C. O. O. 0. NUCLEAR 2 U. 0. 0. U. NUCLEAR J 0. U. 0. 0. TOTAL CPERATlNG CAeACIlY 13000. 8f3d. 5902. OEMANO 13UOb. 8832d. 5902. TOTAL UNUSED4INCL.8ESWV)CAP. 1249. TOTAL CAPACITY 14 ). Table 1A continued: Specimen Print-Out - Results Annex 1 JOb A6 -- APPWOAU4ATIIN rkUN POwER-l)1SPATCH SCHEDULE FOR PERIOU 4 u:NUSEU CAP- INTEWVAL(P) TYPE VINTA6E ACITY AT PEAK I 2 3 I., rJ.!o 1 V 0. 0. 0. 0. H 1L)> I0 1 1 600. 319. 0. HYD-O 1 2 0. 0. U. 0. hiYD;0 1 3 0. 0. 0. 0. H.YU6?0 1 4 0. 0. n. 0. hfl)'O 2 0 0. 0. 0. 0. HYo0-O 2 1 0. 0. 0. U. hYU40 2 2 U. 0. U. 0. nYU.4O 2 3 0. 0. 0. 0. hYIJJO 2 4 0. 2200. 11'9. 0. HYUD4O 3 U 0. 194J. 163,o. 0. Mir0'40 3 1 0. 739. 623. 0. HYDO40 3 2 0. 2761. 2330. 0. HYuRO 3 3 0. 0. O. Q. hYUwo 3 4 0. 0. 0. U. HYDUO 4 0 0. 0. 0. 0. HYDRO 4 1 0. 0. 0. 0. HYDUO 4 2 0. 0. U. 0. HYO'O 4 3 n. 0. 0. 0. HYDWO 4 4 0. 1750. 1477. U. HYURO 5 0 U. 0. U. 0. HYI)r-O 5 1 0. 140. 140. . "Yu.4O 5 2 0. 0. 0. 0. HYD-O0 5 j 0. U. 0 0. tIYU.O 5 4 0. 0. 0. FUEL OIL 0 900. 0. 0. 0. F'JEL OIL I v. 0. 0. 0. FUEL OIL 2 0. 0. 0. 0. FULL OIL 3 1274. . 0. 0. FU.L OIL 4 112. 6039. 0. 0. LIG'lTE 0 1O?. 915. 0. 0. LIGtJITE 1 0. 0. 0. 0. LIC'JI tE 2 36. 320. 0. 0. L GNI TE 3 459. 4127. 0. 0. LIGNIIE 4 1o6. 953. 0. 0. PJUCLEAR 0 0. u. 0. 0. NUCLEA) I 0. 0. 0. 0. NUCLEAk 2 0. D. 0. 0. NUCLEAP 3 0. 0. 0. 0. NUCLEA4 4 58406. 23Ž22. 23225. 20603. TOTAL JPERATING CAPACITY 45712. 30921. 20650. r)EMAND 45712. 30921. 20650. 'OTAL UNUSED(INCL.#lESHV1CAP. 0793. TOTAL CAPACITY 54505. Table 1A continued; Specimen Print-Ou' - Results Annex 1 JOb A6 -- APPROXtIMATIUN RUN OUAL ,ALuES TO THE DEMANU CONSTRAINTS (TUnOUSANDS/MIo, PERIOOOIT I 2 3 4 INTERVAL IP) 1 195.e41 110.7H5 62.862 44.e6c 2 1091.133 816.695 297.833 2O1.562 3 51l.SOS 382.dS3 139.618 63.895 Table 1A continued: Specim,en Print-Out - Results Anney 1 JOb Ab -- APP$UAIMATION IU, DUAL VALUES TO MAXIMUM CAPACIiY LIMLIb (THOUSANDS/P44) kyr.() l 87I.966 hTYRO 3 34h.51 MYORO b 92.70o7 FUEL OIL -0.000 LIGNITE 14.13 NUCLEAR -0.000 NOC.E -0. * NOT AVAILABLE IN LP SOLUTION Table 1A 3Lr'uei S*ci.m3rL Point-out - iesults Annex I JOU A6 -- APRdOXIMATIOtf RNUN DUAL VALUES TO AGGNEGATE nYDRO CAPACITY (T hOUSANDS/Mi) PER1OD(I) I 2 3 4 CURRENCY UNITS/Kw -O.(OOo -0.000 -0.000 -0.U00. NOTE. -0. a NOT AVAILAbLE IN LP SOLUTION ANNEX 1 -6- -v -v T -Y Civ c (1 + r) l + g) r 7 (1 + r) -V T + 1 v a (1 + g) ((1 + r) /(1 + r) - 1) - (17) and by using this formula we can dispense with the "end condition', cutting down significantly the number of constraints. Cutqiing Down Further on the Number of Constraints 12. There are two devices we di"cuss here, both of which rest on approximations, but which deserve exploring. (a) Aggregating the Outputs of Each Type of Plant 13. Note that g*, the rate of decline of generation costs for new vintages of plant, is generally small - about 0.5% p.a. for thermal plant, and zero for hydro plant. Therefore, it is hardly torth distinguishing between the operating costs and dispatching schedules of a given type of plant from those of another of the same type. Instead, let: t Ujtp E ' Ujvtp be the aggregate v= -V output of all plant of a given type in year t, period p. Aiso let: F = corresponding average operating costs of this type in 't year t period p. Then the objective function is: J T J T P E c' E j v + £ E Fjt U,,tp P j=1 v=l j=1 t-l p=l Sabject to the following constraints: Peak Demand Constraint - as before in (2) Operating Constraints J 1=1 tp '> Qtp t - 1 T ANN?:X -7- Aggregate Output z Aggregate Capacity of of Each Type - Each Type tp _a aj Sjv j ' (' p = 1 ....p again this constraint can be reduced by 1/P using Z - substitutes Limits to Hydro Output and Capacity P t Ujtp ip Z b j Xjv t 1....T (5') p=l V. -V other Constraints (6), (7), (8) and (9) are unaltered. 14. It is evident that constraints (4') are very much less than (4). In fact when the Z-s.bstitutes are used, they number only J x T. 15. Thus ti,e problem can be collapsed to even sraaller dimensions than appear in Annex IV. For a problem with 6 investment periods, 9 types of plant and three blocks on the load duration curve, constraints (2), (3'), (41) and (5') total (t + 18 + 54 + 54) - 132 in all. The total when there are 4 investment periods, 8 types of plant, and 3 periods on the load duration curve, is (4 + 12 + 24 + 24) - 64 in all. (This is run A6 in Annex IV). 16. The above simplification is thus well worth considering. (Note that cost functions of the form (9) and (10) can still be used.) It cuts the problem size down to well within the capacity of computers in Turkey. V (b) Use of Convexity Properties of Cost-Function 17. Use of this device requi. es a major transformation of the problem, and so we shall illustrate it for a .imple case, where we wish to minimize the operating costs of n = 1 - - - i types of plant with cost coefficients Fn. i.e. N Minimize ( £ Fn .%) Un n-l 1/ Mr., Gozeux kindly pointed out this possibility to us. AN NEX 1 Subject to: UL + U2 + U3 U:L X U3 x u3 : x3 U e X n n Suppose we define the subscripts n a~o as to locate the plant in ascending order of marginal operating costs (ascending order of Fn). Then we know that the output will be either: (U1), or (1 or (l + U2), or (Xi + 2) or (X. + X + U3), or approximately (X1 + X2 + X3), or (Xl ' X2 + X3 + Uh) or (Xi + X2 + X3 + X), or etc. etc. So that we could write the above problem as: Hiniimize ( (fl) o 1 + (F1x1 + F2X2) <2. n Subject to the demand conBtraint: (I)l+ (x 2 + X2) 2 + (x1 12 +X3) 3 .... _ Q and the "convexity constraint": 1+ X2 + 3 where FiXi are taken to be constants. -9- ANNEX 1 18. All the capacity constraints are now reduced one, represented by the "convexity constraint" above. 19. This device might be worth exploring in thF, simulation models, but for the global models, where the I's are endogenous decision variables, it transforms the problem into a quadratic prograrming problem. A Simulation Version of the Model 20. The simulation version of the abova model is derived by letting all the X V's be predefined constants. That is, we predefine the investment plan over tAe entire period of the study and the LP is used o to determine the load dispatching schedules. The changes to the above model are as follows. (1) Objective function. All terms involving 2 are deleted, since they are now predefined constants. (The capital cosix must be added up separately to the main computation.) (2) Peak Demand Constraint. This is deleted. The user must predefine the plan so as to satisfy this constraint. (3) and (1) Operating Constraints. These remain unaltered. However, siace the right hand side of constraints (4) are now constants, they can be reduced to a very -limple form by bounded-variables LP techniques (see, e.g. Hadley: "linear Frogramieing", Chapter 11. Addison-Wesley). There is no need to use Z-substitutes to cut down on the problem size. (5) Hydro output. Simllar remarks apply. (6), (7), (8) Resources Available and Restrictions on the Hydro-Thermal Balance. These are deleted. The user must predefine the plan so as to satisfy ttese ccnistraints. (9) Max-Min Policy Constraints. No longer needed. A Combined Global-Simulation Model 21. It seems that the user is , re interceted in predefining his investment alternatives and making Cianges or adjustments to policy in the short-run. In the long-run, there is more flexibility, and it is probably better to let the model specify the alternatives, Also, in the short run, investments should be specified on a year-by-year basis, while in the long-run, the investment blocks can span (say) 5 years (as in this study). ANN EX 1 - 10 22. The question arises therefore, can we develop a model whiich has the elements of a simulation model in the short-run, in that the investment plan is predefined on a yearly baais 'n this period; and which has the elements of a g'.obal model in the long-run, in that the model searches for the investment policy in this period? The answer is that we can. Paradoxically, the demands on computer space and time are reduced if we do this. The reason is that +'3 burden of defining the investment program in the short- run is taken off the computer and passed onto the user. Even thcugh we are increasing the detail in the short-run, this is a problem for the user and not the computer. (There are, it is true, more dispatching schedules to compute; but with the use of bounded varlables LP or Z-substltutes, this is not a particularly onerous task for the program.) Below, we sketch out the form of a combined global simulation model. Lett t - i.. T* denote the short-run (one year intervals, say) t - T* + 12, ...T denoce the long-run (five year intervals, say) 23. Iet there be n - 1 - - -- N projects of any type be constructed in tk3 short run, n - 1 denotes the first project, n = Fthe second projc,t, etc. Also let n(t) denote the number of projects constructed by t (Nlote n (T*) = I-, where n(t) is part of the data input. Then let: Xn - capacity (MW) of project n Untp - output (MW) of project n in period t, P Cn - discounted capital cost of project n ($/MW) Fnt = discounted cost of operating project n in year t ($/MWh). 24. Then the costs of constructing and operating these projects in the short run are: N T* n(t) P c .~+ 7F W9j E CnXn + ' '_ n L Ft * gp * ntp na t - n - I p- 25. In the long run all of these projects will be constructed, and their operating costs are: N T P n-l t=T*+l pal nt p ntp (19) ANNEX 1 26. The long run capital expenditures and operating costs can be represented in exactly the ;ame way as before, except, of course, that we summate over v - T* + 1 to r, and t - T* + 1 to T. 27. Finally let there be i - 1 ...I distinctive types of projects initially. Let their outputs in any period be denoted by U_itp ar.d 'heir unit operating costs by F i 80 that their total operating are represented in (18) and (19) tby sulmmating from n - -I to n(t) and n - -I to Ni respectively. 28. The objective is then to choose Untp, Ujty and I v so as to minimize:jt:)j N T* n(t) P n r L 2I F nt p ntp n=l t-l n--I p - 1 T N P E ± S nt p untp |20 t-T*+l n--I p - 1 J T J T t P £ L C~~Jv' :v + E E 5vt op Uvtvp j 1 v-T*+l J-1 t-T*+l v-T*-+l p-i where the first two terms represent short-run expenditures and policies and the last three long-run expenditures and policies. (Note that we have included In in the objective so that the L.P. can perform the task of qdding X. 29?. The constraints foll.w a similar pattern to before. We list only a few algebraicallys Short-FRun Policy Constraints Xn Specified Constants; n - -I .... N 21 U nt anx ; p - 1 ...P ntp n 1 t - 1 ...T* 22 n b- .... n(t) U/ Note that (22) cen be treated by Z-subst'tutes. ANNEX 1 - 12 - Shcrt-Run Output Constraints n (t) 7 ntp 2 p 1 ... - (23) t =1 ... T* n--I and n(t) s Unt . Hn; t * 1 ... T -(24) y ntp p n - hydro na -I 30. No other constrainth are needed in the short-run, since the margins of spare capacity, restrictions on hydro-thermal balance, resource availability, etc., must be satisfied by the user when specifying his short-run plan. Long.-Run Output Constraints N J t "l- unt + u v >Qp p = l ... ;p - (25) n--I J-1 v-T*+l ntp ann; p-i ... T - (26) n -I ..N u1 vp ajvXjv; ti, ... j - (27) t T- l . v * 1...... T p * ....... P U ntp P - n t T*+1 . . . T - (28) p-i P 111 UJt @j.H9pQ4 *Hjv; j hydro - (29) p v 1**+1 t NI. - - 13 - Long Run Peak Demand Constraints N J t Y anX + a Z a .1 > Q ( I ) t+- cF 1..T _ ~~~n ~~~JV jv tp n--J. J-1 V-T*+1 31. Other constraints, such as the limits to resource availability and on the hydro thermal balance, follow fairly obviously. OPTIMt1M DE7MFKENT OF THE ELECTRIC POWER SECTOR IF TURKEY AhNNEX II DETAILS OF DATA IN?UT Dennis Anderson Orhan Tarkan IBRD Economics Department Transportation and Public Utilities DivgRion AN1IEX II 1/ CONTENTS 1. We shall sLudy only the interconnected system. This is TEK's area of responsibilities and accounts for about 85% of the eletricity generated in Turkey. 2. The period of the study will be about 30 years, so that there is, naturally, quite a large range of uncertainty in the asaumptions and the data. For this reason the studies uill comprise (i) a basic study, using the best interpretation we can make Of the data; and (ii) a series of sensitivity studies based on changes in the assumptions an t e a a. Data for both basic and sensitivity studies are pres3nted in this annex which is organized as follows: TOPIC PAGE (1) Ground Rules. - - - - - * - - - - - - - - - - - - - - - - - - 2 (2) Demand Forecasts: (a) G:owth of Peak Demand. - - - - - - - 2 (b) Shape of Loa.' Duration Curve. - - - 3 (3) Number and Span of Investment Fz'±ias. - - - - - - - - - - - a (4) Planned Shape of the System by 1975. L (5) Capital Costs of Fossil Fuel Plant (Oil, Coal, LignitJ) - - - 5 (6) Oil: Generation Costs. - - - - - - - - - - - - - - - - - - - 7 (7) Lignite: Availa.bility and Generation Costs.- - - - - - - - - 8 (8) Coal: Availability and Generation Costs. - - - - - - - - - - 13 (9) Nuclear: (a) Capital Costs. - - - - - - - - - - - - - - - - 14 (b) Generation Costs.- - - - - - - - - - - - - - - 14 (10) Gas Turbines: (a) System Requirements. - - - - - - - - - - - 17 (b) Capital and Generationl Costs. - - - - - - 18 (11) Hydro: (aj Abundance and Characteristics of Sites. - - - - 19 (b) AdJustments to Capital Costs for Irrigation Benefits and Flood Control. - - - - - 20 (c) Classification and Ranking of the Hydro Sites. - 21 (d) Restrictions Imposed by Remoteness of Sites from Trans'ission Network. - - - - - - - 23 (e) Restrictions Imposed an Hydro-Thermal Balance by Energy Requirements in Dry Years. 25 1/ Bassd on the information gathered by Messrs. Russell and Anderson during a visit to Turkey in Decembor 1970. A subsequent visit in December 1971 found the data bad changed in several respects since then. It is updated for the supplementary study reported in Ann6x V. ANNEX 2 -2- (1) GROUND RULES 1. The ground rules for the basic and sensitivity studies are as follows: (i) Taxes and subsidies neglected from costs. (ii) Discount rate = 12%, with sensitivity studies on 9, 15, and 18%. (iii) Exchange rate - 15 TI/$, with sensitivity studies on 9, 12, 18 and 21 TI/$. (iv) Shadolr wage rate - see evaluation of costs of particular items, below. All cost estimates obtainec in Turkey and/or from consultants' reports have been revised in accordance with these rules. 2. The 12% discount rate and a shadow rate of foreign exchange slightly in excess of the actual rate (15 TI./$), were recommended by the State Planning Organization. 3. The reason for considering exchange rates lower than 15 TI/$ was to estimate the quantitative impact of the 1970 devaluation on investment policy. (2) DEMAND FORECASTS (a) Growth of Peak Demend 4. Data supplied by TEX for the aggregate demand on the intercor ected system are as follows: al 1 Actual Forecast Growth Rates l9b9 1970 1975 -9I0 1970775-IY75/80 Demand, Gki 6.023 7.?5 18.64 27.49 20% 8% Peak Denand, KW 1,069 1,340 3,365 5,010 20% 8% Load Factor 64% 62% 6t% 63% - - These data are the same as those used by the Otto Gold Report on Elbistan. They include the loads of the autoprzducers and allowances for losses in the transmission and distribution networks. 5. The underlying trend in the growth of demand has been about 11% per ar.num for the past 10 years. -It is expected to increase more rapidly than this during the next five yeara owing to two special factors: the connection of a number of isolated systems onto the interconnected system, and the extra demand of a new aluminium factory, to be commissioned during 1972 to 1973. After 1975, the demand is expected to return to the rate of growth experienced up to 1970, or possibly a little lower than this. ANNEX 2 -3- 6. For the rate of growth of demand beyond 1975, our basic study will assume 11% per year. The sensitivity studies will consider 7, 9, e3 and 15% per year and a number of additional cases with high growth rates in, the short run, slackening off to lower rates of growth in the long run. The loads in each year are then: Forecast Demand on Interconnected System, MW Rate of Study Growth of Years Demand % per year 1975 1980 1985 1990 2000 Sensitivity 7 3,365 4,720 6,619 9,284 18,623 `:-:sitivity 9 3,365 5,177 7,966 12,257 29,017 - c 11 3,365 5,670 9,553 16,096 45,696 S._sitivity 13 3,365 6,200 11,423 21,046 71,441 Ser.sitivity 15 3,365 6,768 13,613 27,381 110,771 Sensitivity 13%/7%* 3,365 6,200 10,447 16,074 31,620 Sensitivity 15%/7%* 3,365 6,768 12,470 19,187 37,744 Sensitivity 17%/7%* 3,365 7,378 14,840 27,342 64,727 *13% per year initially, declining to 7% per year in the long-run; etc. (b) Shape of Load Duration Curve 7. The shape of the load duration curve, supplied and forecast by 1'EK, is not expected to change much, despite the increase of industry's share in total demand. Figure 1 is the curve supplied by TEK. For this study we have approximated it by Figure 2. We undertake one sensitivity study to check this approximation using the more detailed curve of Figure 3. The actual values of the co-ordinates of Figures 2, 3, expressed in terms of the demand forecast for 1975 are: 1975 Co-ordinates For Figure 2 Load Duration Width 3lock MW Hrs/year of Block,% 1 3,365 525 6% 2 2,550 3,060 25% -3 2,050 6,120 35% 4 1,520 8,760 30% Figure 1: ACTUAL LOAD DURATION CURVE A ( ~SUPPLIED BY TEK) 1 00 a 2. E0L 8760 Figure 2: APPROX'MATION USED FOR BASIC AND SENSIT'VITY STUDIES 1 00 0 w 0 e ' - 7 -- X HOUR S 8760 Figure 3: LOAD DURATION CURVE USED TO CHECK APPROXIMATION OF FIGURE 2 1 00 z DCL LI 0 - HOURS 8760 I BRD '-6102 ANNEX 2 -4 - 1975 Co-ordinates For Figure 3 Load Duration Width of Block MW Hrs/year Block, % 1 3,365 525 6 2 2,800 1,490 11 3 2,550 2,450 11 4 2,l;00 3,940 17 5 2,200 4,990 12 6 2,050 6,040 :12 7 1,850 7,090 12 8 1,650 8,140 12 9 1,450 8,760 7 (3) N[1MBER AND cPAN C? INVETKENT PERIODS 8. The study will be cunsidering investments over the period 1975 to 2010. broken down into 5 x 5 ye'ar blocks ("investment periods") with one terminal period ("end condition") of 10 years. The principal focus of the study will be on the more immediate investment decisions spanning the 1975/85 period. The reason for considering investments beyond then is not of course to simultaneously derive a 'master plan' for the next 40 years but to determine: a) the kind of system in which the plant installed before then wiU be operating; and b) to allow for interactions between investment decisions of different periods. 9. Breaking the investment periods into 5-year blocks may be thought to be rather a coarse approximation. One sensitivity study will be undertaken to check the accuracy of this approximation by considering 9 x 2-year investment periods with an end 'endition of 15 years. (4) PLANNED SHAPE OF THE SYSTEM BY 1975 10. Table lAshows the plant presently dn the interconnected system, and the plant curently under construction and which are planned to be commissioned by 1975 or before. In total, it is anticipated that by 1975 there will be "he following plant on the systemt Type Capacity, MW Hydro (single and multipurpose) 1943 (6637 GWh, firm) Lignite Fired 720) 1017 MW Coal Fixed 297) Oil Fired 900 Gas Turbines 220 Total _4c80 FIrm 3468 Demand 3365 CAPITAL COSTS OF FOSSIL-FIRED POWER STATIONS 300 . ..1......... 250 ' X i 200 _ _ _ _ A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 14 0 z 150 t 100 . = oil. o = CE)AL A = LIGNITE 50 t 0 100 200 300 400 500 600 700 800 900 1000 WE7E, MW IRRD - 6103 FIGURE 5 ASSUMED CAPITAL COST FUNCTION FOR FOSSIL-FIRED PLANTS 125 :_- 1 1 - 25 - _ - --- *- - 1 000 2000 3000 4000 5000 6000 7000 8000 SIZE, MW IBRD - 6104 ANNEX 2 -5- (Notes: The plant owned by the autoproducers connected to the interconnecLed system is included in the above estimates of capacity. Also, recall that the loads of autoproduters and allowances for system losses are included in the demand estimates. ) 11. Beyond 1975, Turkey will have a choice among seven types of power plants: Nuclear, Oil, Lignite, Coal, Gas Turbines and single a.nd multi- Purpose Hydro. We now discuss the capital, fuel and operating costs of each type of plant together with the costs and availability of energy resoorces in Turkey. (5) cAPITAL COSTS OF FOSSIL FUEL PLANT (OIL, COAL, LIGNITE) 12. Data on capital costs per KW inXtalled are plotted in Figure 4. These aire (ita compiled from an IAEA report,! from Turkish and U.K. data. There is a scatter in the points, but they do show quite clearly the economies of scale for fossil plant. Also there is no discpynible difference between the capital costs of the different types of plant.- The scatter in the points probatly reflects a number of factors: some station costs being quoted with ttrminal transmission equipment included, but others not; local variabilities in construction difficulties; variability in costs between manufacturers; estimates occurring at different points in time (although we have attempted to correct the data for price changes in constructicn and industrial manufactured goods). 13. Wge have fitted a simple regression line through the points, and used this to estimate the capital costs of fossil plant. Its extrapolation is shown in Figura S. 14. In each year, we take the capital cost to correspond to the largest single unit that could be connected to the system in that year. This is about 10% of system size on accorŽit of the engineering requirements for system stability. Thus in 1976 a single unit of about 300 MW could be contemplated. There is, of course, no reason why two or three 300 MW units could noT be installed, i- desired; but they would be priced as two or three 300 MW units in this exercise and not as 600 or 900 MW units. 15. On this basis we obtain the following estimates of capital costs for fossil fired plant over time: 'Jintage 1975 1980 1985 1990 2000 Demand, M,W 3,365 5,670 9,553 16,096 45,696 Maximum Size of Unit, MW 300 500 900 1,600 4,000 Cost: TI/KW 2,625 2,400 2,175 1,920 1,605 $/KW 175 160 145 128 107 1/ Kahn (1970) "ProsDects of Intermediate Size Power Plants" IAEA, SM-140/31. Conference in Oslo. 2/ Although our data show no discernible differences, several people have subsequently commented that the capital costs (per KW) of oil-fired plant are somewhat less than for lignite-fired plant. 6 ANNEX 2 16. The above c sts can be more conveniently expressed by a simple formula. If v is the vintage of plant, the capital cost is given) by: -(v - 1975) 2626 (1 + 0.02) TL/KW which is an exronential decline from the 1975 figture of 2% per year. 17. For higher rates of growth of demand larger units can be installed sooner. The rate of decline of capital costs will therefore be faster. For the sensitivity studies on the rates of growth of demand we take the following rates of decline of capital cost of fossil plant: Annual Rate of Growth of Demand 7% 9% 11% 13% 15% Annual Rate of Decline of Capital Costs 1.5% 1.75% 2% 2.5% 2.97 18. The above capital cosi' are also quoted on the basis of 12% interest rate and 15 TL/$. The following table gives the breakdown of costs for a number if lignite and oil fired plant: 1/ Breakdown of Capital Costs: Lignite and Fuel Oil Plant Size of Domestic Foreign IDC Total Plant, MW MTL % MT % MTL % MTL 300 271 28 555 57 143 15 969 600 465 27 960 56 303 17 1,728 300 237 29 h50 56 119 15 8c6 300 262 30 495 56 131 14 888 600 395 28 810 57 209 15 1,414 600 436 28 900 57 232 il 1,568 150 96 25 240 63 42 12 378 300 160 24 435 65 74 11 669 300 162 25 420 64 72 11 654 1/ Data are obtained from Otto Gold report with interest rate 8% and currency 15TL = $1. 19. On this basis we use the following formula for adjusting the capital cost of lignite, coal and fuel-oil fired plant: IC (0.27 + E x 0.6/15 + r x 0.13/0.08) where K is the capital cost at E 15 TL/$ and r - 8%. 20. Finally, sensitivity studies on th,e capital costs of fossil plant (which turns out to be lignite for the next 10 to 20 years) are also undertaken. Capital costs of lignite plant are successively increased by 10%, 20%, 30% and 50%. ANNEX -7- (6) OIL: GONERATION COSTS 21. The long-run cost of fuel-oil is at present highly uncertain. 'From the late 1950's to about the summer of 1970, the average realized f.o.b. crude oil prices in the Persian Gulf followed a generally declining trend. Since about the fall of 1970, the buyer's market which characterized the decade 1960-1970 has com.e to an abrupt turning point as reflected by a simultaneous (and large) increase in both posted and realized oil prices. This is related to a succession of unusual events (in the Middle East) which began with the closure of the Trans Arabian Pipeline in May 1970 and the production curtailment irn Libya in June 1970, and culminated with the conclusion of the Teheran Agreement in February 1971 and th3 Libyan agreement in April 1971." I/ 22. It is this situation, apparently exaccrbated by an increased demand in the USA and Europe for low-sulphur (less polluting) fuel oils, which has caused fuel oil prices to rise markedly in the past 18 months. "iThe prices for residual fuel oils in the U.K. and the Netherlands which were generally declining in 1961-1969 rose sh.."ply from about $14 per ton in January 1969 to about $27.50/ton in January l971." 2/ Apparently this may not be an untypical international price at the present time. 23. In this situation it is difficult to determine the correct price to assume for fuel oil in Turkey. TSK provided us with a c.i.f. estimate of about $13 per ton, but this was of course before the Teheran Agreement and in fact compares quite well with prices experienced in other countries at that time. As yet we do not know what the revised and long run prices are likely to be. They are, however, likely to follow international prices. On the one hand, if Turkey could produce fuel oil lelow world market prices, then she could exDand refinery capacity and export *uel oil up to that point where the marginal costs of production equalled the international price (..-;+h adjustments for transport costs). On the other hand, if she were to import fuel oil, this would presumably be at international prices. 2b. We shall therefore assume an international price. But in view of the large uncertainty as to what this is likely to be, we shall consider the following range uf prices in our basic and sensitivity studies: 1/ Andrew C. Huang "Recent Developments in World Petroleum Markets: An overview" IBRD memorandum, May 20, 1971. 2/ Huang, op. cit. p. 3. ANNEX 2 -8- Price Price Study US$/Ton TI/Ton Sensitivity 13 200 Sensitivity 20 300 Basic 27 400 Sensitivity 33 500 Sensitivity 40 600 25. Taking a thermal efficiency of 38% for oil-fired plant in 1975 (Ambarli is 37.8%) and a c.v. of 10,000 Kcal/Kg, gives a fuel cost of 92 TLvAWh. If we assume that the practical thermodynamic limit of 45% thermal efficiency for steam cycle p .:er plant will be reached by the ;-. zuuC. the fuel cost for new vintageq of Dlant would decline by 0.5; per year. If v is the vintage of the plant, then we take generation zosts for the basic study to oe: -(v - 197_5 92 (1 + 0.005) TI/MWh 26. To this we should add the operating and maintenance costs, which work out at about 10 TIA(Wh for modern thermal plant in Turkey. These costs tend to fall as power station size increases. To make some allowance for this we assume operating and maintenance costs to decrease at the same rate as fuel costs. This is, of course, approximate, but since these costs are only 10% of all variable costs, including fuel costs, errors should not be too serious; also, the sensitivity studies should indicate whether these approximations are justified. 27. For the basic study, the generation costs of fuelling, operating and mainteining new %intages of oil-fired plant will be taken to be:- TL 102ihWh, decreasing at 0.5% p. a. from 1975 Adjustments for the sensitivity studies will follow the oil prices listed in paragraph 24. (7) LIGNITEt AVAILABII&T! AND GEMRATI(N COSTS 28. The extent of the principal proven lignite res3rves in Turkey is as follows: - Proven Planned Cost of Production (b) (a) Reserves Output Output C. V. of TI/Ton Deposit X. Tons 1969 1975 Lignite 1961 1970 1975 Soma 44 0.8 1.4 4,200 42 63 n.a. Seyitomer 140 1.1 5.0 2,200 15 29 22 Tuncbilek 200 1.7 3.0 4,500 34 72 n.a. Elbistan 3,000 0 0 1,500 - - Others 100 2.0 n.a. 200o/5000 r.a. n.a. n.a. Sources: a)"General Energy Report of Turkey", 1969 World Energy Conference and information supplied by the Turkish Coal Authority (TKI). Elbistan also from General Energy Report and Otto Gold Report. All deposits are in W. Anatolia with the exception of Elbistan, in Central Anatolia. b) All quoted in current prices. All estimates based on 9 TL/$ and 8% interest rate. n.a. = not available. ANNEX 2 -9- 29. There are several observations to make:- (a) Neither the Seyltomer nor the 3ona deposits could support another large power station after 1975. The output at Seyitomer is being raiF-_ to 5.0 m tons per year to support a 450 MW station. At the rates of exploitation planned for 1975 and beyond, the Soma and Seyitomer deposits should last for about 30 years. (b) The size of the deposit at Tuncbilek is 200 m. tons and the present rate of production is 3.0 m. tons per year, some of this to support a 128 MW power station. If this rate of production were raised by 3.0 m. tons the deposit would last 30 to 40 years; and given the ralatively high c.v. of the lignite ( > 4,200 Kcal/Kg), this wovld support roi.ghly 1,000 MW of power plant op,rating at 50% load factor. Thus the Tuncbilek eeposits, if costs permit, could make a modest contribution to the thermal power program. (c) However, the size of the system is forecast to expand by over 12,000 MW betwee.n 1975 and 1990. If there is a significant role for fuboil-fired plant (say, L,OCKO MW or more) then the deposits in W. Anatolia cannot fully support such a program. (d) The future of the fossil-fired power station program therefor7/rests Mei>nly on the enormous lignite deposit at Elbistan, or with oil, or both... 30. We,7ow 2onsider the costs of producing lignite at Elbistan and Turoabilek..L 31. The difficulties and therefore the costs of mining lignite vary con- siderably from one deposit to another. Thus the ccsts per ton at Tuncbilek and Soma were 2 to 3 times the costs per ton at Seyitomer in the 1960's (see para. 30). These difficulties are also reflected in variations in labour productivities among deposits. According to unpublished TKI records:- Output/employee/shift - Seyitomer 22.7 tons Output/Employee/shift - Soma 3.4 tons Output/employee/shift - Tuncbilek 8.1 tons output/employee/shift - Zonguldak (coal) 0.7 tons 32. The only field in W. Anatolia whicn compares closely with Elbistan, in case of mining and in labour productivities, is Seyitomer. Apparently, the high labour productivities at Seyitomer and tlhe low costs per ton are att-ibutable to the openness of the deposit. Similarly, at Elbistan "the thickness of the veins is about 30-85 m, and the thickness of the cover is about 40-120 m.1 3/ A comparison of Elbistan and Seyitomer data thus serves as a useful 1/ We shall see later that coal reserves are also too limited and costly ..'or generating electricity in large quantities. 2/ The cost estimates quoted below which were obtained last December, have now been superceded by the information obtained by Mr. Reinback on his recent mission to Turkey: "Interim ReMat on the Technical Aspects of the Elbistan Power Project" August 1L2,1971. IBRD C-No. 5d. The rang,: of sensitivity studies does however span these most recent cost estimates. 3/ "General Energ Recort of Turkey" World Energy Conferen-ce 1969. (He:d in Ankara Nov. Id-20, l965). ANNEUY 2 10 - cross-check:- Comparative Data for Seyltomer and 31bistan Seyitomer Elbistan Output, m. tons/year 5.0 7.5 11.0 15.0 20.0 Investment costs (a) MTL 410 .,015 1,015 l,0'5 1,074 Total Production Costs, Tlfton tb) (c) of which: 29 26 20 16 13 Investment 18 18 12 9 7 Labor 4 3 2 2 lit Other 7 5 b 5 L, Labor Productivifiyt Employees 720 768 895 996 1,081 Output/Employee/Shift Tons 22.7 22.4 28.2 3L.2 42 Source: Otto Gold Report for grbistan. TKI &ta for Seyitoimer. (a) 15 TL - $1. (b) Amn.uitized at 12% interest rate. Average pay-back period 30 years. Seyitomer data, as far as I can ;.udge, contains about 12 TL/ton annuSities on past capital, bec-.st. the 410 m TL investment annuitize: at about 10 TL/ton/annum. For purposes of comparison the past capital costs at Seyitomer are adjusted for 12% interest and 15 TL/$- (c) Note that at 8% interest, and before devaluation, the productio.. costs quoted by TXI were 22.4 TI/ton. 33. Thus the data cross-check quite well. Zconv_ies of scale are observed at Seyitomer as well as at Elbistan. Employment and labour productivities are also similar; and the invest.ert and labour costs estimated by Otto Gold for Elbistan are comparable with those estimated independently by TKI for Seyitomer. 34. To estimate t; generation costs of fuelling, operating and maiAtaining lignite-fired plant at Elbistan and 'incbilek, we make the following assumptions: (a) rransport costs. AU li,gnite stations can be built on site and fuel transport costs can be neglected. (Otto Gold Rsport also makes this assumption). We shall however make a 10% allowance for energy losses in transmitting elect:'city from Elbistan to the main lcad centers in W. Anatolia. -11.- lAIEX 2 (b) Employment coets. About 700 to 1,000 people would be employed at Elbistan and less at ?lncbilek. It is unlikely therefore that expioitation of lignite fields would impose a strain on labour resources, unemployment in Turkey being over 10% at present. SP0 recommended to us to assume a shadow wage rate of 50% of the actual wage rate for unskilled labor and this is the value we shall take below. (c) Operation and maintenam.ce costs. These irork out to be about 30% higher than for oil. fired plant. 35. We then obtain the following generation cost estimates (Seyitomer is included for purposes of comparison):- - b/ Elbistan af Quantity Tuncbilek Seyitomer 7 11 15 20 A. Total costs. TI/ton 87 29 26 20 16 13 B. 50% of labor costs. TI/ton 7 2 2 1.5 1 1 C. Opportunity costs of lignite TL/ton (A-B) 80 27 2P: 18.5 15 12 D. c.v. of fuel. Kcal/Kg. 4,600 2,200 1,150 1,150 1150 11$ E. Fuel consumption, Kcal/KWhC/ 2,700 2,700 2,700 2,700 2700 270( F. Fuel Costs. TLI/Mh. (EC/D) b7 33 56 L3 3) 2. G. Opciration and Maintenance 13 13 13 '3 13 1 H. Trans'ission. TI/MWh. 0 0 7 6 5 I I. Generation Costs. TL/M)h. (F+G+H) 60 46 76 62 52 LL1 a/ rour production rates for Vlb'stan: 7, 11, 15, 20 m tons/year. E/ Estimated from TZI data sheet. Total costs adjusted for 12% interest rate; and annuities are based or) 15 Tl'$ aseuming 75% of capital eouipment is imported. o/ Note that the thermal efficiency of lignite plant is expected to be about 32% for 1975 vintages. 36. Contrast these costs of generation with the costs of an oil-fired plant, which we calculated to be 102 7u/MWh in 1975, on the basis of a fuel-oil price of 400 TL/ton (27$/ton). Even for the fuel-oil price of 200 TL/ton (13 $/ton) which existed before the Teheran Agreement, and assuming 15 TIV$, the costs of generation were 56 Ti/MWh, - about 10% to 20% higher than the expected cos8s at Elbistan. 37. It the costs of Elbiatan are in the rangas expected, then we reach the conclusion2 (a) that if the Elbistan deposit were exploited at rates In excess o' 11 m tons p. a. it is cheaper than using lignite from Tancbilek, (b) even at the comparatively low rates of exploitation of 7 m tons per year :Lt is chezaer than oil on current prices, ..id (c) at rates of exploitation in excess oi 15 m tons per year it is still cheaper than oil evrn if oil prices were to return to the levels which existed before the Teheran agreement. -12- ~~~~~~~A~NIEX 2 38. This doo2s not mean of course that oil is ruled out. First, there may be more sccpe for fossil plant on the system than can be supplied by the lignite deposits, Which mav ultimately be capable of supporting not more than 2000 to 6000 MW. Second, the increased oil prices may result in a new role for lignite, not a displacement of oil-fired plant: for example, t^ conserve "cheL.p" lignite for base load operation and use oil for loads of shorter duraticn, i ncluding :-eak loads. Third, unforeseen increases in the rate of growth of demand and/or time slippages in .ilfilling investment plane may make it useful to install oil plant as Zr interim measure,on account of its. shorter constru_t4on periods. 