Policy Research Working Paper 9143 The Nitrogen Legacy The Long-Term Effects of Water Pollution on Human Capital Esha Zaveri Jason Russ Sébastien Desbureaux Richard Damania Aude-Sophie Rodella Giovanna Ribeiro Water Global Practice February 2020 Policy Research Working Paper 9143 Abstract The fallout of nitrogen pollution is considered one of the several statistical checks. Because adult height is related to largest global externalities facing the world, impacting air, education, labor productivity, and income, this also implies water, soil, and human health. This paper combines data a loss of earning potential. The analysis begins within an from the Demographic and Health Survey data set across assessment in India, where the data are more available, and India, Vietnam, and 33 African countries to analyze the is then extended to geographic settings including Vietnam causal links between pollution exposure experienced during and 33 countries in Africa. The results are consistent and the very earliest stages of life and later-life health. The results show that early-life exposure to nitrogen pollution in water show that pollution exposure experienced in the critical can lower height-for-age scores during childhood in Viet- years of development—from birth until age three—is nam and during infancy in Africa. These findings add to the associated with decreased height as an adult, a well-known evidence on the enduring consequences of water pollution indicator of overall health and productivity, and is robust to and identify a critical area for policy intervention. This paper is a product of the Water Global Practice. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted at ezaveri@worldbank.org, jruss@worldbank.org, rdamania@worldbank.org, sebdburo@gmail.com, and arodella@worldbank.org. The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent. Produced by the Research Support Team The Nitrogen Legacy:   The Long‐Term Effects of Water Pollution on Human Capital1 Esha Zaveri, Jason Russ, Sébastien Desbureaux, Richard Damania, Aude‐Sophie Rodella,  Giovanna Ribeiro  Keywords: Water Pollution, Health, Nitrogen  JEL Codes: O13, O15, Q15, Q25, Q54  1 This research was part of the World Bank report titled Quality Unknown: The Invisible Crisis of Water Quality. We are grateful to Kelly Baker and seminar and conference participants at the International Food and Policy Research Institute (Delhi), Center for Policy Research (Delhi), Indian Statistical Institute (Delhi), the annual meetings of the Association of Environmental and Resource Economists (AERE) (2019), and the Workshop on Environmental Economics and Data Science (TWEEDS) (2019) for helpful feedback. Ali Sharman provided excellent research assistance. All errors are our own 1. Introduction  A hundred years since the ingenious experiments in nitrogen fixation by Haber and Bosch,  which resulted in the development of the first nitrogen‐based synthetic fertilizers, the fallout of  nitrogen pollution is considered one of the most important environmental issues of the twenty‐ first century (Kanter, 2018). Recent studies suggest that nitrogen may be the world’s largest  global externality, due to its effects on human health and the environment (Keeler et al. 2016).  The world has also surpassed the planetary boundary for nitrogen‐‐ a level of human  interference beyond which environmental damage increases dramatically and possibly  permanently (Steffen et al. 2015).      In water, excess reactive nitrogen can promote the growth of algae, which can trigger toxic  blooms that can kill fish, and nitrate in drinking water can harm human health. It is one of the  few water pollutants that is trending upwards nearly everywhere, including in developed  countries like the United States, despite strong regulation (Keiser and Shapiro 2018). The legacy  effects of nitrogen pollution on the environment are likely to endure decades after nitrogen  inputs have ceased, with long time lags between the adoption of conservation measures and  any measurable improvements in water quality (Van Meter et al. 2018).2 In humans, the health  impacts can be acute, causing infant death due to methemoglobinemia, or the blue baby  syndrome, that reduces the blood’s ability to transport oxygen.3  However, causal evidence for  the long‐term and legacy health impacts of early‐life exposure to nitrogen pollution is still  limited.      This paper addresses this gap by examining the impact of nitrate‐nitrogen pollution on height  and well‐being in India, along with supporting evidence from Vietnam and 33 countries in  Africa. India provides a compelling setting in which to study the impacts of water pollution  caused by nitrate‐nitrogen.  The Green Revolution, starting in the mid‐1960s, was a watershed  moment in Indian agriculture. Along with a rapid increase in agricultural productivity, it also led  to a dramatic rise in the consumption of synthetic nitrogenous fertilizers such as nitrogen‐ phosphate‐potassium (NPK). The five‐fold rise in the use of NPK fertilizers per hectare of  cultivated land since the mid‐1960s resulted in profound changes to the nitrogen cycle with  impacts on India’s waters — runoff of excess nitrogen from fields increased concentrations of  nitrate in the waters to unsafe levels (Fields, 2004).  