39. A 1200 MW lignite-fired power station at Elbistan, operating at 60 to 70% load factor would consirne roughly 15 ra tons per year. At present a 600 MW power plant has been proposed fcor Elbistan, to be extended to 1200 MW ulti.!a,teIy. The question arises, therefore, is there scope, ultimately, for 600 AW, i200 MW or more plant at Elbist3n, given the hydro and other alternatives? To answer this we shall assume tha oparating costs for .ew vintages of lignite- firerc plant at Elbistan to be: 50 'TI/MWh, dscreacing at 0.5% p. a. from 1975 .r:d we hall use this figure in the basi.~ computer study to estimate the scope for lignite-fired fuel plant on the system. 4o. For the sensitivity studies we will make the following adjustments to costs:- (i) fuel operating and maintenance costs in.:reased fr^- 0 to 50% in 10% intervals; (iij capitil costs increased from 0 to 50% in 10% intarvals; (iii) for the sensitivity studies on the foreign exchange rate we assume that 40% of lignite costs are 'foreign' at 15 TI/$;- (iv) interest duLring construction of the lignite miiLng equ-.pment is only about 5% of lignite productior. costs; sensitivity studies on interest r.;tes will therefore neglect changes in this IDC (but they will not of course negletct effects on the discounted. operating coats of lignite-fired power stations). V. This figure is obtained from the rucent study of wr. Reinbach, op. cit. AN1iEX 2 - 13 - 41. Einally, some sensitivit studies will be undertaken on the extent of exploitable ligrLiteT.1Si 3Tillion ton depcsit at Elbistan could in principle support up to 6,000 HW of power plant over a 30-year period. However, no study is available which estimates if all the 3 billion tons could be economically utilized. For our basic study we shall set an upper limit of 6000 MW of lignite-fired power plant on the system. The sensitivity studies will successively set thiF limit to 9,000, 3,000, 1,000 and zero MW. (8) COAL: AVAIA.BILITY ar.I GENERATION COSTS 42. It is not foreseen that the coal resources in Turkey could support any more than at most a few hundred MW of power plant. The reasons for this are that the coal rese.ives arenot sufficiently extensive, the costs of mining are high as compared to mining lignite, and the bulk of the coal mined is required by industry. We will substantiate these remarks but not dwell on them for long. 43. Coal is presently ext. -+.ed from four regions on the edge of the Black Sea, ',The Zonguldak Coa in" - Armutcub, Kozla, Uzulmez and Karadan - the total reserves of which are estimated to be: Apparent: 204.9 million tons Probable: 227.8 million tons Possible: 825.4 million tons Source: "General Energy Report of Turkey," 1969 op. cit. 41h. It is planned to expand the production of coal in Turkey, but it ,x11 be mainly used by industry and households; only very little is intended to be used for the generation of electricity:- Estimates of Coal Consumption (Tiiousands of Tons/year) Year 1972 1977 1987 2000 Industry 4,300 5,700 I1,000 20,200 Tarasport 500 300 - _ Domestic 600 900 1,600 3,200 Power 200 200 700 1,300 Total 77= 13,300 24,700 Source: "rGeneral Energy Report of Trrkey," op. cit. Tables 4.16, 4.17, 4.18, 41Y9.. 45. The coal consumption planned for the electric power industry is therefore relatively small. The reason for this is that coal costs per KWh generated are higher than if lignite (and possibly oil) are used. Apparently, the seams in the ZongMaldak Basin are costly to exploit. According to the 1970 iBRD review of the energy sector, "the seams are broken up by faults, pitch up to 55 degrees ..., tha majority being in a thickness of one meter... working faces Pre a considerable distance from entries requiring long under- ground haulage and reducing working time at the face to about 6 hours per shif'.. the mines are gassy and equire extensive ventilation"t (paragraph 2.13). - - ~~~~~~ANNEX?z - 14 - h6. The rates of extraction, the employment and thQe costs over tne 1960's were as follows: Year 1961 1963 1965 1967 1969 1970 (a Million tons 3.5 4.1 4.2 4.5 4.3 Dnployment F.O. B. costs TL/ton of whicht- 10 106 112 125 35,000 (b) Labour costs, TL/ton 30 32 h3 h; 157 210 Fixed costs TL/ton 44 47 51 52 60 Other Variable costs TI/ton 30 27 18 28 69 i8 (a) Estimate. (b) Quoted in the 1970 IBRD economic review of the energy sector. Source: TXI statistical publications and documents. 8% interest, 9 TL/$. If we correct the 1970 figures for 12% interest rate and 15 TL/$ (one-third of the fixed costs are on imported equipment) we obtain a cost of 250 TI/ton or about 210 TI/ton if we use the shadow wage rate and neglect 50% of labour costs. The c.v. of coal at Zonguldak is 7,500 ca'/Kg, or 6.5 times the c.v. of lignite a' Elbistan. The cost of coal at Zonguldak is therefore equivalent to 210/6.5 = 3' TL/ton of Elbistan lignite. Recalling that at Elbistan lignite costs are expected to be in the range of 12 to 15 TI/ton (para. 37) we thus find that coal-fired plant would be two to three times as expensive as lignite- fired plant. 47. 1hile cheaper coal mig:t be available from some pits, and may usefully and economically support a relatively small power station, coal is at most likely to play only a small part in the long-run development of the Turkish Electric Power System. We do not consider it in the studies below. (9) CAFITAL and GENERATION COSTS OF NUCLEAR PLANT (a) Capital Costs 48. The capital costs of nuclear stations are still apparently, difficult to forecast. According to a recent survey by th'3 IBID,I'/ the orly reasonable basis for a price is through bids. However, even data on past bids may be an unreliable irdex to future costs. In the first pla, past bids have contained a considerable element of "sales pitch," _11fO that the/data are 1/ "Nuclear Energy and Elect.ic Power Programs in the Developing Countries" Pubic Utilities Projects Department, December 1970 (Draft). 2/ M. A. Khan, op. cit. - is - ~~~~~ANPJEX 2 - 15 - deceptively low. In the second place, there has been marked escalation of nuclear plant construction costs in recent years. The estimated cost at commissioning of 1,000 14W LWR's for example has risen from $130/KW in January 1967, to $270/KW in January 1970 - a 30% escalation per year.l! In the third place, it is an evolving technology, with several competing types of thermal reactors at present to be complemented oln a nuclear fuel cycling system with several competing types of fast neutron breeder reactors in the future. The cost data used in the present study will therefore be rough and require sensitivity analysis. L9. In Turkey a 322 MW PWR nuclear power station has been proposed for 1977 (although no firm decision has been /ade). The consultants' study gives the following estimates of capital costs:_ 6 Local: 106 TL Foreign: 10 $ Total 70CT. Basic Cost 167.3 95.0 1,592 Interest During Construction r - 12%) 50.0 30.0 500 Costs, Excluding Taxes 217.3 125.0 2,092 Taxes, Customs II77. O Total 336.6 125.0 2,211 The basic cost also includes the heavy water inventory and a number of exterr.al costs (mainly the supDorting infrastructure) but not the initial fuel charge. 50. The capital cot. is thus about TL 6,500/KW or $435/KW installed. This squares quite well with the 1970 cost eetimates of $270/Kd installed for 1,000 MW LIR's, bearing in mind the large economies of scale for nuclear power plant. 51. The only data we have on economies of scale are provided in Khan's paper. His estimates for a 300 XW PWR station are $300/KW installed; which is 50% lower than the above estimate for the PHWR in Turkey (although FHWR costs can be expected to be a littLe - but not 50% - higher)3@ and his estimates for a 500 Md rWR station are below the figures we have for 1,000 MW LWR stations. If we assume that gTan's data on relative costs remain reliable, and also apply for other thermal reactors, we can correct his data for recent price increases by multiplying each cost estimate by the ratio $435/$300; that is by the ratio of our latest cost estimate for a 300 MW system to Khan' estimate. The capital costs we then obtain are: Size of Reactor (LWR or HWR) MW 100 200 300 b00 500 1000 Cost S/KW 700 510 435 380 350 270 These are the economies of scale effects we assume in the present study. They are plotted in Figure 6. We need to see how they vary over time. 1/ IBRD report on t"Nuclear Energy ---." op. cit. 7/ Motor-Columbus Consultants "Feasibility of Nuclear Power Projects." 7/ Khan (1970) "Prospects of Intermediate Size Power Plants", IAFA, SM-140/31. Conference in Oslo. This paper lists the following costs: 100 MW = $h80/KW; 200 MW $350/KW; 40 MW = $260 KW; 500 MW = $240 KW. FIGURE 6 ASSUMED CAPITAL COST FUNCTION FOR NUCLEAR PLANTS 350 -- 3fl0 - -- _ -___ l _ _ _ _ + 1 200 3 4000 z 0 100 - ~ - - - - - - _ _ _ _ _ _ 50 __ 1000 2000 3000 4000 5000 6000 7000 8000 SIZE, MW IBRD - 6105 ANNEX 2 - 16 - 52. As with fossil plant, we assume that any unit connected to the system should not be above about 10% of system size. On this basis we obtain the following decrease in nuclear capital costs over time: Vintage 1975 1980 1985 1990 2000 Demand, MW (11% growth rate) 3,365 7770 =53 U,006 L7,796 Maximum size of Unit, MW 300 500 goo 1,6oo h,ooo Cost r`/KW 6,500 5,250 4,125 3,300 2,745 $1KW 435 350 275 220 183 53. There should therefore be a potential for quite rapid reductions of capital costs - roughly 4.5% per year for scale effects alone. The above costs can also be represented by a simple formula. If v is the vintage of plant: -(v - 1975) Nuclear Capital Costs - 6.5 (1 + 0.o45) MTLA4W installed Technical progress may also help reduce costs further, particularly when fast breeder reactors bscome commercial. However, we have as yet no concrete evidence on this..l We wil experiment in the sensitivity studies with the possibility of nuclear capital costs declining at 6% per year instead of 4.5% to examine the possible impact of technical progress (recall that we estimate fossil plant capital costs to decline at only 2% per year). 54. For higher rates of growth of demand larger units can be installed sooner. For the basic and sensitivity studies on the rates of growth of demand, we take the follown ~~rates of decline of capital costs of nuclear plant: Annual Rate of Growth of Demand 7% 9% 11% 13% 15% Annual Rate of Decline of Capital Costs 3.3% 4.0% 4.5% 5.2% 6% 55. The above capital costs are also quoted on the basis of 12% interest rate and 15 TL/$. For the sensitivity studies on the rate of interest and the shadow price of foreign exchange, adjustments to these costs will be needed. The following table gives a breakdown of costs for some nuclear power plant: Domestic Foreign I D C Total MTL % MTL % MTL % MTL 297 15 1,425 72 95 13 1,989 250 17 1,005 69 195 1 1,450 332 18 1,275 69 249 13 1,856 167 9 1,425 75 319 16 1,911 Source: Otto Gold report with interest rate 8% and 15 TL = $1 with the exception of the last line which is obtained from Motor Colombus Consultants feasibility report with the same interest and exchange rates. 1/ The present writer's recollection of expected FBR costs is that capital costs will not be lower than for thermal reactors, but overall nuclear fuel costs will be. ANNEX 2 - 17 - 56. On this basis we use the following formula for adjusting the capital costs of nuclear plant: K (0.15 + E x 0.70/15 + r x 0.15/0.08) where K is the capital cost at E -15 TL/$ and r = 8%. (b) Nuclear Fuel Costs 57. For the Turkish nuclear power project these are given as: Operating and Maintenance: 0.85 Kr/KWh (80% load factcr) Fueling : 2.20 Kr/KWh (8230 MWD/ton) Total : 3.05 Kr/KWh (5.25 Kr/KWh, including taxes) The fuel costs include the initial fuel charge amortized over the lifetime of the plant. A small addition to operating costs is included to cover heavy water :Losses. 58. This is the data we use in the basic study. Costs are assumed to decline at 0.5% p. a. to allow for increases in thermal efficiency over time (see also paras. 19 to 22, on fossil plant). For fueling, operation and maintenance, our cost assumptions are then: 30.5 TI/MWh, in 1975, declining at 0.5% per year 59. If fast breeder reactors became a possibility for Turkey in the 1980's and 1990Os, nuclear fuel costs may drop more rapidly. We will undertake one sensitivity study t examine this effect, and assume the above fuel costs dee~ine a 2% instead of 0.5% per year. (10) GAS TURBINES (a) System Requirements 60. While Linear Programming models can be used to determine the optimum installed capacity of gas-turbines power systens, we do not use them for that purpose in the present study. Thereare three reasons why we made this decision. Firstly, a correct study requires more attention to the shape of the load duration curve around the peak load than is given by the b'.ock representation we have showr. earlier. Secondly, more attention is required to the problems of uncertainty in meeting the peak demand than is given by the models we use. Thirdly, the optimum gas turbine capacity on a power system is only partly datermined by their contribution to savings on capital costs. Even if capital savings were negative, they have several very desirable technical characteristics which may still make them useful to have on the system: fast startup in event of unforeseen sudden outages or increases of demand; the possibil4,ty of locating them at strategic points in the network to facilitate system stability and security of supply; and finally thoir short construction periods if new peaking capacity is urgently required. We are not arguing that G/T's are indispensable of course, but merely accepting the fact that GIT's may be used for reasons which are difficult and expensive to formulate in L. P. models. ANEX 2 - 18 - 61. We therefore guess in advar.ce of the study how much G/T's are likely to be on the system, and include this in the long-rar plan. We shall assume that 4 to 5% peaking capacity will be provided by gas-turbine plant. 62. We still need to compute their effect on system costs, and locate them correctly on the load dispatching schedule. We have the following cost data. (b) Capital and Generation Costs 63. According to an IBRD data sheet (June 1970) capital costs are about $80 to $120 per KW installed. Interest during construction is small, on account of the short construction period (it is about 5% of total costs). The gas turbines to be used in Turkey are estimated to be about $133/KW installed; this agrees quite well with IBRD data, which excludes land costs and* possibly a number of indirect costs. We shall therefore take the following to be the costs for G/T's throughout the study: Capital Cost, TL/KW a 2000 (- 133 $/KW) No allowance is made for economies of scale, since we have not assumed gas turbine sizes to increase at the substantial rates that are expected for fossil and nuclear stations. 64. Turning to fuel costs, a TEK data sheet dated November 1970 gives the following fuel costs for gas turbiness c.v. of Fuel Price of Fuel Fuel Consumption Efficiency Fuel Expenditimrs Kca)/Kg Kcal/KWh % TL/ton ki/KhW 9700 2910 29 450 13.5 65. We make two corrections to this data. First, the thermal efficiencies of gas turbines are generally lower than 29%, lying more in the 15 to 20% range (take 17%). Secondly, taxes are included in the fuel price, and these amount roughly to 70% on cost. Thn cost of fuel we therefore gake to be 450 ; 1.7 - 250 TL/ton. (A commonly used figure is 36 cents per 10 B tus for gas turbine fuels of c.v. 18,500 B tus/Jb. This works out at 220 TL/ton, which squares quite well with Turkish data.) 66. To add to the fuel costs is an amount to cover maintenance and operatitn. The TEK system economic report (1970, Vol. 2, page 18) suggests a figure of 4 Xr/KWh if they are operated for 500 hours per year, full-load equivalent. 67. On the basis of revisions suggested in paragraph 65, adding 4 Kr/KWh for operating and maintenance costs, and assuming a 0.5% p. a. improvement in thermal efficiency, we get the following unit cost data for gas turbines: 170 TIVMWIh, decreasing for new vintages at 0.5% p. a. from 1975 No sensitivity studies are planned for the gas turbine data. - 19 - (11) HYDRO RESOXURCES. (a) Abundance and Characteristics of Sitcs 68. Turkey has considerable hydro resources. By 1975 the interconnected system will have 1943 MW of installed hydro capacity, generating about 9,500 GWh per year. This is, however, less than 15% of the resources available. The latest estimate we can make of hydro resources available for exploitation beyond 1975, provided they can be shown to be economical, is that there are 168 sites, with a potential of 13,189 MW and 57,816 GWh per year (average). They are capable of irrigating over 1,000,000 hectares of land, and exercising flood control over perhaps a further 100,000 to 200,000 hectares. Reconnaissance continues, and more sites will probably be found for both power and irrigation. 69. The sizes and load factors difier widely among sites:- MW Capacity No. of Total Capacity Load Total MW per Site Sites MW GWH Factors Cepacity 0-20 h2 610 3,072 0-10% 0 20-50 67 2,016 9,h57 10-20% 240 50-100 25 1,500 7,265 20-30% 531 100-200 23 3,034 12,095 30-40% 2,h31 200-500 6 2,189 8,168 40-50% 2,67h _ 500 5 3,840 17,759 50-60% 3,775 o60-70% 2,442 79-au% 944 Total 168 13,189 57,816 80-90% 107 90-100% 41 Source: DSI reports and data sheets. Total 13,189 70. Details of the 168 sites are presented in Table 1 (3 pages) overleaf. The largest project contemplated is the development of the Firat River Basin (River Euphrates). It comprises 910 MW at the Keban reservoir (no i-rigation or flood control), which is presently under construction; two multi-purpose dams, one at Xarababa and the other at Colkoy, of total capacity 1,300 MW irrigating 700,000 hectares; and a single purpose dam at Karakaya to support 1,500 MW of plant. It should be noted that even if the Lower Firat Project is not exploited after Keban is complete, there is still over 10,500 MW of potential hydro capacity elsewhere in Turkey. n g W k L i BJ - - - L .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~F C~~~~~~~~~~~~~~~~ _A.9- _Q,o->' ~ J .00% ~ X r__ _ , F F_OoXsh e 2 J E5D . . . . . . . . _. - -e ,{4%~w i >_l RDeXYOOO_5 . . . . . . ...........o.joa,j .onlr ,> owB_et v v 5S° o a X s z - 1 1 1 o OE t ! 1 1 1 o 1 1t!!1 8g,¢¢~~~~~~~~~~~~~~~~~~~~~ . . . . . . . . . ot ~~~~~~.* .c . . .o- . ca . . . . . . . . .b 35~~~r$$2>§tEV; ;~;983 8 R8 t 8t0 ZS _, ,2g,z E'~gR2 F a Po R w N _ o wFo''''''''i''ii *t*-- *----*-----6---6z*"Z"z4** -oto5~~~~~~~~~~~~~~~~~~° R- 4Xasseccc ace Iscscsccccsssss °>t-. 0~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~ 1 2 i:i A! c ° h.edj,d *11%ne Wq 1' ¶(g) I. lef I,"* *(91 PCjaqTw ICJi umred. ,ev-~ ilaCoj e.d Jn± WTlIYd Jo IUCC en aaj elpu.f o". '±t.,11 ownne£If J ah IOUDPW .6 PJI~'~62 a J!I I 9 I n CT 19119 C U C C 6 CU 311 it .rlietIw '6t 1 ±C IS Cu ~~~~~~~~~~~~~~u :6~~~~ 1"a bL UTh1t nt~ eqS 6±1 6±1 *~~~~~~~~~~~~~J CU CU CU ~~~~~~~~301 'U I'll vi lyUCPq4 flr 9 09 01 0±6 11 U CT CU 9 WVI o 'fl1 alldd n 9I ±6 A 49 CU C U C 19 CI 'IL (I IlW f . S 9 ±9?±'? e q *u CU U5 C IA! 9± i1 01 S 6". 6'? .9 C'a IV II IC~~~~~~~~~~~~~~~~~~~~~~~~~~0 is IC i 01.CITI 601ol s 9(9 (9 IC IaC U IL UC Kit el Iq~C '2 6 L' IF f1C C U AS CC 95 69~'01 t (if 5'? 5'? I C U C 66 is'1 o1 CIY gut of 6S ~~~ ~~~ ~~~ ~~~~~55 CC C U IU Of CC g'j Utia. Solt' (910 so1 U IU 1 C " U ±6 9 V i'n9 IS I U U 0 IS oh 91 1*4149S 'Ctta C 9± 1(1 a CU 1W W IC 0% C 91C 11 fl4 C to 9±t 91CC CCU WC ±9 91 ~ff~ 5 0± IC VA C C As CC OLT cc t11eCqtJtq 5 IC ±65 C CC RUsCC VI UC to St 'V-C0 4 U 6 it ELI aI I U C Qif UC 'pfl 9( 9UM W * C qu 156z aU C C LI CC 'RC a.' WOW p 6 151 iSt C I C U 'f c Ug at 9 S 965 96 95 CU I C C 9 aC ±6 UtSl19 '6 * (fl ~~~~~904 99± CC C U C9 C cl 06 4TO11 '" oItT 60z 6(z CC I C t 09 II )9 I~ C.W 1 * 9 5 tI Tj U I U C 6( CC f" l qfll '06 U 9 ! "61 `161 IU h CCCU 99 CC 04 ±9 v-U 'f * 6 Q4 CC CU CU a 0". le flw nfj '3 * 6 ELT Ut! aC CI 1 C 5 ± le ami 'LI o 6± 92 91 C 1W CCC 99, CC 0", I L 9mf ' p (( 91! 91! UW CC C C i C 9( £ i :9s I* 'V '19± l C U C 12$ CC ot C 10 ± 41 no cg 9 99 1st 1sf C 1 U C 9$ CU p6 £6 iroJC .'Ig U 5hL (1 1 CCI C'I CU Oil IC tII t C tlts 'T11 9 9 1 EL CL II Cu C CU (9 C go 91 CIkbIfltI CC o (C ~~~~~~Li Li CaCC C CC 19 CU t CL0tW1O i U 61 s~~~~~CZ 6(1 INC C U 1 C'U Sol C C CCCJ1 O f * 11 6591 'Sq CCw CU CCU aC o9 CC £9' Ii "1110 o T '1(1 L lU C CU. CC 0 CU 69 9t9L''S S U 01 0911 0911 CU 11 CU CCU 09 CU faA9 Cot£eet U 6 C TOS CC CCC0CU5 U Lei 0 Octa: a' * 6T. 'rTM M'l C CU CCC T, 9 C 96 91 Ca:-vRw ± 9 9±z 06L 06 6 C C C 6 CU C OTTIt1Y 'L 9 6 9 oElI 9±t CC C C 1 1 C IV 91itqr U C l 95 9% CU CL CU IC I$ U sot '1± £a 9* U Ut 16±1r ta CC TU CU CC 05 CC 599 6(cC 99 p "'IF1r ICC1( C e We tU 0' CU 16 se Ulq S9 9 5 1 fCz fC C CC U Os6 CC t0 Ii I~elCl '9 IU 1' (± (CIZ C CU CCU ±1 TIE f Z s2 edenletW f9* 9 ofC 961 gSI C CU CCU 05 CU ±1± is cWA'rTMf~ 9 *f 611~~~~~~C U. C CU CC C. U 1065 CC (I 11 Sey Ia 19 9 9 C 99± C CU U CU 09 CU ±1 9± 6 LIoTl 0±1 0± U C CU CU if CC F.9 8 '9 9 '1 19 C C a 9 1 CU Ii CU I' CU 6'fl AC Lti S .('ii p9j'.~j fJC T1W 2± iUlItOC 'lq'T UUJCUt ISi OHj U1C0. £4 40 Lj a it' i eysin~~ stew jc r1Ifl Y'4 (-lC) ii(3 OfVO~., t1aC LUC'ljA6IaU CU*I'aIq eqnj. Ilq 01360r.56 UIIUilUpL 0 '-'A -- ... .- r -- *--e - - ..-. . 'A OAAA''' _ lO .: O. I_ C-A 0 o- C- t. C- CV Vt . O- -J O C- 8. 30.VO D. O _ Z AtJ O . 'Ai SA O ob X + (J - (I - Y)) 72. Now "I - Y) are the ret benefits of irrigation neglect-ln, ioint costs. Thus the criterion is that the electricity benefits must excee- the electricity costs, plus the joint costs minus irrigaticn net benefits. If an alternative source of generating the electricity benefits (z) is available, it thus is only preferable if its costs are less than the total costs cf this multi-purpose scheme (X + J + Y) minus the irrigation benefits (I). In the following study, wc ,herefore subtract the net irrigation (and flood control) benefits (I - Y) from the joint costs and the specific electric costs (J + X) in order to compare the costs of multi-purpose schemes with alternative sources of electrical energy&.1 73. Data on irrigation benefits are however scarce. As )f February 1971, the only cor.crete data we had was pro`.ded by an IBRD Apppisal Report of the Seylan Irrigation Project, Stage II, Adana, S- Anatolia. - For this project, it was computed that the net, discounted lifetime benefits amounte. -Lo: Total neti benefits = 71 TL million, irrigating h8,150 hectares; a 1500 TL per hectare; based on. 15 iL/$ and a 12% rate of interest (See Table 2A). 7h. Thie figure of 1500 TLJha cross-checks quite well with an estimiate given by an IBRD economic mission: "that with irrigation the average gross value of crop production in Turkey increased by almost three times - f'.om about T1 1,L80 per hectare (per year) to TL 4,350, an increase of TL 2,870. Allowing 50% of the gross value for production costs, etc.. irrigation probably increased net output by at least TL 1,035 hectare per year.'i The Seyhan project licreases net annual yields by TL 3000 per ha, rzeglecting project costs, and TE2 1500 per ha. deducting project costs (annuitized at 8% for Purposes of comparison). 1! It was pointed out by Professor Schramm that in us. this critericn we a:e implicitly-working to a cost-benefit ratio of unity for irrigation oenefits. 2/ IBRD Appraisal Report, TO-61h-, February L, 1969 and IBRD Appraisal Report, TO-348b, May 21, 1963. 3/ J-BRV Economic Report on Turkey, EMA-30, January 19, 1971, Annex 1 - Agr:!ui.tural Policies and Problems. ANNEX 2 - 21 - 75. However, it should be mentioned that the consultants to DSI on the Lower Firat Project (Golkoy, Karabab#i, Keban and Karakaya), which involves over 4000 MW of plant and an irrigation potential of 700,000 hectares, estimated yields to irrigation of over twice the above values. ¶f,e numerical reasons for this difference are that both prices and yields (Kg/ha) are assumed to be mu-h higher than at Seyhan... For example: Firat Sethan Crcr n7 1i -=a. TI/Kg Ootton j,8o0 2.25 2,400 1.4 Rice J,000 .b5 4,000 1.0 Cereals 6,f500 0.70 2,800 0.5 Alfalfa 20,000 0.4o 12,000 0.15 Differences in yields may of course reflect soil characteristics, or more simply that Firat yields have assumed undried crops. Differences in price ass,rmptions are however harder to explain. 7/A. Until more comprehernivc data are a.vailable, we have been advised (February 1971) to take the benefits at Seyhan (1500 TL/hectare) as typical of those obtained in S. Anatolia and the Black Sea Coast, and to be about twice those obtained elsewhere in Anatolta. We have fol'o-wed this advi.e except in the few cases where no estimates are available of the irrigation potential (in hectares) of multi-pairpose projects; In these casas we have neglected irrigation benefi Cs. 77. Wfe shall also assume the benefits of flood control to 1500 TT/hectare. No other data are available. 78. Finally, ae regards the Lower Firat Projects,it should be noted that if the consultants' estimates of irrigation benefits are of the right order, then we shall have overestimated the (adjusted) capital costs by abcut 25%. 2/ (c) Classification and Ranking of the Hydro Scheme.s 79. For the present study we have classified schemes according to the foilLwing rangas of load factor3 and then ranked the echemes within each load factor range in ascending order of (adjusted) unit capital costs (T-/MW): 1/ DSI - Lower JPlxat Project. Electro-Watt Consultants, Interim Report, 'eptember 1969. 2/ In the following we rank the schemes only according to technological characteristics. Every person who commented on th's report suggested that we should also distinguish between schemes surveyed (for which data are firm) and schames reconnoitered (for which data are preliminary). Also, reconnoitered schemes have Eich longer lead times (about 10 years) than surveyed schemes. See Annex 5 tor revised data classifications and rankings. - ?2 - ANNEX 2 Weighted Potential Range of Average Capacity Load Factors Load Factor MW 0 - 30% 22% 771 30 - 50% 40% 5,105 50 - 70% SO% 6,217 70 - 100% 80% 1,092 Total 13,189 The ranking of the 168 available sites is presented in table 2. 80. The capital costs (adjus8led for irrigation benefits) are also plotted in Figures 'la, b, c, in ascending order of unit capital costs (TL/MW), the abscissa representing aggregate capacity. These curves may also be thought of as the supply curves (or marginal cost curves) for the plant of each load factor. We can easily identify the cheapest schemes from these curves. The area unrder these curves between 0 and some aggregate capacity X represents not only the total capital expenditures required to provide X, but the minimum total capital expenditures required to provide X. Since the energy output of the aggregate capacixj X would ba unchanged if the ranking were changed within each load factor grc,p, and since operating costs are small and also likely to be affected by a change in the rankings, it fc lcws that the above ranking also corresponds to the least cost investment policy for providing X KW of hydre capacity at that load factor. 81. We still of course have to estimate how much capacity of each load fac..or group of hydro plant should be installed; this is the task of the L.P. models. 82. In view of the discontinuous and non-linear shape of the cost curve,e showr. in Figures 7a, b, c, we. have represented the potential hydro capacity by nine groups:- Weighted Average Capital Cost Pr'tential Category Load Factor MTI/MW Capacity 1 40% 1.4 600 MW 2 40% 2.6 1000 MW 3 L&o% 3. 1200 MW 4 40% 5.0 1500 MW 5 60% 3.0 3500 MW 6 60% 4.0 1900 mW 7 60% 6.o 1000 KW 8 80% 3.0 140 MW 9 80% 6.o 170 MW AiNNEX 2 CAPITAL COSTS OF HYDRO PLANT CAJIC C..,(sl St. .4 c1 FIGURE ?a C., O OM 0 r , C."., CO.,. FIGURE 7b ,.~~~~~~~~~~I .a .c-o-. . GS,8.1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~t (osts 'C IIZRE7 'CC 1 11C C 7C .C C 10C ° t0. ?*?C 17 - a . - z 10 77 a 'C ~ ~ ~ ~ ~ ~ CAZ(*(F,B ANINEX . ~M d d l . Z S0V d r V - d 9 2 __~~~~~~~~~~~~~~~~~~~~~~~~~~333 aest:sss8 1_Y:21 S1 S 1 : I AI1~~~~~~~~1~~~4~~iiUflmiay -s1i:,1H f , _ 222,: ....... j j 1 ^_-_ ~ *_;;ta .................... | 1l iSUSS........ ............... _,Ia 4M a Sd-S Y R tR i 9 _ as¢rwss.g;dsc~~~~~~~~~~ --5-S-------------- I ~~~~~~~~~~~~~~~~~~~~~~~~~~j I 7 _ IJ . a i.~~~~~~~~~~~ ¶!Y'-''tS51S-.*t t 1-i-.~~~~~~~~~~~~~~~~~t ,K;7.- I, - r . ¢. .... :. - .- ... ;. ~~~~' I ----------- -- ----'1 F 13St0§ztt!a .. ,., l0g t5Itawxt3x;s _ wStM->-:3o!2^:1tt- :E:3 _~°; :_!t23st-^o§o^i6to1-ro LI ___________________ - S I;;:5.4.i......... si:..t.5: - 23 - 83. All hydro plant of over 6.0 million TI/MW (400 $/KW) have been neglected, because a preliminary exercise showed this to bd more expensive than nuclear or fossil. For the same reason, all plant having less than 30% load factor have been neglected. 8a. For the operating costs we shall take a figure of 1.0 Kr/KWh (=10 TL/MWh) for all plant. This is slightly higher than the 0.8 Kr/KWh expected at Keban. Operating expenditures are, however, a very small portion of total expenditures on hydro plant. 85. The sensitivity studies will make the following adjustments to co s ts: (i) For the sensitivity studies on the rate of interest and the foreign exchange rate, capital costs will be adjusted according to the formulae:- K = (0.47 + E x 0.33/9 + 0.2 x r/0.08) where K is the capital cost for E = 9 TL/$ and r = 0.08%. The data for this formulae are in table 1. (ii) For the sensitivity studies on (ad'usted) capital costs we have increased hydro costs from 0 to 50% in steps of 10%. (Note that our capital cost estimates in fact include a 10% allowance for contingency (see table 1, annexed) making some allowance for uncertainty.) (d) Restrictions Imposed by the Remoteness of Hydro Schemes from the Transmission Network 86. Many of the hydro schemes in the lists provided by DSI are in East and Central Anatolia, quite remote from the interconne^ted system arid the main load centres. Many schemes cannot be practically considered until the transmission network is more fully developed,sven though the unit capital costs of the schemes (TI/MW) may be low. For this reason, we shall also be considering a more detailed classification of hydro schemes in addition to the nnes noted above. It is based on the following principles. 87. It is thought that the interconnected system will be sufficiently developed to accomodate most of the hydro schemes after the 1980 to '85 period, but onlya portion of them before then. We therefore consider two groups of 1/ Due to oversight, we did not corr6ct the irrigation net benefits for changes iL the interest rate. The (adjusted) capital costs were therefore somewhat overestimat-d for increases in r. However, we later undertake sensitivity studies on ti1e level of (adjusted) capital costs,so if we have overestimated t'hem, the effects of overestimation can be assessed from these studies. - 2h - ~~~ANNEX 2 - 24 - schemes: those which couldbe connecteJ fram 1975 onwards, and those which could not be practically connected until after 1980-85.1/This grouping has been based on judgment, considering three criteria. The first and principal criterion is the closeness of the scheme to existing and planned transmission lines. Schemes close enough to what were judged to be the most likely routes of the transmission network were considered practicable for connection from 1975-80 onwards. Since the routeo of the network will in turn be influenced by the density of sites, particularly of largish sites, the second criterion considered was the size of the scheme. Schemes of 50 MW or more were also considered to be practicable for connection from 1975-80 onwards -- provided, as mentioned, they were not too remote, and thus did not satisfy the first criterion. Thirdly, schemes of less than 50 MW in size were considered to be 'local'. Expected power shortages in areas where they are located was also taken into consideration. Small 'local' plants in areas of power shortage were also included as possibilities from 1975-80 onwards. 88. The 9 categories of schemes presented above were thus grouped as follows:- Weighted Capital Potential Capacity Average Cost After After Category Load Factor MTL/MW 1975 1980-85 1 40% 1.4 450 0 2 40% 2.6 150 700 3 40% 3.5 700 500 4 40% 5.0 900 700 5 60% 3.0 3,000 500 6 60% 4.0 900 800 7 60% 6.0 300 800 8 80% 3.0 90 50 9 80% 6.o h0 70 Total 6,830 4,120 In the detailed listing of the sites shown in Table 1, those which come in the "after 1980/85", group are mark-rd with an asterisk. Figures 8a,b, c, d,e, f, display the capital costs more clearly. The Lower Firat Projects are of course potentials for the 1975-1985 period. 89. These restrictions are introduced as a separate sensitivity study and not into the basic and other sensitivity studies. The reason for this is to save computing time. It happens thai to introduce these constraints we need to have eighteen categories of hydro plant in the study instead of nine. The reason for this is that the restrictions apply to nine categories of plant (i.e. plant which cannot be installed until after 1980-85) but not to the other nine. Introducing the restrictions therefore increases the number of categories of plant quite considerably and likewise increases the computing bill. We anticipate 1/ It was suggested to us that sc mes which had only been reconnoitered should have been included in tuie 'atter group. This is done in the Supplementary Study of Annex V. ANNEX 2 HYDRO SCHEMES THAT COULD BE CONNECTED DURING 1975-1980 FIGURE S o tO.0 F.ctO. 0 l:5 w 9 01 :0 1O 1f 27W 2%o FIGURE Sb *~~~~~~~~~~~~~~~ lV it~~~~~~~~~~~~~~~i , ~~~~~~~FIGURE 8e I c c , w".CIy, so0 610 ANNEX 2 HYDRO SCHEMES THAT COULD BE CONNECTED AFTER 1980 FIGURE 8d vc;o ,SCoI - S_ FIGURE So FIGURE Of S> ISl *9 , 5 'C w tW t ~~flMItY.M _ :....0? ANNEX 2 - 25-_ from pilot studies however that only the order in which the hydro plant are introduced is affected by these restrictions, not the broad balance of lignite, oil and nuclear, nor the aggregate hydro capacity. We can therefore answer many questions posed by the sensitivistystudies without introducing these restrictions, and thus save computing bills. (e) Restrictions on Hydro/Thermal Balance 90. In the present uitudy we are working with an annual model without adjustments for the seasonal characteristics of the hydro schemes. While -the model can be readily adapted to allow for seasonality, we did not do this in the present study fox the simple reason that seasonal data - seasonal load duration curve, seasonal variations in water flows - were not available. We could only use therefore annual load duration curves and dry year energy out- puts in our calculations. We are likely to have introduced the two errors. Firstly, we overest'-inate the system operating costs in seasons when water is plentiful and underestimate them in other seasons. But by using annual load duration curves and figures for the annual energy outputs of hydro plant, these errors should to a large extent cancel. 91. Secondly, we are likely to be overestimating the capacity of the system to meet the energy demands in dry years. To avoid the consequences of this type of error we have imposed limits on the amount of hydro that is allowable on the system in any one year. The main uncertainty is that we do not know, without very much more hydrological dat.a, and a .nore axplicit treatment of uncertainty in the present model, what this limit should be. At tim.s in the past TEX has operated with over 50% hydro on the interconnected system and is planning to have 50% on it by 1975 (in fact hydro capacity in MW divided by the expected peak demand is 60% for that year). In the sensitivity studies we shall imposed the following upper limits to the amount of hydro capacity on the system: 50%, 60%, 70%, 80% and 90% of peak de;nand. These constraints may or may not be redundant in certain years. It should also be noted that we have specified the available hydro energy using 'dry-year' data, whenever these data were available. OPTIMUM DEVELOPMENT OF THE ELECTRIC PO'WR SECTOR 1IN TURKEY A.NNEX III DSTAILED RESULTS CF COI{PUTER STUDIES Septenber 23, 1971 Dennis Anderson Orhan Tarkan (Consultant) Transportation and Public Utilities Division Economics Department IBRD ANnX III N01'ES 1. The results of 51 computer studies are presented in this Annex, :overirg the basic and sensitivity studies. For each study we present:- (i) A table of the data input; (ii) A table of the computed optimum investment program and the total cost (including operating costs); (iii) Tables of the computed optimum operating schedules for years 1 and 4 of the study (schedules for other years are available from the computer print-out); (iv) Graphical presentation of the investment program; (v) Graphical presentation of the operating schedules in each year. ERRATA 2. Two errors in the data input appear in various studies; both were of course unintentional:- (1) In several studies hydro plant availability was set to 1.0 instead of 0.9; (2) Also in several studies, the annual rate of decline of nuclear capital costs was set to 31 instead of 4.5%. 3. These errors appear for example in the Base Case Study A. In the ad hoc studies, Run 48 (Base Case B) removes the first error and Run 49 (Base Case C) both errors.. 4. The errors will of course entail a little inconvenience for the reader since they do affect the results slightly (but not seriously, otherwise we would have repeated the studies). In somle sensitivity studies both errors are present and, since it is more meaningful to compare the results of sensitivity studies if data are consistent (even if in error), we compare such studies with Base Case A. Similarly, whenever sensitivity studies contain either one or no errors, they are accordingly compared with Base Case B or C. ANNEX III Index of Studies Run Study Number Base Case A 2 Change of Discount Rate Discount Rate 9% 3 Discount Rate 15%4 Discount Rate 1°% 5 Change in Currency Currency, TL 21 F1 7 6 Currency, TL 18 $1 7 Currency, TL 12 = $1 8 Currency, TL 9 = $1 9 Change of Load Annuel Rate of Increase 8% 10 Annual Rate of Increase 10% 11 Annual Rats of Increase 149 12 Annual Rate of Increase 16% 13 Annual Rate 6f Increase 13% to 7% 16 Annual Rate of Increase 15% to 7% 17 Annual Rate of Iucrease 17% to 7% 18 Change in Oil Prices Price, 600 TI/ton 19 Price, 500 TI/ton 20 Price, 300 TL/ton 21 Price, 200 TL/ton 22 Change in Lignite Capital Costs Increase in Cost, 10% 23 Increase in Cost, 20% 24 Increase in Cost, 30% 25 Increase in Cost, 50% 26 Change in Lignite Fuel Costs Increase in Cost, 10% 27 Increase in Cost, 20% 28 Increase in Cost, 30% 29 Increase in Cost, 50% 30 Change in Lignite Availability Maximum Capacity, 0 MW 31 Maximum Capacity, 1000 MW 32 Maximum Capacity, 3000 MW 33 Maximum Capacity, 9000 MW 34 ANNEX III 3 Run Study Number Change in lIydro Capital Costs Increase in Cost, 10% 35 Increase in Cost, 20% 36 Increase in Cost, 30% 37 Increase in Cost, 50% 38 Choice of Time Interval More detailed representation of the Investment Period 39 Detailed Load Durat-.n Curve More Detailed Representation of the Load Duration Curve h0 Limitation of Hyg.ro Energy Aggregate Capacity percent of Peak Demand, 0.9 41 Aggregate Capacity percent of Peak Demand, 0.8 42 Aggregate Capacity percent of peak Demand, 0.7 43 Aggregate Capacity percent of Peak Demand, 0.6 4 Aggregate Capacity percent of Peak Demnand, 0.5 45 Ad-Hoc Studies Detailed Ranking of Hydro CGroups h6 Technological Progress in Nuclear Power 47 Base Case B h8 Base Case C 49 Max-Min Policy Applied to oIgnitwe Projects 50 Restrictions on Lower Firat Project 51 :-JN NO. 2 3ase Case A - Data Currency: $1 = 15 TL Discount Rate. 0.12 Capital Cost Operat'ag Cost Annlal Rate of Initial T-iad Maximcm Coefficient Coef'ficenm- Cost Decrease Capacity Avail- 7actor Capacity Type Millions/cMW Mis1lions/K. yr. Capital Operating '1f ab_lity Jmit W.J Hydro 1 1l4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 O.4 100C.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.) C.4 1200.0 Hydro 4 5.0 0.09 j.O 0.0 0.0 l.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 19143.0 1.0 o.6 3500.0 Sydro 6 is.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09? .0 0.0 0.0 1.0 o.6 1000.0 '!Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 05 140.0 H'ydro 9 6.o 0.09 0.0 0.0 0.0 1.0 O.3 170.0 G/T 2.0 l.LO 0.0 C.005 220.0 1.0 1.( 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 loO i9999-0 ',ignite 2.6 0o.L2 0.02 0.00< 1017.0 0.9 1.0 6000.0 luolear 6. 0.26 0.03 0.uC 0.0 o.8 1.3 99999.0 Peak Reserve Requirements (% of Peak Denand): 0.05 Mx1x. Aggregate Hydro Capacity in any Year (% o Peak Decand): 1.0 Periods of Load Duration Ho¶irs/ Curve Year 1973 1983 1988 L933 1 598 _005 526 L602 7754 13366 22)18 3'1Gi 77028 2 25h0 3LiS7 5876 9902 16665 28317 55376 3 3066 2503 4L724 7960 14l15 22M0tL 4693o 2625 2073 35U3 5902 R9L6 16760 j 9 7 Max._- Mn. Policy Consty-aints Min.Capacity M4ax. Capacity ___e Vintage K_ _ M _W Gas Turbines 1 0.0 230.0 2 Or0.0 390.0 3 200.0 650.0 1s 360.0 1110.3 5 600o. 188o.o 6 1600.0 3850,0 ANNEX III -5 - RUN NO. 2 Total Cost: 32:190 MTh Base Case A Installed Co=RŽ^ity (Hd) Type 7 .1?5 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 }&dro 2 0 0 652 3118 0 0 0 Hydro3 C 0 0 0 1200 0 0 H-dro 0 0 0 0 0 0 Hydro 5 1913 739 2761 0 0 0 0 Hydro 6 0 0 0 1591 309 0 0 y,ydro 7 0 0 0 0 0 0 0 Hydrc & 0 1ho 0 0 0 0 0 f-ydro 9 0 0 0 0 0 0 0 C./T 220 0 100 200 360 600 1600 r'uel Oil 900 0 0 0 1979 56.!0 7053 Lignite 1017 0 0 ?509 21±91 0 0 Nu.- ear 0 0 0 0 20145 11051 39092 _________________ I'otal by Groups (MW) pTye 197 1978 1983 1988 1993 1998 -005 All Hydro 143 31422 7035 8771± 10283 10283 10283 G/T 220 220 320 520 880 11±60 3080 Fuel Oil 9g0 900 900 900 2879 5519 15572 Lignite 1017 1017 1017 3526 7017 7017 7017 Nuclear 0 O 9 0 2C75 13129 52221 Total ;.o80 5559 9272 13720 231316 b0426 86173 Peak Demand 3365 4 6'}c 775L 13066 2201e 37101 77C- ANNEX ITI -6- RUN No. 2 Base Case Op- Oeration Schedule YEAR 1 Unused Capacity Type Vintage p - 2 P 3 P 4 at Peak Hydro 1 1 600 600 86 0 0 Hydru 5 0 1,943 1,408 1,281 642 0 1 739 425 425 425 0 Hydro 8 1 140 140 97 97 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,488 2,804 2,079 Demand 4,602 3,487 2,803 2,078 Reserve 958 Total Capaci,.; 5,559 YEAR 4 Unused Capacity Type "intage p = = 2 p 1 3 p at Peak Hydro 1 1 60o 600 86 0 0 Hydro 2 2 852 852 122 0 0 3 148 148 21 0 0 tydro 3 4 1,200 999 338 0 0 Hydro 5 0 1,943 1,943 747 747 0 1 739 624 624 0 0 2,761 2,230 2,230 213 0 Hydro 6 3 1,591 914 9124 914 0 4 309 261 261 0 0 Hydro 3 1 140 140 97 97 0 G,'T 0 220 0 0 0 0 oo100 0 0 0 0 3 200 o 0 0 0 4 360 0 0 0 0 Fuel 0 500 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 3. 2,258 2,258 2,258 2,258 251 4 3,142 3,142 3,142 3,142 349 Nuclear 4 1,660 1,66o 1,660 1_660 415 Total Op. Cap. 22,017 !6,686 13,415 9,946 Dsmand 22,018 16,686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 - 7 ANNEX III 1000 MW RUN 2 BASE CASE INSTALLED CAPACITY 90 90 Tota I 80 / 70 60 50 /Nuclear 40 - 30 20 Fuel Oil 10 periods 6 RUN 2 OPERATION SCHEDULE MW YEAR 1 7754 R 2 MW YEAR 3 MW 1306 G/T 12847 Fuel Oil 11947 4602 Fuel Oil 4338HdrHdr Hydro ~ ~ ~ ~ ~ ~ ~~Hyr 3137 915 Lignite howts 95Lignite hours Lignite 0 8760 0 8760 0 8760 MW m YEAR 4 YEAR 5 MW YEAR 6 22018 G/T 21138 Fuel Oil 37101 G/T 77028 GA 18259 1 35621 Fuel Oil 73948 18259 ruei ~~~~~~~~~~~~~~.jii F~~~~~~uel Oil 27102 58376 Lignite Hydro y1 Hyro Hydro - Hy2dro 7979 1y r 68 18 41 7 s LInite Lignite 10503 L Nle Nuclear 1660 hours N u_c_l_ea_r _hours hours 0 Nuclear 8760 0 Wi60 0 8760 -9- RUN NO. 3 Change of Discount Rate - Data Currency: $1 , 15 '* Discount Rate: O.,G Capital Cost Operating Co8t Annual Rate of Initial Load Maximum Coefficient Coefficient Coat Decreaae Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating MW ability Limit MW Hydro 1 1.3 0.09 0.0 0.0 0.0 1.0 O.b 60 Hydro 2 2.5 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.3 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 4.8 0.09 0.0 0.0 0.0 1.0 o.4 1500.0 Hydro 5 2.9 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 3.8 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 5.7 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 2.9 0.09 0.0 0.0 0.0 1.0 o.8 140.0 Hydro 9 5.7 0.09 0.0 0.0 0.0 1.0 0.8 170.0 4/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Otl 2.5 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any year (% of Pcak Demand) : 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 199g 1998 2005 1 526 4602 7754 13066 22018 27101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity TyDe Vintage MW MW Gas Turbiuss 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 ANNEX III - 10 - Total Cost, 51890 MTL RJN N0. 3 Change of Discount Rate Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 8S2 148 0 0 0 Hydro 3 0 C 0 0 1200 0 0 Hydroii 0 0 0 0 0 0 0 Hydro 5 19h3 1003 2497 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 1hO 0 0 0 0 0 Hydro 9 0 0 0 81 0 0 0 G/T 22C 0 100 200 360 600 1600 Fuel Oil O0 0 0 0 1962 5657 7053 Lignite 1C17 0 0 22b1 3759 0 0 Nuclear 0 0 0 0 1996 11033 39092 Total by Groups (MWs) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 19h3 3686 7035 916h 10364 10364 1036i G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 3862 8519 15572 Lignite 1017 1017 1017 3258 7017 7017 7017 Nuclear 0 0 0 0 1996 13029 52121 Total 4080 5823 9272 13842 23119 40409 88154 Peak Demand 3365 4602 7754 13066 22018 37101 77P'8 - 11 - ANNEX III Run No. 3 Change of Discount Rate Operation Schedule YEAR 1 Unused Capacity Tye Vi- -;ge p = 1 p = 2 p =- 3 p = 4 at Peak Hydro 1 1 600 538 74 74 0 Hydro 5 0 1,9h3 1,348 1,348 623 0 1 1,003 576 576 5t6 0 i{ydro 8 1 1J0 110 110 110 0 G/T 0 0 0 0 0 220 Fuel Oil 0 0 0 0 0 900 Lignite 0 916 916 696 696 101 Total Op. Cap. 4,602 3,488 2,804 2,079 Demand 4,602 3,487 2,803 2,078 Peserve 1,221 Total Capacity 5,823 YEAR 4 Unused Capacity Type Vintage p = 1 p p 2 p w 3 p 4 at Peak Hydro 1 1 600 600 86 0 0 Hydro 2 2 852 852 122 0 0 3 1.48 79 79 0 0 Hydro 3 4 1,200 638 638 0 0 Hydro 5 0 1,9h3 1,639 1,639 0 0 1 1,003 1,003 717 0 0 2 2,497 2,h97 1,047 859 0 Hydro 6 3 1,900 1,293 1,002 1,002 0 Hydro 8 1 10 110 110 110 0 Hydro 9 3 81 63 63 63 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel Oil 0 900 0 0 0 0 4 1,962 0 0 0 0 Lignite 0 915 915 915 915 101 3 2,017 2,017 2,017 2,017 224 4 3,383 3,383 3,383 3,383 376 Nuclear 4 1,597 1,597 1,597 1,597 399 Total Op. C:ap. 22,018 16,686 13,415 9,946 Reserve 1,100 Total Capacity 23,118 1 000 Mw -2.- AN12 Iii RUN 3 CHANGE OF DISCOUNT RATE (r 9) INS.ALLED CAPACITY Tota 80 70- 60 50 Nuclear 40 / 30 20$ o L < / ~~~~~~~~~~~~~~~~~~Fuel Oil 10 234 6 5peid 6 RUN 3 OPERATION SCHEDULE YEAR 1 YEAR 2 YEAR 3 M ov 7754 MW 13066 G/TlOi . t~~~~~~~~~~~~2096_ 4602 Hydro yr Hydra23 915FLgnt Lignite hours 0 Lignite hours hou 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 YEAR 6 MW MN sMW 22018 GA 20238 Oil 37101 G/T 77028 G/T 35621 Fuel Oil 73948 Fuel Oil 27102 58376 Lignite 520617 HroHyr Hydro Hydro 4169 Hydro 7912 16738 Lignite 10423 Lignite Nuclear 1597 hours ucleor hours hours 0 Nuc ear 8760 0 8760 0 - 1lI - -- ANNEX III RUN NO. 4 Change of Discount Rate - Data Currency: $1 ) 15 TL Discount Rate: 0.15 Capital Cost Operating Cost Annual Rate of Initial Load Maxinmm Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating MW ability Limit MW Hydro 1 1.5 0.09 0.0 0.0 0.0 1.0 o.4 600.0 Hydro 2 2.8 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.7 0.09 0.0 0.0 0.0 1.0 o.4 1200.0 Hydro 4 5.4 °.-9 0.0 0.0 0.0 1.0 o.4 1500.0 Hydro 5 3.2 0.09 0.0 0.0 1943.0 1.0 o.6 3500.o Hydro 6 4.3 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.4 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 3.2 0.09 0.0 0.0 0.0 1.0 0.8 lho.0 Hydro 9 6,,4 0.09 0.0 0.0 0,0 1.0 0.8 170.0 G/T 2,0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.,5 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2,6 0.42 0.02 0.oo5 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirenmnts (% of Peak Demand): 0.05 Max. Aggregete Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1996 2005 1 526 4602 7754 13066 22018 27101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 - 15 - A1{NEX III RUN NO. 4 Change of Discount Rate Installed Capacity (MW) Total Cost:: 21712 MTL Year 1975 1978 1983 1988 1953 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 0 1,0CO 0 0 0 Hydro 3 0 0 0 0 1,200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1,94t3 739 2,761 0 0 0 0 Hvdro 6 0 0 0 0 1,900 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 60C 1,600 Fuel Oil 900 0 0 0 1,979 5,640 7,053 Lignite 1,017 0 356 3,743 1,900 0 0 Nuclear 0 0 0 0 2,075 11,054 39,092 Total by Groups (MW) Year 1975 1978 1983 1988 1993 1998 2005 All Hydro 1,943 3,422 6,183 7,183 10,283 10,283 10,283 GfT 220 220 320 520 880 1,48o 3,080 ruel Oil 900 900 900 900 2,879 8,519 15,572 Lignite 1,017 1,017 1,373 5,116 7,016 7,016 7,0o6 Nuclear 0 0 0 0 2,075 13,129 52,221 Total 4,080 5,559 8,776 13,719 23,133 40,427 88,172 Peak Demand 3,365 4,602 7,754 13,066 22,018 37,101 77,028 - 16; - ANNEX III RUN No. 4 Change of Discount Rate Operation Schedule YEAR 1 Unused Capacity Type Vint3ge p = 1 p = 2 p = 3 p = 4 at Pcak Hydro 1 1 1 600 600 86 0 Hydro 5 0 1,943 1,407 1,281 642 0 1 739 424 424 424 0 Hydro 8 1 140 140 97 97 0 G/T 0 0 0 0 0 220 Fuel Oil 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,486 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 958 Total Capacity 5,559 YEAR 4 Unused Capacity Type Vintage p = 1 pp 2 P = 3 P = 4 at Peak Hydro 1 1 600 600 86 0 0 Hydro 2 3 1,000 1,000 143 0 0 Hydro 3 4 1,200 1,000 338 0 0 Hydro 5 0 1,943 1,943 747 747 0 1 739 623 623 0 0 2 2,761 1,801 1,801 1.126 0 Hydro 6 4 1,900 1,603 1,603 0 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 2 320 320 320 320 36 3 3,369 3,369 3,369 3,369 374 4 1,710 1,710 1,710 1,710 190 Nuc:Lear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,016 16,684 13,412 9,944 Demand 22,018 16,686 13,414 9,946 Reserve 1,117 Total Capacity 23,133 - 17 - ANNEX III 0oo0 MWv RUN 4 CHANGE OF DISCOUNT RATE (r=15%) INJST(ALLED CAPACITY 90 Total 80 70 60 / Nuc lear 40 30 20 Fuel Ol perids 6 RUN 4 OPERATION SCHEDULE 4AW MW ~~~~~ 1~~~~~~754 I MW YEAR I 7;4 _Fuel Oil YEAR 2 YEAR 3 l1306 G/T 12688 Fe i Fuel _Ol7tl Fuel Oil Hydro Hydro [ Hydroa60 1235 Li4ot 915 1ig. t Lignite hours Lignite hours _ _ hours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 MW YEAR 6 21 MW 22018 G/T 18269 Fuel Oil 37101 G/T 77078 G/T !C-- ~~~~~~~31 i21 -F3943i Fuel Oil 1 Hydro 27142 58377i v ro Hydro 417 Hydr 7 ________ 6818 Hyra,ydoHydra 754 * . 168 o~~~~~~~~~ignite. Lignite 10503uclear Nuclear b e. hours Nuclear rf)urs hours 0 Nucleor 87C0 0 87Q 0 87 *0 -19 - ANNEX III RUN NO. 5 ]hanCe of Discuunt R9ate - Data Currency: $1 - 15 IL Discount R.ate: 0.18 Capital. Cost Operating Cost Annual Rate of In!t' a Load MaLi.mr Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity type Million./1MW millicnshfW yr. Capital Operating MW ability Limit _w Hyd.o 1. 1.6 0.09 0.0 0.0 0.C. 1.0 J.4 600.0 Eydr-o 2 2.9 0.09 0.0 0.0 0.0 1.0 0.4 lOOO.O kydro 3 3.9 0.09 0.0 0.0 0.0 1.0 o.h 1200.0 Hydro ! ,6 0.09 0.0 0.0 0.0 1.3 0. 150o.0 14drc. 5 3.4 0.09 0.0 0.0 19i3.0 1.O 0.5 3500.0 Hydro S 4 5 0.09 0.0 0.0 0.0 1.0 . 1900.0 Hydro 7 6.7 0.Og 0.0 C.O 0.0 1.0 0.6 1000.0 Hydro 8 3.h D.Co 0.0 0.0 0.0 1.0 0.8 14O.0 hydro 9 6.7 0.09 0.0 0.0 0.0 1.0 1.0 170.0 G/T 2.0 ..bo 0.0 0.005 220.0 1.0 1.0 99999.0 R;al oil 2r5 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 c.42 0.02 0.005 1017.0 0.9 1.0 60oo.0 N-uclar '.5 0.26 0.03 0.0Q5 0.0 0.8 1.0 99999.0 Peck Rescrve Rsqoirerments (% ot Peak Demand): 0. 5 Max. Aggregate I{ydro C.pacity in Pny Year (% ns Pcak DImanm4) : 1.0 Periouis of Load ')urtion Hours/ C.urva _Tear 1976 1983 L9 8 1993 1998 2005 1 526 4602 7751 13U66 22018 27101 77028 2 25ho 3487 5; v 9902 16686 28117 58376 3 3066 23U3 Lh72l4 7960 13415 22604 46930 11 26'28 2078 3503 5902 99116 16760 3l4797 Max. -- KMn. Policy Constraints Min. Capacity Max. Capacity Vintage MW MW Ga3 Tuh,Kunes 1 0.0 230.0 2 200.0 790.0 3 2o0.0 o50.0 24 360.0 1r10.0 6 6160C.0 o1850.0 6 i60C.0 3850.0 RUN NO. 5 Change of Discount Rate Installed CapacitY (MW) Total Cost: 15688 MM Year 1975 1978 1983 1988 1993 1998 2005 Hyuro 1 0 600 0 0 0 0 0 Hydro 2 0 0 0 1,000 0 C0 0 Hydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1,943 739 1,h3h 1,327 0 0 0 Hydro 6 0 0 0 0 5 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 1ho 0 0 0 0 0 Hydi!o 9 0 0 C 0 0 0 0 G/T 220 0 100 200 360 600 1,600 Fuel Oil ,000 0 0 3,552 5,638 5,483 Lignite 1,017 0 1,203 2,896 1,900 0 0 Nuclear 0 0 0 0 3,979 11,057 41,055 _ _ Total by Groups (h1W) Year 1975 1978 1983 1988 1993 1998 2C05 All Hydro 1,943 3,422 li,856 7,183 7,188 7,188 7,188 G/T 220 220 320 520 880 1,48o 3,080 Fuel Oil 900 900 900 900 4,452 10,090 15,573 Lignite 1,017 1,017 2,220 5,116 7,016 7,016 7,016 Nuclear 0 0 0 0 3,979 15,036 56,091 Total 'j,o80 5,559 8,296 13,719 23,515 40,810 88,948 Pe-k Demand 3,365 4,602 7,754 13,066 22,018 37,101 77,028 - 21 - ANNEX III RUN NO. 5 Change of Discount Rate Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 1 p = 3 p = 4 at Peak Hydro I 1 600 600 86 0 0 Hydro 5 0 1,943 1,407 1,281 0 0 1 739 424 424 424 0 Hydro 8 1 140 140 97 97 0 G/T 0 0 0 0 0 220 Fuel Oil 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Oper. Capacity 4,6o1 3,486 2,303 2,07C Demand h,602 3,487 2,80, 2,07& Reserve 958 Total Capacity 5,559 YEAR 4 Unused C-apac-ity T'ype Vintage p= 1 pD = 2 p =3 p = at Peak Hydrol1 1 600 600 86 0 0 Hydro 2 3 1,000O 1,000 143 0 0 Hydro 5 0 1,9h3 1,434 1,388 0 0 1 739 739 528 0 0 3 1,327 1,327 647 351 0 Hydro 6 45 5 4 0 0 Hydro 8 1 1hO 1LO 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 ~~360 0 0 0 0 Fuel Oil 0 900 0 0 0 0 4 ~3,552 0 0 0 0 Lignite 0 915 915 915 915 102 2 1,083 1,083 1,083 1,083 120 3 2,607 2,607 2,607 2,607 289 4 1,710 1,710 1,710 1,710 190 Nuclear Lh 3,183 3,183 3,183 3,183 796 Total Op. Caipacity 22,018 16,686 13,41l5 9,9)46 Demand 22,018 16,686 13,2415 9,9246 R-~serve 1,2497 Total Capacity 23,515 - 22 - ANNEX III 1000MW RUN5 CHANGE OF DiSCOUNT RATE (r = 18%) INSTALLED CAPACtTY 90 Tota J 80 70 60 Nuclear 50 40 30 20- 10 / ~~~~~Hydro ~~~~~~~~~~~~~~~Lignite l 2 3 45periods G/T 1 2 3 4 5 periods 6 RUN 5 OPERATION SCHEDULE ?AW YEAR 2 YEAR 3 7754 Fuel Oil MW MW 6854 12688 11788 Fuel Oil 463382 Hydro Hydro 4605 1998 H.dr 915 Lignite Lignite Lignite hours hours hours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 MW YEAR 6 MW MW 22018 G/ 21138 311 G77028 G/T 16886 Fuel Oil 37101 739 Fe Oi Lignite 16686 ~~~~~~~~35622 21:: _Fuel Oil587 dr Hydro ~~~~~~~25487 520600Hdr 94b, 18344 Hydro Hvdro 72 Hyd Lignite Lignite 12029 9-4 3183 Nuclear ~~~~~~~~~~~~~~~~~~Nuclear 3183 ._ hours Nuclear hours ls 0 Nuclear 8760 0 8760 0 8760 ANNEX III - 24 - RUN NO. 6 Currency: $1 = 21 TL Change of Currency - Data Discount Rate: 0.12 Clapital Cost Operating Cost -Annual Rate of Initial Load Xaxirim Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type fflllions/H* 1tllions/lsP. yr. Capital Operatinrw KJ'd ability Limit Hydro 1 1.7 0.09 0.0 0.0 0.0 0.9 0.4 60c.o Hydro 2 3.1 0.09 0.0 0.0 0.0 0.9 0.l 1000.0 Hydro 3 L4.1 0.09 o.0 0.0 0.0 0.9 0.4 1200.0 Hydro b 5.9 0.09 0.0 0.0 0.0 0.9 0.1 1500.0 Hydro 5 3.5 0.09 0.0 0.0 1943.0 0.9 o.6 3500.0 Hydro 6 4.7 0.09 0.0 0.0 0.0 0.9 0.6 1900.0 ,Iydro 7 7.1 0.09, 0.0 0.0 0.0 0.9 0.6 1000.0 Hydro 8 3.5 0.09 0.0 0.0 0.0 0.9 0.8 140.0 Hydro 9 7.1 0.09 0.0 0.0 0.0 0.9 0.8 170.0 "ydro 10 2.7 1.97 0.0 0.005 220.0 0.9 1.0 99999.0 Hydro 11 3.2 1.1h 0.02 0.005 900.0 0.9 1.0 99999.0 Hydro 12 3.2 0.49 0.02 0.005 1017.0 0.9 1.0 6000.0 Hydro 13 8.2 0.35 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (, of Peak Eeernd): 0.05 Max. Aggregate Hydro Capacity in axe year (_ of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 27101 77028 2 2540 3L487 5d76 9902 16686 2811? 58376 3 3066 2803 4724 7960 13415 2260L4 6930 14 2628 2078 3503 5902 99L6 16760 3L797 .ax. - Min. Policy Constraints Min. Capacity Max. Capacity Vintage IV _ GOc Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 - 25 - ANNEX III RUN NO. 6 Total Cost: 39792 MTL Change of Currency Installed Capacity (Nd) Tg;ze 1975 1978 1983 1988 1993 1998 2005 RydroI 0 600 0 0 0 0 0 Hydro 2 0 0 764 236 0 0 0 Hydro 3 0 0 0 1200 0 0 0 Hydro 4 0 0 0 0 0 0 ( H1ydro5 1943 701 2799 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro7 0 0 0 0 0 0 0 iydro 8 0 140 0 0 0 0 0 Hydro9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 3612 6930 6203 Lignite 1017 0 0 1798 4202 0 0 Nuclear 0 0 0 0 1993 10383 41130 Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3384 7947 10283 10283 10283 10283 G/T 220 220 320 520 880 148o 3080 Fuel Oil 900 900 900 900 4512 11442 17645 Lignite 1017 1017 1017 2815 7017 7017 7017 Nuclear 0 0 0 0 1993 12376 53506 Total 4080 5521 918k 14518 2k685 42598 91531 Peak Demand 3365 4602 7754 13066 22018 )(101 77028 'TNEX III - 26- RUN NO. 6 Ch3Ln_ge of Currercy - Cperation Schedule YEAR 1 Unused Capacity Tv- Vintage p p - at Peak Hydro 1 1 5t0 324 324 0 60 Hydro 5 0 1708 1729 1045 645 195 1 631 407 407 L07 70 :lydro8 1 126 il 111 11.1 lh G/T 0 0 0 0 0 220 .Fuel Oil 0 60o 0 0 0 260 Lignite 0 915 915 915 915 102 Total Op. Capacity L600 3486 2802 2078 Demand h602 3487 2803 2078 Reserve 921 Total Capacity 5521 YEAR Is Unused Capacity Type Vintage Ef- p " 2 1= 3 p at Peak Hydro 1 1 540 5h° 78 78 6c l;ydro 2 2 687 687 100 100 77 3 213 213 31 31. 23 Hydro 5 0 17M8 1748 1137 515 195 1 631 631 571 0 70 2 2518 2518 2279 0 281 ;yuro 6 3 1710 1231 l046 10b6 190 Hydro 8 1 126 126 1014 lob us G/T 0 198 0 0 3 22 2 90 0 0 0 10 3 180 0 0 0 ?O 4 324 0 0 0 6 Fuel Oil 0 810 0 0 0 90 -~4 3251 0 0 0 361 L5.gnite 0 915 915 915 9]5 102 3 1618 1618 1618 16i8 180 4 3782 3782 3782 3782 420 Iuclear 4 1594 1594 1594 1595 399 Total Op. Capacity 22015 16683 13412 9944 Demand 22018 16686 13a15 9946 Reserve 2670 Total Zapacity 24685 - 27 - ANNEX III 1000 MW RUN 6 CHANGE OF CURRENCY (21TL $ S1) INSTALLED CAPACITY Total 90 _ 80 70 60 - Nuclear 50 40 - 30- 20- Fkjel Oil 10 Hyr 0 1 234 aid6 RUN 6 OPERATION SCHEDULE MW F el Oil MW YEAR 1 7167 YEAR 2 MW YEAR 3 13066 /T 12598 Fuel Oil 11788 4602 FulOil 3962 Hydro yr Hydro ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~yr 915 Lignite hours 916 Lignite hours Lignite hours 0 8760 0 8760 0 8760 YEAR 4 YEAR5 MW YEAR6 MW ~~~~~~~~MW| 22018 G/I 21226 Fuel Oil 37101 G/T 77028 G/T 17165 35769 1Fuel Oil576 Fuel Oil 25471 52060 Hydro 2909 - t 16216 Hydra Lignite 90_ Nuclear 1594 hours Nuclear hours hours l 0 Nuclear 8760 0 8760 0 8760 - 29 - ANNEX III RUN NO . 7 Currency: $1 = 18 TL Discouint Rate: 0.12 Change of Currency_ Data Capital Cost Operating Cost Annual Rate of Initial Load M'iaxiinm Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Tye Millions/1?A Nillions/!I yr. Capital Operating Xi4W ability Lirrdt ,! Hydro 1 1.5 0.09 0.0 0.0 0.0 0.9 C.!1 600.0 Xydro 2 2.8 0.09 0.0 0.0 0.0 0.9 0.L 1000.0 Hydro 3 3.8 0.09 0.0 0.0 0.0 0.9 O.!j 1200.0 Hydro 4 5.5 0.09 0.0 0.0 0.0 0.9 0. h 1500.0 Hydro 5 3.3 0.09 0.0 0.0 19)i3.0 0.9 0.6 3500.0 Hydro 6 lsL 0.09 0.0 0.0 0.0 0.9 0.6 1900.0 Hydro 7 6.5 0.09 0.0 0.0 0.0 0.9 o.6 1000.0 Hydro 8 3.3 0.09 0.0 0.0 0.0 0.9 0.3 Hydro 59 6.5 0.09 0.0 0.0 0.0 0.9 o.8 170.0 Hyclro 10 2.3 1.73 0.0 0.005 220.0 0.9 1.0 99999.0 Hydro 11 2.9 1.05 0.02 0.005 900.0 0.9 1.0 99999.0 Hydro 12 2.9 0.h5 0.02 0.005 1017.0 0.9 1.0 6000.0 nydro 13 7.3 0.31 0.03 0.005 0.0 0.8 1.0 99?9?.O Peak Reserve Requirements ('. of Peak Derand): 0.05 Yax. Aggregate Hydro Capacity in arv year (% of Peak Demrand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1?93 1993 2005 1 526 !4602 775i4 13066 22018 27101 77028 2 25h0 3~487 5876 9902 16686 23117 583,6 3 3066 2803 4724 7960 13415 226Cz !4C)33 1s 2628 2078 3503 5902 99L6 16760 3L 7)? Max. - lin. Policy Constraints lin. Capacity Nax. Caoacity 'Thrpe Vintage 14W 1iW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 L1 360.0 11 0.0 5 600.6 1850.0 6 1600.0 3850.0 - 30 - ANMX III RUN NO. 7 Total Cost: 36034 MTL Change of Currency Installed Capacity (MW) T'ype 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 763 236 0 0 0 Hydro 3 0 0 0 1200 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 701 2799 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 1{ydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 AFel Oil. 900 0 0 0 3612 6930 6203 Lignite 1017 0 0 1798 4202 0 0 Nuclear 0 0 0 0 1993 10383 41130 Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All HydrD 1943 3384 6946 10282 10282 1C282 10282 G/T 220 220 320 520 880 1480 3080 Fuel Oil 200 900 900 900 4512 11442 17645 Lignite 1017 1017 1017 2815 7017 7017 7017 Nuclear 0 0 0 0 1993 12376 53506 Total 4080 5521 9183 14517 24684 42597 91530 Peak Demand 3365 4602 7754 13066 22018 37101 77028 ANNEX II- 31- RUN NO. 7 Change of Currency - Operation Schedule YEAR 1 Unused Capacity Tyet Vintage p p - 2 at Peak Hydro 1 1 50 324 32 0 60 Hydro 5 0 1748 1729 1045 645 195 1 631 407 407 407 70 Hydro 8 1 126 1-1 111 111 1L G/T 0 0 0 0 0 220 F\uel Oil 0 640 0 0 G 260 Lignite 0 915 915 925 Q1_ 102 Total Op. Capacity 46C'O 3186 2802 2078 Demand L602 3187 280b 2079 Reserve 921 Total Capacity 5521 YEAR I Uniused -apacity TyDe lintage p 1p at ?eak Hydrc 1 1 510 510 78 78 6o Hydro 2 2 687 687 100 100 76 3 2.3 213 31 31 23 Hydro 3 3 1O80 1080 157 157 120 Hydro 5 0 17L9 17149 1137 519 194 1 631 631 571 0 70 2 2519 2519 2279 0 280 '-.ydrc 6 3 1710 1232 1017 1007 190 Hydro 8 1 126 126 104 104 11 G/T 0 195 0 0 0 22 2 ,v0 0 0 10 3 180 0 0 0 20 4 324 0 0 0 36 ?uel Oil 0 810 0 ) 0 4 3251 0 0 0 361 Lignite 0 915 915 915 915 102 3 1616 1618 1618 1618 180 1 3732 3762 3782 3782 h20 Nuclear 4 1594 1,94 1594 1594 399 Totel Op. Capacity 22017 16(36 13413 9945 Demand 22018 16686 13111 99116 Reserve 2667 Total Capacity 24684 - 32 - ANNE;X III 1000 MWiRU Rli.N 7 CHANGE OF CURRENCY (15TL= S-1 INSTALLED CAPACITY Tota I 90 / 70~~~~~~~~~~~~~~~~~~~~~. / 60 Nuclear 40' 30 10 25ro 6 0 1 2 3 4 5 pe r iods 6 RUN 7 OPERATION SCHEDULE Nw 77,4, Fuel Oil YEAR I 7167 YEARG2 YEAR3 125Qu Fuel Oil 1178a 480 1Fuel Oill 3982 Hydro Hydro 2t33 91S . ._ 91E _ Lignite hours Lignite hours Lignite t%urs 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 MW YEAR 6 22018 G/T 21226 37101 _G/T 77028 G/T 17165 ~~~~~~~~~~~~35679 74256 Fuel Oil 12112Fu O71il F Oil 58376 Lignite 25471 52060 Hydro Hydro ~ ~ ~ ~ ~ ~ ~~~ydo42805 7909 16216 Lignite I Lignite 9901 Le Nuclear 1594 ehoursr houfi ° NuciEor 8760 0 8760 0 8760 RUN N'.) . 8 $1 = 1.2 TL i.ncount Rate: O.lc Cnange of Currency- Data apital Gost COperating Cost Arnual Rate of hLitial Load Yaxi nu m rCe Cio.iert Coefficient Cost Decrease Capacity Avail- Factor Capacity ;- : ^ . illona/1.; yr. Capital Ovperating IL ability LiTdt .:ylra 1 1.:3 0.090 0.0 0.0 '.0 0.9 0.j 6500.0 ,:iro 2 2.b 0.090 0.0 0.0 0.0 0.9 O.! 1000.0 :.3'd.rO3 3.? 0.09 0.0 0.0 0.0 0.9 O.b; 1200.0 Hy->rc b I,.6 0.09 0.0 0.0 0.0 0.9 0.14 1500.0 ?HydLo c 2.8 0.09 0.0 0.0 1903.0 0.9 0.6 35000- Hydro 6 3.7 0.09 0.C 0.0 o.e 0.? G.6 2100.0 . -;7 ~... ',; o.O 0 .: O.C o,o 5., 0 o.6 lCO0.0 :-ydro 0.0 0.0 0.0 0.9 0.8 UL0.0 Hiydro 9 0¢ O.C9 0.0 O.C 0.° 0.9 0.8 170.0 Hydro 10 1.7 1.27 0.0 0.005 220.0 0.9 1.0 99999.0 Hydro 11 2.3 0.7T 0.02 0.005 900.0 0.9 1.0 99999.0 -yd.ro 1? ?.l3 0.39 C.C2 0.005 1017.0 0.? 1.0 6000.0 Kydro 13 5.6 0.23 O.C; 0.00, 0.0 9.8 1.0 99999.0 Feak Reserve Recu'iremer.ts ( PL Peak Demand): 0.05 ',a>.. Aggregate l-ydro Capacity in any year __riods of (% of Peak Dernand) 1.0 ________i.' z-eriods of Load Duration Hours/ Curve Year 19 _ 1983 1988 1993 1998 2005 1 26 W602 775l 13066 22C13 2710]. 77028 2 2'HO 3L087 3876 9902 16686. 28117 58376 3 3066 2803 b72L 7960 13L 15 226014 146930 - 1 2628 207E 3503 05 2 99L6 16?60 3L797 - ::Ev:~~.~ . - !'Zn. >o)1c2' ContrP.±n. ~_*' :ty '.':a):. Capacity 4rpe Vit;i ai e_____ _____ :)ae ;urnines 1 0.0 230.0 2 100.C: 390.0 3 200.0 £50.0 4 360.0 llo0.? 600.0 1850.0 6 1600.0 3850. _ - 35 - ANNEX .III RUN NO. 8 Total Cost: 29945 MTL Ctange of CDrrency Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 764 236 0 0 0 Hydro 3 0 0 U 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 701 2799 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel oil 900 0 0 0 3612 6920 6203 Lignite 1017 0 0 2998 3002 0 0 Nuclear 0 0 0 0 1993 10383 41130 Total by Groupe (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 2384 6947 9083 10283 10283 10283 G/T 220 220 320 520 880 14Bo 3080 Fuel Oil 900 900 900 900 4512 11442 17645 Lignite 1017 1017 1017 4015 7017 7017 7017 Nuclear 0 0 0 0 1993 12376 53506 Total 4080 5521 9184 14518 24685 42598 11531 Peak Demand 3365 4602 7754 13066 22018 77101 77028 ANNEX III - 36 - RUH NO. 8 Change of Currency - Operation Schedule YEAR 1 Unusei Capacity Ty2e Vintage p a 1 p 2 p . 3 p 8 at Peak Hydro 2 1 5hO 324 32h 0 60 Hydro 5 0 1748 1729 10t5 645 195 1 631 407 h07 hO7 70 Hydro 7 1 126 111 11 111 1b r/T 0 0 0 0 0 220 F.el Oil 0 6t0 0 0 0 260 Lignite 0 915 915 915 915 102 Total Op. Capacity h600 3h86 2802 2078 Demand h602 3h87 2803 2078 Reserve 921 Total Capacity 5521 YFA.R b Unused Capacity TyMe Vintage p - 1 p = 2 3 p : h at Peak Hvdro 1 1 540 221 221. 221 60 Hydro 2 2 687 528 171 171 77 3 213 213 31 31 23 Hydro 3 3 1080 1080 157 157 120 Hydro 5 0 17.8 1748 1137 519 195 1 631 631 571 0 70 2 2518 2518 2279 0 281 !!ydro 6 3 1710 1710 833 833 190 Hydro 8 1 126 126 104 lob lb CI'T 0 198 0 0 0 22 2 90 0 0 0 10 3 180 0 0 0 20 4 32h 0 0 0 36 ruel Oil 0 810 0 0 0 90 4 3251 0 0 0 361 LInite 0 915 915 915 915 102 3 2698 2698 2698 2698 300 4 2702 2702 2702 2702 300 iluclear t 1594 159h 159t 1594 399 Total Op. Capacity 22015 1668b 13t13 99h5 Demand 22018 16686 13h15 9946 iescrve 2670 Total Capacity 2h685 - 37- ANNEX III 1000 Mw RUN 8 CHANGE OF CURRENCY (I.TL D $1) INSTALLED CAPACITY Total 90 80 -D 60 Nuclear 50 40 30 20 / / ~~~~~~~~~~Fuel Oil 10 Iydro 0 1 2 3 4 5 periods 6 RUN 8 OPERATION SCHEDULE MW Fuel Oil YEAR 1 7754 YEARi2 MW YEAR 3 MW 7167 136 G/T 12698 Fuel Oil 11788 4602 Fuel Oil 3982 Hydro Hydro Hydro 915 __. 91S Lignite hours Lignite houn Lgn hours 0 8760 e 87.0 0 8760 YEAR 4 YEAR 5 MW YEAR 6 MW ~~~~~~~~MW 21226 Fuel Oil 3710177028 G 17165 I n 35769 1 Fuel Oil 74256 Fuel Oil 58376 Lignite ro 25471 ~~~~~~~~~~~~~62060 Hydra y ~~~~~~~~~~~~~~~~~~~~~~~~~42805 7909 16216 ignite Lignite 9i901 Nuclecar 1594 iigni*ehours Nuclear hours __hours 0 Nuclear 8760 0 8760 0 8760 ANNEX III RU.N NlO. 9 Currency: $1 = 9 TL Discount Rate: 0.12 Change of Currency - Data Capital Cost OperatL.g Cost Annual Rate of Initial Iwoad air?ximur Coefficient Coefficilent Cost Decrease Capacity Avail- Factor Capacity Type Millions/1-1W Mllims/rl Yr. Capital Oerating A.I ability r Li't I., Hydro 1 1.2 0.09 0.0 0.0 0.0 0.9 oD- 600.0 Hydro 2 2.2 0.09 0.0 0.0 0.0 0.9 0.L 1000.0 Hydro , 2.9 0.09 0.0 0.0 0.0 0.9 0.h 1200.0 Hydro LI 4.2 0.09 0.0 0.0 0.0 0.9 0.4 1500.0 Hydro 5 2.5 0.09 0.0 0.0 1943.0 0.9 o.6 3500.0 Hydro 6 3.1 0.09 0.0 0.0 0.0 0.9 0.6 1900.0 iydro 7 5.0 0.09 0.0 0.0 0.0 0.9 o.6 1000.0 Hydro 8 2.5 0.09 0.0 0.0 0.0 0.9 0.8 140.0 Hydro 9 5.0 0.09 0.0 0.0 0.0 0.9 0.8 170.0 Hydro 10 1.3 1.0o 0.0 0.005 220.0 0.9 1.0 99999.0 Hydro 31 2.0 0.,7 0.02 0.005 900.0 0.9 1.0 99999.0 Hydro 12 2.0 0OA2 0.02 0.005 1017.0 0.9 1.0 6000.C Hydro 13 4.7 0.19 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirerents (% of ?eak Demand): 0.05 Max, Aggregate Hydro Capacity in any year ( % of Pieak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 27101 77028 2 2540 3L87 5876 9902 16686 28117 58376 3 3066 2803 4721 7960 13415 22601 46930 4 2628 2078 3503 5902 99L6 16760 31797 Max. - ItLn. Policy Constraints "d't. Capacity Max. Capacity Zap UVtage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 65o.o 11 360.0 llle.C 5 600.0 1850.0 6 1600.0 3850.0 40 - ANNEX III .UN NO. 9 Total Cost: 26283 MTL Change of Currency Irstalled Capacity (1N) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 175 825 0 0 0 Rydro 3 0 0 ° 0 0 0 0 Hydro 4 0 0 0 0 0 0 ° Hydro 5 1943 701 2799 0 0 0 0 Hydro 6 0 0 O O O O Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 4144 7725 4876 Lignite 1017 C 241 4657 1102 0 0 Nuclear 0 0 O 0 4882 9489 42623 Tot&l by Groups (MW) Type _ 1975 1978 1993 1988 1993 1998 2005 All Hydro 1943 3384 6358 7183 7183 7183 7183 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 5044 12769 17645 Lignite 1017 1017 1258 5915 7017 7017 7017 Nuclear 0 0 0 0 4882 1b371 56994 Total 4080 5521 81336 14518 25006 42820 51919 Peak Demand 3365 4602 7754 13066 22018 37101 77028 ANNEX II_ - 41 - F.UN NO. 9 Change of Currency - Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 1 p - 2 P = 3 p = 4 at Peak Hydro 1 1 540 321. 324 0 60 Hydro 5 0 1748 1729 1045 645 195 1 631 407 407 407 70 Hydro 8 1 126 11l 111 111 14 G/T 0 0 0 0 0 220 Fuel Oil 0 614C 0 0 0 260 Lignite 0 915 915 915 915 102 Total Op. Capacity 4600 3L86 2802 2078 Demand 4602 3487 2803 2078 Reserve 921 Total Capacity 5521 Unused Capacity Type Vintage p at Peak Hydro 1 1 540 540 78 78 60 i'ydro 2 2 158 158 23 17 3 742 7W2 108 108 83 Hydro 5 0 1748 1748 1137 519 195 1 631 631 571 0 70 2 2518 2518 2279 0 281 Hydro 8 1 126 126 2014 104 14 G/T 0 198 0 0 0 22 2 90 0 0 0 10 3 180 n 0 0 20 1 324 0 0 0 36 Fuel Oil 0 810 0 0 0 90 4 3730 0 0 0 41b Lignite 0 915 915 0 0 102 2 217 217 24 24 24 3 Ie,-1 4191 4191 4191 466 4 992 992 992 992 110 ThIelear 4 3906 3906 3906 3906 976 Total Op. Capacity 22016 16684 13413 9945 Demand 22018 16686 131415 9946 .eserve 2990 Total Capacity 25006 - 42 - ANNEX III 1 000 MW RUN 9 CH4ANGE OF CURRENCY (9TL = $1) INSTALLED CAPACITY Tota l 90 80 _ 70 60 Nuclear 50 - 40- 30- 20 - Fuel Oil 10 Hydro 0 1 2 3 4 5per Lignite O 0 3 4 5 periodsb RUN 9 OPERATION SCHEDULE YEAR 1W YEAR2 YEAR3 7764 1 G/T 7664 _- Fuel OilMW 6854 _ 13066 G/T M IW 1 12598 Fuel Oil 11788 4f02 Fuel Oil Hydra j962Hyr L 5323 915 ~~~~~~~~~~~~~~1132 ILignite 915 ~ ~Licinite h usL'gnite I ~ s_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ or 9X5 L LiA houn t snitelho~~~~~~~~~~~~~~~~~~hurs EhLurs 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 mw YEAR 6 MW MW 220.8 G/T 21226 Fuel Oil 37101 G/T 77028 G/T 16686 Fuel9Oil 7-16 -FuelI Oil Hydroa I 1 24277 5837 Lignite 11497 HydraHydro 45595 _yr Lignite Lignite 3906, Nuclear Nuclear hours Nuclear hours hours 0 8760 0 8760 0 8760 - 4 - ANNEX III RUN NO. 10 Change in Rate of Increase of Load, 8% - Data Currency: $. = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximu. Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Milliorv'MW Millions/MW yr. Capital Operating MW ability u1mit MW Hydro I l.lt 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 O.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 r).Cg 0.0 0.0 19h3.0 1.0 o.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 H,-dro 7 6.o 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hrdro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Iydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.015 O.OG' 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.015 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.035 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Temand) : 0.05 Max. Aggregate Hydro Capacity in anv ,ear (% o' Peak Deand) : 1.0 Periods o' Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4122 5781 8108 11372 15951 25613 2 2540 3123 1381 6145 8617 12088 19411 3 3066 2511 3522 4940 6928 9718 15605 4 2628 1862 2612 3662 5137 7205 11571 Max. - Min. Policy Constraints Min.Capacity Max. Capacity TyMe Vintage KW MW Gas Turbines 1 0.0 200.0 2 10.0 290.0 3 90.0 400.0 4 ±35.0 570.0 5 180.0 800.0 6 390.0 1280.0 ANNEX III - 45 - RUN NO. 10 Total Cost: 14421MTL Change in Rate of Increase of Load, 8% Installed Capacity (MW) Type 1975 1978 1983 1988 19,93 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 0 7L5 255 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0O0 0 Hydro 5 1943 234 1747 1519 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 o 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 10 90 135 180 390 Fuel Oil 900 0 0 0 0 918 0 Lignite 1017 0 0 295 2091 3614 0 Nuclear 0 0 0 0 0 0 11591 Total by Groups (MW) fflpe 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 2917 4664 6923 7183 7183 7183 C/T 220 220 230 320 455 635 1025 Fuel Oil 900 900 Q00 900 900 1818 1818 Lignite 1017 1017 1017 1312 3t403 701? 