But agriculture is just one of the sources of  nitrogen pollution. According to the first‐ever decade‐long nitrogen assessment conducted for  India by the Indian Nitrogen Group (ING), a voluntary body of more than 100 scientists and  2 For instance, even if runoff of nitrogen was fully stemmed, it will still take 30 years to realize the 60% decrease in load needed to reduce eutrophication in the Gulf of Mexico (Van Meter, 2018). 3 This health hazard was responsible for triggering the creation of drinking water standards for nitrates at 10 parts per million. Note that 10 mg/L as nitrate-nitrogen (NO3-N) is approximately equivalent to the World Health Organization (WHO) guideline of 50 mg/L as NO3. 2 other stakeholders, sewage and organic solid wastes are some of the fastest growing sources of  nitrogen pollution in the country (INA, 2017).     Most previous work that provides causally interpretable estimates has primarily focused on  short‐run and immediate birth outcomes (Brainerd and Menon, 2014; Jones, 2019).4 These  studies show that early‐life exposure to nitrogen‐related pollution can lead to infant mortality  (Brainerd and Menon, 2014) and low birthweight (Jones, 2019). The well‐established fetal  origins literature suggests that intrauterine health impacts can lead to lasting health damages,  and that low birthweight is associated with shorter height in adulthood (Barker, 1990; Almond  and Currie, 2011; Currie and Vogl, 2013; Christian et al., 2013; Almond, Currie and Duque,  2018). And low birthweight is a well‐known marker for many health problems later in life,  including coronary heart disease (Barker 1995), decreased glucose tolerance (and thus a higher  propensity for obesity) (Ravelli et al. 1998), and increased rates of all‐cause mortality (Risnes et  al. 2011). Still, there has been no attempt to quantify the full extent of health damages,  especially the irreversible and lagged human capital impacts, as a result of nitrogen pollution in  water.   Evidence for lagged human capital impacts in environmentally vulnerable and poor locations is  severely limited due to the paucity of longitudinal data that can trace long‐term impacts. This is  particularly challenging for water pollution, since monitoring of water quality is sparse in space  and time and is site‐specific.  In this paper, we exploit temporal and geographic variation in  nitrogen pollution exposure with a newly constructed database of water quality that combines  in situ monitoring station data with a geospatial statistical model for stream networks  developed by ver Hoef and Peterson (2010). We carefully integrate early‐life exposure to  nitrogen pollution between the critical years of development – from the period of birth up until  year three – with women’s health outcomes, climatic factors, correlated pollutants, household  inputs and other socioeconomic demographics for our analysis.   Our research design exploits the direction of river flow and the upstream‐downstream  geographic relationship used in past literature (Do et al. 2018; Garg et al. 2016) to estimate a  pollution‐health relationship. Because the costs imposed by water pollution are largely felt in  downstream regions, the analysis focuses on the impact of upstream pollution on health  outcomes in downstream regions. To isolate the average pollution spillover at downstream  locations, the analysis uses a rich set of controls. These are meant to control for time‐invariant,  location‐specific characteristics such as local soil quality and natural resource endowments, as  well as factors that vary by year and month, such as weather, and national trends in economic  4 A number of biomedical and epidemiological studies in the United States and other countries have documented a relationship between agrichemical exposure and birth defects such as Down’s syndrome and Spina Bifida, especially for children conceived during the crop-sowing months, and among children of agrichemical applicators who are consistently exposed to toxins. 3 output and technological development. The analysis also controls for time‐varying factors that  are specific to states to capture state‐level policies. To ensure that later‐life health outcomes  are measured in the same location of conception and birth where exposure occurred, the  sample is restricted to individuals who have never migrated from their place of birth. In this  way, our empirical strategy controls for a wide number of potential confounders in an effort to  identify causal effects. To test for external validity, similar analyses are conducted in  geographies outside India ‐ Vietnam and 33 countries in Africa.  Our results find that nitrogen exposure experienced by infants can have durable, long‐term  impacts that stretch well into adulthood.  In India, women exposed to nitrogen pollution in  their earliest years of life are shorter on average in adulthood than women of similar  circumstances who were not exposed to such pollution. Early‐life exposure to nitrogen  pollution also lowers later‐life labor productivity and depresses adult wages, decreasing overall  welfare. This finding is robust to several sensitivity and falsification tests. Analyses across  different geographic settings in Vietnam and Africa that measure the impact of nitrogen  pollution during early‐life provide further supporting evidence for the results found in India.  Taken together, this paper provides new evidence that early‐life exposure to nitrogen pollution  has enduring and irreversible costs on human capital, with decreases in height observed across  different life‐stages: in adulthood (India), in childhood (Vietnam), and in infancy (Africa).   