7017 Nuclear 0 0 0 0 0 0 11591 Total 080 5054 7811 9460 11941 16653 28634 Peak Demand 3365 4122 5781 Blo8 11372 15951 25613 ANNEX III - 146 - RUN IO. 10 Change In Rate of Increase of Load, 8% - Operation Schedule YEAR 1 Unused Capacity Type Vintage p - 1 p , 2 F 3 P 4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,615 1,046 716 0 1 234 134 134 134 0 Hydro 8 1 140 140 97 97 0 G/T 0 0 0 0 0 220 Fuel 0 290 0 0 0 610 Li gi te 0 915 915 915 915 102 Total Op. Cap., 4,122 3,123 2,511 1,862 Demand 4,122 3,123 2,511 1,862 Reserve 932 Total Capacity 5,054 YEAR 4 Unused Capacity Tjpe Vintage p p = 2 p = 3 p - 4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 2 3 745 642 191 0 0 4 255 135 135 0 0 Hydro 5 0 1,943 1,943 747 747 0 1 234 197 197 0 0 2 1,747 1,306 1,306 358 0 3 1,519 873 873 873 0 Hydro 8 1 140 140 97 97 o G/T 0 0 0 0 0 220 2 2 0 0 0 8 3 90 0 0 0 0 4 135 0 0 0 0 Fuel 0 900 0 0 0 0 Ligiite 0 915 915 915 915 102 3 265 265 265 265 30 4 1,882 1,8'? ',882 1,882 209 Total Op. Cap. 11,372 8,617 6,927 5,137 Demand 11,372 8,617 6,928 5,137 Reserve 569 Total Capacity 11,941 - 4a7 - ANNFEX III RUN 10 1000 MW CHANGE IN FIATE OF INCREASE OF LOAD Total (8% INCREASE) INSTALLED CAPACITY 27 24 21 '18 '15 12 Nuclear 3 0 / 2 3 4 5 6Fuel Oil _ __ / ~~ ~ ~~~~~~~~~ ~G/Tr O 2 3 4 5 oeriods 6 nuim lu OPERATION SCHEDULE MW YEAR 1 MW YEAR 2 8108 YEAR 3 5781 Fuel Oil 4122 Fuel Oil 3832 Hydro~~~~~Hdo __ _ __ __ _ Hydro L Hydro ~~~~~~~~~~~~~~~~~~~~1180 915 Lignite Lignite hours Lignite hours hours 0 8760 0 8760 0 8760 W w YEAR 4 1G951 YEAR 5 5613 YEAR 6 11 372 FulOlFuei Oil1 23795 FulOlc 10472 141el OiFuel1Oi 10245 G,'T 13498 G/T Hydro~~~~~~~Hyr Hydro Hydro 6315 9273 X 3062 Lignite Nuclear hours hours hours 0 8760 0 8760 0 8760 49 - ANN:X III RUN hO. 11 Change in Rate of Increase of Load, 10% - Data Currency: $1 - 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of LLitiaJ lozd Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capaci- Type million,iW Millions/MW yr. Capital Operating MW ability Limit ty MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 6oo.x Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 H,vdro 7 6.0 0.09 0.0 0.0 r0.0 1.0 e .6 O1 0.0 Hydro 8 ,.nŽ 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.F 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.018 0.005 900.0 1.0 1s0 99999.0 Lignit 2.6 0.42 0.018 0.005 1017.0 0.9 1.0 6000.O Nuclear 6.5 0.26 0.040 0.005 0.0 0.8 1.0 99995.0 Peak Reserve Requirneents (% ^f Feak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand)s 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 l4357 6704 10316 15872 24421 4k1643 2 2540 3302 5081 7818 12029 18507 33833 3 3066 2655 4085 6285 9670 lli78 27199 4 2628 1>8 3029 4660 7170 11022 20167 Max. - Min. Policy Constraints Type Vintage Min. Capacity Max. Capacity Gas Turbines 1 0.0 220.0 2 50.0 330.0 3 l14O.o 520.0 4 225.0 800.0 5 3o0.o 810.0 1220.0 2200.0 - 5o - ANNEX III Total Cost: 20865 MTL RUN NO. 11 Change !, Rate of Increase of Load, 10% Installed Capacity (MW) 1yp_e 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 0 701 299 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro h 0 0 0 0 0 0 0 Hydro 5 19L3 L82 2471 54;7 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 50 140 225 3Lo 810 Fuel Oil 900 0 0 0 839 3200 0 Lignite 101]7 0 0 1796 L204 0 0 lHuclear 0 0 0 0 0 6261 24265 Total by Groups (MW) Ty-pe 1975 1978 1983 1988 1993 1998 2005 All Hydro l19t3 3165 5636 6884 7183 7183 7183 6/T 220 220 270 411o 635 975 1785 Fue! Oil 900 900 900 900 1739 h939 14939 Lignite 1017 1017 1017 2813 7017 7017 70]7 Ik:clear 0 0 '3 0 0 6261 30526 Total 4080 5302 7823 11007 165?4 26375 514.50 Peak Demand 3365 1h357 670h 10316 15872 2U21 U6t 3 - 51 - ANNEX III RUN NO. 11 Change in Rate of Increase of Load, 10% - Operation Schedule YEAR 1 Unusea Capacity pe Vintage p * I2 p =2 223 4 at Peak Hydro :1 1 600 600 86 0 0 fHydro 5 0 1,943 1,370 1,280 679 0 1 482 277 277 277 0 Hydro 3 1 140 140 97 97 0 G/T 0 0 0 0 0 220 Fuel 0 277 0 0 0 623 LiSgit.e 0 915 915 915 915 102 'rtal Dp. Cap. 4,357 3,302 2,655 1,968 Demand 4,357 3,302 2,655 1,968 Reserve 945 Total Capacity 5,302 MAR 4 Unused Capacity Type Vintage p j 1 p j 2 P ' 3 P = 4 at Peak Hydro 1 1 600 437 221 0 0 Hydro 2 3 701 701 54 54 0 4 299 299 43 0 0 Hydro 5 0 1,943 1,943 747 747 0 1 482 406 406 0 0 3 547 314 314 314 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 50 0 0 0 0 3 140 0 0 0 0 4 225 0 0 0 0 Fuel 0 900 0 0 0 1 4 839 0 0 0 0 Lignite 0 915 384 384 384 102 3 1,616 1,616 1,616 1,616 180 4 3,784 3,784 3,784 3,784 420 Total Op. Cap. 15,872 12,027 9,669 7,169 Demand 15,872 12,029 9,670 7,170 Reserve 702 Total Capacity 16,574 - 52 - ANNEX III 1000 &,'',^ RUN 11 51450 MW Total CHANGE IN RATE OF INCREASE OF LOAD (10% INCREASE) INSTALLED CAPACITY 45 40 35 Nuclear 30 25 20 15 10 RUN 11 OPERATION SCHEDULE YEAR 1 MW YEAR z YEAR 3 MW 6704 Fuel Oil 6551 43 Fuel Oil 94315 Fuel Oi 4M~~~~~~~~~~~~~~~~~~~~~~~~~~~91 Hydro Hyd ro . Hydro ' 2531 . yr 916 915 _ _ _ _ _ _2 3 9t6 Lignite |hours Lignite hours Lignite hours 0 8760 0 8760 0 8760 MW 15872 VERA aAl 15237 AG/T 4 YEAR 5 YEAR 6 13498 _ ~ Fuel Oil MW tW 24421 G/T 23446 44642 G/T 63siHydro cs7_4287 _| 6315 Hydra ~~~~~~~~~~18507 37u91Ol Fuel Oil ignite 5784 Hda24421 ydoHydro Lignite Lignite 5009 _Nuclear 5OD9 NNuclear hours Nuclear hours hours 0 8760 0 8760 0 8760 - 54 - ANNEX III RUN NO. 12 Change in Rate of Increase of Load, 14% - Data Currency: $1. 15TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate <,f Initial Load Maximum Ccefficient Coefficient Cost Decrease Capacity Avail Factor Capacity Type Millions/MW M llions/Ald yr. Capital Operatipg MW ability Limit MW Hydro 1 1.14 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943-0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 6.o 0.09 0.0 C.0 0.0 1.0 o.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.140 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.025 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.025 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.052 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 .1983 1988 1993 1998 2005 1 526 4855 8945 16480 30365 559'46 131617 2 2540 3679 6779 12488 23012 42398 99746 3 3066 2958 5450 100140 18500 34085 30188 4 2628 2193 4041 7445 13717 25273 59456 Max. - Min. Policy Constraints Min. Capacity Max. Capacity ,zpe Vintage MW MW Gas Turbines 1 0.0 240.0 2 140.0 450.0 3 300.0 820.0 4 550.0 1520.0 5 1000.0 2800.0 6 3000.0 6600.0 - 55 - ANNEX 1 .L Total Cost: 41736 MTL RUN NO. 12 Change in Rate of Increase of ITad,_ 14% Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 1000 0 0 0 0 Hydro 3 0 0 0 0 0 0 0 Hydre 4 0 0 0 0 0 0 0 Hydro 5 1943 1005 2495 0 0 0 0 Hydro 6 0 0 0 1575 0 0 0 HyCro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 ° 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 140 300 550 1000 3000 Fuel Oil 900 0 0 0 4529 5903 0 Lignite 1017 0 755 5076 170 0 0 Nuclear 0 0 0 0 10815 23341 90840 Total by Groups (MW) Type 1975 15(8 1983 1988 1993 1998 2005 All Hydro 1943 3688 7183 8758 8758 8758 8758 G/T 220 220 360 660 1210 2210 5210 Fuel Cil 900 900 900 900 5429 11337 11337 Lignite 1017 1017 1772 6848 7018 7018 7018 Nuclear 0 0 0 0 10815 34156 124996 Total 4080 5825 1021, 17166 33230 63479 157319 Peak Load 3365 4855 8945 16480 30365 559I46 131617 56 - ANNEX III RUN NO. 12 Change in Rate of Increase of Lad, 14% - Ope ation Schedule Y&AR 1 Unused Capacity Type Vinrtae p P-2 p= 3 p 4 at Peak Hydro 1 1. 600 319 319 0 0 Hydro 5 0 1,943 1,757 1,036 590 0 1 1,005 577 577 577 0 Hydro 8 1 lJjD 1fl 110 110 0 ^n/T 0 0 0 0 0 220 Fuel 0 251 0 0 0 649 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,854 3,678 2,957 2,192 Demand 4,855 3,679 2,9<8 2,193 Reserve 971 Total Capacity 5,825 EAR 4 Unused Capacity Type Vintage p 1 p - 2 p £ 3 4 at Peak Hydro 1 1 600 600 86 0 0 Hydro 2 2 1,000 1,000 143 0 0 Hydro 5 0 1,943 1,943 1,388 0 0 1 1,005 1,005 718 0 0 2 2,495 2,495 1,782 0 0 Hydro 6 3 1,575 1,575 913 247 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 140 0 0 0 0 3 300 0 0 0 0 4 550 0 0 0 0 Fuel 0 900 0 0 0 0 4 4,529 0 0 0 0 Lignite 0 915 202 0 0 102 2 679 679 0 0 76 3 4,568 4,568 4,568 4,568 508 4 153. 153 153 153 1.7 Nuclear 4 8,652 8,652 8,652 8,652 2,163 Tot,ol Op. Cap. 30,364 23,012 18,500 13,17 Demand 30,365 23,012 18,500 13,717 Reserve 2,866 Total Capacity 33,230 RUN 12 1000 MW CHANGE IN RATE OF INCREASE OF LOAD (14% INCREASE) INSTALLED CAPACITY 160 Total 140 130 Nuclear 120- 100 _ 80 _ 60- 40- Fuel Oil Hydr3od 6 Lignitte,- 0 1 ~~~2 3 .4 5 periods 6 RUN 12 OPERATION SCHEDULE YEAR MW YEAR 2 YEAR 3 16480 G/T 15820 4855 FuOFuel Oil ue O 14920 F Hydro 915 Hydro Hydro 6162 - 915 ~~~~~~~~~~~~~~1594 Lignite 915_______Lignite hours_Lignite |hours Loun 0 8760 0 8760 0 8760 YEAR4 MW YEAR5 w YEAR6 131617 G,/T 30365 1G/T 26407 Fuel Oil 29155 , 55946 G/T 115070 Lignite 53736 108755 dro 23726 Fuel Oil 42F8 Fuel Oil 99604 H dro Hvdro 33604 Hydro H dro 14967 27325 Lignite -Nucear. Lignite ucer 8652 Nuclear Nuclear 0 80hours hours hours 0 8760 0 8760 0 8760 - 59 ANXEX III RUII NO . 13 Change in Rate of Increase of Load, i6% - Data Currency: $1 - 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of InitiAl Load oaximumu Coefficient Coefficient Cost Decrease Capacity Av&.l:- Fa- - Capacity Type Millions/MW Millions/MW yr. Capital Operating MW ability L3' Hydro 1 i.4 0.09 0.0 0.0 0.0 1.0 0.4 60°.0 Hydro 2 2.6 0.09 0.0 0.0 O.0 1X0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Ibydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 '.0 o.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 'J. 3 170.0 G/T 2.0 1.410 0.0 0.005 220.0 1.0 !.0 99999.0 Fuel Oil 2.6 0.90 0.029 0.005 SOC - 1.0 1.0 99999.0 Lignite 2.6 0.42 0.029 0.005 101 ) 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.060 0.005 0.0 0.8 1.0 99g99.0 Peak Reserve Requirements (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in ary Year (% of Peak DemanA'l: 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1993 2005 1 526 5117 10292 20702 b1dS40 83755 222790 2 2540 3873 7800 15689 31557 63173 168840 3 3066 3117 6270 12613 26369 51028 135734 4 2628 2311 4649 9352 18811 37S35 100642 Max. - Min. Policy Constraints Ain.Capacity Max.Capacity ____ Vi.rtage M'Wl M'W Gas Turbines 1 0.0 260.0 2 190.0 510.0 3 420.O 1000.0 4s [200.0 2100.0 5 L$ 00.0 4200.0 6 >200.0 11100.C - 60 - ANNEX III Total Cost: 57275 XTL RUN NO. 13 Change in Rate of LIcrease or load, 16% Installed rapazity (?54) TYPe 1975 1973 1983 1988 1993 1998 Hydro I 0 600 0 0 0 0 0 Hydru 2 0 0 1000 0 0 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro i 0 0 0 0 0 0 0 Hydro 5 1943 1281 2218 0 0 0 0 Hydro 6 0 0 0 190) 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 1i0 0 0 0 0 0 Hydru 9 0 0 0 0 0 0 0 G/T 220 0 190 420 1200 1700 5200 Fuel Oil 900 0 0 2275 273 11103 0 Lignite 1017 0 1660 4 3 0 0 0 0 Nuclear 0 0 0 1634 21B ,l 36639 167293 Total by Groups (KM) Type 1975 1978 1983 1988 1993 1998 20J5 All Hydra 194&3 3564 7182 °082 9082 9082 9082 G/T 220 220 1d0 830 2030 3730 8930 Fuel Oil 900 900 900 3175 541iB 16551 16551 Lignite 1017 1017 2677 7017 7017 7017 7C17 Nuclear 0 0 0 162h 234ta5 S0094 227387 Total 4080 6101 11169 21728 47032 96147h 268967 Peak Load 3365 5117 10292 20702 4164¢0 8375'5 222790 - 61- ANNEX-I RUN NO. 13 Change in Rate of Increase of Load, 16% - Operation Schedule IEUR 1 Unused Capacity Type Vintage J 8 2 p = 3 at Peak Hydro I 1 600 319 319 0 0 i'dro c; 0 1,943 1,797 1,037 550 0 1 1,281 736 736 736 0 Hydro 8 1 140 110 flu 110 0 G/T 220 Fuel Oil 0 237 0 0 0 663 Lignite 0 915 915 915 915 102 Total Op. Cap. 5,116 3,877 3,117 2,311 Derand 5,117 3,878 3,117 2,311 Reserve o8C Total Capacity 6,101 YER 4 Unused Capacity T_pe Vintage p_= 1 p_=2 - p 4 at Peak fly-'ro ]. 1 600 405 248 0 0 Hydro 2 2 1,000 1,000 I.) 3 0 0 dydro 5 0 1,943 1,943 1,388 0 0 1 1,281 1,281 915 0 0 2 2,218 2,218 1,584 0 0 fsydro 6 3 1,900 1,900 1,357 0 0 Hydro 8 1 140 140 1140 47 0 G/T 0 220 0 0 0 0 2 190 0 0 0 0 3 420 0 C0 0 4 1,200 0 0 0 0 Fuel 0 900 0 0 0 0 j 2,275 0 0 0 0 4 2,273 0 0 0 0 Liggnite 0 915 0 0 0 102 2 1,4a94 0 0 0 166 3 3,9i 3,906 830 0 434 Nuclear 3 1,299 1,29C 1,299 1,299 325 4 17,165 17,465 17,465 17,465 4,366 Total Op. Cap. 41,639 31,557 25,369 18,811 Demanc. 41.640 31,557 25,369 18,811 Reserve 5,393 Total Capacity 47,032 -62 - ANNEX III 100 MW RUN 13 CHANGE IN RATE OF INCREASE OF LOAD (16% INCREASE) 27 - TOTAL INSTALLED CAPACITY TotaI 24 - 21- Nuclear 15- 12- 9 6 3 0 1 2 3 4 5 pFuel Oil O 1 2 3 4 5 periods 6 RUN 13 OPERATION SCHEDULE MW YEAR I MW YEAR2 2YEAR3 6116 I 0292 Fuel Oil 2908702 G Fuel Oil. ~~~~~~~9692 182 Fe i 4879 16697 Hydro 7014 915 2409 Lignite l Lignite hours _ g. ha ir 1299 hours 0 8ieuo 0 8760 0 Nuclear 8760 MW YEAR 4 MW YEAR 5MW YEAR6 41640 __-GT83755 tG;229 39e10 _ ~ fuel Oil ao025 Fuel Oil 213860 Fuel Oil 34162 Lignite 190994 Lignite 63474 27847 57159 Hydro 18764 Nuclear Nucleor Nucleor hourt hours 9084 hours 0 8760 0 8760 0 Hydro 8760 - 64 - ANNEX III RSN M0. 16 Change in Rate of Increase of Load, 13% - 7%- Data Currency: $1 * 15 TL Disoount Rate 0.12 Capital Operatirg Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity T,-pe Millions/MW Millions/NW yr. Capital Operating MW ability Limit KW ilydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1500.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 H,vdro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 O/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.021 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.021 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.049 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demard) : 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 L855 8945 16480 27771 42729 84053 2 254u 3679 6779 12490 21046 32382 63700 3 3066 2953 5450 10040 16919 26032 51209 4 2628 2193 4041 7445 12543 19302 37970 Max. - Min. Policy Constraints Min.Capacity Max. Capacity Type Vintage MW Kw Gas Turbines 1 0.0 240.0 2 140.0 450.0 3 300.0 820.0 4 450.0 1400.0 5 600.0 2100.0 6 1650.0 4200.0 - 65 - ANNEX III Total Cost: 35718 MTL RUN NO. 16 Change in Rate of Increase of Load, 13% - 7% Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 1000 0 0 0 0 Iydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 1005 2495 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 1h0 0 0 0 0 0 Hydro 9 0 C 0 0 0 0 0 G/T 220 0 140 300 450 600 1650 Fuel Oil 900 0 0 0 3906 1559 0 Lignite 1017 0 755 4715 531 0 0 Nuclear 0 0 0 0 8070 15999 49593 Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 19h3 3688 7183 9083 9083 9083 9083 G/T 220 220 360 66o 1110 1710 3360 Fuel Oil 900 900 900 900 4806 6365 6365 Lignite 1017 1017 1772 648r 7018 7018 7018 Nuclear 0 0 0 0 8070 2h069 73662 Total o080 5825 10215 17130 30087 48245 99488 Feak Load 3365 4855 8945 16480 27771 12729 8h053 ANNEX III RUN NO. 16 Chang2 in Rate of Increase of Load, 13% - 7% - Operation Schedule YEAR 1 Unused Capacity Type _1 , 3Vintags at Peak Hydro I 1 6uo 319 319 0 0 Hydro 5 0 1,943 1,757 1,036 590 0 1 1,005 578 578 578 0 HYdro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 251 0 0 0 643 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,854 3,679 2,958 2,193 Demand 4,855 3,679 2,958 2,193 Reserve 971 Total Capacity 5,825 YEAR 4 Unsled Capacity Type Vintage p . 1 :2 3 p . 4 at Peak Hydro 1 1 6')O 600 87 0 0 Hydro 2 2 1,w)0 1,000 143 0 0 Hydro 5 0 1,943 1,943 1,388 0 0 1 1,005 1,005 718 0 0 2 2,495 2,495 1,782 0 0 Hydr& 6 3 1,900 1,900 850 592 0 Hydro 8 2 140 140 97 97 0 G/T 0 220 0 0 0 0 2 140 0 0 0 0 .3 300 0 0 0 0 14 450 0 0 0 0 Fuel C gOO 0 0 0 0 3,906 0 0 0 0 Lignite 0 915 107 0 0 102 2 679 679 679 679 76 3 4,243 4,243 4,243 4,243 472 4 478 478 478 478 53 Nuclear 4 6,456 6,456 6,456 6,456 1,614 Total Op. Cap. 27,770 21,046 16,921 12,545 Demand 27,771 21,046 16,919 12,543 Reserve 2,317 Total Capacity 30,087 - 67- ANNEX III 10 -I0 oNiy RUN 16 Total CHANGE IN RATE OF INCREASE OF LOAD (CASE 1) INSTALLED CAPACITY 9 8 Nuclear 7 6 5 4 3 Hvdro -Lignite Fuel Oil -/ ^ I 2 3 4 5 periods 6 RUN 16 OPERATION SCHEDULE MW YEAR I MW YEAR 2 MW YEAR 3 4603 777O 15820 14920 F-uel Cm Hydro Hydro 5837 916 Lignite 1594 Lignite Lignite Lignite___________h____un___________________ hour hours 0 8760 0 8760 0 8780 MW YEAR 4 MW YEAR5 MW YEAR 6 27770 ~~~~~~~~~~~42728 43 227667s0 G/T 4101288: t G/T '8040913 80 G/T W Fuel Oil 34663 i Fuel Oil 6874328 Fuel Oil '21854 363603 L i ydro Hydro233 Hdr Hdr 12771 _ _ _ _ _ __ _ _ _ 9 5 Lignite _ t9266 L.Nuclear 6456 Nuclear ~~~~~~~Nuclear N u c l e a r h o u r s I > J u c l e r z r h o u r s h o u r s 0 8760 0 8760 0 8760 - 69 - AANNEX III FUN NO. 17 Change in Rate of Increase of Load, 15% - 7% - Lata Currency: $1 = 15 TL Discount Rate O.le Capital Cost Operating Cost Annual Rate of Initial Load Maxinum Coe.fi,: t Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millio- /MW MilLions/MW yr. Capital Operating MW ability Limit MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 o.6 lX)0.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.o 0.09 ).0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fue± Oil 2.6 0.90 0.025 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0 D25 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.054 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) : 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 5117 10293 18964 31956 49167 96720 2 2540 3878 7800 14372 24217 37261 73299 3 3066 3118 6271 11554 19469 VY955 58926 4 2628 2312 465o 8567 14435 22210 43692 Max. - Min. Policy Constraints Min.Capacity Max. Capacity zme- Vintage MW MW Gas Turbines I 0.0 260.0 2 190.0 510.0 3 350.0 950.o 4 520.0 1600., 5 690.0 2500.0 6 190o.0 4800.0 ANNEX III - 70 - Total Cost: 40755 MTL RUN NO. 17 Change in Rate of Increase of Load, 15% - 7% Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 1000 0 0 0 0 Hydro 3 0 0 0 684 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 1282 2218 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 190 350 520 690 1900 Fuel Oil 900 0 0 1222 2328 4501 0 Lignite l0:L7 0 1660 434o 0 0 0 Nuclear 0 0 0 0 12679 15026 57065 _--- - - Total .by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 194i3 3965 7183 9767 9767 9767 9767 G/T 220 220 410 760 1280 1970 3870 Fue?. Oil 900 900 900 2122 4450 8951 8951 Lignite 1017 1017 2677 7017 7017 7017 7017 Nuclear 0 0 0 0 12679 27705 84770 Total 4080 6102 11170 19666 35193 55410 114375 Peak Load 3365 5117 10293 18964 31956 49167 96720 ANNEX III - 71 - RUN NO. 17 Change in Rate of Increase of Load, 15% - 7% - Operation Schedule YE,AR 1 Unused Capacity Type Vintage p - 1 p 3 2 P 3 P 4 at Peak Hydro 1 1 600 319 319 0 0 gydro 5 0 1,943 1,797 1,037 550 0 1 1,282 736 i. 736 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 237 0 0 0 663 L1niite 0 915 915 915 915 102 Total Op. Cap. 5,117 3,877 3,117 2,311 Demand 5,117 3,878 3,118 2,312 Raserve 985 Total Capacity 6,102 YEAR 4 Unused Capacity Type Vintage p p - 2 p = 3 p =L at Peak Hydro 1 1 60C 600 46 46 0 Hydro 2 2 1,000 1,000 77 77 0 Hydro 3 3 684 684 53 53 0 Hydro 5 0 1,943 1,943 1,290 114 0 1 1,282 1,282 915 0 0 2 2,218 2,218 1,585 0 0 Hydro 6 3 1,900 1,900 1,357 0 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 190 0 C 0 0 3 350 0 C 0 0 4 520 0 C 0 0 Fuel 0 900 0 0 0 0 3 1,222 0 0 0 0 4 2,328 0 0 0 0 Lignite 0 915 0 0 0 102 2 1,494 402 0 0 166 3 3,906 3,906 3,906 3,906 434 Nuclear 4 10,143 *0,143 10,143 10,143 2,536 Total Op. Cap. 31,955 24,218 10,469 14,436 Demand. 31,956 24,217 19,469 14,435 Reserve 3,238 Total Capacity 35.193 - 72 - ANNEX III RUN 17 Tota I 1000 MW CHANGE b.4 RATE OF INCREASE OF LOAD (CASE 2) 114375 MW TOTAL INSTALLED CAPACITY 90 Nuciear 80 70 60 5C 40 30 20 10 Hydro 2 3 45 pFuel Oil i 1 23 45 periods 6 RUN 17 OPERATION SCHEDULE YEAR 1 YEAR 2 MW YEAR 3 MW MW 18964 -G/T 18204 lilllL Oil 10292 FuelFuel Oil 9592 Hydro g . Hydro ] Hyd,o 6315 - 915 2409 .Lignite |15[ Lignite hours Lignite hours hours 0 8760 0 8760 0 8760 MW YEAR 4 MW YEAR 5 MW YEAR 6 31955 -G/T 3067 5 Fuel Oil 26255 49167 G/T 96719 G/T 47197 Fuel Oil 92849 Fuel Oil Hydro 38246 _ I 77583898 UL'nite 16458 _22164 Li 2: Lignite 67816 Hydro 10143 Lignite a Hydro Hydra 10143 Line Nuclear Nuclear Nuclear hours hotrs hours 0 8760 0 8760 0 8760 - - ~~~~~ANN~EX I I! RUJN NO. 13 Change in Rate of Increasqe of Load, 17% - 7% - Data Currency:I $1 15 TL Discount Rate 6.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coef ficienit Cost Decreaso Capacity Avail-- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating MWi ability Limit MW Hydnm 1 1A4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2 .6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 HYdro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hyciro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4~ 1500.0 H,ydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 3.6 3500.0 Hydro 6 4.0 0.09 0.0 3.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0. 11a0.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0. 170.0 G/T 2.0 1.Lj! 0.0 0.005 220.0 1.0 1.0 99999.0 %.el Oil 2.6 0.90 0.028 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.028 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.059 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) :0.05 Max. Aggregate Hydro Capacity in any' Year (% of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1938 1993 1998 00 i ~~~526 5389 1CII; 19971 33652 51778 101855 2 254j0 IjD84 8215 15135 25503 3921jl 77' 90 3 3066 328.3 6604 12167 20502 315166 V.)5 4 2628 2I.34 4897 9022 15202 23390 4601fl M-ax. -M1in. Policy Constraints Min. Capacity Max. Capacity zyp-e Vintage MW mw Gas Turbines I 0.0 270.0 2 210.0 5140.0 3 370.0 1000.0 4 550.0 1700.0 5 720.0 2600.0 6 2000.0 5100.0 ANNEX III - 75 Tctal Cost: U2L53 MTL RUN '10. IS Change in Rate of Increase of _jad, 17% - 7% List-al1ed Capacity (MW) lNSpe 197j 1978 1933 1988 1993 1998 2005 Hy&zo 1 0 600 0 0 0 0 ° Hydrc? 0 0 1000 0 d0 0 Hydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1t43 1568 1932 0 0 0 0 Hydro 6 0 0 jR 1862 0 0 0 Hydro 7 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 -vdr 9 0 0 ;0 0 0 0 V/T 220 0 210 370 550 720 2000 Fueel Oil 900 0 0 2016 0 5461 0 Lignite 1017 C 2053 3997 0 0 0 '"iclear 0 0 0 1070 1641L 14931 60096 Total by Groups (Me) T"ne 1975 1978 1983 1968 1993 199c 2005 Al-, Hdro 194h3 425i 7221 9083 9053 9083 9083 G/T 220 220 430 800 1350 20?0 L370 F'uel Oil 900 9CO 900 2916 2916 8377 o377 Lignitc 1f17 1017 3020 7017 7017 7017 7017 Nuclear 0 0 0 1070 17481 32415 92511 Total 408C 6358 11571 20886 37850 58962 121058 Peak Demand 3365 5389 10339 19971 33652 51778 101855 ANNEX III - 76 - RUN N0. 18 Change in Rate of Increase of Load, 17% - 7% - Operaticn Schedule E:AR 1 Unused Capacity T_e Vintage p - I p =2 p=_3 p = 4 at Peak ltydro 1 1 600 315 315 0 0 Hydro 5 0 1,943 1,81C 1,009 5t2 0 1 1,568 901 901 901 0 Hydro 8 1 140 140 140 47 0 G/T 0 0 0 0 0 220 Fuel 0 223 0 0 0 677 LigLt" 0 915 915 915 915 102 Total Op. Cap. 5,389 4,085 3,284 2,435 Demand 5,389 4k.'84 3,283 2,434 Reserve 999 Total Capacity 6,388 EAR 4 Unused Capacity Type Vintage p - 2 p = 3 p 4 at Peak Hydro 1 1 600 217 217 217 0 fyiro 2 2 1,000 362 362 362 0 Hydro 5 0 1,943 1,799 1,477 34 0 1 1,568 1,568 1,120 0 0 2 1,932 1,932 1,380 0 0 Hydro 6 2 38 38 27 0 0 3 1,862 1,862 1,330 0 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 210 0 0 0 0 3 370 n 0 0 0 4 550 0 0 0 0 Fhel 0 900 0 0 0 0 3 2,016 0 o 0 0 Lignite 0 915 0 0 0 102 2 1,803 0 0 0 200 3 3,597 3,597 505 505 404 Nuclear 3 856 856 856 856 214 4 13,131 13,131 13,131 13,131 3,283 Total Op. Cap. 33,651 25,502 20,502 15,202 Demand 33,652 25,503 20,502 15,202 Reserve 4,199 Total Capacity 37,85C ANNEX III Tota l 121058 CHANGE IN RATE OF INCREASE OF LOAD (CASE 3) MW 1000 MW INSTALLED CAPAC!TY Nuclear 90K 80 4 70- 60- 50- 40- 30- 20 - 10 | Hydro 0 1 2 3 4Fuel Oi5 0 1 2 3 4 5 periods 6 RUN 18 OPERATION SCHEDULE YEAR 1 YEAR.2 YEAR3 5389 Fuel Oii 10839 Fuei Oil 5156 9939 19975 G/T 19175 EF ue'l COilI I6259 Hydro | Hydro '~- Hydro 2718 ..7171 915 Lignite s15 Lignite hours Lignite hours 856 Ligniters_h 0 8760 0 8760 0 Nuclear 8760 -1 MW YEAR4 MW YEAR5 MW YEAR6 33861 o/7 32301 Fuel Oil 29385 51776 G/T 101853 G/T Hydro Fuel Oil ~~~~497697783 Fuel Oil 19987 ydro 41329 Fuel Oil 89406 Lignite L987nite 350214 Lignite 83091 Hydro 25931 ydro Hydro t,Hydro Nucleor Nuclear Nuclear hours hours hours o 8760 0 8760 0 8760 - 79 - ANN'EX III RUN NO. 19 Change in Fuel Oil Price, 600 TL/ton - Data Currency: $1 = 15 TI. Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum ^oefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating MW ability Limit MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 o.4 1000.0 Hydiro 3 3.5 0.09 0.0 0.0 0.0 1.0 O.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1940.0 1.0 0.6 3500.0 Hydro 6 [4.0 0.09 0.0 0.0 0.0 1.0 0.6 1500.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.O 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.4:0 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 1.28 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate Hydro Capacity in a.-y Year (% of Peak Demand) : 1.0 Per4ods of Load Duration Hours/ Curve Year 1978 1983 1.988 1993 1998 2005 1 526 4662 7754 13066 22018 37101 77028 2 25M0 3h87 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 k 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 -80 - ~ANNEX III Total Cost: 32374 MTL RUN NO. 19 Change in Fuel Oil Price. 600 TL/ton Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 148 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 0 0 0 884 1016 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 J0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 4625 8068 Lignite 1017 0 0 2960 3040 0 0 Nuclear 0 0 0 0 2075 12323 37823 __________ Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hbydro 1943 3422 7035 8067 10283 10283 10283 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 2879 7504 15572 Lignite 1017 1017 1017 3977 7017 7017 7017 Nuclear 0 0 0 0 2075 14398 52221 Total 4C80 5559 9272 13464 23134 40682 88173 Peak Load 3365 4602 7754 13066 22018 37101 77028 A14NEX III - 81 - RUN NO. 19 Change in Fuel Oil Price, 600 TL/ton - Operation Schedule IEAR 1 Unused Capacity Type Vintage p - 1 p 2 2 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 629 0 1 739 .424 424 424 0 Hydro 8 1 140 110 110 I10 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Denwiand 4,602 3,487 2,803 2,078 Reserve 958 Total Capacity 5,559 Y-EAR 4 Unused Capacity Type Vintage p_- 1 p= 2 p_- 3 p - 4 at Peak Hydro 1 2 600 600 46 46 0 Hydro 2 2 852 650 155 155 0 3 148 148 11 11 0 Hydro 3 4 1,200 637 637 0 0 Hydro 5 0 1,943 1,943 900 569 0 1 739 739 528 0 0 2 2,761 2,761 1,972 0 0 Hydro 6 3 884 508 50e 508 0 4 1,016 584 584 584 0 Hydro 8 0 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 igrLite 0 915 915 915 915 102 3 2,664 2,664 2,664 2,664 296 4 2,736 2,736 2,736 2,736 304 Nuclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,685 13,413 9,945 Demand 22,018 16,686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 - 82 - ANEX III 1000 MW RUN 19 CHANGE IN FUEL OIL PRICES (60OTL/TON) 90 - INSTALLED CAPACITY Tota l 80 . 70 60 - Nuclear 50 40- 30 - 20 Fuel Oi 10 Lint _ ~~~~~~~~~~~~~~~~/T 0 = eid RUN 19 OPERATION SCHEDULE YEAR I MW YEAR 2 YEAR 3 7 i54 MW MW 13066 G/T I n 12546 Fuel Oil I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~11646 4602 Fuel Oil 4338 L Hydro Hydro Hydro 3579 915 915 Lignite Lignite hours Lignite hours hours 0 8760 0 8760 0 8760 YEAR4 YEAR5 YEAR6 MW MW J 1~~~~~~~~~~~~~~~~W 22018 G/T 21138 37101 G/T 77028 G/T 35621 Fue l Oil 73948 Fuel Oil 28817 58376 Lignite Hydro 17834 Hydro 52064 =3ydr 7975 ~~~~~~~~~11519 Lignite Lignite N Nuclear 1660 hours hours hours 0 Nuclear7o 8760 0 8760 0 8760 -81 - ANNEX III JUN NO. 20 Change in Fuel Oil Frice, 500 TL/ton - Data Currency: $1 = 15 ''L Discount Rate 0.12 Capital Cost Operating Cost Annlual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/Meld Millions/V4W yr. Capital Operating MW ab lity Limit MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4. 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4: 1000.0 Hydro 3 3.5 0.09 O.G 0.0 0.0 1.0 0.4: 1200.0 Hydro 4: 5.0 0.09 0.0 0.0 0.0 1.0 0.1: 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydro 6 4:.0 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 1L:0.0 Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.140 0.0 0.005 220.0 1.0 1.0 99999.0 ruel Oil 2.6 1.09 0.02 0.005 900.0 1.0 1.0 99999.0 Lig-:ite 2.6 0.4:2 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate FAydro Capacity in any Year (% of Peak Demand): 1.0 Per cods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 41602 7754 13066 22018 37101 77028 2 254:0 34187 5676 9902 16686 28117 58376 3 3066 2803 1:7214 7060 13415 2260LI 416930 4: 2628 2078 3503 5902 99146 16760 34:797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity ,Tye Vintage __MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.o 1850.0 6 )600.0 3850.0 - 85 - ANNEX III Total Cost: 32261 MTL RUN NO. 20 Cahnge in Fuel Oil Price, 500 TL/ton Installed Capacity (MW) B e _ 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 _Oo 0 0 0 0 0 Hydro 2 0 0 852 W 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro t 0 0 0 0 0 0 0 Hydro 5 19L3 739 2761 0 0 0 0 Hydro 6 0 0 0 &89 1016 0 0 Hydro 7 0 0 0 0 C 0 0 Hydro 8 0 1h0 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 1CO 200 360 600 1600 Fuel. Oil 900 0 0 0 1979 k725 7969 Lignite 1017 0 0 2960 3040 0 0 Nuclear 0 0 0 0 2075 12198 37948 Total br Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3422 7035 8067 10283 10283 10283 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 2879 7604 15573 Lignite 1017 1017 1017 3977 7017 7017 7017 Nuclear 0 0 0 0 2075 14273 52221 Total 4o80 5559 9272 13b64 23134 h0657 88174 Peak Load 3365 4602 775k 13066 22018 37101 77028 ANEX III - 86 - RUN NO. 20 Change in Fuel Oil Price, 500 TLJton - Operation 3chedule YEAR 1 Unused Capacity Type Vintags p - 1 2 - 3 p e 4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 2,943 1,719 1,035 629 0 1 739 424 424 424 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Li nite 0 915 915 915 915 102 Total Op. Cs'. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 958 Total Capacity 5,559 YEAR 4 Unused Capacity Type Vintage p = 1 p - 2 > p - 4 at Peak Hydro 1 1 600 600 47 47 0 Hydro 2 2 852 755 109 109 0 3 148 54 54 54 0 Hydro 3 4 1,200 1,200 171 0 0 Hydro 5 0 1,943 1,371 1,371 547 0 1 739. 739 528 0 c 2 2,761 2,761 1,972 0 0 Hydro 6 3 884 508 508 508 0 4 1,016 584 584 584 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Li gtte 0 915 915 915 915 102 3 2,664 2,664 2,664 2,664 296 4 2,736 2,736 2,736 2,736 304 ';uclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,687 13,416 9,948 Demand 22,018 16,686 13,415 9,946- Reserve 1,117 Total Capacity 23,134 - 87 - ANNEX III 1000 MW RUN 20 CHANGE IN FUEL OIL PRICES (50MTL/TON) INSTALLED CAPACITY 90 _ Total 80 70 60 Nuclear 50 40 30 20 10 L L-A 0 1 2 3 4 5 periods 6 RUN 20 OPERATION SCHEDULE MW Msv YEAR 1 7754 YEAR 2 ,w YEAR 3 3066_ G/1 12546 Fue! Oil 4602 Fuel Oil l 4338 Hydro Hydro Hydro 3379 915 915 Lignite Lignite houn Lignite hours hours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 MW YEAR 6 MW MW 22018 G/1' 21138 Fue Oi 37101 77028 G/TO 18269 35621 F-uel oil 748 ue 28017 57 ''Lignite Hydro Hydro Hydro 412077 Hydro 7975 -1 _11419 . Lignite . Nuclear 1660 _ hours Nuclear hours hours 0 Nuclear 8760 1 8760 0 8760 ANNEX III - 89 - =jN NO. 21 Change in FE_el Oil Price, 300 TL/ ton - Data Currency: $1 = 15 TL Dismount Rate 0.12 Capital Cost OperatinLg C03t rIau Rate of Initial Loaad Maxcm,in Coeffic.fent Coefficient C_st Decrease Capacity Avail- Factcr Capacity Type Mitlions-,', M(illions/MW yr. Canitil Operating KW ability Limit M4 Hydro 1 114 0.09 D.') 0.0 0.0 1.0 0.14 600.0 Hydro 2 2.6 O.3g9 D.0 0.0 0.0 1.0 0.1J 1000.0 Hydro 3 3.5 0.09 .0 ).o 0.0 1.0 O.L 1200.0 Hydro 1, 5.0 0.09 ,.0 0.0 0.0 1.0 O0. 1500.0 Jyc!.-c 5 3.0 0.09 ,o 0.0 2C'L3.0 1.0 0.6 3500.0 Hydrr 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 liOO.0 Hydro 7 6.0 0.09 S.O 0.0 0.0 1.0 0.6 10D0.0 Hyclro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 1140.0 Hydro 9 6.o 0.09 0.0 0.0 0.C 1.0 0.5 170.0 2.0 1.w40 0.0 0.005 220.0 1.0 1.0 99;99.0 Fuel Oil 2.6 0.69 0.02 0.005 9r.).O 1.0 1.0 99999.0 Lignite 2.6 0.42 '.02 o.005 1017.0 0.9 1.0 6030.0 Nuclear 6.5 0.26 9.03 0.005 0.0 O.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Cemard) 0.05 Max. Aggregate Hydro Capacity in aniy Year (% of Peak Demnaid) 1.0 Periods c f Load Duration Hours/ Cuirve Year 197S 1933 1988 1993 1998 '^0> 1526 _46C2 7754 13066 22018 37101 77023 2 2514 31487 5376 0902 16636 2'3117 58376 3 3066 2803 L 7214 960 131415 226014 46930 14 2628 2078 3503 5902 99196 16760 314797 Max. - An. Policy Constraints Min. Capacity Max. ,apa,ity TVyPe inMW a?t_T_ _ Gas Thrb±nes 1 0.0 230.0 2 100.0 390.0 3 200.0 650.) 14 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 ANNEX III Total Cost: 31971MrL RUN NO. 21 Change in Fuui. Oil Price, 300 TL/ton Li..alleI' C-pacity (MW) Type 1975 1978 83 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 148 0 0 0 Hydiro 3 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 ° Hydro 5 1943 739 2-'1 0 0 0 0 Hydro 6 0 0 0 884 1016 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 5746 7581 Lignite 1017 0 0 2960 3040 0 0 Nuclear 0 0 0 0 2075 1C922 38433 Total by Groups (i ) zY2 _e i975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3422 7033 8067 10283 10283 10283 G/T 220 220 320 520 880 1480 3080 Fuel Oil 90C 900 900 900 2879 8625 16206 Lignite 1017 1017 1017 3977 7017 7017 7017 Nuclear 0 0 0 0 2075 12997 51430 Total 4080 5559 9272 13464 2313 002 88016 Peak Demand 3365 h602 7754 13066 22018 37101 77028 RUN NO. 21 Change in Fue31 Oil Price, 300 TL/ton - Operation Schedule YEAR 1 Unused Capacity Tym3 Vintage p 1 2 p 3 p = 4 at Peak 4ydcro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 629 0 1 739 424 424 424 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Tot.al Op. Cap. 4,601 3,487 2,803 2,078 Demancd 4,602 3,487 2,803 2,078 ReseBr e 958 Total Capacity 5,55n YEAR 4 Unused Capacity TyP e YVintage E= 1 p = 3 p 4 at Peak H-dro I 1 600 264 196 196 C Hydro 2 2 852 852 66 66 0 3 148 54 54 54 0 Hydro 3 4 1,200 434 434 434 0 Hydro 5 0 1,943 1,943 ),194 226 0 1 739 739 528 0 0 2 2,761 2,761 1,972 0 0 Hydro 6 3 884 508 508 508 0 4 1,01, 1,016 391 391 0 J,ydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 3 2,664 2,664 2,664 2,664 296 4 2,736 2,736 2,736 2,736 304 Nuclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,686 13,415 9,947 Demand 22,018 16,686 13,415 9,946 Reserve 1,117 To.;al Capacity 23,134 ANNEX III - 92 - 1000 MUW RUN 21 CHANGE IN FUEL OIL PRICES (300TLJTON) INSTALLED CAPACITY 90 _ Tota I 80 70 60 Nuclear 50 40 30 20 Fuel Oil 10 0 1 2 3 4 5 periods 6 RUN 21 OPERATION SCHEDULE YEAR MW YEAR 2 YEAR 3 7754 _ MW MW 13066 G/T 12546 Fuel Oil 11646 4602 Fuel(i - Oi 4338 Hydro Hydro Hydro 3579 915 Lignite hours 915 Lignite hours Lignite hours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 MW YEAR 6 MW MW 22018 G/TGT 18259 Ful Oil 37101 G/T 77028 G/T '35621 Fuel Oil 73948 =Fuel Oil l ~~~~~~~~~~26996 .57742 a fl HydroaH269964Hydr Hydro Hydro ________________ 1~~~~~~671441 5 Lignite 10399 LigniteNucler 1660 hours Nuclear hours hours 0 Nuclear 8760 0 8760 0 8760 ANNEX III - 94 - RUN NO. 22 Change in Fuel Oil Price, 200 TL/ton. - Data Currency: $1 - 15 TL Disoount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/Md yr. Capital Operating MW ability Limit MW Hydro 'L 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 O.4 1500.0 Hydro '; 3.0 0.09 0.0 0.0 19li3.0 1.0 o.6 3500.0 Hydro 6 4.C 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro ' 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.k0 0.0 0.005 220.0 1.0 1.0 99999.0 Fu.el Oil 2.6 o.48 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.k42 0.02 0.005 1017.0 0.9 1.0 600C.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) : 1.0 Periods of Load D-ration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3h87 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Mi.n. Capacity Max. Capacity Type Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.o 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 - 95 - ANNEX III Total Cost: 30658 MTL RUH NO. 22 Change in Fuel Oil Price, 200 TL/ton Installed Capacity (FW) Type 1975 1978 19B3 1988 1993 1998 2005 h;dro 1 0 600 0 0 ° 0 0 Hydro 2 0 0 0 1000 0 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 103 3152 244 0 0 0 Hydro 6 0 0 0 884 0 0 0 Hydro 7 0 C 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 C/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 e 0 5855 14484 3577 Lignite 1017 0 0 2960 3040 0 0 Nuclear 0 0 0 0 0 0 43437 Total by Groups (!i1) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 19h3 2786 5938 8066 8066 8066 8066 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 9G0 900 3755 18239 21816 Lignite 1017' 1017 1017 3977 7017 7017 7017 Nuclear Cl 0 0 0 0 0 43437 Total 4o80 4923 8175 13463 22718 37802 86416 Peak Demand 3365 4602 7754 13066 22018 37101 77028 ANNEX III RUN NO. 22 Change in Fuel Oil Price, 200 TL/ton - Operation Schedule lEAR 1 Unused Capacity Type Vintage p I 1- p -2 2_ 3 p-4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 629 0 1 103 59 59 59 0 Hydro 8 1 140 140 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 900 365 365 365 0 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 7,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 322 Total Capacity 4,923 YEAR 4 Unused Capacity Type Vintage p 1 p - 2 P - 3 E 4 at Peak Hydro 1 1 600 600 86 0 0 Hydro 2 3 1,000 834 280 0 0 Hydro 5 0 1,943 1,943 747 747 0 1 103 103 40 40 0 2 3,152 3,152 2,252 0 0 3 244 174 174 69 Hydro 6 3 884 746 746 0 0 Hy'dro 8 0 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 >00 0 0 0 0 4 5,855 2,678 2,678 2,678 0 Lignite 0 915 915 915 915 102 3 2,664 2,664 2,664 2,664 296 4 2,736 2,736 2,736 2,736 304 Total Op. Cap. 22,016 16,685 13,416 9,946 Demand 22,018 16,686 13,415 9,946 Res3erve 702 Total Capacity 22,718 - 97 - RUN 22 ANNEX III 1000 MW CHANGE FUEL OIL PRICES (200TL/TON) INSTALLED CAPACITY 90 Total 80 70 60 50 Nuclear 40 30 20 10 1 2 3 Hydro // / ~~~~~~~~~~~~~~~~~~~~~Lignite I i 4 @ vL ~~~~~~~~~G/T | O. 1 2 3 4 5 periods 6 RUN 22 OPERATION SCHEDULE YEAR 1 mw YEAR 2 YEAR 3 776>4 l MW 13Me _,G/T MW 12144 Fuei Oil 4602 Fuel Oil 3702 ydro Hydra Hydro 3579 IssFue l Oil 357 Lignite hours Linite hou Lignite rs 0 760 0 8760 co YEAR 4 YEAR 5 YEAR6 MW MIS G/T 21138 311 Gr77028 G/T 35621 734 Fuel Oi Lignite 1-070 y Hydro t , 1 49132 Fuel Oil Lignite i~~~~~~oio Hydra ~~~~~~~~~~~~~~~~~~~~~42817 ydro 6316 Fuel °il - | 14382 F o,i L 1 34750 - 8316 I~~~~~~~~~~~~~~~Hyr Lignite | hours hours Nuclear hours 0 8760 0 8760 0 8760 - 99 - ANNEX III RUN NO. 23 Increase of Lignite Capital Costs, 10% - Data Currency: $1 =1. TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type millions/Mw Millions/MW yr. Capital Operating MW ability Limit MW Rydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 (<.00. Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 O.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 C.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 C.3 1.0 o.6 1900.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 l.4o 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.9 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirerents (% of Peak De=ancJ : 0.05 Max. Aggregate Hydro Capacity in ary Year (% of Peak Demand) : 1.0 Periods of' Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity 3 mpe Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 5 1600.0 3850.o - 100 - ANNEX III Total Cost: 32b16 MTL RUN NO. 23 Increase in Lignite rtpital Costs, 10% Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 148 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro 0 0 0 ° 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 G 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 HydroB o0 140 0 0 0 0 0 Hy&ro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 5640 7053 Lignite 1017 0 0 2311 3689 0 0 Nuclear 0 0 0 0 2075 11054 39092 Total by Groups (MW) Type 1975 197' 1983 1988 1993 1998 2005 All Hydro 1943 3422 7035 9083 10283 10283 10283 G/T 220 220 320 520 880 11iO 30Bo Fuel Oil 900 900 900 900 2879 8519 15572 Lignite 1017 1017 1017 3328 7017 7017 7017 Nuclear 0 0 0 0 2075 13129 52221 Total 4(80 5559 9272 13831 23134 40428 8817' Peak Demand 3365 4602 7754 13066 22018 37101 77028 - 101 - RUrT NO. 23 Increase in Lignite Capital Costs, 10% - Ooeration Schedule YEAR 1 Unused Capacity Type pa3Vintage p 1 2 p 3 p * 4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,9L; 1,719 1,035 629 0 1 739 424 424 424 0 Hydro 8 1 140 110 110 110 0 0/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 lign$te 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 958 Tbtel Capacity 5,559 YEAR 4 tfmised Capacity Vintage p 1 p = 2 p = 3 p 4 at Peak Pydro 1 1 600 474 102 102 0 Hydro 2 2 852 308 308 308 C 3 146 54 54 54 0 Hydro 3 4 1,200 1,200 92 92 0 Hydro 5 0 1,943 1,943 1,194 226 0 739 739 528 0 0 2 2,761 2,761 1,972 0 J Hydro 6 3 1,900 1,091 1,091 1,091 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 C 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 o Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 3 2,080 2,080 2,080 2,080 231 4 120 3,320 3,320 3,320 369 Nuclear 4 . 60 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,685 13,415 9,945 Demand 22,018 J, 686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 - 102 - ANNBE III IQ00 0W RUN 23 CHANGE IN LIGNITE CAPITAL COSTS (10% INCREASE) INSTALLED CAPACITY 90 Tota I 8C F 70L 60 - / ~Nuclewr 50 - 40- 30- 20- 10/ Fuel Oil I 0 -//Hydro Ugit RUN 23 OPERATION SCHEDULE YEAR 1 MW YEAR 2 YEAR 3 7754 _ MW 12978 Fuel (7;i 46A2 uel.iI 12078 - 1 '1ydro Hydro Hyciro [ _ 916 _ 916 Lignite Lignite hous Ltgnite hourl hours 0 8760 0 8760 0 8760 0 YEAR 4 YEAR 5 MW YEAR 6 MW ~~~~~~~~~MW 21183 F Oil 37101 GAT 77028 G/ 18259 35621 < Fue Oil 7948 Fuel Oil 27102 52061 7979 0 Hydro Hydro 41777 HydrI 7979 ~~~~~~~~~~~~~~~15818 l 7979 ~ ~ ignite 10503 Lignite N4uclem- I _______hours__Nk cleor hours hours o Nuc ipar 8760 0 8760 0 8760 ANNEX III - 104 - RUN NO. 24 Increase in Lignite Capital Costs, 20% - Data Currency: $1 - I5 TL Discount Rate 0.12 Capita. Cost Operating Cost Annual Pate of Initial Loa.d Maximum Coefficieint Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating NW ability Limrit MW Hydro 1 1 . 0.09 0.0 0.0 0.0 1.0 0.T bOO.O Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0_. 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.h 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1953.0 1.0 o.6 3500.0 Hydro 6 L.0 0.09 0.0 0.0 0.0 1.0 0.6 1i,00.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 lhO.o Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.L0 0.0 0.005 0.0 1.0 1.0 99999.0 Fuci Oil 2.6 0.°0 0.02 0.005 90.0. 1.0 1.0 99999.0 Lignite 3.1 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 ).005 o.X 0.8 1.0 99999.0 Peak Reserve Requiremer s (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Load duration Hours/ Curve Year 1978 1983 1988 19F3 19g9 2005 1 526 h602 7754 13066 22018 37101 7 `8 2 2540 3487 5876 9902 16686 28117 58;76 3 3066 2803 472h 7960 13415 ?260s !6930 .14 2628 2078 ;503 5902 9Ss6 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage M. MW Gas Turbines 1 0.0 230.0 2 130.0 390.0 3 200.0 650.0 h 360.0 1110.0 5 6o0.0 185o.o 6 16oo.o 3o50.0 - 105 - ANNEX III TotLal Cost: 32564 MTL RUN NO. 24 Ir.crease in Lignite Capital Costs, 20% installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 148 0 0 0 Hydro 3 0 0 0 0 1000 0 0 Hydro4 0 0 0 0 0 °0 0 ,Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hrdro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 5640 7053 Lignite 1017 0 0 2311 3689 0 0 Nuclear 0 0 0 0 2075 11054 39092 Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 Al]. Hydro 1943 3422 7035 9083 102E3 10283 10283 G/T 220 220 320 520 880 148o 3080 Fuel Oil 900 900 900 900 2879 8519 15572 Lignite 1017 1017 1017 3328 7017 7017 7017 Nuclear 0 0 0 0 2075 13129 52221 Total 4080 5559 9272 13831 23134 40428 88173 Peak Demand 3365 4602 775! 13066 22018 37101 77028 - 106 - ANNEX III RUN NO. 24 Increase in Lignite Capital Costs, 20% - Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 1 p = 2 p = 3 p 4 at Peak Hydro 1 1 600 319 319 0 0 IXydro 5 0 1,943 1,719 1,035 629 0 1 739 424 424 424 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Ligaite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,079 Reserve 958 Total Capacity 5,559 YEAR 4 Unused Capacity hTye Vintage p - 1 p = 2 p 3 p 4 at Peak Hydro I 1 600 379 144 144 C Hydro 2 2 852 308 308 308 0 3 148 148 11 11 0 Hydro 3 4 1,200 1,200 92 92 0 Hydro 5 0 1,943 1,943 1,194 226 0 1 739 739 528 0 0 2 2,761 2,761 1,972 0 0 Hydro 6 3 1,900 1,091 1,091 1,091 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Ligiite 0 915 915 915 915 ;.02 3 2,080 2,080 2,060 2,080 231 4 3,320 3,320 3,320 3,320 369 Nuclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,684 13,412 9,944 Demand 22,017 16,686 13,414 9,946 Reserve 1,117 Total Capacity 23,134 - 107 - ANNEX III 1000 MW RUN 24 CHANGE IN LIGNITE CAPITAL COSTS (20% INCREASE) INSTALLED CAPACITY 90 - Total 80 _ 70 - 60 - Nuclear 50 40 30 20 /10 Fuel Oil 10 RUN 24 OPERATION SCHEDULE YEAR 1 MW YEAR 2 YEAR 3 MW 7754 _ MW t3066 G/T 12078 uel Oi! 4602 Fel Oil 4338 Hydro Hydro Hydro Lignite hours t Lignitehours ho 0 8760 0 8760 0 8760 0 MW MW YEAR 4 MW YEARP5 YEAR6 22018 _G/T 2138259 37101 G/T 77028 G/T 35621 Fuel Oil 73948 Fuel Oil 27102 58376 Lignite HydrH Hydro 17671 Hydro Hydro 7975 ~~~~~ ~ ~~6818 41777 Lignite 10503 Lignite Nuclear 1660 Nuc876hour Nuclear hours h 0 Nuclear 8760 0 870-86 - 109 - A III RUN NO. 25 Increase in Lignite Capital Costs. 30% - Data Currency: $1 = 15 TL Discount Rate 0.12 C.pital Cost Operating Cost Ar.nual Rate of Initial Load Maximum :oefficient Coefficient Cost' Decrease Capacity Avail- Factor Capacity Tyne Millions/'V4 Xillions/MW yr. Capital Operating MW ability Limit MW Hydro I 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 O.A 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 °.0 °.L 1200.0 Hydro -i 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 19L3.0 1.0 0.6 3500.0 Hvdro 6 4.0 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.P 170.0 G0T 2.0 1.L40 °.° 0.005 220.0 1.0 1.0 99999.0 2unl Oil 2.6 (L.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 3.4 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requir-rents (% of' Peak Demand): 0.05 Mar. Aggregate Hydra Capadity in any Year (, of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 199p, 2005 1 526 4602 7754 13066 22016 37101 77028 2 2540 34,87 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Tlype Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4i 360.0 1110.0 5 6oo.o 1850.0 6 1600.0 3850.0 ANNEX III - 110 _ Total Cost: 32786 MTL RUN NO. 25 Increase in Lignite Capital Costs, 30% Installed Capacity (MW) Type 1975 1978 1983 '988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 148 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro l 0 0 0 0 0 0 0 Hydro 5 1913 739 2761 0 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 160O Fuel Oil 900 0 0 0 1979 5640 7053 Lignite 1017 0 0 2311 3689 0 0 Niuclear 0 0 0 0 2C75 11051 39092 Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3122 7035 9083 10283 10283 10283 G/T 220 220 320 520 880 1180 3080 Fuel Oil 900 900 900 900 2879 8519 15572 Lignite 1017 1017 1017 3328 7017 7017 7017 Ifuclear 0 0 0 0 2075 13129 52221 Total 1080 5559 9272 13831 2313 401428 88173 Peak Demand 3365 Ll602 7,'54 13066 22018 37101 77028 -1l- ANiEX I1I RUN NO. 25 Increase in ign1ite Capital Costs, 30% - Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 2 E= 3 p at Peak Hydro I 1 600 319 319 0 0 Hyiro 5 0 1,943 1,719 1,035 629 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 958 Total Capacity 5,559 EJUR 4 Unused Capacity Type Vintage p = p = 2 p = 3 p = 4 at Peak Hydro 1 1 600 600 46 46 0 Hydro 2 2 832 832 66 66 0 3 148 146 11 11 0 Hydrc 3 4 1,200 1,200 92 92 0 Hydro 5 0 1,943 1,610 1,421 283 0 1 739 739 284 284 0 2 2,761 2,330 2,330 0 0 Hydro 6 3 1,900 1,091 1,091 1,091 0 Hydro 8 1 1140 140 97 97 0 G/T G 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,973 0 0 0 0 Lignite 0 915 915 915 915 102 3 2,080 2,080 2,080 2,080 231 4 3,320 3,320 3,320 3,320 369 Nuclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,685 13,413 9,945 Demand 22,018 16,686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 - 112 - ANNEX III GoO MW RUN 25 CHANGE IN LIGNITE CAPITAL COSTS (30% INCREASE) INSTALLED CAPACITY 90 1co lotol 80 - 70 Nuclear 50- 40 30 - 20 Fuel Oil 10 RUN 25 OPERATION SCHEDULE YEAR 1 MW YEAR2 YEAR3 7754 MW MW 13066 G/T 12978 > Fuel Oil 12078 45302 1Fel Oil 4338 Hydro Hydro 2995. 916 Lignite h 15 Lignite Lignite Llgillte ~~~~hours Llllehoufs .hours 0 8760 0 8760 0 8760 MW YEAR 4 YEAP 5 YEAR 6 MW 211r38 i e Oi l GXL 77028 $T| 18259 ~~~~~~~~~37101 CT73948 , T 35621 Fu OlFuel Oii Fuel0Oil58376 LigniteH 27dro n102 = A ,,Hydro 62061 Hy Hydro 417/17 > o7Y 7975 L Lignite 1650 Lignitehours [Nuclear Nuclear 1660 Nucrhours hours 0 Nuclear 876086 086 - 114 - ANNEX III RUN NO. 26 Change in Lignite Capital Costs, 50% - Data Currency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of initial Load Maxi.mum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating KW ability Limit MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.h 600.0 Hydrc, 2 2.6 0.09 0.0 0.0 0.0 1.0 O.4 10oO.O Hydrco 3 3.5 0.09 0.0 0.0 0.0 1.0 O-4 1200.0 Hydrc, 4 5.o 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydrc) 6 4.o 0.09 0.0 0.0 0.0 1.0 o.6 1 90o.o Hydrc 7 6.o 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydrc 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Yydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 3.9 0.42 0.02 0.005 1017.0 0.9 1.0 6000.c Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 h6c2 7754 1 ,66 22016, 37101 77028 2 2540 3087 5876 9902 1665; 28117 58376 3 3066 2803 4724 7960 131±15 22604 46930 4 2628 2078 3503 5902 991.6 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity TyoZe Vintaze MW MW Gas TUrbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 ;60.0 1110.0 5 60o.0 1850.0 6 160o.0 3850.0 AYNKEX III - L15 - Total Cost: 33157 MTL RUI2 NO. 26 Increase in Lignite Capital Costs, 50% Installed Capacity (Kd) Type 1975 1978 1C3 1988 1993 1998 2005 Hydro 1 0 600. 0 0 0 0 0 Hydro 2 0 0 852 148 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 C' 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 5640 7053 Lignite 1017 0 0 2311 3689 0 0 Nuclear 0 0 0 0 2075 11054 39092 Total by Groups (MW) Type 1975 1978 1983 198B 1993 1998 2005 All Hydro 1943 3L22 7035 9083 1h^&3 10283 10283 G/T 220 220 320 520 580 1480 3080 Fuel Oil 900 900 900 900 2879 8519 15572 Lign.te 1017 1017 1017 3328 7017 7017 7017 Nuclear 0 0 0 0 2075 13129 52221 Total 1,080 5559 9272 13831 23114 40L428 88173 Peak Demand 3365 4602 775li 13066 22018 37101 77028 ANNEX III - ll6 - RUN NO. 26 incrbase in LEgnite Capital Costs, 5% - Operation Schedule YEAR 1 Unused Capacity Iype Vintage p = I p 2 p 1 3 4 at Peak I{ydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 6?9 0 1 739 424 424 424 0 Hydro 8 1 ihO 110 110 110 0 G/T' 0 0 0 0 0 220 Fuel 0 264 0 0 3 636 Lie ia t,-t 0 915 9).5 915 915 102 Total Op. CaD. 4,601 3,487 2,803 2,078 Demasid 4,602 3,437 2,803 2,078 Reserve 958 Total Capacity 5,550 YEAR 4 Unused Capacity Jintage p = = 2 4 at Pesk Hydro 1 600 600 4S 46 0 Fydro 2 2 852 852 6; 66 3 3 148 148 11 11 0 Hydro 3 3 1,200 1,200 92 92 0 Hydro 5 0 1.943 1,726 1,082 567 0 1 739 623 623 0 0 2 2;761 2,330 2,330 0 0 Hyd-ro 6 3 1,900 1,091 1,091 1,091 0 .9ydro o 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Iuel 0 900 0 0 0 4 1,979 0 0 0 0 LgTLite 0 915 915 915 915 102 3 2,080 2,080 2, '80 2,080 23 4 3,320 3,320 3,320 3,320 369 Nuclear 4 ;,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,685 13,413 5,945 Demand 22,018 16,686 13,415 9,946 Reserve 1,117 Totil Capacity 23,134 - 117 - ;.NINEX III 1000 MW RVUJ 6 CHANG'F. IN LIGNITE CAPITAL COSTS (50% INJCREASE) INSTALLED CAPACITY 90 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~TotalI bO / ~~Nuc lear 50 _/o 30 Fuel Lignt"e G/l_ 0 1 2 s 4 periods 6 RUN 26 OPERATION SCHEDULE YEAR I MW YE 2 YEAR 3 7 754 _M MW H 13066 G/T 12978 Fuel Oil 4U02 Fuel Oil 4336 |HHydr=ydro 3sssL HI 91L _ 915 Lignite Ligneours Lignite hours hours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 YEAR 6 . MW MW 22018 G/T 21138 ;-ulOl3' GT77028 G/T 182 59 Fuel O7l 378 Fuel Oil 3 Fuel Oil 1 27'02 / _ 58376 Lignite H 2702 - ~~~~~~~~~~~~52061Hdr Hydra Hydro L 1 Hydro 41776 b 7 _ __ __75_ __ __ _16818 Lignife 10503 ____ . te Nuclear 1660 hours Nuclear hours hours 0 Nuclear7 8760 0 8760 0 8760 - 119 - ANNEX III RUN NO. 27 Change ;n Liynite a'uel Costs, 10% - Data Currency: $1 = 15 TL Discount Pate 0.12 Capital Cost Operating Cost ;nnual Rate or Initial Load Maximrum Coefficient Coe¢'icient Cost Decrease Capacity Avail- Factor Capacity Tpe Millions/MW Mill ions/ IW yr Gapital Operating MW ability iimit MW Hydro 1 1.4 0.09 .0 0.0 0.0 1 .0 0.b 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.o 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.h4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 o.4s 1500.0 Hydro 5 3.0 0.09 0.0 0.0 191W3.0 1.0 0.6 3500.0 '-dro 6 L.0 0. 01 0.0 0.0 0.0 1.0 0.6 1900.0 H-ydro 7 6.0 0.09 .0 0.o0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.9 00.0 0.0 0.0 1.0 c.8 140.0 Hyiro 9 6.0 0.09 0.0 O.C 0.0 1.0 0.8 170.0 G/T 2.0 1G.0.0 0 .c,o5 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.?3 0.02 0.005 900.0 1.0 1.0 99999.0 LigniLie 2.6 0.1±6 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.0 1.0 99999.0 Peak Reserve Requirements (% of Peak 3O?;ni): 0.05 Max. Aggregate Hydro Capacity in any Year ( o' Peak Demand) : 1.0 Periods of Load Duration Hours/ Curve Year 197F 19P3 1988 1993 19^b 2005 1 526 1±602 7751! 13066 22018 371G1 77028 2 251:5 318? 5876 9902 16666 28117 58376 3 3066 2803 1±7214 7960 134115 22601± 146930 1 42628 2078 3503 5902 99146 16760 31479? Mlax. - X.tn. Policy Constraints Min. Capacity Fax. Capacity Type Vintace MW MW"l Gas D;rbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 1. 360.0 1110.0 5 63o.o 1850.0 6 1600.0 3850.0 A.NMUC III - 120 - A Total Cost: 3279[ MTL RUN NO. 27 Change in Lignite Fuel Costs, 10, Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 C) 600 0 0 0 0 0 Hydro 2 0 0 052 118 0 0 0 Ilydro 3 C) 0 0 0 1200 0 0 HydroL 0 0 0 0 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 C) 0 0 1900 0 0 0 Hydro 7 Cl 0 0 0 0 0 0 Hydro 8 0 iLO 0 0 0 0 0 Hydrc 9 C0 0 0 0 0 0 0 5/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 56ho 7053 Lignite 1017 0 0 2311 3689 0 0 Nuclear CO 0 0 0 2075 1105h 39092 Total by Groups (MW) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 19143 3L22 7035 9083 10283 10283 10283 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 2879 8519 15572 Lignite 1017 1017 1017 3328 7C17 7017 7017 Nuclear 0 0 0 0 2075 131?9 52221 Total '1080 5559 9272 13831 23131 10428 88173 Peak Dernam.i 3365 )602 7754 13066 22018 37101 77028 - 121 - AIMEX I RUN NO. 27 Change in Ligaite Fuel Costs, 10% - Operation Schedule YEAR 1 Unused Capacity Tyoe Vintage p 1 p = 2 p 3 p 4 at Peak Hydro 1 1 600 319 319 0 0 H~ydro 5 0 1,943 1,719 1,035 629 0 1 739 424 424 424 0 Hydro 8 1 140 110 110 110 0 G/T 0 O O 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4j,6ol 3,487 2,803 2,078 Dezrand 4,602 3,487 2,803 2,078 Reserve 958 Total .apacity 5,559 YEaR 4 Unused Capacity Type Vintage 1 p = 2 p = 3 p = 4 at Peak Hydrol 1 1 600 379 1-44 144 0 brL4 o2 2 852 308 308 308 0 3 148 148 11 11 0 HVdro 3 4 1,200 1,200 171 0 0 Hyc_o 5 0 1,943 1,943 1,115 318 0 1 739 739 528 0 0 2 2,761 2,761 1,972 0 0 Hydro 6 3 1,900 1,091 1,091 1,091 0 Hyoru 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 90C 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 3 ^,080 2,080 2,080 2,080 231 4 ,320 3,320 3,320 3,320 369 Nuclear 14 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,684 13,419 9,944 Demand 22,018 16,686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 - 122 - NNEX III I000 MW RUN 27 10 t CHANGE IN LIGNITE FUEL COSTS (10% INCREASE) INSTALLED CAPACITY 9 Total 8 7 6 Nuclear 3 2 0 1 2 3 4 5 periods 6 RUN 27 OPERATION SCHEDULE YEAR 1 YEAR 2 YEAR 3 7754 MW 13066 Fuel Oil 12078 4602 Fuel Oil 4338 Hydro 915 Lignite Lignite . Lignite hours 0 87Wo 0 8760 0 8760 YEAR 4 YEAR 5 Mw YEAR 6 M1.V MW 22018 G/T 21138 Fuel Oil 37101 G/Tr 77028 G/T 193S621 i Fuel Oil 73948 Fuel Oil S2710 E.5837b Lignite Hydro Hydro I Hydro 52061 Hydro 7975 16818 41777 Lignite 10503 Lignite Nuc r 1660 hours q Nuclear hours _ hours 0 Nucleur 876Q 0 8760 0 8760 ANNEX III - 124 - RUN NO. 26 Change in Lignite Fuel Costs, 20% - Data Curr-nry: $1 = 15 TL Dis ::t Rate 0.12 Capital Cost Operating Cost Annual Rate of Tnitia] Load Maximur Coefficient Coef'icient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/l, yr. Capital Operating MW ability Limit MW Hydro 1 1.J 0.0? 0.0 0.0 0.0 1.0 0.14 600.0 Hydro 2 2.6 O.C9 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 ° 0 0.0 1.0 0.4 1200.0 Hydro L 5.0 0.09 0.0 0.0 0.0 1.0 0.L 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro B 3.C 0.09 0.0 0.0 0.0 1.0 0.8 1!40,0 Hydro 6 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 CJT 2.0 1.10 0.0 0.005 220.0 1.0 1.0 9929990 Fuel 0iI 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.50 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Re erve Requirements (% of Peak Demand): 0.05 Max. AgJregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Load Duration Hours/ Cur-ve Year 1978 1983 1988 1993 1998 2505 -1 526 -1602 77514 13066 2201B 37101 /7026 2 25140 31487 5c7 9902 16686 26117 5B376 3 3C66 2803 4724 7960 13415 22604 [930 1 2628 2076 3503 5902 9946 16760 34797 Max. - Min. Poliry Constraints Min. Capacity Max. Capacity Typ e Vintage f 1dMW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 20C.0 650.0 4 360.0 1110.0 5 600.C 1850.0 6 1600.0 3850.0 - 125 - ANNEX IlI Totaa Cost: 33377 MTL RUi NO. 28 Change in Lignite Fuel Costs, 20% Installed Capacity (iKd) Me3 19 5 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 148 0 r O Hyd.ro 3 0 0 0 0 12D0O 0 0 Hydro l 0 0 0 0 0 0 Hydro 5 1943 1003 2497 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 C 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 4725 7969 Lignite 1017 0 0 2311 3689 0 0 Nuclear 0 0 0 c 2075 12198 37948 Total by Groups (MW) Tvre 1975 1973 1983 1988 1993 1998 2005 All Hydro 19h3 3636 7035 9083 10283 10283 10283 G/T 220 220 320 520 880 IL 3080 Fuel Oil 900 900 900 900 2879 7604 15573 Lignite 1017 1017 1017 3328 7017 7017 7017 Nuclear 0 O 0 0 2075 Th273 52221 Total !080 5823 9272 13831 2313L W0657 8817h Peak Dcnand 3365 4602 7754 13066 22018 37101 77025 ANNEX III - 126 - RUN NO. 28 Change in Ligiite Fuel Costs, 20% - Operation Schedule YEAR 1 Unused Capacity T>pe Vintage p 1 p 2 3 p =4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 629 0 1 1,003 5?6 576 576 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 iuel 0 0 0 0 0 900 Lignite 0 915 763 763 763 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 1,222 Total Capacity 5,823 YEAR 4 Unused Capacity Type Vintage p 1 = 2 3 L 4 at Peak Hydro 1 1 600 474 102 102 0 Hydro 2 2 852 308 308 308 0 3 146 54 54 54 0 Hydro 3 4 1,200 1,200 92 92 0 Hydro 5 0 1,943 1,943 1,194 226 0 1 1,003 1,003 717 0 0 2 2,497 2,497 1,783 0 0 Wyldro 6 3 1,90J 1,091 1,071 1,091 0 Hydro 8 1 140 14C 97 97 0 G/T 0 220 0 0 C 0 2 !CA) 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 71' 915 915 915 102 3 2,CsC' 2,080 2,080 2,080 231 4 3,L20 3,320 3,320 3,320 369 Total CO. Cap. 22,01? 1:J,6S5 13,413 9,945 Demand 22,018 16)686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 - 127 - ANNEX III 1000 MCW RUN 28 CHANGES IN LIGNITE FUEL COSTS (20% INCREASE) INSTALLED CAPACITY 90 Tota I so 70 60 Nuclear 40 30 20 0 1 2 4 5 6Fuel O il 0 2 4 ~ ~~~~~5 periods 6 RUN 28 OPERATION SCHEDULE MW YEAR 1 7754 YEAR 2 MW YEAR 3 MW 13066 G/T 12978 Fuel Oil 12078 4602 Hydro yr Hydra~~~~~~~~~~~~~~~~~~~~yr L t ' 0hou. 1 ~~~~~~~~~~~~~~~~~~~~2995 X ____________________ 9151 915 2" gnithors Lignitehours Lignite hours 0 8760 0 8760 0 8760 MW MW MW DIB 22018_ G/ 21138 Fuel Oil 37101 G/T 77028 /T 18253 35621 uel Oil Fuel Oil 2180 17 58375 Lignite HyHydroydro yr 52060 Hydro H~~~~~~~~~~~~~~~~~~~~~~~ydro 417734526 ________ ________ ________ _______ 7734 77 7575 Ligni te Lignite 11415 Nuclear 1660 hours Nuclear hours _ hours 0 Nuclear: 8760 0 8760 0 8760 - 129 - _A'NEX III RUN NO. 29 Change in Lignite Fuel Costs, 30% - Data Darrency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximunim Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millicns/MW Millions/MW yr. Capital Operating 1'W ability Limit MW Hydro 1 1.L 0.09 0.0 0.0 0.0 1.0 C. 4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1 .0 0.4 1000.0 hy dro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro ij 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1 500.0 Hydro 9 i.0 0.09 0.0 0.0 19L3.0 1.0 0.6 3500.0 Hydro 5 I.0 0.09 0.0 0.0 0.0 1.0 O.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 5 3.0 0.09 0.0 D0 0.0 1.0 0.8 1LC.O HydrD 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 S/T 2.0 1.140 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil ?.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.5 Lignite 2.6 0.55 0.02 0.005 1017.0 0.9 1.0 6000.0 'huclea, 6.5 0.26 0.03 0.005 3.0 0.8 1.0 99999.0 Peak Reserve Requirerrments ( of Peak Dsnand): 0.05 IM".ax. Aggregate Hydro Capacity in any Year (% of Peak Dem2nd) : 1.0 Periods Of Load Duration Hours/ Curve Year 1978 1983 1968 1993 1998 2005 1 526 4602 775M 13066 22018 37101 77028 2 2,5Z0 3L87 rL16 9902 16666 26117 58376 3 3066 2803 L724 7960 13L1 5 2260L L6930 ;. 2628 207E 3503 5902 9916 16760 3L,797 Max. - Ydn. Policy Constraints Min. Capacity Max. Capacity Ime XVintage MWFi 1l Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 360.0 1110.0 5 600.0 1 50.0 6 1600.0 3850.3 AMl'EX III - 130 - Total Cost: 3398!- MTL RUN N:-. '9 Change in Li$ite Fuel Costs, 30% (Instal±ed Capacity MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro I 0 600 0 0 0 0 Hydro 2 0 0 852 148 0 0 Hydro 3 0 0 0 0 1200 0 Hydro 4 0 0 0 0 0 0 Hydro 5 1943 2291 1209 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hyd.-o 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 Hydra 9 0 G 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 106h 5540 eo68 Lignite 1017 0 0 ?311 3689 C 0 Nu( ear 0 O 0 0 3219 11179 37523 Total by Groups (KqZ) Type 1°75 1978 1983 1988 1993 1998 200L All Hydra 1943 4974 ,'0'5 9083 10283 10283 1028 G/T 220 220 320 520 88j 1iLO 308: Fuel Oil 930 900 900 900 196h1 7504 15572Ž Lignite 1017 1017 1C17 3328 7017 7017 7017 Nuc-ear 0 0 n 0 3219 14398 52221 Total L080 7111 9272 13831 23363 40682 88173 Peak Demand 3364 4602 7754 13066 22018 3710" 77028 -131 - ANNEXIII RUN NO. 29 Change in Lignite Fuel Costs, 30% - Operation Schedule YEAR 1 Unased Capacity Ty Vintage p = 2 p 3 p = 4 at Peak Hydie 1 1 343 343 343 0 257 Hydro 5 0 1,829 1,719 1,035 653 114 1 2,291 1,316 1,316 1,316 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Ail 0 0 0 0 0 900 L gnite 0 0 0 0 0 1,017 Total Op. Cap. 4,603 3,488 2,804 2,079 Demand 4,602 3,487 2,803 2,078 Reserve 2,508 Total Capacity 7,111 TEAR 4 Unused Capacity Type Vintage p 1 o = 2 p = 3 L-= 4 at Peak Hydro 1 1 o00 474 102 102 0 Hydro 2 2 852 308 308 305 0 3 148 54 54 54 0 Hydro 3 4 1,200 1,200 92 92 0 Hy.Lo 5 0 1,943 1,943 1,194 226 0 1 2,291 2,291 1,639 0 0 2 1,209 1,209 864 0 0 Hydro 6 3 1,900 1,091 1,C91 1,091 0 Hydro 8 1 140 140 97 97 C G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,064 0 0 0 0 Ligiite 0 915 0 0 0 102 3 2,080 2,080 2,080 2,080 231 4 3,320 3,320 3,320 3,320 369 Nuclear 4 2,575 2,575 2,575 2,575 644 Total Op. Cap. 22,017 16,685 13,416 9,945 Demand 22.013 16,686 13,415 9,946 Resa!ve ~,346 Total Capaci ty 23,363 -132- ~~~ANNE III - 132 - I 000 MW RUN 29 CHANGE IN LIGNITE FUEL COSTS (30% INCREASE) INSTALLED CAPACITY 90 _ Toto a 80 70 - 60 _ Nuclear 50- 40 30- 2 0 Fuel Oil G1/T 0 1 2 3 4 5 periods 6 RUN 29 OPERATION SCHEDULE MW YEAR 1 7754 YEAR 2 MW YEAR 3 MW 13066 G/T 12978 = Fuel Oil 12072 4602 11- Hydro Hydro 1 2995 hu Lignite hours hours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 Mr YEAR 6 MW ~~~~~~~~MW 22018 G/TG/ 219 1384 5-Fu Oil37101 G/T 77028 _ 35621 Fuel Oil 73948 Fuel Oil 28117 58376 Lignite 5 Hydro1 Hydryo Hydro 41777, 8890 } 7833 E - _ l . .i | :9- te . 115w' .r t ,'. Nuclear hours [ Nuclear hours hours 0 Nuclear'1 8760 0 8760 0 8760 RUN NO. 30 C!a.nr:e in Lignite Fuel Costs, 50 D - Data Currency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/rd Millionn/?.W yr. Capital Operating MW ab-.lity Limi-. M" Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.1 1000.0 Hydro 3 3.5 0.09 0.0 C0 0.0 1.0 0.1 1200.0 H;-dro 1 5.0 0.09 0.0 0.0 0.0 1.0 0.L 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1913.0 1.0 O.6 3500.0 Hydro S l.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 :-1t-dro 7 6.o 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 '.Hydra " 3.0 0.03 0.0 0.0 0.0 1.0 0.8 110.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 O.C 0.005 220.0 1.0 1.0 99999.0 Fuej. Oil 2.6 0.9r 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.6, 0.02 0.005 1017.0 0.9 1.0 6030.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Zeserve Requirements (% of Peak D-eand): 0.05 I;;ax. AC7regate Hydrc Capacity in any Year (, of Peak ,errand) * 1.0 Periods of Load Duration Hours/ (luorve Yca- j 1983 1'r66E 1993 1998 2CCG5 1 ,26 1602 77514 13 30( 22018 37121 77012.8 2 25bC 37 7 58.76 T?02 1668e6 28117 5P376 3 3066 rC-3 1721 79f0 13115 2 16930 2628 2C7? 3503 5902 991V6 16760 31i797 Yax. - iin. Policy Constraints Min. Canr,ity Max. Capacity Gas Turbines 1 0.0 230.0 I CKO. 0 390.0 3 2?00.0 650.0 3.3 1 1110.0 6rtr.o 1r50.0 1 y 5 l 3 r.. - 135 - ANNEX III Total Cost: 34631 MTL RUN NO. 30 Change in Lignite Fuel Costs, 50% Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 1h8 0 0 0 Hydro 3 0 0 0 137 1063 C 0 Hydro4 0 0 0 0 0 0 0 Hydro 5 1943 2291 1209 0 0 0 0 Hydro 6 0 0 0 1900 0 C 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 1hO 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 PFel Oil 900 0 0 0 1064 !625 8984 Lignite 1017 0 0 0 0 6000 0 Nuclear 0 0 2583 7431 5573 36679 Total by Groups (MW) Tyne 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 497W 7035 9220 10283 10283 10283 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 00 900 900 1961, 6589 15573 Lignite 1017 1017 1017 1017 1017 7017 7017 Nuclear 0 0 0 2583 oOlOL 15587 52266 To-tal ho80 7111 9272 1424o 24158 40956 83219 Peak Demand 3365 '.602 7754 13066 22018 37101 77C'28 - 136 - ANNEX III RUN NO. 30 Change in Lignite Fuel Costs, 5% - Operation Schedale YEAR 1 Unused Capacity Type Vinta p - 1 2 p - 3 p = 4 at Peak Hydro 1 1 343 343 343 0 257 Hydro 5 0 1,943 1,-11 1,027 645 0 1 2,175 1,323 1,323 1,323 116 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 0 0 0 0 500 Lig4te 0 0 0 0 0 1,CL7 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 2,510 Total Capacity 7,111 YEAR 4 Unused Capacity Th2 Vintage p =1 p_= 2 p = 3 P 4 at Peak Hydro I 1 600 474 102 102 0 Hydro 2 2 852 308 308 308 3 148 54 54 54 HYdro 3 137 137 10 10 4 1,063 1,063 82 82 0 Hydro 0 0 1,943 1,943 1,194 226 ( 1 2,291 9 291 1,636 0 ( 2 1,209 1,209 864 0 0 Hydro 6 3 1,900 1,091 1,091 1,091 C) Hydro 8 1 140 140 97 97 (1 G/T 0 220 0 0 0 O 2 100 0 0 0 C. 3 200 0 0 0 C 4 360 0 0 0 C Fuel 0 900 0 0 0 0 4 1,064 0 0 0 0 Lignite 0 915 0 0 0 102 Nuclear 3 2,030 2,030 2,030 2,030 553 4 5,945 5,945 5,945 5,945 1,486 Total Op. Cap. 22,017 16,685 13,413 9,945 Demand 22,018 16,686 13,415 9,946 Reserve 2,141 Total Capacity 24,158 - 137 - ANNEX III 1000 MW RUN 30 CHANGE IN LIGNITE FUEL COSTS (50% INCREASE) INSTALLED CAPAC!TY 90 Total 80 - 70 - Nuclear 50 - 40- 30 20 Fuel Oil 10 / ~~~~~~~~~~~~~~~~Lignite _ G/T 0 1 2 3 4 5 periods 6 RUN 30 OPERATION SCHEDULE MW YEAR I 7754 WrYEAR 2 YEAR 3 MW 13066 Fuel Oil 12166 Hydro Hydro Hydro | 915 . 229043 -j jj.ignite | hours 9 Lignite hours Nuclear )hours 0 8760 0 87G0 I-J MW YEAR 4 YEAR 5 YEAR 6 MW MW 22018 G/T 21 138 Fuel Oil 37101 G/T 77028 G/T 82579 - --e Lignite 35621 Fuel Oil 73048 Fuel Oil 29032 Lignite 58376 Lir.;iea Hydro 18749 Hydro Hydro 41777 Hydr 7975 _ 12434. Nuclear hou s Nuclear hours Nucle hours 0 8760 0 8760 0 8760 ANNIEX III - 139 - RUN No. 31 Currency: 5;1 = 15 TL Lignite Availability (O KW) - Data Discount Rate: 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Aaximuu Coefficient Cost. Dscrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW Capi ;al Operattng KW ability Limit .W Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0. 0.0 1.0 o.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 ^'.0 1.0 o.6 1000.0 Hydro 8 3.0 9.09 0.0 0.0 0.0 1.0 o.8 140.0 Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 o.8 170.0 G/T 2.0 1.40 0.0 0.005 220 G 1.0 1.0 99929.9 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.9 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 0.0 Nuclear 6.5 0.26 0.0' 0.005 0.0 0.8 i.0 99999.0 Peak Reserve Requirements (% of Peik Demand): 0.C5 Max. Aggregate Hydro Capacity in any Year (% of Peak Derma;,a) : 1.0 Periods of Loads (KW) Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 526 4602 775L 13066 22018 37101 77028 2 2540 3487 5876 9902 16686 28117 ;8376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Kin. Policy Constraints Min. Capacity Max. Capacity Type Vintage MW MIW_ Gas Turbinus 1 0.0 230.0 2 100.0 390.0 3 200.0 6:i9.0 4 360.0 11'0.0 5 6oo.o 18',:o.o 6 160o.C 38'-:0.0 1T4o- ANE III Total Cost: 33657 KMT RUN NO. 31 Liinite Availability, 0 NW Install&d Capacity (MW, Type 1975 1978 1983 19E8 1993 1598 2005 Hydro 0 600 0 0 O 0 O Hydrc 2 0 0 852 1T8 0 0 0 Hydro 3 0 0 0 85 1115 0 0 Hydro 0L O 0 0 0 0 0 0 Hydro 5 19t&3 739 2761 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 .[yPro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 158 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1945 5674 7053 Lignite 1J17 0 0 0 0 0 0 Nuclear 0 0 0 2406 6763 11012 39092 Total by Groups (1NW) T pe .1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3122 7035 9326 lOtdil 10441 1h44Oh G/T 220 220 320 520 880 1480 Y830 Fuel Oil 900 900 900 900 28L5 8519 15572 Lignite 1017 1017 1017 1017 1017 1017 lC17 Nuclear 0 O 0 2406 8669 1468). 53777 Total L080 5559 9272 14169 23852 41138 88883 Peak Demand 3365 4602 775 13066 22018 37101 77C;28 ANNET III - 14i - RUI' rO. 31 Lignite kvailability, 0 I5W - Operation Schedule YEAR 1 Unused Cap. Throe V;.ntage r=1 2 P 3 at Peak j"'r;O 1 1 600 600 L6 46 0 y',dro 5 0 19L3 1)28 1308 583 0 1 7'9 h2h 24 L,2L o Vy3dro a 1 11Ifl 110 110 10 0 G/'r 0 0 0 0 0 220 1'uel Oil 0 26!, 0 0 0 636 Lignite 0 915 915 915 915 102 Total ;;½. Capacity L601 378? 2803 2078 Delmand 6 6092 3h87 2803 2078 Aeserve o78 Total ,aPacity 5r559 YEA3R 1, Unused Cap. ____?e Vinta.re r = 1 D=2 P= at -ak FY.drO 1 1 600 217 217 217 0 Hvdr 2 2 552 308 308 308 0 3 1': - 5 -!ydro 3 35 7 7 0 } 1125 C56; 332 332 0 HYdr O 0 1`13 19!J3 1194 2 26 0 C',~~~~~~~~~~~~~~~~~~~~~~~~C 1 7?739 52R 0 2 27?; 2761 1972 0 0 HIvdro 6 3 1,r 1900l'O 731 7 31' Hyda c^ 1 11 1140 97 27 O HyL-o 3 3 9 3 125 125 125 0 ',/T 0 220 0 0 0 C 2 100 0 C0 , 3 200 0 0 0 -uel Oil 0 9', 0 0 G 0 14, 19ls,10 0 Tiz-.ite 0 9E r, 1C9 91 102 "ucler 3 1 '92 1925 ' 25 1925 11,S L4 501l 5011 5011 5011 1252 .aVa O ). Capacit.,' 2201? 