The rest of the paper is organized as follows. In Section 2 we describe the health and water  quality data, the construction of the main variables used in the analysis as well as the  procedure we use to match the health data to upstream pollution. Section 3 outlines our  empirical strategy and Section 4 discusses the results. Robustness checks are provided in  Section 5. Section 6 investigates the external validity of the results reported for India in other  geographic settings such as Vietnam and Africa. Section 7 discusses the plausible mechanisms  linking nitrogen pollution to height impacts, and Section 8 concludes.    2. Data  In this section, we describe the data sources that were used in the empirical analysis, and the  construction of the main variables in the analysis.  2.1 Health Data   The data on our outcomes of interest come from the fourth round of the National Family and  Health Surveys (NFHS) conducted in India. The NFHS is the Demographic and Health Survey  (DHS) equivalent in India. The survey was conducted between January 2015 – December 2016  and covered all areas of the country.  In a departure from the previous DHS surveys, the sample  for this survey was designed to be representative at the district level.  Close to 600,000  households were interviewed which included 0.7 million eligible women in the age group 15‐49.   4 The main variables in this analysis come from the woman’s questionnaire where a number of  anthropometric measures are collected.   We make use of adult height as our main health variable. The micro‐econometric literature  often uses adult height as a proxy indicator for overall health and long‐term adult well‐being  since it reflects the accumulation of shocks to health through childhood and adolescence.  A  rough consensus drawn from this literature is that an improvement in health associated with a  1‐centimeter increase in adult height raises productivity by 3.4 percent (Kraay, 2018).  Respondent’s height is reported in centimeters in the DHS data.   The DHS also records how long the individual has resided in the current location. We utilize this  information to restrict the sample to only those women whose birth‐place coincides with the  current location. This allows us to guard against the possibility of mis‐measuring exposure to  nitrogen pollution if the woman was born in a different location than the location in which she  currently resides.  We trace the birth‐year histories of all adult women ranging from 1966 to  1999, a period when the effect of the Green Revolution was already in force yet nitrogen  fertilizers were still increasing in use.       2.2 Water Quality Data   The Central Water Commission (CWC) within the Ministry of Water Resources monitors data on  ambient water quality throughout the country. We compile and harmonize a rich data set of  water pollution measurements between the years 1963‐2017 along a network of 375 river  monitoring stations throughout India. Many gaps in the data exist since the pollution measures  are not consistently recorded over the entire sample time frame and the panel is unbalanced.  Over the 1963‐2017 period, 75% of water quality data are missing (60% between 1986‐2017).  To circumvent these problems, we build on a new class of spatial statistical network model for  stream data to interpolate and fill in missing observations across monitor‐year pairs (ver Hoef  and Peterson, 2010). The model takes advantage of the fact that water quality in a station  downstream depends on environmental conditions and human activities upstream of the  station, and on the water quality “received” from upstream (directed network).  Therefore,  spatial covariates in a well‐defined upstream area and the spatial dependence between  observations based on stream distance allow to model water quality and predict it in  unsampled locations. We train such model to fill‐in missing observations. We then collapse  monitor level observations to the district level. A more complete description of the model is  provided in Appendix 1.  We focus on cumulative exposure to nitrate‐nitrogen when the concentrations exceed safety  thresholds of 10mg/l from the year of birth to age 3. Prior work suggests that the first 1,000  5 days of a child’s life are the most critical for early childhood development and for determining  whether a child will grow up stunted. It has also been shown that height at age three strongly  predicts adult height (Maccini & Yang, 2009). Lower height‐for‐age scores can lead to severe  consequences for cognitive development, overall health, and even socio‐economic conditions  that carry into adulthood.   We assign each woman a fractional measure of the share of years exposed to high levels of  nitrate‐nitrogen between the year of birth and age 3 in the district where she was born. Since  districts have split over time, we use parent districts to allow comparability across time.  We  then compare later‐life health outcomes among cohorts with more and less pollution exposure  after accounting for a rich set of controls.     