16687 131'16 9913O Demnand 22018 16686 131415 99-16 .teserve 1835 Tctal Capacity' 23°52 -42 - 1000 MW RUN 31 ANNIEX III CHANGE IN LIGNITE AVAILABILITY (OMW) INSTALLED CAPACITY TotaI 30 70 60 Nuclear 50 40L 30 20 Fuel Oil 10 0 1 ~~~~2 3 4 5 periorl; 6 RUN 31 OPERATION SCHEDULE MW YEAR 1 7754 YEAR 2 MW YEAR 3 A WI1 13066 Fuel Oil 12166 4602 Fuel Oil 4338L Hydro 915 915 Linie102 5 ur 9 5 L Hydroignit hour/s Lignite |_,,rs NuJclear l tours 0 8760 0 8760 0 8760 YEAR 4 YEAR 5 M YEAR 6 22018 G/T 21138 Fuel Oil 37101 G/T 77d28 G/T H 18293 35621 ue Oi 73948 F O L Hd ~~~~~~~Lignite 27102587 Lignite576Hyr 7 e , y -16661 Hydro Li 47120 Hydr 6936 _ _ _ _ _ _ _ _ _ _ _ __15746 Nuclear | Nuclear | hours I Nuclear hours hoors 0 8760 0 8760 0 8760 - 1 - RUN NO. 32 Currency: $1 - 15 TL Lignite Availability (1000 KW) - Data Discount Rate: o.12 Capital Coast Operating Cost Annual Rate of nTitial Load maximum Coefficient Coefficiant Cost Decrease Capacity Avail- Factor Capacity Iype MilXions/xW millions/MW Capital Operating KW abtlity Limit MW Hzdro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Rydro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydrc 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 1000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Damand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Loads (MW) Load Duration Hours/ Curve Year 1973 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 4693o 4 2628 2073 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. C&pacity Type Vintage MW MfW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 2(C0.C 650.0 4 360.0 1110.0 S 600.0 - 850.0 6 i600.0 3850.0 - 1a) - ANNEX III RUN NO. 32 Total Cost: 33292 MTL Lignite Availability, 1000 1M Thstalled Capacity (MWd) Year 1975 1978 1963 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 352 148 0 0 0 Hydro 3 0 0 0 85 1115 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 0 0 0 1900 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 158 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel 0Oi. 900 0 0 0 1945 5674 7053 Lignite 1017 0 0 1000 0 0 0 Nuclear 0 0 0 1281 6263 11012 39092 Total by Groups (MW) Year 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3422 7035 9326 104bi 10hh 10t1 G/T 220 220 320 520 880 1h80 3080 Fuel Oil 900 900 900 900 2845 8519 15572 Lignite 1017 101, 1017 2017 201? 2017 2017 Nuclear 0 0 0 1281 75M 18556 576h8 Total 4080 5559 9272 1b04L 23627 41013 88758 Peak Demand 3365 4602 775h 13066 22018 37101 77028 ANNL II11 - 146 - RUN NO. 32 Lignite Availability. 1000 ,44 - Operation Schedule YEAR 1 Unused Capacity Vintage = 1 P=2p=p at Peak hydro 1 1 600 375 146 1b6 0 Hydro 5 0 19143 1318 1348 623 0 1 739 739 281 281 C _ydL-o 8 1 1LO 110 110 110 0 6,/T 0 0 0 0 0 220 ?uel Oil 0 264 0 0 0 636 Lignite 0 9915 15 915 915 102 Total Op. Capac:ity 4660'L 3487 2803 2078 Demand L602 3487 2803 2078 !eserve 958 Total Capacity 5559 Y ER 1 UTnused Capacity TyVe wTintage p = 1 ? = 2 p =43 4 at Peak H:ydrc 1 1 600 217 217 217 0 Hydrc 2 2 852 308 308 308 0 3 114 54 5 5L G iydzc 1 3 85 8; 14 C G 1115 60L 83 C O ;i;drc 5 O 1913 '?L3 201 56h C 1 739 739 52.c C 0 2 2761 2761 1972 0 C Hdro 6 3 1900 900 731 731 C -.y 5 801 1kO 1.C ?.c 97 0 Hy- s 9 3 158 125 12_ 125 0 5/T 5) 220 0 CA0 0 0 2 100 0 0 0 0 3 200 0 C 0 0 4 360 0 C 0 0 -el Ci' 0' 900 0 0 0 C 1 914 0 0 O Li-giite a 91< ?15 ?1-; 9lC2 :3 ,C900 00 900 900 100 ..ualear :3 1025 1025 1025 102-5 256 I4 5012. 5011 5011 5011 1252 Total Op. Capacity 22017 1667 _. 96817 De , _-nd. 220'T 16656 _31'2 22'4 171;' C~- ,aai aacity 23627 ANNEX III - 14s7 - m1'oo MW RUN 32 CHANG E I N LIGNITE AVAI LABI LITY (1 000 MW) INSTALLED CAPACITY 90 Toto a 80 70 60 Nuclear 50 40 30 20 10 yr RUN 32 OPERATION SCHEDULE YEAR 1 MW YEAR 2 YEAR 3 MW 7754 MW 75 13066 Fuel Oil 12166 46C02 FeOil HydroHdr 915 ~Lignite Li ---gnite I Li02it hours hours 1025 hours Y 8760 0 8760 0 Nuclear 8760 YEAR 4 YEAR 5 mw YEAR 6 22018 G/ 8293 Fuel Oil37101 77028 G/T --1 35621 > Fue I O; 1 758394786 > FuelI Oil7 Hydro L' nite ~~~~~~~~~~~~56561 Hyro Lignite Hydro 7851 16661 HyrLint Nuclear hours Nle a r hours hours 0 8760 0 8760 0 8760 ANNEX III _ 19 _ RUN NO. 33 Curre:ncy: $1 = 15 TL Lignite Availability (3000 MW) - Data Discount Rate: 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Ma,iium Coefficiont Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW Captial Operating KW ability Limit MW Hydr3 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 1 .0 0o4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 10 Or.0 aro 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 3000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements 1,% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) : 1.0 Periods of Loads (MW) Load Duration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage MW MW Gas Turbines 1 0.0 230.C 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 ANNEX III - 150 - Total Co.st: 32687 .ffL RUN NO. 33 Lignite Availability, 3000 MW Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 852 1h8 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hydro 6 0 0 0 884 1016 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 lhO 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 5640 7053 Lignite 1017 0 0 2960 h0 0 0 Nuclear 0 0 0 0 5450 11054 39092 Total by Groups (Md) Type 1975 1978 1983 1988 1993 1998 2005 All Hydro 1943 3h22 7035 3067 10283 10283 10283 G/T 220 220 320 520 880 1b80 3080 Fuel Oil 900 900 900 900 2879 8519 15572 Ligniteb 1017 1017 1017 3977 4017 4017 4017 Nuclear 0 0 0 0 5450 16504 ',596 Total 4080 5559 9272 13464 23509 h0803 885h8 Peak Demand 3365 4602 7754 13066 22018 37101 77028 - 151 - ~~~ANNIEX III -151 - RUN NOl. 33 Lignite Availability 3000 !W_- Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 1 p 2 p = 3 p = at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1943 1719 1035 627 0 1 739 425 1h25 425 0 Hydro 8 1 1LO 110 110 110 0 G/T 1 0 0 0 0 220 F'uel Oil 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Capacity L601 3488 2804 2079 Demand 4602 3487 2803 2079 Reserve 958 Total Capacity 5559 YEAR 4 -unused Capacity Type jLntai7e p = 1 = 2 p = 3 ,o = 4 at Peak :ydro 1 1 600 600 1:6 46 0 Hydro 2 2 8,52 )h78 233 233 0 3 1481 11 C0 .:ydro 3 1200 431 !O3h4 h3L 0 Hydro 5 0 19143 19l13 1194 226 C 1 739 739 528 0 G 2 2761 2761 127? 0 0 .:ydro 6 3 88L 6814 3!L0 34C 0 1016 584 58L 58L G Hyd;o 8 1 l14 14(: 97 97 0 CIT 0 220 , 0 0 2 1G00 0 0 0 3 200 0 0 0 0 It 360 0 I-0 C0 -iei Cil 0) ?00 0 0 0 1979 0 0 0 0 Li'r.ite O 915 915 915 91. 102 2664 266b 2664 2661 296 36 36 36 36 4 ';R;_lear 4 4360 4360 436o 4360 1090 Cota~ ro na-;aci+.y 22017 16686 13114 9?,h6 22018 16686 1341' 9946 .eser-ze 41.92 Total Calacity 23509 ANNEX III - 152 - 1 ioo1000 pvw RUN 33 CHANGE IN LIGNITE AVAILABILITY (3000MW) INSTALLED CAPACITY 9_ Tota l 8 7- 66 - Nuclear 5 4 K- 3 L. 0 / 2 3 5pos6Fuel Oil _- 2 / ~~~~~~~~~~~~~~~~~~~~~Lignite 0 1 2 3 45 periods 6 RUN 33 OPERATION SCHEDULE YEAR 1 > YEAR2 YEAR 3 7754 MS MW 13066_ 4602 Fuel Oil 4338 Hydro Hydro Hydro ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3579, 915 915 Lignite Lignite t,,_R Lignite hourshor 0 B760 0 8760 0 8760 MW YEAR 4 YEAR 5 YEAR6 220 18 k _lOil37101 ,G,/T 770284C/ 935621 Fuel Oil 5i3984 Fuel Oil ,Lignite 975Hydro 8Lignte 54761 i H y Hydro ~~~~~~~~~~~~~~~~~Hydro 44477Hydr 7975 Lignite 13203 Nuclear Nuclear hors Nucleur hours hours 0 8760 0 8760 0 8760 - 154 - ANNEX III RUN NO. 34 Currsncy: $1 = 15 TL Lignite Availability (9000 MW) - Data Discount R-te: 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease CapRcity Avail- Factor Capacity Type Millions iW Millions/MKW Capital Operating MW ability Limit MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydrao 4 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 3 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydrz '1 6.0 0.09 6.o 0.0 0.0 1.0 0.6 1000.0 Hyd.- 8 3.0 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hyd.o 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 995'9.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 ' 00.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 9: 99.0 Peak Reserve Requirements (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Loadz_ (MW) Lcad D"ration Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724t 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - Min. Policy Constraints Miin. Capacity Max. Capacity Type Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 - 155 - AEX III Total Cost: 31775 MTL RUN NO. 34 Lignite Availability, 9000 NW Installed Capacity (MW) Year 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 540 46C 0 0 0 Hydro ' 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 739 2761 0 0 0 0 Hyd.eo 6 0 0 0 884 1016 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 939 6680 7053 Lignite 1017 0 138 2821 6040 0 0 Nuclear 0 0 0 0 0 9755 39092 Total by Groups (MN) Year 1975 1976 1983 1988 1993 1998 2005 All Hydro 1943 3422 6723 8067 10283 10283 10283 G/T 220 220 320 520 880 1480 300 Fuel Jil 900 900 900 900 1839 8519 15572 Lignite 1017 1017 1155 3976 10016 10016 10016 Nuclear 0 0 0 0 0 9755 48847 Total 4080 5559 9098 13463 23018 40053 87798 Peak Demand 3365 h602 7754 13066 22018 37101 77028 ANNEX III - 156 - RU1I NO. 34 Lignite Availability, 9000 NW- Operation Schedule YEAR 1 Unused Capacity ___e Vintage pp 2 P = 3 ? at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1963 1719 1035 629 0 1 739 ?24 h24 424 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 -uel Oil 0 26) 0 0 0 636 Lignite 0 915 915 915 915 702 Total Op. Capacity 4601 3)87 2803 2078 Denand L602 3487 2803 2078 ?.eserve 958 Total Capacity 55559 Unused Capaz ty Ty -,e Vintage p = I p 2 3 = 4 at Peak- :vydro 1 1 600 483 183 0 0 Hydrc 3 ) 1200 638 633 0 0 Hydz-o 5 0 19L3 19 3 7)7 747 0 1 739 623 623 0 0 2 2761 2761 1972 0 0 Hydro 6 0 58.) 384 340 30C 0 1 1016 58L4 53) 584 0 2 11o6 58)4 58) 58h 0 3 1016 58) 5fi4 584 0 ) 1016 58) ,8) 5v84 r Hyd.;o 8 1 140 14C 7 97 0 /T 0 220 0 0 0 0 .9uel Oil r900 0o 0 0 C ) 939 0 0 C Lignite 0 ?1o 0 02 2 125 0 0 0 13 3 2539 2539 2,3? 2539 282 )4 5)6 5436 L36 _; 6 605 Total Op. Capacity 22017 16686 17L13 ?9n- De.and 2201c 1668c 13)15 c.)46 d,eserie 100' rotal Capacity 230'F - 157 - ANIEX III 1000 MW RUN 34 CHANGE IN L[GNITE AVAILABILITY (9000MW) INSTALLED CAPACITY 90 - Tc.ta I 80- 70 _ 60 50 Nuclear 40 30 / / / ~~~~~~~~Fuel Oi l / G 1 32 4 5 perioc's 6 RUN 34 OPERATION SCHFDULE MW 7754 m YEAR 1 YEAR 2 MW YEAR 3 13060 G/T M |612546 Fuel Oil . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 IG4G 4r602 Fuel Oil 4338 Hydro .lydro Hydro 87 915 _ 1040 Lignite Lignite hou-: lignite hours I | hours 8760 0 8 v60 0 8700 CC) YEAR 4 YEAR 5 MW YEAR 6 .. ~~~~~~MW 22018 _ / 2t]38 -J Fuel1 Oil 77028 -f,G/l 1921F 35621 uel Oil 73948 Fuel Oil L 27102 58376 OLignite 493O1 -.L____ - Hydro hydro IHydro Hydro + Hydro 9015 16819 Lignite 78041 inf Nurlear hours Nuclear hours hours 0 8760 0 8760 0 8760 ,INuclear hours 1 Nuclear I h ANNEX III - 159 - RUN NO. 35 Currency: $1 = 15 TL Change in Hvdro Capital Costs, 10% Increase - Data Discount Rate: 0.12 Capital Cost Operating Cost Annual Rate of Thitia2 Load Maximum Coefficient Coefficient Cost Decrease Capacity AvaiL- Factor Capacity Type Mi:Llions/MW Millions/fW Capital Operating mW ability Limit Mk' Hydro 1 1.5), 0.09 0.0 0.0 °.0 1.0 0.4 600.0 Hydro 2 2.86 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 3.85 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Rydro 4 ,.50 0.09 0.0 0.0 0. 0 1.0 0.4 1500.0 Hydro 5 3.30 0.09 0.0 0.0 1943.0. 1.0 0.6 3500.0 Hydro 6 4.40 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.60 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hvdro 3 3.30 0.09 0.0 0.0 0.0 1.0 0.8 140.0 Hydro 9 6.60 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/l' ?.0 1.40 C.0 0.005 220.0 1.0 1.0 99999.0 Fi'el Oil 2 6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.z $ .42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 o.o o.8 1.0 99999.0 Peak Reserve Requirements (% o; Peak Demand): ).05 Max. Aggregate Hydro Capacity in anY Year (% of Peak Dbmand) : .O Periods of Loads (MW) Load Duration Hours/ Curve . Year 1978 1983 1938 1993 1998 2005 1 r26 4602 7754 13066 22018 37101 77028 2 2S40 3487 5876 9902 16686 R8117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Max. - in. .-olicy Constraints Mi-. Capacity Max. Capacity Type Vintage KW KW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.o 1110.0 5 600.0 1850.0 6 1600.0 3850.0 ANNEX III - 160 - RUN NO. 35 Total Cost: 33025 NTL Change in Hydro Capital Costs, 10% increase Installed Capacity (MW) Year 1975 197 1983 1988 1993 1998 2005 Hydro1 0 6oo 0 0 0 0 0 Hydro 2 0 0 0 1000 0 0 0 Hydro 3( 0 0 0 1200 0 0 Hydro C) 0 0 0 0 0 0 Hydro 5 191±3 729 2761 0 0 0 0 :-ydro 6 0 0 0 881 1016 0 0 Hydro C) 0 0 0 0 0 0 Hydro 8 C) 110 0 0 0 0 0 Hydro 9 C) 3 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 .ael Oil 900 0 0 0 1979 56240 7053 Lignite 1017 0 356 2601 301±0 0 0 Nuclear 0 0 0 0 2075 11051± 39092 Total _y _roups (NWl) Year 1975 1978 1?83 1988 1993 1998 2005 All :Hydro 191±3 31±2. 6i83 8067 10283 10283 10283 G/T 220 220 320 5?0 880 11L80 3080 Fuel Oil 90() ?C0 200 9o0 2879 3519 15572 Lignite 1017 1017 137, 3977 7017 7017 7017 X.uclear 0 0 0 0 2075 13129 52221 Total 2030 5559 8776 13-16h 23131 Lol028 8_/-) :*ak Jemand 3365 1h602 7751s 13066 220' e 3710)1 7702,3 - 161 - RUN NO. 35 Change in Hydro Capital Costs, 10% increase - Operation Schedule Operation Schedule YEAR 1 Unused Capacity Type Vintage p 1 3 P = 4 at Peak Hydro 1 1 600 319 319 0 0 Hydrc, 0 1,943 1,719 1,035 629 0 1 739 424 424 424 0 tt-a<) 8 1 140 110 110 110 0 F-,. Oil 0 264 0 0 0 636 Lit.nite 0 915 915 915 915 102 Total Oper. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 958 Total Capacity 5,559 YEAR 4 TUnused Capacity Type Vintage p = 1 p = 2 p = 3 p =4 at Peak Hydro 1 2 600 226 213 213 0 Hydro 2 3 1,000 1,000 76 76 0 Hydro 3 4 1,200 434 434 434 0 Hydro 5 0 1,943 1,943 1,194 226 0 1 739 739 528 0 0 2 2,761 2,761 1,972 0 0 Hydro 6 3 884 884 3t0 340 0 4 1,016 584 584 584 0 Hydro 8 1 140 140 97 97 0 Q/T 0 220 0 0 0 0 2 100 0 0 0 C 3 200 0 0 0 0 4 360 0 0 0 0 Fuel Oil 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 S15 91j 915 102 2 321 321 321 321 35 3 2,343 2,343 2,343 2,345 261 4 2,736 2,736 2,736 2,736 304 NIuclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,63.6 13,413 9,946 Demand 22,018 16,686 13,415 9,946 Reserve 1,117 Total Capacity 23,134 ANNEX III - 162 - 1000 MW RUN 35 CHANGE IN HYDRO CAPITAL COSTS (10% INCREASE) INSTALLED CAPACITY 90 Total 80 70 - 60 Nuclear 50 40 30 20 Fuel Oil 10 / , ~~~~~L;gnite RUN 35 OPERATION SCHEDULE MWv Fuel Oil 7754 ;7 MW YEAR 1 7419 YEAR 2 MW YEAR 3 136 G/T 12546 Fuel Oil 11646 4602 Fuel Oil 4338 Hydro Hydro 915 ~~~~~~~~~~~~~~1236 137 re H hours Lignite Lignite 0 ~~~~~~~~~~~~ -~~- or hours 0 8760 0 8760 0 8760 MW YEAR4 YEAR5 YEAR6 MW 22018 _ G/T , IS8259 1301 G/T 7728 G/ 35621 Fuel Oil3 Hydro 227102 H2061 Hydro Hydra Hydro 41777 7975 16818 Lignite Lignite 10503 N uelea hours hou's hours 0 Nuciear 8760 0 8760 0 8760 ANNEX III - 164 - RUN NO. 36 Currency: $1 = 15 TL Change in Hydro Capital Costs, 20% Tncrease - Data Discount Rate: 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW MillionsAMW Capital Operating MW ability Limit MW Hydro 1 1.68 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 3.12 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Hydro 3 4.20 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 6.0o 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hyd-ro 5 3.60 0.09 0.0 0.0 1943.0 1.0 0.6 3500.0 Hydro 6 4.80 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 7.20 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.60 0.09 0.0 0.0 0.0 1.0 G.8 140.0 Hydro 9 7.20 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.00 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.C 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Loads (MW) Load Duration Hours/ Curre Year 1978 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 9946 16760 34797 Ma.x. - Min. Policy Constraints Min. Capacity Max. Capacity Tvpe Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 16GO.0 3850.0 - 165 - RUN NO. 36 Tot al Cost: 33791 MTLL Change in Hydro Capital Costs, 20% increase Inst&lled Capacity (YwK) Year 1975 1978 1983 1988 1993 1998 2005 Hydro 1 C 600 0 0 0 0 0 Hydro 2 0 0 0 1000 0 0 0 Hydro 3 0 0 0 0 0 0 0 IHydro L 0 0 0 0 0 0 0 Hydirn 5 19Lt3 739 2761 0 0 0 0 Hyd ro6 0 0 0 0 5 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 Th0 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 huel Oil 900 0 0 C 3552 5633 5LL83 Lignite 1017 0 3556 356 2058 0 0 Nuclear 0 0 0 0 3979 11057 h1055 Total try Groups (nW) Yea.r 1975 1973 1983 1988 1993 1998 2005 All Hydro 1903 3L22 6183 7183 7f188 7188 71 8 r,/T 220 22C 320 520 880 1080 3080 Fu)el Oil 900 ?00 900 900 li52 '.0090 15573 L:ignite 1317 1017 1373 0959 7017 7017 7017 Niuclear 0 0 0 0 3979 15036 56091 Total hO80 fE59 8776 l3<62 2316 50811 889t2 Peak Demand 3365 L6,02 775L 13066 22018 37101 77028 ANIJEX III - 166 - : 70. 36 -C1ne in :'--rc '>,ta1 Costsl 20Ca Increase - Operation Schedule Operation Schedu-le Unused CapaL* TLme Vi:tage - = 1 _ ?2 2=3 5 4 at, eak Hi.i:O 7 1 6co 31? 319 0 0 r. 1 3 1719 1035 629 0 1 739 -2L 42L b2h 0 H-y'ro 1 i10o 110 110 11G 0 C/ln r.o0 0 0 220 TFhe1 0''1 26h C0 0 0 836 Lignite 0 915 915 915 102 Total1 CO. Capacity l,601 3687 2803 2078 Demand !602 3L87 2803 207E Reserve 958 Total Capacity 55559 _.A3 L Unused ½pacity ate Vintage P = 1 .=2 - 3 = at Peak Jydrc 1 1 600 600 L6 L6 C c 2 3 1000 '00^ 77 7 0 Hydro ,0 1? I 19L3 11 L 226 0 1 739J 73? 5 2 0; O Q 2 276' 2 7 . 1 2 *yrcrc6 L 6 1 1 0 Hydro 8 1 1l0 1L-. 97 97 t J/ 0 22C 0 0 2 100 0 G 0 0 3 200 0 0 0 0 b 360 G C. .*.e' 'il 0 900 r 0 C b 33552 0 0 0 Libfite C 915 915 ?15 915 10? 2 321 321 321 321 3, - 3227 3227 3227 3227 359 b 1852 1852 1&32 1852 206 c c.r 14 3183 3183 3153 3183 796 Total ,r,:-. ,apacity 22017 16685 13h1j 99,5 De r.:P-n, 2201;2 l o6 1315 2ML6 ..esexre 1L91 toal C:apacity 2351 ANNEX III - 167 - RUN 36 10C MW CHANGES IN HYDRO CAPITAL COSTS (20% INCREASE) INSTALLED CAPACITY Toto a 80 70 - 60 Nuclear 50- 40 - 30 20 ) / / ~~~~~~~~~~~~~~~~~~~FuL> Oil 10 - 0 1 2 3 4 5 periods 6 RUN 36 OPERATION SCHEDULE MW 7754 Fuel Oil YEAR 1 7419 YEAR 2 Mw YEAR 3 MW 1306.3 G/T 12546 Fuel Oil 11646 4602 Fuel Oil 4338 Hydro 4463~~~~~~~~~~~~~~~Hyr 915 Hydro ~~~~~~~~~ ~~~1236 4463Lignite 915 Lignite LigniteG144i3X o L, 9r ignte HOURS Lignite hours hours 0 8760 0 8760 0 8760 co MW YEAR 4 YEAR 5 YEAR 6 MW MW 22018 _ G/ 21138 L Fuel O;l 37101 G/T 77028 G/T ~~~~~~~~361Fuel Oioa0179 Fuel Oil 16C - 35621 Fuel Oil ~~~~~~~~~~~~583 76 Lirite Hydro 1H68r= 25531 520r_0 Hydro __Hydro 4487 Lignite 12029 n Nuclear 3183 Nuc l:ar hours Nuclear hours hours 0 8760 0 8760 0 8760 - 169 - A III RUN NO. 37 Currency: $1 = 15 TL Change in Hydro Capital Costs, 30% Increase - Data Discount Rate: 0.12 Capital Cost Operating Cost AnnjaiL ate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions,11W Capital Operating MW ability Limit MW Hydro 1 '.82 0.09 0.0 J.1 0.0 1.0 0.4 600.0 Hydro 2 3.38 0.09 0.0 0.0 0.0 1.0 0.4 1000.0 Eydro 3 4.55 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro 4 6.50 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hydro 5 3.90 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydro 6 5.20 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 '7.80 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 3.90 0.09 0.0 0.0 0.0 1.0 0.1 140.0 Hydro 9 7.80 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Xequirements (o of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) : 1.0 Periods of Loads (MW) Load Duration Hours/ Curve Year 1975 1983 1988 . 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 99)2 16686 28117 58376 3 3066 2103 4724 7550 13415 22604 46930 4 2628 2078 3503 5502 9946 16760 34797 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage mV Mi Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 18!,o.0 6 16oo.o 38;0.0 - 170 - ~~~~ANINEX III -170- RUIN NO. 37 Total Cast: 31 !s33 mi"L Change in Hydro Caoital Costs, 30% increase T-stalle6 Capacity (Md) 'ear 1975 1978 1983 1983 1993 1998 2005 -rc.ro 1 0 oOO C 0 0 0 0 . ycrc 2 0 0 0 1000 0 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro L 0 0 0 0 0 0 Hy:Vd-"0 5 1903 73h 2761 0 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 0 0 0 0 :-ydro 8 0 1LOC 0 0 0 0 H-rdro 9 0 0 0 0 0 0 0 0/: 220 C0 lG 2v0 360 600 16oO Fre1 Cd 1 900 0 0 0 3552 5639 5 L82 Li7 r7 -e 1017 0 - 3 3556 2058 0 0 !,uc.7ecr 0 G C ' 39 5 110,5O L 1056 7o;al by roups (!';) 'ear 1975 1978 1? 3 1980 1993 1??9 200C :11 .ydro 1?3 3L22 61 v3 7153, 71lc 713 7133 r/T 220 221 320 2 .,,o iL8O 3030 F>ie1 Oil 900CG00 ~ C" 9I0 ?CGC C G15573 Lignite 1017 101 1,73 L95# 7017 7017 7017 I:uclear C G 3 * 3?8. 15CL1 56097 oT,~ 1 a' L1C8OG CC C 877' 13362 23517 cC8' r 5595C Demnd ,365 160? 77.% 13066 2201v 371061 770212 - 171 - ANNEX TII RUN NO. 37 Change in Hydro Capi.tal Costs, 30%' Increase - Operation S'hedule Operation Schedule YBAI 1 'Jnused Capacity Type Vintage ? 1 P - 2 P = 3 ? - 4 at Peak HIydro 1 1 600 319 319 0 0 Hydro 5 0 1943 1719 1035 629 0 1 739 424 42h 124 0 Hydro 8 1 1140 110 110 110 0 Fuel Oil 0 264 0 0 0 636 ir,nite 0 915 915 915 915 102 Total Op. Capacity 4601 34"7 2803 2078 Demand L,602 3487 2803 2078 Reserve 958 Total Capacity 5559 Yi'd 1 .nii'ed Capacity 'ilIrpe `"iritage =1 '94 atu ea' ..ydro 1 1 600 600 46 0 Hydro 2 3 1000 1000 .77 77 0 Hydro 5 0 19h3 1943 1194 226 0 1 739 739 528 0 0 2 2761 2761 ?972 0 0 Hydro 8 1 140 1140 97 97 C /T C 22^ 0 0 0 0 2 luO 0 0 0 0 3 200 0 0 0 3, h 360 0 0 0 0 Fuel Gi1 0 200 0 0 0 0 14 3552 0 0 0 C Lignite 0 915 915 912 912 1'2 2 321 321 321 321 35 3 3227 3227 3227 3227 35? 4 1852 1852 1852 1852 206 Nuclear 4 3188 3188 3188 3188 797 Total Op. Capacity 22018 16686 13114 9??6 Dei.and 220''-c 166S6 13415 9r;46 Reser';e 11499 Total !,a:acrtv 23517 ANNEGX III1 - 172 - RUN 37 UG00 MW CHANGE IN HYDRO CAPITAL COSTS (30% INCREASE) INSTALLED CAPACITY 90 - Totc I 80 70 - b0 Nuc leor 50 40 30 20; 10 O 3 4 5 periods 6 R'JN 37 OP2RATION SCHEDULE MW 7754 I owfl Oil YEAR 1 7419 YEAR 2 MW YEAR 3 MW 13K; G/T I' ~~~~~~~~~~~12546 J! i 46802 hue Oil 4:138L Hydro Hydro Hydro 4463 __ ___ _ 915 tG L,gnite Lignite hou s Lignite hours I I hors 0 8760 0 8760 0 8760 YEAR 4 YFAR 5 MW YEAR 6 MW ~~~~~~~~MW 22018 G/T 21138 Fuel Oil 37101 G/T 77028 G/T 16686 35621 Fuel Oil 73948 Fuel Oil 25530 582760 ± EL- feH.ydro 9503 Hydro Hydro Hydro 52060 9503 ~~~~~~~~~~~~~18348 Lignite487 Lignite 12033 Nuclear 3)88 .IJu ea Nuc lear Nuclear tiours I hours hours 0 8760 0 87rO 0 8760 ANNEX III - 174 - RUN NO. 38 Currency: $1 - 15 TL Change in Hy-,o Capital Costs, 50% Increase - Data Discount Rate: 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Dscrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW Capital Operating MW ability Limit MW Hydro 1 2.10 0.09 0.0 0.0 0.0 1.0 0.4 600.0 Hydro 2 3.90 0.09 0.0 0.0 0.0 1.0 04 1000.0 Hydro 3 5.25 0.09 0.0 0.0 O.C 1.0 0.4 1200.0 Hydro 4 7.50 0.09 0.0 0.0 0.0 1.0 o.4 1500.0 Hydro 5 4.50 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hydro 6 6.00 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 9.00 0.09 0.0 0.0 0.0 1.0 o.6 1000.0 Hydro 8 4.50 0.09 0.0 0.0 0.0 1.0 0.8 14o.0 Hydro 9 9.00 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.O40 0.0 0.005 220.0 1.0 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 J-005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Raserve Requirenwnts (1% of Peak Damand): 0 05 Max. Aggregate Hydro Capacity in any Year ( % of Peak Demand) 1.0 Periods of Loads (MW) Load Duration Hours/ _urve Year 1973 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 2540 3487 5876 9902 16656 28117 58376 3066 2803 4724 7960 13415 22604 46930 ;628 2073 3503 5902 9946 16760 34797 Max. - Mmn. PoI2cy Constraints Min. Capacity Max. Capacity Type Vintage MW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.o 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 385C.0 ANNEX III - 175 - RUN NO. 38 Total Cost: 35078 ifFa Change in Hydro Capital Costs, 50% increase Installed Capacity (Mel) Year 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 0 0 1000 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro h 0 0 0 0 0 0 0 Hydro 5 1943 0 1h21 2078 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 0 0 0 C Hydro 8 0 li0 0 0 C 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 3552 5639 5482 Lignite 1017 I72 1211 3370 947 0 0 Nuclear 0 0 0 0 398h 11056 41056 Tota' by Groups (M*;) Year 1975 _ 1975 1983 1988 1993 1998 2005 All Hydfo 1903 2683 110) 6182 7182 7182 7182 G/T 220 220 320 520 880 1480 3080 iuel Oil 900 900 900 900 4L52 10091 15573 Lignite 1017 l]c89 2700 6070 7017 7017 7017 Nuclear 0 0 0 0 398) 150h10 56096 j'otal 4080 5292 802) 13672 23515 L081o 88908 Peak Demand 3365 14602 775)4 13066 22018 37101 77028 ANNEX III - 176 - RUN NO. 38 Change in 'lydro Capital Costs, 50' Increase - Operation Schedule Operation Schedule YEAR 1 Unused Capacity Vintage P=1 P = 2 P - 3 P at Peak o 1 1 600 319 319 0 0 o 5 0 19h3 1719 1035 629 0 o8 1 140 110 110 110 0 0 0 0 0 0 220 Oil 0 579 0 0 0 321 lte 0 915 915 915 915 102 1 h24 h2h h2h h2 0 -1 Op. Capacity 4601 3487 2803 2078 '.nd 46O2 3087 280b 2079 ,ive 691 ,1 Capacity 5292 YEA R L4 Unused Capacity Vintage -? =. = 2 P 3 = b at Peak ro 1 1 600 600 86 0 0 -c 2 L 1000 1000 11,3 0 0 -o 5 0 19143 19L3 1388 0 0 2 1h21 1lh21 1015 0 0 3 2078 2,c8 1182 352 0 -o 8 1 1140 'f1f0 97 97 0 0 220 0 0 0 0 2 100 0 C C 0 3 200 0 0 0 0 4 360 0 0 0 0 Oil 0 900 0 0 0 0 h 3552 0 0 0 0 .ite 0 91515 - ?1, 909 102 1 424 h24 121 u24 148 2 1090 1090 1090 1090 121 3 3033 3033 3033 3033 337 h 852 852 852 852 95 lear 4 3183 3188 3188 3188 796 al Op. Capacity 22016 16684 131413 99?14 -and 22018 16686 13h141 99146 erve 2J49? .al Capacity 23515 - 177 - ANNEX III 1000 MW RUN 38 10 CHANGE IN HYDRO CAPITAL COSTS (50% INCREAS%E) INSTALLED CAPACITY 9 Total 8 7 6 Nuclear 5 4 3 2 n 1 2 3 4 5 periods 6 RUN 38 OPERATION SCHEDULE MW YF4R 7754 G/T YEAR2 2YEAR3 7434 mv 6S34 o Fuel Oil 13 6534 36 G/ l _ 1 l l~~~~~~~2546 FuelI OilI 4602 Fuel Oil 4023 Hydro I ~~~~~~~~~~~~~~~~~~~Hydro Hydro i 2429 5462 - . 1339 Lignite Lignite Lignite hours ..I hours I hgurs 0 8700 0 8700 0 8700 YEAR 4 YEAR 5 MN YEAR 6 MW MW 22018 G/T 21138 Fuel Oil 37101 G/T 77028 G/T 16686 F 35621 Fuel Oil 73948 Fuel Oil Hydra Hydro 25530 5Hydr 9502 18346 Hydro Hydro 44877 Hydro Lignite Lignite 12032 318 Nhours Nuclear Nuclear |our 0 8760 0 8760 0 8760 ANNEX III -179 - RUN NO. 39 Change in Ti,.e Interval - Data Currency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maxirr.um Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating 14W a.- 'ty Limit MW Hydro 1 1.b 0.09 0.0 0.0 0.0 1.0 0.o 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 O.h 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.4 1200.0 Hydro b 5.0 0.09 0.0 0.0 0.0 1.0 0.4 1500.0 Hytdro 5 3.0 0.09 0.0 0.0 1903.o 1.0 0.6 3500.0 Hydro 6 h.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 O.6 1000.0 Hydra o 3.0 0.09 0.0 0.0 0.0 1.0 0.8 lhO.0 Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.LO 0.0 O.OG5 220.0 1.0 1.0 99999.0 Fael Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.L2 0.02 0.005 1017.0 0.9 1.0 6ooo.o ulelear 6.5 0.26 0.03 0.005 0.0 0.F 1.0 Y9999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate lydro Capacity in any Yea-r ( of Peak Demand) : 1.0 Pericds of Load Duration Hours/ Curve Year 1976 1978 1980 1982 1984 1986 1988 1990 1992 2000 1 526 3735 4602 5670 6986 8607 10605 13066 16099 19836 45712 2 2540 2831 3487 4297 5294 6523 8037 9902 12201 15033 34643 3 3066 2276 2804 3454 4256 5241h 6461 7960 9808 12085 27850 4 2628 1687 2079 2561 3156 3888 4791 5902 7273 8961 20650 Max. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage MW MW 0 Gas Turbines 1 0.0 180.0 2 0.0 230.0 3 10.0 280.0 4 50.0 350.0 5 65.0 430.0 6 80.0 530.0 7 I00.0 650.0 8 120.0 800.0 9 150.0 990.0 10 1000.0 2290.0 I-I Total Cost: 30')32 I!TL ItRTN rO. 39 ChWnge in Time interval 1n:;talled Capacity (NW) Type 1975 1976 1976 19HC: 1982 1981I ]98$ 19H8 1990 1992 2000 Nydlro 1 0 60 ) () 0 0 0 0 0 0 0 Hydro 2 0 G 0 0 0 2I5 785 0 0 0 rlydro 3 0 ( 0 0 0 0 0 0 0 0 1200 Hlydro 11 (! 0 0 O) 0 0 0 0 0 0 Hlydro 5 191 3 . 739 13.25 3385 251 0 0 0 0 0 Hydro 6 0 0 0 0 0 0 0 0 1900 Hydro 7 0 0 0 0 0 0 0 0 0 0 0 Hydro 8 0 13 127 0 0 0 0 0 0 0 0 Hydro9 0 0 0 0 0 0 0 0 0 0 G/T 220 0 0 10 50 65 8C 100 120 150 1000 ' CI-' Oil 900 0 0 °0 0 0 0 1056 3587 1173 Li.iil.e I0-'' 0 0 0 0 929 1256 1751 2063 0 0 Nuclear 0 0 0 0 0 0 0 0 0 0 Total by Groups (MN) Tyne 1975 1976 1978 1980 1982 1984 1986 1988 1990 1992 2000 All irydro 19143 2556 31422 4547 5932 6183 6398 7183 7183 7183 10283 G/T 220 220 220 ?30 280 345 425 525 645 795 1795 W'uel Oil 900 0 900 9CG0 900 9(0 900 900 1956 5543 6716 Lignite 10'7 3017 103lO 1017 107 1946 3202 4953 7016 7016 7016 Nuclear (\ 0( 0 C; 0 0 0 0 0 26754 I 08C 1469'3 5';59 f9;14 H1I'9 93714 10925 13561 16800 20537 51561 Peak Denanci 3365 3735 14602 5670 6Qf86 H607 10605 13066 16099 19836 145712 -182- ~~~ANNF III - 182 - ¶JN NO. 39 Change in Tie Interval Operation Schedule YEAR 2 Unused Capacity Type Vintage p1 p 2 p = 3 p = 4 at Peak Hydro 1 1 600 600 86 0 0 Hydro 5 o 1943 1305 1264 761 0 Hydro 8 1 13 10 10 10 0 G/T O 0 0 0 C 220 Fuel Oil 0 263 0 0 0 637 Lignite o 915 915 915 915 102 Total Op. C0ipacity 3734 2830 2275 1686 Demand 3735 2831 2276 1687 Reserve 959 Total Capacity 4693 YEAR 5 Unused Capacity Type Vi-n-tage p = 1 p = 2 p = 3 p = 4 at Peak Hydro1 1 600 389 261 0 0 Hydro 5 0 1943 1393 1398 515 0 :2 73? 739 281 284 0 .3 11.25 1125 433 133 0 LI 1385 755 796 796 0 5 251 212 212 0 0 Hydro 8 1 13 13 9 9 0 2 127 100 100 100 0 0/T O0 0 C 0 220 3 0 D 0 0 10 I4 0 0 0 0 50 5 0 0 0 0 65 Fmuel Oil 0 672 0 0 0 228 Lignite 0 915 915 915 915 102 836 A36 836 836 93 Total Op. Capacity 8606 '523 524h 3888 Demand 8607 5;f23 5244 3888 Reserve 768 Total Capacity 9374 -1i83 - ANNEX III YEAR 8 Unused Capacity Type Vintage p = 1 p - 2 p = 3 p - 4 at Peak Hydro 1 1 600 600 86 0 0 Hydro 2 6 215 215 31 0 C 7 785 785 112 0 0 Hydrm 5 0 1913 1819 i490 0 0 2 734 44i 421 390 0 3 1125 1125 433 433 0 4 1385 796 796 796 0 5 251 114 144 144 0 Hydro 3 1 13 10 10 10 0 2 127 100 00 100 0 G/T 0 220 0 0 0 0 3 10 0 0 0 0 4 5° 0 0 0 0 5 65 0 0 0 0 6 80 0 0 0 0 7 100 0 0 0 0 8 120 0 0 0 0 PFel Oil 0 900 0 0 0 8 105f, 0 0 0 0 Lignite 0 91C 766 766 0 102 5 836 836 836 836 93 6 1131 1131 1131 1133 125 7 1576 1576 1576 1576 175 8 1857 1857 1857 1857 206 Total Op. Capacity 16099 -12201 9809 7273 Demand 16099 12201 9808 7273 Reserve 701 Total Capacity 16800 - 184 - ANNEX III 1000 MW RUN 39 Totai 51564 MW 50 CHANGF IN TIME INTERVAL INSTALLED CAPACITY 40 30 Nuclear 20 10 0 1 2 3 4 5 perignite O 1 2 3 4 5 periods 6 RUN 39 CHANGE OF 'iME INTERVAL MW OPERATION SCHEDULE 373' Fuel Oil YEAR I YEAR 2 YEAR 3 rAw YEAR 4 3472 698E MW 6 F48 Fuel Oil mw ~~~~~~~~~5670 Fuel Oil 5462 4602 Fuel Oil Hydro yr HPi < 1 8 ydr*o5 Hydro L - Hydro Lignite | LU5 . .ignit Li9 Inite Lignite hOU'l Lignite o szoo 1l~~~~~~~~~l( siao 8/ ~?O YEAR 5 YEAR 6 MW YEAR 7 MWY YEAR 8 zt. ~~~~~~~~~~~~~~~~MW 13066 G/T 160s99. / 1254}- Fuel Oil 15454 __Fuel Oil iuroS G/T 13498 101140 Fuel Oil 960 Fuel Oil 9280 1935 Hydry Hydr o G315 Hydro 17511 ._.87_ _Lint ;nt Lignite '88Liinitt Lignlte O 876ti 0 8760 0 0O i983r, G/T 19041 YCAR 9 YEAR 1C i:,498 re \5498 0 vls~~~~~~~~~.!),j J G 'T _ t3~~~~~~~~'917 1 uel Oil Hydro | 1S1. _rLignite rsttc ~ ydr . _ Hdro Lignite o 7t60 0 a7W0 - 186- EhX III RUN NO. L.0 De;ailed Load D-Tation Curve - Data Currency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity ±'lype Aillions/MW Millions/MW yr. ^apital Operating M.W abili%.v Limit MW Hydro 1 1%4 0.09 0.0 0.'0 0.0 0.9 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 C.9 0.4 1000.0 '!ydro 3 3.5 0.09 0.0 0.0 0.0 0.9 0.°4 1230.0 Hydro 4 5.o0 0.09 0.0 0.0 0.0 0.9 0 )5"0 . 0. Hydro 5 3.0 0.0o 0.0 0.0 19h3.0 0.9 ~ .6 35j0o' hydro 6 h.0 0.09 0.0 0.0 0.0 0.9 o.6 190C.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 0.9 n.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 0.9 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.X 0.0 0.9 0.8 170.0 G/T 2.0 1.9) 0.0 0.005 220.0 0.9 1.0 99999.0 Fuel Cil 2.6 0.90 0.02 0.005 900.0 0.9 1.0 999e9.0 Lignite 2.6 0J42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.045 0.005 0.0 0.3 1.0 99999.0 Peak Reserve Requirements ( of Peak Denand) : 0.05 Max. Aggregate Hydro Capacity in arf Year- (% of Peak D+ -ni) : 1.0 Periods of Load Duration 'fours/ Ourve Year 197' 1933 198 1993 1993 2005 526 5602 7755 130S56 22019 27101 77033 2 964 3329 6453 '33,3 13322 30374 6hO99 1 5-i 4 3437 5876, t992 '6686 23117 53376 b 1hA39 3282 5531 9320 1570h 264V-3 5h9L2 1051 3009 5070 o5u3 1L396 21258 50363 6 1051 2803 4724 79G0 13h4h 2260h L6929 7 1051 2530 1263 7l&i 12105 20399 L-2351 8 1051 2256 3802 6L.n7 10797 18193 37772 9 613 1983 3341 5631 9h88 15938 33159 Mx. - Hin. Policy onstrairts Y-in. Capacity Max. C2aci ty zr Vintage .}*i KW Gas Turbines 1 0.0 233.0 2 100.0 390.0 3 200.C 650.0 4 360.3 1110.0 5 500.0 18.0.0 6 1500.0 3b5o.0 - 187 - AN1iX I1 Toial Cost: 32033 .MTL RUN N0. ac, Detailed Load Duration Curve installed Capacity (Ir) Type 1975 19?8 19d3 1958 1993 1990 2005 Hydro 1 0 600 0 G 0 0 Hydvc 2 0 0 2(2 0 0 0 0 Hyrro 3 0 0 0 0 0 0 0 Hydr3 4 0 0 0 0 0 0 0 Hydro 5 19L3 989 2511 0 0 0 0 Hy-:o 6 0 0 0 47i 0 0 0 Hydro 7 0 0 0 0 0 G 0 Hydro 8 0 1h0 0 0 0 0 0 Hydro 9 0 0 0 G 0 0 0 G/T 220 0 100 200 36C 600 1600 Fuel Ci) 900 0 0 0 2328 1722 0 LIgr.i_e 1017 C 216 .203 1575 0 0 Nuclear 0 0 0 0 639l 162UA 48132 Total by Grouns (.'1U) Boe 1975 1°78 1983 1933 1993 1998 2005 AL. Mydro 1943 3672 -133 7657 7657 7657 7657 G/T 220 220 320 520 880 11BO 3080 F'uel Oil ,O0 900 900 900 3228 4950 '950 Lignite 1017 1017 1233 5W41 7016 7C16 7016 Nuclear 0 C 0 0 639L 22638 70750 Total lo8c; :59 9636 L513 25175 43741 9')L53 ?eark Lead 3365 )602 7754 -30,66 2K.1lS 37101 77028 RUN NO. 40 Detailed Load Duration Curve - Operation Schedule Y&. 1 Uri ised Capacity .M_e p=1 p 2 3 p = 4. p e p 6 p_ 7 p , U p 9 at Peak Hydro I 1 50 171 h71 h71 198 0 0 0 0 60 Hydro 5 0 17)t9 171:9 1112 1207 1207 1207 934 660 386 19h 1 890 582 517 577 577 570 570 570 570 99 Hydro 8 1 126 111 211 111 111 111 111 111 111 1 G/T () 0 O 0 0 0 0 0 0 0 220 Fuel Oi3. 0 382 0 0 0 0 0 0 0 518 Li zni to . 915 915 915 915 915 915 91r5 915 915 102 Tot.;Al w). Cap'acity o?02 3828 3h8l6 i3281 3008 2803 2530 2256 a1. Deplnani b1(02 3829 3487 3282 3009 2803 ?530 2256 19° ? Reserve 1207 c fotal Capacity 5809 YEAR U Unused Capacity Type Vii' tage p = I __= 2 P p = 7 P = 8 L 9 at Peak llydro 1 1 5ho 5)S0 J072 i72 1S5 1S h5 0 0 60 .Iydro 2 2 K0o0 900 862 882 0 0 0 0 0 100 Hlydro 5 0 1749 1.7h9 17119 17L9 171i9 1337 28 28 28 194 1 8390 890 890 818 818 249 219 2b9 249 99 2 260 22(0 21Lo 1231 1231 1231 1231 1231 1231 251 Hydro 6 3 1,26 426 255 255 255 255 255 255 255 8 Hydro 8 I 12h 126 109 109 109 109 109 109 109 1h G/T 0 19C 0 0 0 0 0 0 0 0 22 Fuel Oil 0 810 0 0 0 0 0 0 0 0 90 Ligite 0 915 915 0 0 0 0 0 0 102 2 195 195 0 0 0 0 0 0 0 21 3 3788 3788 3656 3656 3656 3656 3f56 2392 1083 h20 11 1L17 1417 1h07 1L17 lI7 1417 1h17 1417 117 158 Nuclear I 5115 5115 r1I5 5115j 5115; 52115 515 5115 5115 1279 Total Ou. (a'a it.y 122(1 a8321 16685 1570h 11395 13L1L 1210r) 10796 9h87 rDe-andz 2201° 18322 2f686 15704 10396 13414 12105 10797 9488 iHe-erve 3157 Yo a2 tapacity 25176 - 189 - ANNEX III 1000 MW ~~~~~~RUN 40 DETA!LED LOAD DURATION CURVr' INSTALLED CAPACITY Total 90 80 - 70 -Nuclear 60 - _ // 50 - 40 - 30- 20 - l / ~~~~~~~~~~~~~~~~~~~~~~Hydrs, . 1 2 3 4- 5 pe riod 6 C) 1 2 3 4 5 periods6 RUN 40 OPERATION SCHEDULE M rv MW YEAR 1 7755 YEAR 2 YEAR 3 7575 Fuel Oil W w 13066 G/T 12598 FulOil 11788 91EI 4220HyrHy= Hydro -I9 --_ 9t5 1 l 1~~~~~~~~~~~~~io Lignite Lignite Liynite 0 8760 0 8760 0 8760 \0 YEAR 4 MW 77033 G/T YERl YEAR 4 37101 G/T YEAR 5 74261 Fuel Oil yd r 6 35769 Fiel Oil ~~~~~69807 Lignite 18321 110Nclo tl430 Lignite '-L t 5H 5115 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~yr 511430r uc lear 0 8760 0 8760 0 87Go L L L L L ,,~~~~~~~~O' r -;,a, . o L. -Dftz .. . - I 'l - g- T'- 0 ~ ~~~~~~~~~~~~~~~~~ s~ ,.0 &= 61 C : (. :: - . 010~~~E ID I-:--e.sr. X9> -. GD-C _-,! T)1 DO 00 _'l3OV9C'.D ^F*#DSJ~~tI -*rW O*I !*0J i-1-0 Q)*i) vxi*_ 0*tr ;B -,I ;D L,';O I c I I L,7 jo 0--a, 1-enO ;)1j _,{ 3 ir {, W 0'941 '/ '_' O- L ts O 0-0 19-0 0-' ;)- 7 v iD S'-~IS -UTL ' OJ5 1'J 0-1 0 0 ~~~~~l_ O _0 , 3:I 73gl- ; T ^n4Iqe : E eK_q l -.Er S^- f. / -) L t ,/L; T61 n - - 192 - RUN f!0. L1 Hydro Enerjry Limit, 0.9 Total Co5J: 32199 l!TL Installed Capacity (ib;) 1975 1978 1983 1988 1993 1998 2005 :.Y-ro ] 0 600 0 0 0 0 0 .ydro 2 0 796 20h O 0 0 Hydeo 3 0 0 0 0 1200 0 0 .tidro b 0 0 0 0 0 0 0 .yd.ro5 19h3 739 2761 0 0 0 0 ;ydro 6 0 0 0 881 1016 0 0 -ydr 7' 0 0 0 0 0 0 0 t.ydro C 0 ThO 0 0 0 0 0 :Hydro 9 0 0 C 0 0 0 0 -/T 220 0 100 200 360 600 1600 .-uel Oil 300 0 0 0 1979 56L0 7053 Livnlte 1017 0 25 2935 3^Lo 0 0 -.uclear 0 *: 0 2075 1- b,; 39C92 ____________________ _ .o.tl ,y 0rou2c (t. j 1975 1 .97 12-83 i 9 8' . 200' ' .-y_o 1?. 312? '929 1 _7 132^.' VT 220 220 .3 2C 2C -C 1C 3050 .t'l Gil 900 iCC' 90C 900 283 8,1 1,5 72 L2.-r.ive 017 1Cl! 1C) 2 3977 77 707 7017 NQucleaz C 0 C C 2C73 13129 52221 Tota. L9 CJ 92L1 13L6L 2 133! '^L28 C, 3e3.3 De rand 3' O' 2 7 7~ 2 ,u66 ?20'i 371-01 >- - 193 - RUN No. 41 Clange of :Hydro Energy Limit, 0.9 - Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 1 p~2 P = 3 p 4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 629 0 1 739 424 424 424 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 958 Total Capacity 5,553 Unused Capacity Type Vintage p = 1 D = 2 p= 3 p = 4 at Peak Hydro 1 1 600 217 217 217 0 Hydro 2 2 796 675 115 115 0 3 204 74 74 74 0 Hydro 3 4 1,200 638 638 0 0 Hydro 5 0 1,943 1,943 900 569 0 1 739 739 528 0 0 2 2,761 2,761 1,972 0 0 H-ydro 6 3 884 508 50O 508 0 4 1,016 1,016 391 391 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 2 22 22 22 22 3 3 2,641 2,641 2,654 2,641 294 4 2,736 2,736 2,736 2,736 304 Nuclear 4 1,660 1,660 1,660 1,660 415 Total Op. Cap. 22,016 16,685 13,414 9,945 Demnnd 22,018 16,686 13,415 9,946 Reserve 1,118 Total Capacity 23,134 - 194 - AN4EXI III 100O0 MW RUN 41 INSTALLED CAPACITY LIMIIATION OF HYDRO ENERGY, 90% Tota I 80 70 60 -0 - 1 Nuclear 40 30 20 I 4 ~~~~~~~~~~~~~G/TI 0 2 2 ~~~~~~~~~~~~~~~~~periods6 RUN 41 OPERATION SCHEDULE MW YEAR I YEAR 2 YEAR 3 MW 13066 G/T 12546 Fuel Oil 11646 4602 Fuel Oil 4338 Hlydro Hydro Hydro ~~~~~~~~~~~~~~~~~~~~~~3578 915 937 Lignite Lignite fours Lignite hours hnours 0 8760 0 8760 0 8760 H MW MW YEAR 4 MW YEARS YEAR6 22018 /T 21138 Fuel Oil G/T 77028 _ G/T 18259 35621 Fuel Oil 73948 ]_ Fuel Oil 35621 L_Fuel (if ~~58376 Lg~ 27102 Hydr 1 27102t-52062 yaro 7974 __ _Hydro H 6 17 HydrH 41777 7974 1 I 0 ~ ~~~~~~~~~~~Lignite Lignite 10503 Nucleuar 1660 N | hours hours hours 0 uc ear 8760 0 8760 0 8760 - 196 - ANNEX III RUN .1 N. b2 Currency: $1 15 TL Discount Rate: O.:L2 Change in Hydro Energy Limit, 0.8 - Dta Capital Cost Operating Cost ,r.nual Rate f' Initial Load Maxirmum Coefficient Coefficienlt ost. 2ecre3ase Capacity Avail- Factor Capacity .Iillions/?41 Millions/-W y-r. '2arital Cneratinr Mfll ability Lirmi t MW Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.1 600.0 Hydz'o 2 2.6 0.09 0.0 0.0 0.0 1.0 0.M 1000.0 H.ydrc 3 3.5 0.09 0.O 0.0 0.0 1.0 0.L, 1200.C 'iydro 4 5.0 0.09 0.0 0.0 0.0 1.0 0.!. 1500.0 .!ycdro , 3.0 0.09 0.0 0.0 19L3.0 1.0 0.6 3500.0 Hydro 6 L.0 0.09 0.0 0.0 0.0 1.0 0.6 190G.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 Hydro 8 3.0 0.09 n0O 0.0 0.0 1.0 0.8 lbG.0 ':ydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 CIT 2.0 1.l0 0.0 0. 00 220.0 1.0 1.0 99999.0 Fuel Cil 2.6 0.90 O.C2 0.00, ?00.0 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.O005 1017.0 0.9 1.0 6000.0 :'uclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak .eserve Requirements (' of Peak 2err.andj: 0.05 ":ax. ACgregate Itydro Capacity in any Year ( of 3eak Demand) : 0.8 'eriods of Load Duration :o'u-rs/ Curve -ear 1978 1983 ,? 88 1993 1998 2005 1 5 26 1,602 775L 13066 22018 271C.0 77028 2 251b0 3087 5876 ?;02 16636 2811? 58376 3 3066 2803 L721 7960 13L15- 226C6 b691C 2628 2078 3503 ,i02 ?99L6 16760 347W7 Max. - Min. ?c'cy Constraints !ir'.. ?aacity ..C ! 'ax. Capac-.t Type _intape lCd ,, ,as Tarbines 1 0.0 230.0 2 10c.0 3?O.C 3 200.0C 6;0.0 3 c9C.C' :80.0 A C1600.0 385C.0 ANNEX III - 197 - RU'. i:o. !h2 .:ydro EnerFy Limit, 0.8 Total Co .t: 3221]1 MTL Installed Capacity (itJ) T73i p e 1975 1973 1983 1988 1993 1998 20C5 ?Hydro1 0 600 0 0 0 0 0 Hydro' 0 0 20 980 0 0 0 Hydro ' 0 0 0 0 1200 0 Hiydro L 0 0 0 0 0 0 Miydro 5 1943 73? 2761 0 0 0 0 'y-ro 6 0 0 0 88M 1016 0 0 y,r'rO 7 0 0 G 0 0 C HKYaro 0h 1OG G 0 0 0 0 Hrydro 9 0 C 0 0 0 0 0 220 0C 100 200 360 6o0 1600 Fuel ri L 400 0 O0 ;.79 564o 7053 Lignite 1017 0 3Lj3 2612 3 C40 0 0 Nuclear 0 0 0 0 2075 11054 3"092 ______________ _ Total by 3roups (".J) TI,-Oe 1?75 1973 1953 1931 1)93 l9op 20O: H-. .r 193 3422 -2'J3 8C67 10233 10233 102-3 220 220 320 o20 8O 1",CC Fuel -i. 900 90O ',C '; 7? &'19 Lignite 1017 0 348 2612 3040 0 0 Nuclear 0 3 0 0 2075 11054 39092 Total 4080 5559 8788 1346L 23134h 0428 88173 Peak Demand 3365 !602 775L 13066 22018 37101 77028 - 198 - ANNEX III RUN NO. 42 Change of Hydro Energy Limlit, 0.8 - Operation Schedule YEAIR 1 Unused Capacity Vag p - 3 p = 4 at Peak Hydro 1 1 600 3:9 319 0 0 Hydro 5 0 1,943 1,71S 1,035 629 0 1 739 424 424 424 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 264 0 0 0 636 Lignite 0 915 915 915 915 102 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,:-. 2,078 Reserve 958 Total Capacity 5,559 YEAR 4 Unused Capacity Type Vinta-e - at Peak Hydro 1 1 600 600 46 46 0 Hydro 2 2 20 20 2 2 0 3 980 980 75 75 0 Hydro 4 4 1,200 668 330 330 0 Hydro 5 0 1,943 1,394 1,394 522 0 1 739 623 623 0 C 2 2,761 2,761 1,972 0 C Hydro 6 ' 884 508 508 508 C 4 1,016 1,016 391 391 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 o 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 ligite 0 915 915 915 915 102 2 313 313 313 313 35 3 2,351 2,351 2,351 2,351 261 4 2,736 2,736 2,736 2,736 304 Nuclear 4 1,660 1,660 1,660 1, 660 415 Total Op. Cap. 22,017 16,685 13,413 9,946 De-nand 22,018 16,686 13,415 9,946 Reserve 1,117 Tot1l Capacity 23,134 - 19C - ANNE-X III 000 MW RUN 42 )PERAT IONSCHEDULE LIMITATION OF HYDRO ENERGY, 80% 90 INSTALLED CAPACITY Tota I 80- 70 - 60 50 0~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ / Nc lear 40f/ 304- / 20 perv /s fuel Oil = 42 X~~~~~~~~~~~~ RUN 42 OPERATION SCHEDULE MW YAF.A 1 7754 -?uel Oil YEAR 2 MW YEAR 3 MW 4132 13066 G/T 12546 Fucl Oil 1 1 64O 4602 ' ueI 0f4 4338 rI - ~~~~~~~~~~~~~~~Hydroayr liyrcir gis ~~~~~~~12281 Lj--t L grl te uI Lignite hours hourb 0 H760 0 87C0 0 8760 MW MW MW YEAR 4 YEAP 5 YEAR 6 22018 G .T 211389 FuelI OilIG 77028 r-1/T 18259370 35621 Fuel Oil 73948 e O 27102 58376 Lignite I Iydro - 27H02 Hydro L Hydro 52061 Hydro 7975 1 6818 _ ____ _ --I Lignite 10503 - LgieNuclear 1660 Li Nuclearte hrurs Ns Nours 0 Nuclear, 8760 0 8760 ANNEX III - 201 - RUN NO . L 3 Cuyrency: $1 = 15 TL Discojnt Rate: 0.12 Change in HyO-ro Enerm- Lirt,t, 0.7 - Data Capital Cost ODerati-g Cost Annraul Rate of Ini--ial Load Yaxrnmin Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Uillions/Md !ailions/1{: yr. Capitll ODerating 10' ability Limit Hydro 1 l.h 0.09 0.0 0.0 0.0 1.0 0.L 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 C.; 1000.0 "ydro 3 3.5 0.09 0.0 D.0 0.0 l.U 0.L 1200.0 Hydro ) 5.0 0.09 0.0 0.0 0.0 1.0 0.L 1500.0 Hvdro 5 3.0 C.09 O.C 0.0 1913.0 1.0 0.6 3500.0 Hydro 6 a.0 t 09 0." 0.0 0.0 1.0 0.6 '?"O.0 Hydro 7 6.0 0.09 0.0 .'.0 0.0 1.0 0.6 1000.0 Hydro 5 3.0 0.09 C.0 0.0 0.0 1.0 0.8 lbO.0 Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.C 1.L0 0.0 0.o05 220.0 1.0 1.0 9999?.0 Fuel Oi' 2.6 O QO 0.02 c.o05 900.0 1.0 1.0 99999.0 Lignite 2.6 0.L2 0.02 0.005 017lC 0.9 2 0 6000.0 Nvtclear 6.,5 0.26 0.03 C. 00 0.0 0.8 1.0 99999.0 Pea ?.eserve Requirerents ( of Peak _Lmand): 0.05 elax. Agg,regate Hydro C, aC' y in any Year (_ o' ak Deatand) 0.7 ?er:iods of Load Duration o z Curve Year 1973 1?5' 1?.T 1991 1?9 200-- 1 -.2 5 77?-1 110C6 2201e 27101 77028 2 25at0 3L8t '5-;76 ??C2 16686 28117 53376 3 3066 2303 J 72L 7 )6C 13h1 2260L L 6 9 2 2'2' 2J 75 3F53 5102 99iL6 167 0 3h797 Yax. -' . Poli ,O.1Strai .t ...in. Capaci ty . ax. C I : ____t fLntare l -. Gas Turbines 1 C.. 230.0 2 2C> <> '?^.0 cc !. ~~~~~36r.0 o lQo J JO W iJJ ~~~~~~~~~~~~~~~~~~~~~~~O . C. 0 _OC.X 3850.0 - 202 - ANNEX III RUN NO. 43 Hydro Energy Limit, 0.7 Total Cost: 32418 MTL Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 0 1000 0 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1913 538 2207 755 0 0 0 Hydro 6 0 0 0 884 lO.iS 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 1bi 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 5640 7058 Lignite 1017 128 7TO 2122 3040 0 0 Nuclear 0 0 0 0 2075 11054 39092 Total by Groups (MW) Type 1975 1978 1983 1988 1993 199d ,OC5 All Hydro 1943 ,221 5428 8067 10283 10283 10283 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 2879 8515 15572 Lignite 1017 1145 1855 3977 7017 7017 7017 Nuclear 0 0 0 0 2075 13129 522^1 Total 5080 5486 8503 13464 23134 40428 88173 Peak Demand ,365 4602 7754 13066 22018 37101 77028 ANNEX III - 203 - RUN NO. 43 Change of Hydrv Energy Limit, 0.7 - Operation Schedule YEAR 1 Unused Capacity Type Vintage p = 1 2 p_ 3 p_~ 4 Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,689 1,005 692 0 1 538 309 309 309 0 Hydro 8 1 140 140 140 47 0 G/T 0 0 0 0 0 220 Fuel 0 350 0 0 0 5'0 Li grite 0 915 915 915 915 102 1 115 115 115 115 13 Total Op. Cap. 4,601 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 885 Total Capacity 5,486 YEAP. 4 Unused Capacity Type Vintage p = 1 p = 2 p = 3 p = 4 at Peak Hydro ? 1 600 287 185 185 0 Hydro 2 3 1,000 1,000 77 77 0 Hydro 3 4 1,200 434 434 434 0 Hydro 5 0 1,943 1,943 1,149 279 0 1 538 538 384 0 0 2 2,207 2,207 1,576 0 0 3 755 637 637 0 0 Hydro 6 3 884 508 508 508 0 4 1,016 1,016 391 391 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 90G 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 1 115 115 115 115 13 2 639 639 639 639 71 3 1,909 1,909 1,909 1,909 213 4 2,736 2,736 ?,736 2,736 304 Nuclear 4 1,660 1,660 1,660 1,66o 415 Total Op. Cap. 22,0i6 16,684 13,412 9,945 Demand 22,018 16,686 13,415 9,946 Reserve 1,118 Total Capacity 23,134 - 20h - ANNEX III 1000 MW RUN 43 INSTALLED CAPACITY LIMITATION OF HYDRO ENERGY, 70% 90 _ Tota I 80 / 70 - 60 _ Nuclear 50- 40 - 30- 201 / ~~~~Fuel Oil 10 - 0 1 2 3 4 per6Lignite ~~~~~~~G/ T n 2 3 4 5 peri ods 6 RUN 43 OPERATION SCHEDULE MW MW YEAR1 7754 7754 Fuel Oil YEAR 2 MW YEAR 3 7097GT 12546 Fe i 11646 4602 Fuel Oil 4252 2 -I _Hydro Hydroa< Hydro 2578 1030 - Lignite HOURS Lignite sLnite hours 0 8760 0 8760 0 8760 C) V1 MW MW MW YEAR4 YEAR5 YEAR6 22018 G/T 21138 Fuel Oil 37101 G/T 77028 G/T 18259 35621 I F O 73948 Fuel Oil Fuel O~~~~~~~l ~58376 Lignite Hydro 27102 52060 Hydro H yd ro ~~~~~~~~~~~~Hydroa Hydro 41777 16817 W 7944 Ligni te I 7944 - Lignite 10503 Lignite Nucleor 1660 N lhours earhours hours o Nuclear/ 8760 0 8760 h 8760 - 206 - A N1,':X III U;o. .:0- L Currency: ;1 = 15 TL D½scount Rate: 0.12 Chian-e in Hydro Enerj,r Lirit, 0.6 - Data Oapit,L Cost Operati-ng Cost Annual 9.atp of r-itial Load Maximrumi Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Millicns/>5 ?'illions/lvN ' rr. -2a:ital 0Peratir . i ability r. it ; :-.ydrc 1 ;.; 0.09 0.0 0.0 0.0 i.0 0.?4 600.C .-dr. 2 2.o' 0.0'. 0.. C. 0.0 1.0 O.h 1000.0 '0.09 D.C 0.0 .2 1.0 O.L 1200.0 H 3rXrG 3.0 0.09 °.0 ' C!0.0 O 1.0 0.00. H5rsro 3 .0 0.09 D. 0 0.0 0.0 1.0 0.6 1900.0 .-y,iro 7 3.0 0.09 _.' .0 13.C0 1.0 0.6 1000.0 .c ^O O 3-5 0.?9 ^.0 Cr 00 1.0 0.6 1L0.O :.,--.ro 7 6.0 0.09 O.e 0 ^.0 0.fl 1.0 0.6 170G.': 6.0 V.09 0.0 .0 ".2. 1.0 0.6 17?0.Q 2.0 1.l0 0.0 O.0C, 22G.2 1.0 1.0 O r -Pel Cii 2.6 2.'0 D.02 G0.OO 9C0.0 1.0 1.0 9)'29.0 2.6 0Jl2 2 ° .00 _Cl,., 3.9 ?. 6200.0 .uciear 6.5 .. 2.03 .005 C0.0 0.6 1.0 . m.C a,: ?.eserve *Aeauirements (g,f Peak Demar '.' :':. `.~.ggregate Hydrzo apacity in any Year (, of .e ak Dien.i : 0.6 asicxs o. Loa. r-aration ;ours/ Curve Oear 197- 1?3 1 - 1993 1??- 20C5 -2.2 l,.'L,. ?7, 13C1',6 22016 271C0 7712J (20 * J 76 ? C? 1666 77n261? C3'76 3066I J5 27"0 .. , '2?L J 700l r 1^.615 226D' 1,6930 20Th: 0'?6 o,. r 1676C 3b7)7 -~~~ ~ ~ - ." -_ ag .,, r ,,,; c ;; M~~~ax. ;as .x..rn_ < e q s ; 2 2 1 . ;: . ~~~~~~~~.ff~ ~ ~ i .')?. - 207 - ANNEX III RUN NO. 44 [otal Cost: 32744 MTL Hyd:o Energy Limit, 3.6 In.stalled Capacity (MW) 'ype 1975 1978 1983 1988 1.993 1998 2005 Iydro 1 0 60o 0 0 0 0 0 Iydro 2 0 0 0 1000 0 0 0 Iydro 3 0 0 0 0 1200 0 0 Iydro 4 0 0 0 0 0 0 0 Iydro 5 1943 78 1891 1530 0 0 0 Iydro 6 0 0 0 657 1243 0 0 [ydro 7 0 0 0 0 0 0 0 ydro 8 0 1L0 0 0 0 0 0 ydrc 9 0 0 0 0 0 0 0 /T 220 0 100 200 360 600 1600 uel Oil 900 0 0 0 1979 5640 7053 ignite 1017 422 911 1879 2788 0 0 uclear 0 0 0 0 2075 11054 39092 Total by Groups (MW) ype 1975 1978 1983 1988 1993 1I%8 2005 11 Hydro 1943 2761 4652 7839 10282 10282 10282 /T 220 220 320 520 880 1480 3080 lel Oil 900 900 900 900 2F79 8519 15572 ignite 1017 1L39 2350 4229 7017 7017 7017 iclear 0 0 0 0 2075 13129 52221 tal 4080 5320 8222 13488 23133 i0127 88172 sak )emand 3365 h632 775)4 13066 22018 37101 77028 - 208 - ANNEX II RUN No. 44 Change of Hyfdro Energy Limit, 0.6 - Operation Schedule YEAR 1 Unused Capacity Ty-De Vintago p P 1 p = 2 3 p 4 at Peak Hydro 1 1 600 600 46 46 0 Hydro 5 C0 1,943 1,438 1,308 583 0 1. 78 45 45 45 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 546 0 0 0 354 Lignite 0 915 915 415 915 102 1 380 380 380 380 42 Total Op. Cap. 4,602 3,488 2,804 2,079 Demand 4,602 3,487 2,803 2,078 Reserve 718 Total Capacity 5,320 YEAR, 4 Unused Capacity Type Vintage p = 1 p = 2 p 3 4 at Peak Hydro 1 1 600 600 46 46 0 Hydro 2 3 1,000 991 81 81 0 Hydro 3 4 1,200 434 434 434 0 Hydro 5 0 1,943 1,425 1,425 457 0 1 78 78 56 0 0 2 1,891 1,891 1,351 0 0 3 1,530 1,530 1,093 0 0 Hydro 6 3 657 377 377 377 0 4 1,2)43 1,243 478 478 0 Hydro 8 1 140 140 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 n 3 200 0 0 0 0 4 360 0 0 0 0 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 9i5 91 102 1 380 380 380 380 42 2 820 820 820 820 91 3 1,691 1,69L 1,691 1,691 188 4 2,509 2,509 2,509 2,509 279 Nuclear 4 1,69 1,660 1,660 1,660 415 Total Op. Cap. 22,016 16,6814 13,413 9,9h5 Demand 22,018 16,6.6 13,415 9,94D6 Reserve 1,117 Total Capacity 23,133 - 209 - 1000 MW RUN 44 INSTALLED CAPACITY LIMITATION OF HYDRO ENERGY, 60% 90 - Tota I 80 70 - 60 - Nuclear 50 - 40 - 30- 20- Fuel Oil 10 - 0 1 2 3 4 5 periods 6 RUN 44 OPERATION SCHEDULE MW YEAR 1 7754 G/T YEAR 2 YEAR 3 mw 7661 ;--~~~~~~~~~~uel Oil M, 6767 1 3066 G/- T 12546 Fuel Oil 12t66 4602 Fue Oil 4056Hyr Hydro Hydro l 2115 3806 1295 Lignite Lignite Lignite hours tiushours 0 8760 0 87G0 0 8760 N) 0 MW YA YEAR 4 YEAR 5 YEAR 6 W ~~~~~~~~MW 218259 iG/1 37101 G/T 774128 G/T 35621 Fuel Oil 718 Fuel Oil 27102 528061 Lignite y ro Hyd 520~~~~~~~~~~~~6137 Hydro 7975 16818 Hydro Hydro 41777 _ Lignite 10503 Lignite Nuclear 1660 . - hours Nuclear hours hours 0 Nuclear7 8760 0 8760 0 8760 ANNEX III _ 211 - RU:r, -O. ls5 Change in Hydro Energy Limit,0O - Data CuGLrency: $1 = 15 TL Discount Rate. 0.12 Caoital Cost Operating Cost Annual Zate of Initial Load ":xi-uam Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity TZ'pe Millions/Mvl 'IllIons/!Ml yr. Cacital Operating M.if ability Limit 'I; Hydro 1 l.L 0.09 0.0 0.0 0.0 1.0 0-A 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 0O. 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 1.0 0.L 1200.0 Hydro L 5.0 0.09 0.0 0.0 0.0 LO C.4 150C.0 Hydro 5 3.0 0.09 0.0 0.0 1913.0 1.0 o.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 1.0 0.6 1900.0 Hydro 7 6.0 0.O? 0.0 0.0 0.0 1.0 C.6 1000.0 Hydro c .3.0 0.09 0.0 0.0 0.0 1.0 0.8 1L:0.O Hydro 9 6.0 0.09 0.0 0.0 0.0 1.0 D 0. 170-. G/T 2.0 l.hO 0.0 0.005 200.0 1.0 1.0 9.999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.6 0.142 0.02 0.005 101-7.0 0.9 -.0 6000.0 "uclear 6.5 0.26 0.03 0.00 0.0 0.0 1.0 99999.0 .-eak Reserve Hequirements (O of Peak De7nand): C.O, Lax. Aj,,regate Hydra Capacity in any Year (% of Peak Demand) 0.5 ?eriods of Load Duration '-ours/ Curve Year 1:978 1983 ?19R 1?93 1993 2005 1 526 L602 77514 13066 22018 271(1 77020 2 2540 31-37 ,576 9902 16686 2`117 58376 3 3066 2803 147224 7960 13 ,11 226L 4f,S33C; 4 2628 2078 3503 5902 99k46 16760 3L797 Max. *. sir. ?olicy Zonstraints Min. Capacity "ax. -apacit,y p.e Vi'ntage ; :_''.: Sas Thrbines 1 0.0 23C.0 2 100.0 390.0 200.0 650.0 , . .e0 1110.0 600nJo.0 16:C.c _______ 6 -.,e. 3d.3 0 ANMEX III - 2i2 - RUN NO. h5 Total Cost: 33247 MTL Hydro Ehergy Limit, 0.5 Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 218 382 0 0 0 0 Hydro 2 0 0 0 350 650 0 0 Hydro 3 0 0 0 0 1200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 0 1194 2706 0 0 0 Hydro 6 0 0 0 0 1900 0 0 Hydro 7 0 0 0 0 0 0 0 Hjdro 8 0 140 0 0 0 0 0 H~ydro 9 0 0 Iyr9 0 0 0 0 h/' 220 0 100 200 ,60 600 1K90 Fuel Oil 900 0 0 0 1979 5620 7053 Lignite 1017 625 1310 2729 1336 0 0 Nuclear 0 0 0 0 2075 11054 39092 Total by Groups (MW) TPype 1975 1978 1983 1.988 1993 1998 2005 All Hydro 1943 2301 3877 6533 102853 10283 10283 G/r 220 220 320 520 880 h480 3080 'ael Oil 900 900 990 900 2879 8519 15572 Liinite 1017 1032 29Lr2 5671 7017 7017 7017 hiic-aiaC 0 0 0 2075 13129 52221 Total !080 5063 Bali 13634 2313'l l0l28 68i,3 Peak Derand 3765 4602 775ts 13066 27018 37101 77028 ANNEX III - 213 - RUN NO. 45 Chang of O ydro Eknergy Liit, 0.5 - Operatmon Schedule YEAR 1 Unused Capacity TLy pv Vintage p - p = 2 p 3 p - 4 at Peak Hydro 1 1 218 116 116 0 0 Hydro 5 0 1,943 1,783 1,099 490 0 Hyydro 8 1 140 1]0 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 823 0 0 0 77 Ligrite 0 915 915 915 915 102 1 563 563 563 563 62 Total Op. Cap. 4,602 3,487 2,803 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 461 Tfotal Capacity 5,063 YEAR 4 Unused Capacity Vi-ntage D = 1 =3 at Peak Hydro 1 1 218 79 79 79 0 2 382 138 138 138 0 Hydro 2 3 350 127 J27 127 0 4 650 606 69 69 0 Hydro 3 4 1,200 638 638 0 0 Hydro 5 0 1,943 1,943 762 730 0 2 1,194 1,194 853 0 0 3 2,306 1,946 1,946 0 0 IHydro 6 4 1,900 ±,900 731 731 0 Hyldro 8 1 140 140 97i 97 0 G/T 0 220 0 0 C 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 F'uel 0 900 0 0 0 0 4 1,979 0 0 0 0 Li grnite 0 915 915 915 915 :02 1 563 563 563 563 62 2 1,179 1,179 1,179 1,179 131 3 2,456 2,456 2,456 2,456 273 4 1,202 1,202 1.202 1,202 134 Nuclear 4 1,,660 1 660 _1,66 415 Total Op. Cap. 22,017 16,686 13,415 9,94t Demand 22,018 16,686 13,1 '5 9,946 2eserve 2',117 Total CapaciLy 23,136 - 214 - 1000 MW RUN 45 INSTALLFD CAPACITY LIMITATION OF HYDRO ENERGY, 50% 96 _ Tota l 80 70 60 / Nuc lear 50 / 40- / ~~~~~~~~~ 30 - 20- / / ~~~~~~~~~Fuel C;il 70 / / , 2 / >~~~~~~~~~~~~~~~~Hdrn 10 L2gn36te 3 1 2 3 4 5 --ods 6 RUN 45 OPERATION SCHEDULE MW YEAR I 754 /T YEAR 2 YEAR 3 6i34| Fuel Oil 1G'T L I ,165446 Fue! Oil L47 Lignise _- hour L Lignite Lo s LLignite Lhours ) 87W ° 8760 0 876H0 MW rs 37.79~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.~ t X ~~YEAR., wyE ' R 5 YEAR 6 27018 G;,'T 21138 -a -Fuel Oi 37101 G/T 7-,028 /T 'dS~~~~~~~~~~~~59t671 1.Fe il 73948 Fuel Oil f iI r 27102 -.58376 _-Lignite Hy^ dro 2br7 113Hydro L 52CEy 7975 1 61 ___ _ _ __ _ _ Hydro 41777 r. HydravI ___ _ Lignite Lignite g10503 Nuclear .60 .. ______s Nuclear hours | hours 0 JquleT ar 87G0 0 8760 0 8760 - 216 - i42NXXA II I RO, No. 46 Detailed Ranking of Hydro Schem,s - Data Cukrrencyt $1 = 15 TL DiscoaLnt Rate 0.12 Capital Cost Operat-ig Cost Annual Rate of Initlal Load Haxinm Coefftcient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type MillaLon-9W Milltons/MW yr. Capital Operating Mw ability Limit MW Fydro 1 1.L 0.09 0.0 0.0 0.0 0.9 0.4 .60.0 Hydro 2 l.i4 0.09 0.0 0.0 0.0 0.9 0.4 0.0 Hydro 3 2.6 0.09 0.0 0.0 0.0 0.9 O.k 450.0 Hydra hi 2.6 0.09 0.0 0.0 0.0 0.9 U.4 700.0 Hyaao 5 3 -5 0.0) 0.0 0.0 0.0 0.9 0.d 700.0 Hydro 6 3.5 o.c9 0.1 0.0 0.0 0.9 O.4 500.0 ]ydro 7 5.0 0.09 0.0 0.0 0.0 0.9 0.4 900.0 Vydro 3 5.0 0.09 0.0 O 0.0 0.9 OA4 700.0 1Hydro 9 3.0 0.09 0.0 O.u 19j..0 0.9 o.6 3000.0 Hydro 10 3.0 3.OQ 0.0 0.0 0.0 0.9 O.6 500.0 Hydro 11 4.0 0.09 0.0 0.0 0.0 0.9 0.6 900.0 Hydro 12 4.0 0.09 0.0 0.0 0.0 0.9 0.6 800.0 Hydro 13 6.0 0.09 0.0 0.0 0.0 0.9 0.6 30°.0 Hydro 1 6.o 0.09 0.0 0.0 0.0 0.9 0.6 800.0 H3 dro 15 3.0 0.09 0.0 0.0 0.0 0.9 0.8 90.0 iydro 16 3.0 0.09 0.0 n.o 0.0 0.9 0.8 50.0 WYdro 17 6.o 0.09 3.0 0.0 0.0 ° 0.8 410.0 Hydro 18 6.0 0.09 0.0 0.0 0.0 0.9 0.6 70.0 G/r 2.0 1.40 0.0 0.005 220.0 c.9 1.0 M9999.0 Fhiel 0il 2.6 0.90 3.02 0.005 900.0 0.9 1.0 99999.0 LLgnitt 2.6 0.42 0.32 0.005 1017.0 O.S 1.0 6000.0 Nuclear 6.5 0.26 0.015 C.005 0.0 0.8 1.0 99999.0 Ppakc Rese ve Requirements (% of Peak Demrand): 0-05 Max. Aggregate Hydro Capaclty in anV Year (% or Peak Demand): 0.6 Periods of Load Dluration Hourr/ C lrvre Year .973 193l 1998 1993 1995 2D05 526 L602 7754 13066 22018 37101 77023 2 2510 3LJ7 5576 9902 16686 26117 56376 3 3056 2303 4?4 796rJ 13U1 22604 6930 L?SB Z / 2078 3503 5502 994.6 16760 34797 - 217 - ANNEX III Max. - Min. Policy Constraints Mn, Capacity Max. Capacity Type Vintage M__W _ _W Hydro 2 1 0.0 0.0 2 0.0 0.0 Hydro 4 1 0.0 0.0 2 0.0 0.0 Hydro 6 1 0.0 0.0 2 0.0 0.0 Hydro 8 1 0.0 0.0 2 0.0 0.0 Hydro 10 1 0.0 0.0 2 0.0 0.0 Hydro 12 1 0.0 0.0 2 0.0 0.0 Hydro 14 1 0.0 0.0 2 0.0 0.0 Hydro 16 1 0.0 0.0 2 0.0 0.0 Hydro 18 1 0.0 0.0 2 0.0 0.0 Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 1600.0 3850.0 - 218 - ANNEX III Total Cost: 31430 MTL .RUN N0. 46 Detailed Panking of Hydro Schemes Installed Capacity (NW) TyPe 1975 1978 1983 1988 1993 1998 2005 Ifydro 1 0 450 0 0 0 0 0 Hydro 2 0 0 0 0 0 0 0 Hydro 3 0 0 0 50 0 0 0 Hydro b 0 0 0 700 0 0 0 Hydro 5 0 0 0 0 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 0 0 0 I Hydro 8 0 0 0 0 0 0 0 Hydro 9 1963 278 189)1 830 0 0 0 Hydro 10 0 0 0 500 0 0 0 .Hydro 11 0 0 0 82 0 0 0 Hydro 120 0 0 00 0 0 Hydro 13 0 0 0 C 0 0 0 Hydro l4 0 0 0 0 0 0 0 Htydro 15 0 90 0 0 0 0 0 lydro 16 0 0 0 0 0 0 H.ydro 17 0 0 0 0 0 0 0 Hqydro 18 0 0 G 0 0 0 0 C/T 220 0 100 2 X, 360 600 1600 FueJ. Cil 90C C 0 r, 3127 2000 0 Ligr t.te 10e7 379 1308 30r99 118l 0 0 Muclear 9 G 0 C 5934 1L917 48109 Total by Groups (1rw) Type 1975 1G76 1983 1988 1993 1998 2005 AI.?v.dro 1943 2 62 72 - 7260 72-0 726L 2 22, 2v2 320 522 880 11:00 3080 Tuel 0-1 :DO 900 9oo 0027 6927 6927 Li}grte 1017 1396 2714 5 53r3 701? 7117 7017 .;uclear 0 0 C 0 593L 20851 68960 'i277 8616 14517 2,12? 0353; 932L0' ?-. ~Dermand 336C 4j02 775L 13G466 20 i 37101 77026 AUNFX III RUN NO. 46 Detailed Ranking of Hydro Schemes - Operation Schedule YEAR 1 Unused Capacity Type Vintage p = =j 2 p- 3 p - 4 at Peak Hydro 1 1 405 vOL 109 0 45 :Hydro 9 0 1749 Th95 1249 634 194 1 250 250 122 122 28 Hydro 15 1 81 81 67 67 9 G/T 0 51 0 0 0 169 Fuel Oil 0 810 0 0 0 90 Lignite 0 915 915 915 915 102 1 341 3L1 3L1 341 38 Total Op. Capacity h602 3487 2803 2079 Demand 4602 3487 2803 2078 Reserve 675 Total Capacity 5277 YEAR 4 Unused Capacity Typea Vintage p = 1 p = 2 3 p at Peak Hydrho 1 1 L05 405 109 0 45 Hydro 3 3 405 405 109 0 S5 Hydro 9 o 17L9 17L9 1582 0 194 1 250 250 226 0 28 2 1702 1702 1M16 lb5 189 3 7L7 7L7 36L 36L 83 Hydro 10 3 L50 h5o 219 219 50 Hydro 11 3 74 74 36 36 8 Hydrol1 1 c1 81 67 9 Hydro 16 3 I5 45 37 37 5 G/T 0 198 0 0 0 22 2 90 0 0 0 10 3 180 0 0 0 20 4 321 0 0 0 36 Fuel Oil 0 810 0 0 0 90 I 2ci1L 0 0 0 313 Lignite 0 915 0 0 0 102 1 311 3b1 0 0 38 1213 1213 L81 48h 135 3 2780 2780 2780 2780 309 1 1066 1066 1066 1066 118 Nuclear I 1717 h747 4747 1717 118 T'otal Op. Capacity 22016 15685 13412 9945 3-mand 226iB5 16686 13U15 9916 R.est.-te 3106 Total Capacity 25122 - 220 - ANNEX III )1OO MW RUN 46 DETAILED RANKING OF HYDRO SCHEMES I?NSTALLED CAPACITY Tota 90 80 70 I / wNuclear 60 50 40 30 20 10~~~ Lignite Hydro RUN 46 OPERATION SCHEDULE YEAR I 7G YEAR 2 YEAR 3 774 G/T Mvi 746G Fuel Oii MW 66356 Ful 3066 12598 Fuel Oil 4602 G/T 4569 375j69 P Fuel Oil Hydro~~~~~~~~Hyr ydr 2469 5249 1 256 Ligni te Lignite hours hours Lignite hour, 0 8760 0 8760 0 8760 r, YEAR 4 YEAR 5 MW YEAR 6 22018 G/T 2122r, ~~~~~~~~37101 GT70256 Fue Oi 1276026 > Fuel Oil 35769 2Fuel ;ilel Oil "°s' S g = 1 = 1 z29z535 67 067- 22 y ro 29535 ~~~~~~~~~~Lignite 55168Lgnt 11062 ~~~~~~~~~~~23220 518yr Lignite ~~~~~16681 Hydro HdoD 4740 Nucea 4740 Nuclear _hours _ _ Nuclear _|_hours__________| hours P 0 8760 0 8760 0 8760 1 - 222 - AINNEX III RUN NO. 47 Technical Progres' in Nuclear Power - Data Currency: $1 - 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Ini ial Load Maximuni Coefficient Coefficient C,st Decrease Capacity Avail- Factor Capacity lype Millions/MW Millions/MW yr. Capital Operating MW ability Limit MW Hydro 1 1.4 0.09 0.0 0.0 0.0 0.9 0.4 6co.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 0.9 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 0.9 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 0.9 0.4 1500.0 Hydro 5 3.0 0.09 0.0 0.0 1943.0 0.9 o.6 3500.0 Hydro 6 4.0 0.09 0.0 0.0 0.0 0.9 o.6 1900.0 Hydra 7 6.o 0.09 0.0 0.0 0.0 0.9 o.6 1000.0 Hydro 8 3.0 0.09 0.0 o.0 n.0 0.9 o.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 o.0 0.9 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 0.9 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 0.9 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nu-lear 6.5 0.26 o.o6 0.020 0.0 o.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) :0.05 i:x. Aggregate Hydro Capacity in any Year (% of Peak Denand) :1.0 Pe.liods of Le ad Duration tiours/ Curve Year 1978 1933 1988 1993 1998 2005 1 5-26 4602 7754 13066 22018 3710? 77028 2 2540 31487 5376 °902 16686 28111 58376 3 3066 2803 4724 7960 13h15 22604 46930 4 2628 2078 3503 5902 99V4 16760 34797 Max. - Min. Po:.icy Constraints Min.Capacity Max. Capacity Vintage MW ______ MW Gas Turbines 1 0.0 230.0 100.0 390.0 3 200.0 650.0 4 360.0 1110.0 5 60C.0 1850.0 6 1600.0 3850.0 ANNEX III - 223 - Total Cost: 26545 MTL RUN NO. 47 Technical Progress in Nuc'ear Power Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 600 0 0 0 0 0 Hydr- 2 0 0 764 236 0 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0 - 0 0 Hydro 5 1943 701 2799 0 0 0 0 Hydro 6 0 0 0 0 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 . 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 0 0 0 Lignite 1C17 0 0 4358 0 0 0 Nuclear 0 0 0 607 10784 18180 48109 Total by Grouns (Yn:' Type 19'75 1978 1983 1988 1993 1998 2005 All Hydro 1943 3384 6947 7183 7183 7183 7183 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 ?C0O 900 900 900 900 900 Lignite 1017 1017 1017 5375 5375 ;375 5375 Nuclear 0 0 0 607 11391 29571 77680 Tcta' 1080 5521 9'84 1h585 25729 44509 94218 'leak Denand 3365 h602 7754 13_66 22018 37101 77C88 ANNEX III - 224 - R8N tO. I7 Technical Progress in Nuclear Power _ Operation Schedule YEAR 1 Unused Capacity Type Vintage p2= 1 p_= 2 p '3 ? at Peak Hydro 1 1 SLOo 324 324 0 60 Hydro 5 0 1749 1729 loh5 6I5 194 1 631 hO? 07 407 70 Hydro 8 1 126 111 112 111 14 5/T 0 0 0 0 0 220 ruel Oil 0 6I0 0 0 0 260 Lignite 0 915 915 915 915 102 Tota1 Op. Capacity 4601 3I86 2802 2078 Demand 4602 3I87 2803 2078 Reserve 920 Total Capacity 5521 YEAR I Unused Capacity 'Vintage o = 1 D 2 p = 3 p = 4 at Peak H-vdrc 1 1 5S0 5hO 79 79 60 Hydro 2 2 687 687 100 100 77 3 213 213 31 31 23 Hydro 5 0 1749 1749 1137 519 194 'i 631 631 571 0 70 2 2519 2519 2230 0 280 Jydro 8 1 126 126 104 lOIL ll G/T 0 198 0 0 0 22 2 90 0 0 0 10 3 180 0 0 O 20 I 324 0 0 0 36 el OCil 0 810 0 0 0 90 'ignite 0 915 0 0 0 102 3 3922 1D8 0 0 436 71uclear 3 I86 456 h86 I86 121 4 8627 8627 8627 8627 2157 fotal Op. Capacity 22017 16686 13IL5 9946 De.ma-d 2201.3 16686 13L15 99I6 Resci've 3712 Toral Capacity 25729 - 225 - ANNEX III 1000 MW RUN 47 TECHNICAL PROGRESS IN NUCLEAR POWER INSTALLED CAPACITY Total 90 - 80 __- /Nuclear 70r- 60 50 - 40 - 30 - 20- 1 0 - Hydro =Lignite 0 1 2 3 4 5 periods 6 RUN 47 OPERATION SCHEDULE YEAR 1 W YEAR 2 YEAR 3 775 Fuel Oil mw 7167 MW 7167 _ 13066 _ G/T 12598 Fuel Oil 1 1788 4602 Fe i 3962 Hydro Hydro 5323 Hydro 915 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Lignite 915 ~~~~~~~~~~~~915 Lignite Lignite hours 486 h4ours 0 8760 0 87G0 0 Nuclear 8760 N) YEAR 4 YEAR 5 MW YEAR 6 MW MWI 22018 G/T ! G/T :21276 f'IFulTil77020 / 20o24165 F Fuel Oil 37101 G/ 74256 Fuel Oil ignite 3769 uel Oil 36 15579 34959 68609 int 9117 =Hydr 30122 Lignite 62144 Hydro 23657 Hydro yr 9113 Hydrol 35 =L Nuclear hours Nuclear Nuclear 0t 80 876008760hours 0 8760 0 8760 0 8760"` - 227 - RUN NO. 48 Base Case B - Data Currency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximt Coefficient Coefficient Cost Decrease Capacity Avail- Factor Cripaci Type Millions/NW Millions/MW yr. Capital Operating MH ability Limit Niw Hydro 1 1.4 0.09 0.0 0.0 0.0 0.9 0.Q 60C Hydro 2 2.6 0.09 0.0 0.0 0.0 0.9 0.h 0OOC Hydro 3 3.5 0.09 0.0 0.0 0.0 0.9 o.4 120C Hyaro I 5.0 0.09 0.0 0.0 0.0 0.9 0.4 150C Hydro 5 3.0 O.C9 0.0 0.0 1913.0 0.9 0.6 350C Hydro 6 4.0 0.09 C.0 0.0 0.0 0.9 0.6 150C Hydro 7 6.o 0.09 0.0 0.0 0.0 0.9 0.6 '000 Hydro 8 3.0 0.09 0.0 0.0 0.0 0.9 0.8 14C dydro 9 6.,j 0.09 0.0 0.0 0.0 0.9 o.8 170 OJT 2.0 1.h'0 0.0 0.005 220.0 0.9 1.0 99999 Fuel 0. 2.6 0.9(. 0.02 0.005 900.0 0.9 1.0 99999 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999 Peak Reserve Reqiirements (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in any Year (% of Peak Demand) 1.0 Periods of Load Duration Hours/ Curve Year 1978 _1983 1988 1993 1998 2 1 526 L602 7754 13066 22018 37101 77 2 2540 3J187 5876 9902 16686 28117 58: 3 3066 2803 4724 7960 13415 2260h h6' 4 2628 2078 3503 5902 9946 16760 3h Max. - Min. Policy Constraint. Min. Capacity Max. Capacity Vintage NW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 200.0 650.0 L b36C.0 uL10.0 5 7600.0 1850.0 6 1600.0 3850.0 - 228 - ANNFC7 IIi RUN NO.h8 Base Case 3 Total Cost: 32,990 WTL Installed Capacity (rfl; Year 1975 19,7 2.?83 1988 i993 1998 2005 Hiycro 1 0 O0OOO Hydrol 0 600 0 0 0 0 0 Hydro 2 0 0 76li 236 0 0 0 Hydro 3 0 0 0 1,200 0 0 0 Hydro0 0 0 0 O Hydrc 5 1,903 701 2,799 0 0 0 Hydro 6 0 0 0 1,900 0 0 Hydro 7 ) C 0 0 G C 0 Hydro 3 0 1LO 3 0 0 0 0 C/T 220 0 0OC 200 360 600 1,600 Fuel -,il 903 0 0 0 3,612 6,930 6,203 Ligrnte 1,017 0 0 1,798 4,?02 0 0 Nuclear 0 G 0 0 1,993 10,383 41,130 Total by Groups (I'W) Year 1975 1978 1983 1988 1993 1998 2GO5 All :Iydro 1,9bC 3,38-t 6,947 10,283 10,283 10,283 10,,83 G/T 220 22J 32G 520 880 l,4dC 3,030 -S1 Oil 90C 90 900 9Cu 1,512 ]1,442 17.645 Lignite 1,017 1,017 1,017 2,&15 7,01 7 ',017 7,017 Nuclear 0 0 0 0 1,993 ±2,376 53,506 Total 4,080 5,521 ,,154 14,518 24,685 42,I98 91,531 Peak Demand 3,365 4,602 7,75t4 13,066 22,018 37,101 77,028' - 229 - ANNEX III RUN NO. 48 Base CaseB - Operation Schedule YEAR 1 Unused Capacity "INpe Vintage p p = 2 p - 3 at Peak Hydro I 0 0 0 0 0 0 1 540 324 324 0 60 Hydro 5 0 1,7L8 1,729 1,045 6L5 195 1 631 b07 L07 07 70 Hycl-; 8 1 126 111 111 ill 1 G/ 0 0 0 0 0 220 F,LeL Otl 0 640 0 0 0 260 LLgnite 0 915 915 915 915 102 T3tal Op. Cap. 4,600 3,486 7,802 7,078 Demand 4,602 3,487 2,803 2,078 Reserve 921 Total Capacity 5,521 TEAR b Unused Capacity Type Vintage p 5 3 2_. at Peak Hycdro 1 1 5uO 5I0 1a6 0 60 Hydro 2 2 657 373 240 240 77 3 212 -212 57 0 24 Hydro 3 3 1,080 1,080 286 7 120 Hydro 5 0 1,7L9 1,749 852 852 194 1 631 598 598 0 70 2 2,519 2,588 2,388 0 280 Hydro 6 0 1,710 1.710 833 833 190 1 1,710 1,710 833 833 190 2 1,710 1,710 833 833 190 3 1,71C 1,710 833 833 190 Hydro 8 1 126 126 104 10o 114 C/T 0 1980 0 0 22 2 90 0 0 0 10 3 180 0 0 0 20 1 32a' 0 0 i 36 u el oil 0 830 0 0 0 90 1 3,251 0 0 C 361 Lignite 0 21 915 915 915 102 3 1,61i 1,618 1,616 1,618 180 4 3,782 3,782 3,782 3,782 420 Nuclear 1 1,594 1,591 1,591 1,594 399 Total Op. Cap. ?2,&016 16,6811 13,113 9,945 Demand 22,018 16,636 13,1415 9,946 Reserve 2,669 Tot,al Capacity 211,685 - 230 - ANIMEX III RUN 48 BASE CASE B 1000 INSTALLED CAPACITY MW Total 90 80 - 70 - 60 - / Nuclear 50- 40- 30 - 20- ?0 / / Fue I Oi l 10 / Hydro 1 2 3 45 perLignite 1 2 3 4 5 periods 6 RUN 48 OPERATION SCHEDULE YEAR 1 YEAR 2 YEAR3 MW 7175 Fuel Oil MW 11788 Fuel Oil Hydro Hydro ~ ~ ~ 915 915 s Lignite hours Lignite hou s Lidrite hour 0 8760 0 8760 0 8760 MW YEAR 4 YEAR 5 YEAR 6 220128 + 1 370/ 545 G/ igie Fuel Oil ~ ~ ~ ~ 708 Ful i t 1 ~~~~~~~~25471 52060 ^ ydro Hydro IHydro 42805 ' Lignite 9901 nite Nuclear 1594 hours Nuclear hours 0 Nucleur 8760 0 0 8760 ANNEX III - 232 - RaN MO. 49 Base Case C - Data Currency: $1 = 15 TL Discount Pate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximum Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating MW ability Limit T1W Hydro l 1.4 0.09 0.0 0.0 0.0 0.9 0.4 600.0 Hydro :2 2.6 0.09 0.0 0.0 0.0 0.9 0.b 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 0.9 0.4 1200.0 Hydro 4 5.0 0.09 0.0 0.0 0.0 0.9 0.4 1500.0 Hydro '5 3.0 0.09 0.0 0.0 1943.0 0.9 o.6 3500.0 Hydr t 4.0 0.09 0.0 0.0 0.0 0.9 o.6 1500.0 Hydro 7 6.o 0.09 0.0 0.0 0.0 0.9 o.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 0.9 0.8 140.0 Hydro 9 6.o 0.09 0.0 0.0 0.0 0.9 0.8 170.0 G/T 2.0 1.40 0.0 0.005 220.0 0.9 1.0 99999.0 Fuel O:il 2.6 0.90 0.02 0.005 900.0 0.9 1.0 99999.0 Lignite 2.6 0.42 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.045 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand) : 0.05 Max. Aggregate !ydro Capacity in any Year (% of Peak Demand) : 1.0 Perio(s of Load D;-=+.on Hours/ Curve Year 1978 1983 1988 1993 1998 2005 1 526 4602 7?54 13066 22018 37101 77028 2 2540 3L37 5876 9902 16686 28117 58376 3 3066 2503 4724 7960 13415 2260o 46930 4 2628 2078 3503 5902 9916 16760 31797 Max. - Mn. Policy Constraints Min. Capacity Max. Capacity Type VintaPe KW MW Gas Turbines 1 0.0 230.0 2 100.0 390.0 3 ?210.0 650.0 4 360.0 1110.0 5 600.0 1850.0 6 J!ZO.C 3850.0 - 233 - ANNEX III Tvl Cost: 30658 MTL .RU1X NO. 19 Base Case C Installed CaDacity (MI) Type 1975 1978 1983 '.988 1993 1998 2005 .{ydro 1 0 600 0 0 0 0 0 Hydro 2 0 0 764 236 0 0 0 Hydro 3 0 0 0 0 0 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 19h3 701 2799 0 0 0 0 Hydro 6 0 0 0 1150 0 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 lh0 0 0 0 0 0 Hydro 9 0 0 C 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 3768 1191 0 Li_gnite 1017 0 0 3778 2252 0 0 Nuclear 0 C 0 0 L0oll 1681 4810Q Total by Grou-s (MW) 2yne 1975 1978 1983 1993 1998 2005 iAll Hydro 19h3 33SL 6?917 5333 8333 8333 8333 0/7 220 22v 320 592' *'0 1580 3080 Fuel Oil 900 ?) 900 90 5 668 5859 5555 Lin- ite 1017 -O: 1017 ±7^; 7017 7017 7017 Nuclear 0 0 0 0 o011 20851 68960' Total 30 ,5~21 18 1 1 5 . 2h909 1433510 53259 .eak Load 3365 h6? 775M 13Cf,6 2201_ 37101 77028 AM=EX III - 234 - RUN NO. 49 Base Case C - Operation Schedule YER1 Unused Capacity Typea Vintage p - P 2 p= 3 p 4 at Peak Hydro 1 I 540 324 324 0 60 Hydro 5 0 1,749 1,729 1,045 645 194 1 631 407 407 407 70 Hvdro 8 1 1.26 111 111 111 14 G/T 0 0 0 0 0 220 Fuel 0 6£40 0 0 0 260 Lignite 0 5,15 915 915 915 102 Total Op. Cap. 4,601 3,486 2,802 2,078 Demand 4,602 3,487 2,803 2,078 Reserve 520 Total Capacity 5)521 YEAR 4 Unused Capacity Type Vintage P -- 3 p - 4 at Peak Hydro I I 540 540 78 78 60 Hydro 2 2 687 687 100 100 77 3 213 213 31 31 23 Hydro 5 0 1,749 1,749 852 852 194 1 631 631 571 0 70 2 2,519 2,519 2,279 0 280 Hydro 6 3 1,035 1,035 790 171 115 Hydro 8 1 126 126 104 104 14 G/T 0 1?8 0 0 0 22 2 90 0 0 9 10 3 7.80 0 0 0 20 4 324 0 0 0 36 Fuel 0 810 0 0 0 °° 4 3,391 0 0 0 377 Ligite 0 915 577 0 0 102 3 3,373 3,373 3,373 3,373 375 4 2,027 2,027 2,027 2,027 225 Nuclear 4 3,209 3,209 3,209 3,209 802 Total Op. Cap. 22,017 16,686 13,414 9,945 Demand 22,018 16,686 13,415 9,946 Reserve 2,892 Total Capacity 24,909 - 235 - ANNEX III 1000 M4W RUN 49 BASE CASE C INSTALLED CAPACITY Total 90 / 80 _ 70 - 60 50 - Nuclear 40 - 30 20 - 10 LintHyr 0 1 2 3 4 5 perio-ds 6 RUN 49 OPERATION SCHEDULE YEAR 1 7754 Fuel Oil YEAR2 MWYEAR3 MW 7167 G/T 4 ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~13066 I 12598 Fuel Oil 11788 4602 Fuel Oil 3962Hyr Hydra ~~~~~~~Hydro Hydra - 915 Lignite huurs Lignite hours 8Lignitehour 0 8760 0 8760 0 8760 YEAR 4 YEAR5 MW YEAR6 QN MW ,MW 22018 CG ,/TL 21226 Fuel Oil 37101 G/T 77028 G/T 1~~~~~~~' ~~~35769 74256 Fe i 17025 Fuel Oil 683983 F Gel Oil 30496 Lgie63624 10710 .ignite 4181 Lignite 55168 Hydro Hydroa6 ula 3209 ~~~~~~~~~~~~~~~~~~~~~N u1.Iea. 3209 0 =4 hours hours hours 0 Nuclear 8760 0 8760 0 8760 - 237 - RUNll O. 50 Max. - Min. Policy Applied to Lignite Projects - D;.ta Currency: $1 15 TL- Discount Rate 0.12 Capital Cost Operating Annual Rate if Initial Load Maximun Coefficient CoefCicient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MW Millions/MW yr. Capital Operating MW ability Limit Md Hydro 1 1.4 0.09 0.0 0.0 0.0 1.0 0.A 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 1.0 o.l4 1000.0 Hydro 3 3.5 0.09 0.