Even though direct measures of drinking water quality are unavailable, in‐situ monitoring data  serve as a reasonable proxy for proximate levels of nitrates in drinking water. This is because  nitrates are notoriously expensive and difficult to clean out of water, and cannot be sufficiently  treated using conventional methods.5 Evidence from a slew of countries around the world,  including Morocco, Niger, Nigeria, Senegal, India, Pakistan, Japan, Lebanon, Philippines, the  Gaza Strip and Turkey, show that nitrates in drinking water often cross conventional safety  thresholds (Ward et al., 2018).6     2.3 Additional Controls  We control for both average rainfall in millimeters and average temperature in degrees Celsius  as these have been shown to impact adult outcomes (Maccini and Yang 2009, Fishman et al.  2019, Hyland and Russ 2019) and are known to also interact with nitrate loadings in waterways  (Zheng et al. 2016). These are obtained from the Indian Meteorological Department. In some  specifications, we also control for fecal coliforms from the CWC data set. They are an oft‐used  measure of domestic pollution, and are a major focus of water supply, sanitation, and hygiene  (WASH) operations. It is measured as the “most probable number” of coliform organisms per  100 mL of water (MPN/100 ml, reported in thousands).     5 Indeed, even in the United States, the percentage of public water systems that have violated safety limits for  nitrates in drinking water has increased in the 15 year period between 1994 and 2009, due to the difficulty of  coping with the rising nitrate pollution and the concomitant rise in the costs of water treatment (Ward et al. 2018). 6 In Senegal, studies have recorded nitrate-nitrogen levels going beyond 40 mg/l, more than 4 times the safety limit for NO3-N. Extremely high levels of nitrate have also been reported in the Gaza Strip, where nitrate reached concentrations of 500 mg/L NO3 in some areas (10 times the safety limit for NO3), and more than 50% of public- supply wells had nitrate concentrations above 45 mg/L NO3. Other site-specific studies in India have found nitrates in drinking water supplies to be particularly high in rural areas, where average levels are reported to be between 46 mg/L NO3 and 66.6 mg/L NO3 with maximum levels exceeding 100 mg/L NO3 in several regions. 6 2.4 Matching Health Data to Water Quality Data  The primary challenge to evaluate the pollution‐health relationship is the endogeneity of  pollution exposure. Pollution is not randomly assigned and is often the byproduct of productive  activities. In the case of nitrates in the water, it is largely a byproduct of intensive agriculture  and untreated urban waste. Thus, a naïve approach which examines impacts of local pollution  on local impacts will likely conflate the positive effects of increased production with the  negative externalities of water pollution, and underestimate the latter’s effect. To circumvent  this bias, we construct a measure of upstream pollution using the geography of river flow.  Similar techniques to identify upstream‐downstream relationships have been applied in recent  economics literature (Garg et al., 2018’ Do et al., 2018 and Keiser, 2018). This choice is  predicated on the fact that the decision to pollute upstream is orthogonal to downstream  health, while geography dictates that pollution flows downstream.   We make use of a digital elevation model from the Shuttle Radar Topography Mission (SRTM)  mission to identify the direction of stream flow and to track upstream and downstream through  surface waters in India. We link the districts in our sample to all other districts that are  upstream from it as connected by the stream network as shown in Figure 1. Since water quality  decays over time, we bound the distance between upstream and downstream district‐pairs  such that the upstream district is the closest upstream district, and up to 300 km apart.  For any  given downstream district, we then calculate the average concentrations of nitrate‐nitrogen  pollution in the upstream districts.     2.5 Data for Vietnam and Sub‐Saharan Africa  To test for external validity of the results from India, we also measure the impact of nitrogen  pollution on health in other geographic settings: Vietnam and 33 countries in Africa.   Data for Vietnam   The water quality data come from the Mekong River Commission (MRC), which collects data for  four countries (Cambodia, Lao PDR, Thailand, and Vietnam) spanning the years 1985‐2010, and  cover the main tributaries of the Mekong River.  Our health data come from the latest Vietnam  Living Standards Survey (VLSS) of 1997–98 where we focus on the health outcomes of children  aged 4 to 12 years. The VLSS 97–98 was a nationally representative survey that sampled almost  6,000 households across the country. For each member of the surveyed household, the survey  contains information on gender, year of birth, age, and anthropometric outcomes. At the  household level, information is available on the ethnicity of the household head and the  province of residence. Our sample is restricted to those who have always resided in the same  place. Because nitrate‐nitrogen levels in Vietnam are relatively lower, exposure to nitrate  pollution is examined at levels that are above the 75th percentile in the distribution, or roughly  7 2 mg/L. Following a similar methodology described in section 2.4, each VLSS commune is  matched to its upstream pollution counterpart.    