- 0.O 0.0 1.0 °-4 1200.0 Hydro L4 5.o 3.09 0.0 0.0 0.0 1.0 o.L 1500.0 Hydro 5 3.0 0.09 0.0 0.0 19L3.0 1. 0.6 . 3500.0 Hydrs 6 L.0 0.09 0.0 0.0 0.0 1.0 o.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 1.0 0.6 1000.0 .:iro 8 3.o 0.09 0.0 0.0 0.0 1.o 0.8 140.0 it,dro 9 6.0 0.09 0.0 0.0 0.0 1.0 0.8 170.0 G/T 2.0 1.l0 0.0 o.005 220.0 1.0 1.0 99999.0 S'uel Oil 2.6 0.90 0.02 0.005 900.0 1.0 1.0 99999.0 Lignite 2.f o.L,0..02 o..o5 1017.0 0.9 1.0 60O.O lluclear 6.5 0.26 0.03 O.3O5 0.0 0.6 1.0 99999.0 Peak Reserve Requirements ("' o' Peak Den,nd): ^.05 Max. A,:zregate Hydro Capacity in any Year ( o ' Peak Demand) : 1.0 Periods o- L--d Duration Hours/ Curve Year 1 976 1 863 1 ?85 3 1993 199c 2005 1 526 !L62 775L4 13066 22018 37101 77028 2 25L0 3487 5876 9902 16686 2R1 17 56376 3 3066' 2303 L,72L 7 95 13415 2260L, L,6930 1, 2628 ?0?3 3503 5902 99L46 16750 34797 M¶ax. - Min. Policy Constraints Min. Capacity Max. Capacity Type Vintage I' MV Gas Tarbines 1 0.0 230.0 100. 390.0- 3 20)0.3 O50.o L, 360.0 1110.0 5, 600.0 1F50.0 A 1,o0.o 3850.0 Ligni tes 1 - 00.0 600.0 2 o00 . o6-00. o 8 ANNEX III -238- Total Cost: 32817 MTL RUN NO. 50 Max-Min Policy Applied to Ligiite ProJects Installed Capacity (MW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 10COO 0 0 0 0 0 Hydro 2 0 0 0 1000 0 0 0 Hydro 3 00 0 0 i200 0 0 Hydro 4 0 0 0 0 0 0 0 Hydro 5 1943 0 2178 1322 0 0 0 Hydro 6 0 0 0 884 1016 0 0 Hydro 7 0 0 0 0 0 0 0 Hydro 8 0 140 0 0 0 0 0 Hydro 9 0 0 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 1979 .S640 7053 Lignite 1017 6oC 600 1760 30Lo 0 0 Nuclear 0 0 0 0 2075 11054 39092 Total by Grotus (IMW) rype 1975 1978 1983 1988 1993 1?98 2005 All Hydrao 1943 2683 [861 8067 10283 10283 10283 G/T 220 220 320 520 880 1h80 3080 Fuel Oil 900 900 900 900 2879 351' 15572 Lignite 1017 1617 2217 3977 7017 7017 7017 Nuclear 0 0 0 0 2075 13129 52?21 To-,al 4o80 5320 8298 13a6L 2313l h0428 88173 Peak Der.and 3365 4602 775t 13066 22018 37101 77028 ANNEX III - 239 - RUN NO. 50 Max-Min Policy Applied to Lignite Projects - Operation SchedLle YEAR 1 Jnused Capacity Type Vintage p =l P=_2 p = 3 E_: 4 at Peak Hydro 1 1 600 319 319 0 0 Hydro 5 0 1,943 1,719 1,035 629 0 Hydro 8 1 140 110 110 110 0 G/T 0 0 0 0 0 220 Fuel 0 463 0 0 0 437 Lignite 0 915 800 800 800 102 1 540 540 540 540 60 Total Op. Cap. 4,601 3,488 2,804 2,079 Demand 4,,602 3,487 2,803 2,078 Reserve 819 Total Capacity 5,420 YEAR 14 Unused Capacity Type Vintage =2 3 = 4 at Peak Hydro 1 1 600 600 46 46 0 H-yciro 2 3 1,000 1,000 77 77 0 Fydro 3 4 1,200 1,200 92 92 0 Hydro 5 0 1,943 1,650 1,631 0 0 2 2,178 1,838 1,838 0 0 3 1,322 760 760 760 0 Hydro 6 3 884 508 508 508 0 4 1,016 1,016 391 391 0 Hydro 8 1 140 TlO 97 97 0 G/T 0 220 0 0 0 0 2 100 0 0 0 0 3 200 0 0 0 0 4 360 0 0 0 0 Fuel 0 900 0 0 0 0 4 1,979 0 0 0 0 Lignite 0 915 915 915 915 102 1 540 540 540 540 60 2 540 540 540 540 6) 3 1,584 1,584 1,584 1,584 176 4 2,736 2,736 2,736 2,736 304 Nuclear 4 l,S60 1,660 1,660 1,660 415 Total Op. Cap. 22,017 16,687 13,415 9,946 Demwnd 22,015 16,686 13,415 9,946 Reserve 1,117 Total GaPacity 23,134 - 2h0 - ANNEX III RUN 50 I000 MW TIMING OF LIGNITE CAPACITY INSYALLED CAPACITY 90 Total 80 - 70 60 Nuclear 50 40 30 20 10 0 1 2 3 4 5 periox 6 RUN 50 OPERATION SCHEDULE MW YEAR 1 YEAR 2 YEAR 3 MW 7754 Fuel Oil MW 1 ~~~~~~~~~~6856 13066 G 12546 Z_ 11646 Fuel Oil 4602 Fuel Oil 4139Hyr Hydro Hydro 1455 1995 - 3579 - _ _ _ Lignite Lignite Lignite hours hours hours 0 8760 0 8760 0 8760 1 N) YEAR 4 YEAR 5 MW YEAR 6 22018 GW 71 21138 FeOil 37101 G/T708 T 18269 35621 -1uel Oil 73948 Fuel Oil 27102 5837 Lignite Hydro 188A Hydro Hydro 56 yr 7975 Li6n18 Lignite 10503 - Linie|o Nuclear hoursi 166 0e hoursN hours I hours 0 Nuclear ~ 8760 0 8760 0 8760 ANNEX III _ 242 - Rui NO. 51 Lower Eu',.rates Project NIot Included - Data Currency: $1 = 15 TL Discount Rate 0.12 Capital Cost Operating Cost Annual Rate of Initial Load Maximwn Coefficient Coefficient Cost Decrease Capacity Avail- Factor Capacity Type Millions/MlW; Millions/MW yr. Capital Gperating M.4 ability Limit MW Hydro 1 1.1 0.09 0.0 0.0 0.0 0.9 0.4 600.0 Hydro 2 2.6 0.09 0.0 0.0 0.0 0.9 0.4 1000.0 Hydro 3 3.5 0.09 0.0 0.0 0.0 0.9 0.4 1200.0 Hydro L 5.0 0.09 0°0 0.0 0.0 0.9 0.h 1500.0 Hvdro 5 3.0 0.09 0.0 0.0 1943.0 0.9 0.6 700.0 Hydro 6 L.0 0.09 0.0 0.0 0.0 0.9 o.6 1900.0 Hydro 7 6.0 0.09 0.0 0.0 0.0 0.9 0.6 1000.0 Hydro 8 3.0 0.09 0.0 0.0 0.0 0.9 0.8 1lio.0 Htrdro 9 6.o 0.09 0.0 0.0 0.0 0.9 o.8 170.0 G/T 2.0 1.hO 0.0 0.005 220.0 0.9 1.0 99999.0 Fuel Oil 2.6 0.90 0.02 0.005 900.0 0.9 1.0 99999.0 Lignite 2.6 0.!2 0.02 0.005 1017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.0415 0.005 0.0 0.F 1.0 99999.0 Peak Zeserve Requirer.ents (% of Peak Demand): 0.05 Max. Aggregate Hydro Capacity in P.iy Year ( of Peak Denand) : 1.0 Periods o' Load Duration Hours! Curve Year 1978 1983 1?t8 1993 1 99P 2005 526 41±0? 7751 13066 220 1 37101 77028 2 2540 31±87 5576 9922 i 068 23117 583?6 3 3066 2803 L7241 79.60 13415 22s604 16930 4 2628 2078 3503 590? 99116 1f76o 3h1797 Max. -Yin. Policy Constraints Min. CApacity 'ax. Capacity _ e Vinta-e2 KW _ Gas Turbines 1 0.0 230.0 2 loe10071 3?0.0 3200.0 ( 50.r 1± 360.0 1110.0 6a0).O 1&50.o 6 1FXX,.o 3850.0 _ 21i3 - ANNEX III Total Cost: 31753 IrT11 RUN NO. 51 Lower ERhrates Project Not Included Installed Capacity (NW) Type 1975 1978 1983 1988 1993 1998 200' Hydro I 0 600 0 0 0 0 c Hydro 2 0 2 998 0 0 0 C Hydro 3 0 0 0 0 0 0 C Hydro h 0 0 0 0 0 0 C Hydro 5 194l3 700 0 0 0 0 C Hydro 6 0 0 1707 193 0 0 C Hydro 7 0 0 0 0 0 0 C Hydro 8 0 140 0 0 0 0 C Hydro 9 0 0 0 0 0 0 C G/T 200 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 41)!hL 2866 a Lignite 1017 0 609 51Th0 202 0 0 Nuclear 0 0 0 0 5895 11956 h8109 Type 1,975 1978 1983 1988 1993 1998 2005 All Hydro 12313 3385 6090 6283 6283 6283 6283 G/T 220 220 320 520 880 1-480 3080 i'uel Cil 900 9o0 900 900 50hL 7910 791( Lignite 1017 10'17 1626 6oo5 7017 7017 7017 Nuclear 0 0 0 0 5895 20851 68960 Total 4o,3o5 5522 8936 1518 25119 i35 L1 93250 PeaX Deiand 336S5 4602 77-54 3J66 22018 371(C 77028 - 244 - ANNEX III RUN N0. 51 Lower Euphrates Project Not Included - Ooerabion Schedule YEAR 1 Unused Capacity Type Vintage p = 1 p_= 2 p - at Peak Hydro 1 1 540 540 146 0 60 Hydro 2 1 2 1 1 0 0 Hydro 5 0 1,749 1,513 1,224 646 194 1 630 407 407 407 70 Hydro 8 1 126 1111 111 111 14 G/T 0 0 0 0 0 220 Fuel 0 640 0 0 0 260 Lignite 0 915 915 915 915 102 Total op. Cap. 4,602 3,487 2,804 2,079 Demand 4,602 3,457 2,803 2,078 Reserve 920 Total Capacity 5,522 YSAR 4 Unused Capacity Type Vintage p = 1 p = 2 p = 3 p = 4 at Peak Hydro 1 1 540 540 146 0 60 Hydro 2 1 2 2 0 0 0 2 898 898 242 0 100 Hydro 5 0 1,749 1,749 1,582 0 194 1 630 630 570 0 70 Hydro 6 2 1,536 1,536 1,104 334 171 3 174 174 157 0 19 Hydro 8 1 126 126 104 104 1l G/T 0 198 0 0 0 22 2 90 0 0 0 10 3 180 0 0 0 20 4 324 0 0 0 36 ?iuel 0 810 0 0 0 90 4 3,730 00 0 0 414 Lignite 0 91' 15 0 0 102 2 '48 548 0 0 61 3 4,670 4,670 4,6i0 4,610 519 4 1612 189 182 182 20 Nuclear 4 4,7.6 4,716 4,716 4,716 1,179 Total Op. 'ap. 22,C18 16,686 13,413 9,946 Demand 22'.18 16,686 13,415 9,946 Reserve 3,101 Total Capacity 25,119 - 245 - ANNEX III 1 0O0 MW RUN 51 RESTRICTIONS ON THE LOWER FIRAT PROJECTS INSTALLED CAPACITY Toto a 90 80 70 - Nuclear 60 50 - 40 - 30 20 - 10 Lignite Fuel Oil Hydro -G/T | 0) 1 . 2 3 4 5 periods 6 RUN 51 OPERATION SCHEDULE Mw YEAR 1 6944 YEAR 2 MW YEAR 3 MW F6944 Fuel Ofl 13598 Fuel Oil I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~11788 4602 Fuel Oil 31162 k Hydro 6133 Hydro Hydro a Lignite liouls Lignite hours hours 0 8760 0 8760 0 ON YEAR 4 YEAR 5 MW YEAR 6 l s ~~~~~~~~MW 22018 G/T 21226 Fuel Oil 37101 G/T 77028 G/T IG68G 36769 ucl 67137 LigeFuel Oil 28650 LnteLignite 556082d 11031 22335 ydro Lignite ~~~16681Nula 4716 Nuclear h__ s Nuclear |hlsours | ahours| hours 0 8760 0 8760 0 8760 OPTIMUM DEVELOPMENT CF THE ELECTRIC POWER SECTOR IN TURKEY ANNEX Ir APPROXIMATION STUDIES - To Reduce the Size of the Problem to the Size of the Computers Available in Turkey September 23, 1971 Orhan Tarken (Consultart) Transportation and Public Utilities Division Economics Department IBRD ANNEX IV Ipproximation Studie-/ Thm largest computer available to the use of TEK is an IEM 360/40. Pecuase cf its limitations in memory size and speed, compared to the CDC used in IEf) for this study, it is necessary to make some approximations in the data and reduce the problem size, without seriously affecting the results, to one that can be handled by it. The purpose of this study, therefore, is to determine the minimum problem size, solution of which will be :n reasonable accuracy compared to the studies already made. A series of runs is carried out with different problem sizes. For each apprcximation run, run no, 2 is taken as basis for comparison. Description of fi.ns: Reduction in the Number of Groups (Run Al): Data is presented in the following table: Da ta for Run Al Currency: $1 = 15 TL Discount Rate = 0.12 Cap. Cost Op. Cost Annual Rate of Initial Avail- Max Type MTL/KW MTL/INY Cost Decrease Cap. ability LF Cap. Cap. Op. MW MW Hydro 1 2.7 0.09 0.0. 0.0 0.0 110 0E.1 2800.0 Hydro 2 5.2 0.09 0.0 0.0 0.0 1 0 0.4 1800.0 Hydro 3 3.0 0.09 0.0 0.0 1943.0 1.0 o.6 3500.0 Hrdro 4 4.2 0.09 0.0 0.0 0.0 1.0 0.6 1750.0 Hrdro 5 3.0 0.09 0.0 0.0 0.0 1.0 0.8 14o.0 G/T 2.0 1.40 0,0 0.005 220.0 1.0 1.0 99999.0 Fuel (Dil 2.6 0.90 0.02 0.005 900.C 1.0 1.0 99999.0 Lignite 2.6 0.42 0.02 0.0051017.0 0.9 1.0 6000.0 Nuclear 6.5 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Reserve Requirements (% of Peak Demand): 0.05 Aax. Aggregate Hydro Capacity in Any Year (% of Peak Demand): 1.00 Periods of Loads (MW) Load Duration Hours/ Curve Year 1y78 1983 1988 1993 1998 2005 1 526 4602 7754 13066 22018 37101 77028 2 254v- 3487 5876 9902 16686 28117 58376 3 3066 2803 4724 7960 13415 22604 46930 4 2628 2078 3503 5902 99416 16760 34797 l/ Note the problem size can be cut down very significantly using the approximations presented in Annepx , p. 5 et.seq. ANNEX IV -2- Zata for Run Al (cont.) Max. - Min. Policy Constraints Min Cap. Max Cap. ,Mpe a 4Vint (MW) (MW) Gas Turbines I 0.0 710.5 2 100.0 390.0 3 200.- 650.0 4 360.0 1110.0 5 60o.o 1850.o 6 1 600.0 3850.0 It will be seen that this data is the samne as in Base Case A (Run 2). The only difference is that the hydro projects are represented in 5 groups instead of 9. Results: Results pertaining to the investment schedule are presented belowt Installed Ca citY (MW) Year 1975 1q7a 1983 19DB 1993 1998 2005 Hydro 1 0 0 1125 1675 0 0 0 1brdro2 2 0 0 0 0 0 0 Hydro 3 1943 1117 2383 0 0 0 0 Hydro 4 0 0 0 0 1750 0 0 Hydro 5 0 140 0 0 0 0 0 G/T 220 0 100 200 360 600 1600 Fuel Oil 900 0 0 0 2043 5619 7010 Lignite 1017 0 145 2897 2958 0 0 Nuclear 0 0 0 0 2183 11081 39146 Total by Gror.ps (MW) Year 1975 1978 1983 1988 1993 1998 2005 A'l Htdro 's 1943 3200 670d 8383 10133 10133 10133 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 QOO 900 2943 8562 15572 Lignite 1017 1017 1162 4059 7017 7017 7017 Nuclear 0 0 0 0 2183 13264 52410 Total 4050 5337 X)90 13862 23156 40456 Md212 Peak Demand 3365 4602 7754 13066 22018 37101 77028 inspection of the above table itmiediately shows that the basic policy obtained in this report 'preference of domestic resources to the imported onee) 's not changed. A more detailed inspection shows that the total .Ir.tal led nApani ty ror each group in the ame excopt ror a J1 Lght ducrease In hydro (150 W) and an incroase in nuclear (189 MW). Pie changes are negligible since they occur over a period of 30 years. There are also slight cnanges in timing of the projects. It is seen that while hydro is delayed, lignit. p fuel oil, and nuclesr are brought forward slightly. This shifting may be attributed to a rather rough approximation made in regrouping the original hydro groups with 40% load factor. This is corrected in Run A4. Reduction in the Number of Load Duration Curve Periods (Run A2) This is based on run Al in the sense that the datz is the same except for a reduction in the load duration curve periods. The load duration curve is represented in 3 periods rather than 4. Changes in this section of the data are as followrs: Periods of Loads (MW) Load Duration Hours/ Curie Year 1978 198_ 1988 1993 1998 2005 1 3 4602 7754 13066 22018 37101 77028 2 5606 3113 5245 8838 14893 25096 52103 3 2628 2079 3503 5902 9946 16760 34796 It will be noticed that the new breakdown of the load duration curve is obtained by combining the second and third periods of the old one. Results: The investment schedule is presented below: Installed Capacity (MW) Year 1975 1978 1983 1955 19?3 199 2005 Hydro 1 0 0 1127 1673 0 0 0 Hydro 2 0 0 0 0 0 0 0 Hydro 3 1943 111S 2384 0 0 0 0 Hydro 4 0 0 0 0 1750 0 0 Hydro 5 0 140 0 0 0 0 0 G/T 220 220 100 200 360 600 1600 Fuel Oil 900 0 0 0 2045 5143 11320 Lignite 1017 0 143 2897 2960 0 0 Nuclear 0 0 0 0 2180 11675 33759 Total by Groups (MW) Year 1975 1978 1983 1988 1993 1998 2005 All Hydro's 1943 3199 6710 5353 10133 10133 10133 G/T 220 220 320 520 880 1480 3080 Fuel Oil 900 900 900 900 2945 8088 19408 Lignite 1017 1017 1160 4057 7017 7017 7017 Nuclear 0 0 0 0 2180 13855 47614 Total 4080 5336 9090 13860 23155 40573 87252 Peak Demand 3365 4602 7754 13066 22018 37101 77028 A comparison of the above results with those of the previous run shows that both the total installed capacity and the timing of hydro and lignite projects remain the same., Installed capacities and th6 timing of nuclear and, fuel oil do not change from the previous run until period 5. In year 5 there is a shift of about 500 MW's from nuclear to fuel oil. In ANNEX V period 6 th:Ls shift increases and results in total installed capaci-ies of 19408 MW for fuel oil and 47614 MW for nuclear. Reduction in the Number of Investment Periods (Run A3) TLis run tests the results of reducing the number of investment periods from 6 to 4, namely three 5 year blocks and one 20 year block as an end condition. Period No. 0 1 2 3 4 Period Spanned 1975 '75/'80 '80/'85 '85/'90 '90/2010 Mid-year 1975 1978 1983 1988 2002 The loads are: Periods of Loads (MW) Lo-1 I Duration Hours/ Curve Year 1978 1983 1988 2002 1 526 4602 7754 13066 45712 2 5606 3113 5245 8838 30920 3 2628 2079 3503 5902 20650 The rest of the data is the same as in run A2. Resalts: The installation scheme is presented in the following table: Installed Capacity (MW) Year 1975 1978 1983 1988 2002 Hydro 1 0 0 1127 1065 608 hydro 2 0 0 0 0 0 Hydro 3 1943 1116 2384 0 0 Hydrr4 0 0 0 0 1750 Hydro 5 0 140 0 0 0 G/T 220 0 100 200 360 Fuel Oil 900 0 0 0 4260 Lignite 1017 0 143 3141 2715 Nuclear 0 0 0 0 29030 Total by Groups (MW) Year 1975 1978 1983 1988 200_ All Hydro's 1943 3199 6710 7775 10133 G/T 220 220 320 520 880 Fuel Oil 900 900 900 900 5160 Lignite 1017 1017 1160 4301 7017 Nuclear 0 0 0 0 2903Q Total 4080 5336 9090 13496 52220 Peak Demand 3365 4602 7754 13066 45712-. AlItIr- A V rR~~~~~~~~~~~~~~ _ Both the amoiunt of installed capacities and their timing are the same as in the previous rnm. Change in the last period is expected because the end conditions of the two rwns do not correspond to each other, and they do not cover the same amount of years. The policy indicated by the solution is again the same. Here, note that there is a mistake in the data. Minimum capacity of gas turbines for period 6 is read into the ccmputer as 360 W, whereas it should be larger. This ul.intentional error is corrected in the .lext run. Re-grouping of Hydros (Run A4): Hydro sites with 40% load factors are re-grouped to obtain a better approximation. Cap. Cost Max. Cap. zye MTI/MW MW Hydro 1 1.4 6oO.O Hydro 2 3.1 2200.0 Also the error mentioned in the previous run abou"t gas tui ines is corrected. Minimum gas turbine capacity for year 4 is now 1200 E . The rest of the data is the same as in Run A3. Results: The installation scheme is presented below: Installed Capacity (MW) Year 1975 1978 1983 1988 2002 Hydro 1 0 600 0 0 0 Hydro 2 0 0 0 0 2200 Hydro 3 1943 738 2762 0 0 Hydro 4 0 0 0 0 1750 Hydro 5 0 140 0 0 0 G/T 220 0 100 200 1200 Fuel Oil 900 0 0 0 3420 Lignite 1017 0 355 4698 947 Nuclear 0 0 0 0 29030 Total by Groups (MW) Year 1975 1978 1983 - 1988 2002 All Hydrots 1943 3421 6153 6183 10133 G/T 220 220 320 520 1720 Fuel Oil 900 900 900 900 4320 Lignite 1017 1017 1372 6070 7017 Nuclear 0 0 0 0 29030 Total 4080 5558 8775 13673 52220 Peak Demand 3365 4602 7754 13066 45712 ANNX 6- An inspection of the above results shows that they are very close to the results of Base Case A (run 2). Deletion of Gas Turbines (Run A6) This run examines the effects of deleting gas turbines. There are 8 groups and the rest of the data is the same as in rnm A4. Results: The iwotall&tion scheme is presented below: Installed Capacity (MW) Year 19-15 197) 93 9T 200-r Hydro 1 0 6,,, 0 b - Hydro 2 0 0 0 0 2200 7rdro 3 1943 738 2762 0 0 ldbro 4 0 0 0 0 1750 Hydro 5 0 140 0 0 0 Fuel Oil 900 C 0 301 4839 Lignite 1017 0 355 4941 70M Nuclear 0 0 0 0 29030 Total by Groups (MW) Year 1975 1978 1983 1988 2002 All Hydro's 1943 3421 6183 6183 10133 Fuel Oil 900 900 900 1201 64r0 Ligrate 1017 1017 1372 6313 7017 Nuclear 0 0 0 0 29030 Total 4080 5338 8455 13697 52?20 Peak Deuand 3365 4602 7754 13066 45712 Results show that gas turbir.ea were forced to be installed by max. - min. constraints up to y6er 3. After year 3, the deficiency created is compensated for by an increase in fuel oil capacity. The difference in results is negligible. Conclusion Three kinds of approximations are made: a) The number )f groups is reduced, b) The number )f load duration curve periods is reduced, and c) The number of investment periods is reduced. The only type of plant that can be re-grouped is the hydro. Sensitivity studies showed us that rome hydroa are always in the solution, some are marginal, and some never ii.ter the solution. Groups of hydros that do not enter the solution may zalways be deleted unless the input data changes more than anticipated. Ones that are marginal may be combined with ANNEX V ANNEX IV -7 - the more robust ones in the samre load factor category. However, we iuust be cautLous in uniting groups with large differences in costs. Capital costs seem to be more sensitive to approximations than anything else. In this study we have taken 5 hydro groups, deleting 4 of them. This approximation seems to work very well. Another group that can be deleted without seriously affecting the results is the gas turbines. We have seen that they are installed >d operated only in minimum capacity and peak loads. Approximation in the load duration curve periods changes the solution least. We might have reduced it to 2, but reducing load duration curve periods does not affect the problem size too much because of Z-substi- tutiins. Therefore, 3 periods seei to be suitable. The number of investment periods affects the problem size most. From TEK's point of view, therefore, it is desirable not to have more than 5 or even 4 investment periods. Blocks of 5 years with an end condition of, say, 20 years cover the long range planning period suitably. Reducing the number of investment periods by more thar ^.. might change the results and may have the effect of being incomplete. For TEK, it seems the best system size would be a system with 8 or 9 groups of plants, 3 load duration curve periods, and 4 or at most 5 investment periods. These approximations, according to our view, will yield results within reasonable accuracy. OPTIMUM DEVELOPMENT OF lE3 ELECTRaC POWER SECTOR IN TURKEY ANfNEX V SUPPLKNTARy STUDIES USINrl REVISED DATA February 25, 1972 Orhan Tarkan I BRD Economics Department Transportation and Public Utilities Division AONEX V R5VISION STUDY Purpose of Revision Study 1. TBe purpose of the revision study is to finalize the sen;itivity studies of the draft report with updnted data and thus answer some of the questions and comments made by the readers of the draft report on the validity of data. Comments on Previous Data 2. Various comr nts are made by the readars of the draft report on the validity of data. 7 e main criticisms are as followst 1) Hydro capital costs iust be updated< 2) Some of the hydros that were in the original list and used in the sensitivity studies are deleted because of unfavoraole hydrological or geological conditionis. 3) Many of the hydros that appear in the girst two peri-ds of the sensitivity studies are studied only at reconnaisance level and therefore could not be available for cor.struction bafore 1985. h') Discount rate is now 10.5%. 5) There have been changes in 103d forecasts. 6) Hydro/Thermal balance is only a rough guess and is not based on reliaeility or similar studies. 7) Capital costs of fuel oil and lignite fired plar.ts are not the same. Fuel oil fired plants cost someXiat less. t) Elbistan Lignite deposits cannot be exploitea to full capac:ity before 2985. Maximum lignite cap'city available before 1985 is about 2500 MW. 9) Inherited plant capaciti3s must be revised. Corrections to Data 3. Data on hydros are revised ctmpletely on the basis of new data obtained from TEK. Hydros studied on reconnaisa-Ce level are separated from the rest with constraints that will make them available only after 1985. Hydrv: now reported to be infeasible are eliminated. With these changes a new ranking is obtained which is given in Table 1. 14. Max.-Min. polic;- constraint is applied to the hydro at Ayvacek since it is now under construction. This plant will be available for operation in the first period of the study. 4lso Keban units 5-8 are treated as a separate grc,up. ANNEX V -2- 5. Transmission costs are considered by a method sugge.ted by YK. For every 500 MW capacity a single circuit 380 KV line from plant to the load centroid of system is considered. The cost of line is given as 0.4 MTII/km. The load centroid of the system was previously calculabed to be near Gokcekaya. 6. The new discount rate is taken as 10.5%. Also the new load forecasts obtained from TEK are used. Capacities of plants that are available before 1975 (inherited plants) are modified. Fuel oil fired nlazit capital costs are taken as 90% less than lignite fired plants. 7. Lignite fired plants are separated into two groups ci!e witlh 2500 MW capacity and available before 1985, the other rn2 with 3500 Y.W maximum capacity and available after 1985. Hydro/Theri;al balance is accepted as 45%, a value suggested by IEK. This still is not based on reliability studies but at least is the best value available. Results of Revision Run 8. .he run made with the above data yielded unfeasible solution. Upon investig2tion it was found that 250 1W zapacity of Ayvacek hydro plant which was forced into the solution by constrainits violated another constraint, namely 15% ?i'dro/thernal bularce. Therefore a new hydro/thermal balance which would allow exactly 250 1}i to be installed in period 1 was calculated. This turned out to be 46.20%. The run was -epeated. However, this time the convergence was so slow that the programmie *ias automatically cut before reaching a solution. To obtain rapid eor,vergence hydro/taermal balanced was increased slightly to 46.3%. °. Installation schedule of the solution is presented in Table 3. 10. The above soluxion implies that Ayvacek (250 MW) should be installed between 1975-19PO and Keban 5-8 (600 MW) and Karakaya 1- (1000 MW) between 1980-1985. Res&. of the hydros appear in the sol-u ion after 1985. The nain reason is tne low hydro/thernm1l balance (46.3%). A second .-eason is that many of the reconnoitered schemes will not b. available u.til after 1985. flhere is no sigr...icant change in the total amount of hydro installed in the long-rum, but the effect of tightening the hydro-thermal balance against hydro, plus the other factors, delays their introduction. 11. In the 1980-85 period oil plant is required, in addition to lignite, to keep the rathler high thermal/hydr. balance intact. 2500 MW at Elbistan by 1985 is insufficient to keep the balance to the requir-d level. 12. l[n the long-run, the balanr'e between nuclear and fuel oil is changed slightly in favor of fuel oil due to about 90% decrease in fuel oil fired plant capital costs. - 3 - ANNEX V 1,1. To keep tha hydro/thermal balance in tact all of the available lignite is installed in the first three periods of the study. In the f.rst period more than 1000 MW lignite capacity (Elbistan) is installed. JIl. The rest of the results are comparable with the studies in the main report. ANINEX V - 4 - TABLE 1 AVAILABLE HYDRO CAPACITIES Hydros Available Before 1985 Load Factor: 140% Nanme Capacity () Cost, TI/W Keban 5-8 S! 600 '-10 Kiziltas, 84 1.59 Oymapinar / 540 2.87 Cevizlik II 164 3.10 Tozkoy2% 280 3.35 Inozu - 500 3.85 Tozkoy II 2 560 14.52 Cevizlik I 164 4.62 ;L1ickaya 120 4.89 ,yvacek 250 5.80 ;iatalan V 150 6.10 Soylemez 69 6.55 Xurtun 61 6.74 Load Factor: 60% Karakaya2/ 1500 2.53 Golkoy 2/ 500 2.62 Koprukoy 24 4.42 Ozluce 130 4.89 Balahor 46 5.11 Yahsihv 1-4 51 Ilisu 1 600 5.93 Fethiye 1' 13 7.45 Karacaoren I V/ 22 7.58 Load Factor: 80% Kokluce 2 90 1.53 Karababa_ 800 3.83 * Arerage cost is calculated to be 4.46 MTL/MW. Average cost for the data u8ed in the draft report was 5.62 MTL/MW. It is seen that coats are considerably low in the revised data. - 5 - Table 1 (continued) Hydros Available After 1985 Load E .ctort JsO% Name Capacity (KW) Cost, MT, KW Cat 54 1.26- Cat 4o 1.35 Gurleyik 100 1.53 Kinik 7h 1.67 Bidar I 46 1.72 Sirvan 28 1.76 Akimu 110 1.88 Karatas 40 1.90 Bidar II 36 1.98 Mercan 13 2.09 Nemrut 18 2.13 Karakurt 70 2.14 Bediyaylasi 52 2.19 Taslicay 18 2.26 Kizilagag 60 2.30 Kandil II 103 2.47 Kur 60 2.50 Narli II 18 2.61 Tevarik 20 2.62 Hakkari 111 2.65 Narle I 24 2.71 Xaramenderes 11 2.72 Konaktepe 33 2.72 Kaletepe 52 2.94 Giktas 66 3.03 Eruih 38 3.23 lJzuncayir 71 3.27 Karol 15 3.38 Kazan 27 3.53 Crokceseyh 34 3.55 Asik 10 3.76 Siizt 326 3.81 Birecik 80 3.86 Qolyurt 23 3.88 Pulumur 26 4.00 Kandil I 103 4.13 Kizilsu 12 4.23 Yaylagunu 33 4.58 Galderan 24 4.61 Haskoy 26 4.99 G:Lmenli 39 5.26 Kandil 55 54 Karacaoren II 15 5.79 Sincan 16 6.91 Divrigi 26 7.07 ANNE.X V -6- Table 1 (continued) Hydros Available A'ter 1985 Load Factor: 60% Name Capacity (KW) Cost, MTL/MW Kozluk 16 2.06 Kolc& 29 2.20 Uyurca LO 2.35 Avanos 20 2.35 Batman 53 2.38 Colaktepe 23 2.39 Iskantopag 12 2.50 Feke 56 2.56 Irmakduzu 14 2.57 Palu 78 2.61 Yenikoy 130 2.76 Oizre 51 2.76 Yenice 26 2.79 Damlacek 20 2.80 Tuzkoy 11 2.91 Ilica 26 2.92 Karacukur 42 2.98 Mandua 44 3.00 Alica 10 3.05 Yesilli 11 3.09 Sonya 20 3.09 Anderaz 10 3.10 ?inahmet 21 3.16 Zarbana 12 3.16 Yunusyayla 16 3.25 Dibni 42 3.28 Kovada III 13 3.33 Obruk 50 3.36 Bogum 50 3.40 Olukbasi 19 3.48 Kiziltepe 10 3.50 Metir 13 3.72 Zincirli 16 3.79 Ouzeldere 0 4[.00 Tefen 15 h.03 Bugra 42 4.05 Mus 34 4.18 Kor 30 4.19 Geperdag 15L 4.28 Kuscu 53 4.43 Kargi 76 4.53 Karka3is 52 4.79 Bagistas 186 4.91 Kalekoy 183 4.99 Gaykoy 20 5.10 Garzan 33 5.18 ANNEX V -7- Table 1 (continued) Hydros Available After 1985 Load Factort 60% Name Capacity (MW) Cost, MTLhW $eyhyusuf 30 5.47 Nurhak 16 6.05 Kemah 36 6.o8 Gatalbuhce 13 6.18 Hacihasar. 23 6.35 Oglakpinar 30 6.67 Load Factor: 80% Burgular 14 .64 Akko5y 37 5.00 Aslancih 33 5.30 1/ CostE corrected for irrigation benefits. 7/ Transmission costs added. -8- ANNEX V TABLE 2 - DATA FOR REVISION RUN Gltrancy~~~ 1 1 TT. Discount Rate 0.105 Capital Cost Operating Cost Annual Rate of Initial Avail- Load Max. Coefficient Coefficient Cost Decrease Capacity ability Factor Capacit'y Type Millions/MW MilUions/9Wyr. Capital Operating _W Limit MW Hydro 1 1.16 0.09 0.0 0.0 0.0 0.9 0.4 684.C Hydro 2 3.32 ).09 0.0 0.0 0.0 0.9 0.4 1484.C Hydro 3 5.42 0.09 0.0 0.0 0.0 0.9 0.4 8W4.C Hydro 4 5.80 0.09 0.0 0.0 0.0 0.9 0.4 250.C kHydro 5 2.55 0.09 0.0 0.'b 1829.0 0.9 o.6 2000.C LLL- U 5.66 0.09 v.u u.u u. 0.9 u.6 14. Hydro 7 3.60 0.09 0.0 0.0 0.0 0.9 0.8 890.0 U1,A n n r' A An fA A AA A A 0 'I It' r A Yv2to 8 2.45 0~~~ ~ ~~~~~~.09 00 .0.0 .9 0.4 16. Hydro 9 3.85 0.09 0.0 0.0 0.0 0.9 0.4 656.0 14vdro 10 5 12 0.09 0;0 0.0 0.0 0.9 0.14 192.0 Hydro 11 2.84 0.09 0.0 0.0 0.0 0.9 o.6 1002.0 Hydro 12 4.64 0.09 0.0 0.0 0.0 0.9 0.6 9h7.o Hydro 1) 5.07 0.09 0.0 0.0 0.0 0.9 0.8 81.0 G/T 2.00 1.40 0.0 0.005 120.0 0.9 1.0 99999.0 Fuel Oil 2.40 0.90 0.02 0.005 847.0 0.9 1.0 99999.0 Lignite 1 2.60 o.42 0.02 0.005 960.0 0.9 1.0 2500.0 Lignite 2 2.60 o.42 0.02 0.005 0.0 0.9 1.0 3500.0 Nuclear 6.50 0.26 0.03 0.005 0.0 o.8 1.0 99999.0 Peak Reserve Requireents ( Of Peak Dmanajd) 0.05 rn i eg+te Rvyor rAnnseri. in anrv YAr (1 Of PQk TLndni):t 1.4- ..0 - 5 ~~~~~~~~~~~~--d - --%- ---- *LfP-) Periods of Loads in MW Load Duration HIours/ Curve rear 1978 1983 1988 1993 1998 2005 ; 526 4,0 -7740 130''a 2201 A^' 770'28 2 2540 3406 5864 9902 16686 28117 58376 3 2r^4A 277. 1.37 e 7O4r I ' 5 2LI. 1.4n1f 4J &6.J 2.L 419-... I7 7%.'V -L46j 141J7,)' 14 2628 2020 31493 5902 99146 16760 314797 ANNEX V -9 TBLE 2 (Continued) Max - Miin Policy Constralnts Min. Capacity Max Capacity Type Vintage 1bd 1dW Fydro U 1 250.0 250.0 Hydro 8 1 0.0 0.0 2 0.0 0.0 Hydro 9 1 0.0 0.0 2 0.0 0.0 H'dro 10 1 0.0 0.0 2 0.0 0.0 Hyd-o 1 1 0.0 0.0 2 0.0 0.0 ydro 12 1 0.0 0.0 2 0.0 0.0 HYdr- 13 1 0., 0.0 2 0.0 0.0 Gasturbin-ss 1 0.0 2.30.0 2 100.0 390.0 3 200.0 650.o 4 360.0 1110.0 5 600.0 1580.0 6 1600.0 3580.0 Lignite 2 1 0.0 0.0 2 0.0 0.0 - 10 - TABLE 3 Inatalled Capacity (MiW) Type 1975 1978 1983 1988 1993 1998 2005 Hydro 1 0 5 595 0 0 0 0 flRdro 2 0 0 0 0 1484 0 0 ffidro 3 0 0 0 0 0 0 0 HFdro 4 0 250 0 0 0 0 0 Hydro 5 1829 0 905 1095 0 0 0 Hydro 6 0 0 0 0 0 0 0 Eydro 7 0 0 0 890 0 9 0 Hgyro 8 0 0 0 0 1366 0 0 Hydro 9 0 0 0 0 656 0 0 Hydro 10 0 0 0 0 0 0 0 Hydro 11 0 0 0 481 521 0 0 Hydro 12 0 0 0 0 0 0 s Hydro 13 0 0 0 0 81 0 0 Gas/T 120 210 100 200 360 600 1600 Fuel Cii 847 0 709 148 3894 7440 8875 Lignite 1 960 1029 1470 0 0 0 0 Lignite 2 0 0 0 3500 0 0 0 Nuclear 0 0 0 0 2341 10752 40619 Total by Groups (MI) Type 1975 1978 1983 1988 1993 1998 2005 All ydEro 1829 2084 3584 6050 10158 10158 10158 Gae/T 120 330 430 630 990 1590 3190 Oil 847 847 1556 1604 5499 129'18 21814 Lignite 1 960 1989 3460 3460 3160 3460 3460 Lignite 2 0 0 0 3500 3500 3500 3500 Nuclear 0 0 0 0 2341 13093 53712 Total 3156 WA 9030 15244 25948 44739 95834 Peak DeaMnd 13066 22018 37101 77028 FG. f /AS7T4-iL C*/~Clry ///r _ / / / / L 'S ~ L It. ~ I C1.1. / ;, 3 4L .5 pe'f/oc/s G ^/2 X / 774C n i&6& L /3 ! 6R7 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I-/ l _ ; F ff2~~~~~~~~~,LiLi+ o 77C2e' hc a, 6$ vJ^e/Q + ~3'7/ c/ n>f8 l22c4 T id oY I Tsi C/te L,a 'r' Ce.^u ec ci~~~~~~~~~~~~~~~~~~~~~~~~~~~~n /Vae-(ea Rta 0 j'74 c6 c /rvuS,~~~~~~~~~~~~~~~~~~~~~~~~~~f 6ct h<' ANNEX V - 11 - A SIORT TERM RUN 15. This is a trial run, an attempt to utilize the model for short term studies. There are 9 investment periods, the first 6 of which are of 1 year duration. The others are of 5, 5 and 15 years duration. There are 12 groups of plant 7 of which are hydros. For simplicity hydro groups which were not in the solution of the revision run were eliminated. 16. Constraints were put on all hydros. Ayvacik is forced to enter t]he solution with full capacity (250 ?iW) at 1978. According to the results of the revision run all othpl hydros are restricted to years after 1979. 210 MW of gas turbine is also forced in 1978 and a free choice .-. *-ven thereafter. A free choice is also given to lignite group 1 on year by year basis. It's maximum capacity howc7qr is restricted to 2500 MW. The remaining assumptions and restricUions with the exception of hydro/thermal balance are the same as those in the revision run. 17. Hydro/thermal balance here poses an important problem. For the first two years of the study it is not possible to justify 1829 MW vi inherited h:rdro capacity with a 46.3% hydro/thermal balance. In 1975 for example 1829 MW of hydro are on the system, when demand is expec'ed to be 3200 W,. implying a balance of 57%. Therefore there is a contra- diction between the revised data and present plans. This contradiction can be removed through reserve and reliability 'tudies. For the present study a balance of 60% is assumed. This is in fact the ratio which TEK are assuming over these years in their present plans. The data are given in table 4. 18. Results for the total study are presented in table 5. They inc'icate as beforethe installation of lignite of capacities 450-500 MW, starting in 1970. Tne ranking and sequence of hydro projects also remains the same. ANNEX V - 12 - Tible 4 Currency $1 -1S TL DiFcount Rate " 0.105 Type Capital Cost Operating Cost Annual Rate of Initial Availa- Load Max Coefficient Coefeicient Cost Decrease Capacity Jility Factor Capa- }illaons/?W Millions/Mi Yr. Capital Operating 1W Limit city )'M Hydro 1 l.,O 0.09 0.0 0.0 0.9 0.4 6oo. Hydro 2 3.32 0.09 0.0 0.0 0.0 0.9 0.4 1484.o Ayvac±k <.8o 0.09 0.0 0.0 0.0 0.9 0.4 250.0 i7J-vro 4 2-55 0.09 0.0 0.0 1829.0 0.9 0.6 2000.0 Hydro 5 3.§ 0.09 0.0 0.0 0.0 O.? CA. 890.0 Hydro 6 2.25 0.09 0.0 0.0 0.0 0.9 o.4 1366.0 Hydro 7 2.84 0.09 0.0 0.0 0.0 0.9 o.6 1002.0 G/T 2.00 0.0 n -eo, 122.0 0.9 1.0 99999.0 Oil 2.o0 0.90 0.02 0.005 847.0 0.9 1.0 99999.0 Lignite 1 2.6O 042 0.02 0.005 960.0 0.9 1.0 2500.0 ignite 2 2.60 0,42 0.02 0.005 0.0 0.9 1.0 3500.0 Naclear 6.50 0.26 0.03 0.005 0.0 0.8 1.0 99999.0 Peak Rcserve Requirer-ei 's (% of Peak Denand) - 0.05 Mas. Aggregate Hyd-ro Capacity in any year (% of Peak Demand) 0.6$ Periods of Load Dtiration Hours/ Curve Year 1975 1976 1977 1978 1979 1980 1983 1988 1996 2. 526 3200 3600 4030 4500 5030 5600 7740 13066 30110 2 2540 2122 2725 3051 3406 3808 4239 5864 9902 22793 3 3066 1947 2191 2453 2738 3062 3408 4715 7960 18325 4 2628 1W53% 1615 1808 2018 2257 2512 3493 5902 13505 ANNEX V - '13 - Table 4 (Con.Anued) Max. - Min. Policy Constraints .Fpe Vintage Kin. Capacity M(ax. Capacity Kw a Hydro 1 1 - 5 .0.0 0.0 1ydro 2 1 - 5 0.0 0.0 Ayvacik 1 - 3 0.0 0.0 4 250.0 250.0 ydro 4 1 - 5 0.0 0.0 Hydro 5 1 - 5 0.0 0.0 Hydro 6 1 - 5 0.0 0.0 Hydro,7 1 - 5 0.0 0.0 (/T 1 - 3 0.0 0.0 4 210.0 210.0 Oi 1 - 5 3.0 0.0 Lignite 2 1 - 7 0.0 0.d Nhclear 1 - 7 0.0 0.0 ANIEX V -:.4- Table 5 Inntalled Capacity (MW) Type 19714 1975 1976 1977 1978 1979 1980 1983 1988 1996 Ny>dro 1 0 0 u0 0 0 600 0 0 0 igydro 2 0 0 0 0 0 0 0 0 0 1484 &yvacik 0 0 0 0 250 0 0 0 j 0 Hy*ro 4 1829 0 0 0 0 0 65 1900 35 0 Rydro 5 0 0 0 0 0 0 0 0 793 97 Ri'dro 6 0 0 0 0 0 0 0 0 1366 0 fydro 7 0 0 0 0 0 0 0 0 1002 0 G/T 120 0 0 0 210 10 0 0 0 0 Oil 847 0 0 0 0 0 0 0 0 3210 Lignite 1 960 4 440 502 88 518 0 597 0 351 LI nite 2 0 0 0 0 0 0 0 0 3018 482 Nuclear 0 0 0 0 0 0 0 0 0 16043 Type Total by Groups (MW) Type 1974 1975 1976 1977 1978 1979 1980 1983 1988 1996 JOI Hvdro ±A29 1829 1829 1829 2079 2079 2744 i644 7840 9421 G/T 120 120 120 120 330 430 430 430 430 430 Oil. 847 847 847 847 847 847 847 847 847 4057 Ligatte 1 960 964 1404 1906 1994 2q512 2512 3109 3109 3460 LUgaite 2 0 0 0 0 0 0 0 0 3018 3500 Nuclear 0 0 0 0 0 0 0 0 0 16043 To .al 3756 * 60 420 402 &3 5868 6533 9030 152b, 36911 Peak Deaand 000 3600 4630 %56o 5030 5600 77.j0 13066 30110 V W ARM V3 sfr TLsR ( rNrete. C)2PtrV A v C 7t.o I' / zz 1) 1 .2 eoooD/ Jeo o S / / 6/T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I / ~ ~ ~~~~p'~c /T