Data for Sub‐Saharan Africa  We use data from 90 Demographic and Health Surveys (DHS) spanning a period of 23 years to  account for all child and household variables presented in the analysis. Figure 2 shows the 31  countries included in the analysis from Sub‐Saharan Africa, as well as Morocco and the Arab  Republic of Egypt. The dots represent the approximate locations of the communities where  households in the survey live. We focus on anthropometric measures of children up to 5 years  of age. We convert children’s heights into Z‐scores using the WHO growth standards (WHO  2006). Doing so allows us to assess child height relative to well‐nourished children of the same  age and sex. For our main outcome variable, we use height‐for‐age Z‐score (HAZ) and low HAZ  (i.e. HAZ below ‐2), which reflects stunting. Water quality data come from a machine learning  algorithm presented in Damania et al. (2019). Each birth record is then matched to nitrate  pollution flowing from urban centers that are farther upstream. These urban centers were  identified using data of urban agglomerations from Africapolis (OECD/SWAC (2018)).      3. Empirical Methods   To estimate the long‐run health impacts of childhood exposure to nitrogen pollution, the  research design exploits quasi‐random variation in exposure to nitrogen pollution experienced  by different birth cohorts in different districts. Specifically, the analysis compares height  outcomes between exposed and non‐exposed cohorts, controlling for average differences in  these outcomes across birth years and across districts.  The estimating equation for individual‐ level outcome  of person   during time  and born in district  and state  is presented below.   , 3              (1)  , , where superscript U denotes upstream, is the fraction of years from the time of  birth to age 3 that individual i was exposed to nitrate‐nitrogen levels from upstream areas that  exceeded safe limits in their birth district d. It serves as a measure of cumulative pollution  exposure in early life during generally accepted critical periods for biological growth and  development.  These values are recorded from upstream districts exploiting the natural flow of  rivers and the fact that pollution flows downstream even as the decision to pollute upstream is  orthogonal to downstream health. In this way, we exploit quasi‐random variation in pollution  that originates upstream and yet flows downstream to other districts. The analysis then uses  these spillovers to ascertain how much of the health impact persists in the next district  downstream of pollution incidence.   8 The analysis compares later‐life height among cohorts with duration of nitrate‐nitrogen  exposure, controlling for birth year, birth month, district fixed effects and state‐trends. In this  way, the analysis exploits within‐district variation in birth timing relative to pollution exposure  to identify .    The birth‐year and birth‐month fixed effects ( ) are included to account for age effects in  health outcomes as well as unobserved national or seasonal shocks such as macroeconomic  conditions or seasonal weather patterns, which might otherwise confound the relationship  between pollution exposure and height.  Similarly, district fixed effects are included to control  for any time‐invariant unobservable differences between districts that can affect health. For  example, access to local nutrition programs is one such factor that may be constant across  individuals born in the same location. The analysis also includes state‐trends ( ) to flexibly  control for heterogeneous changes in demographic factors, technological progress in  agriculture and other policies that differ across states.   A number of other district and household specific variables are included in the analysis.  are  a vector of district time‐varying variables (include temperature and precipitation and  concentrations of other water quality indicators like fecal coliform).  are controls for  household characteristics such as religion and caste that are salient to the Indian context.  Lastly, we use cluster‐robust standard errors to account for within‐district clustering of errors  and arbitrary correlation of observations across time. Our baseline specification, therefore,  compares two women from the same district who are subjected to different levels of nitrate‐ nitrogen exposure based on their year of birth, over and above any unobserved shocks to  height that vary by the year of birth, and any long‐run trends (or annual patterns) in height in  the state of birth.   Thus, following established statistical methods in applied economics, the relationship between  water pollution and height (  is identified by removing any confounding differences  attributable to location and time. The reduced‐form relationship provides a causal estimate of  the health damages caused by downstream spillovers of pollution, adding to related work on  pollution spillovers by Do et al. (2018), Garg et al., (2018), Keiser and Shapiro (2018), Lipscomb  and Mobarak (2017) and Sigman (2002, 2005). Further, since the identification strategy uses  multiple exposure events over time and space, it alleviates concerns that the results are being  driven by confounding factors to health that may be correlated with single events.   So far, our estimation strategy allows us to quantify the persistence of water quality impacts in  downstream districts by focusing on downstream spillovers. We are also interested in the  within‐district externality: to what extent does nitrogen pollution within a given district affect  health outcomes in the same district?  To address this question, we instrument local pollution  concentrations in a given location and time with upstream concentrations. This effectively uses  variations in local water quality that are induced by exogenous upstream concentrations. The  9 validity of this approach rests on the assumption that river flow is unidirectional and pollution  from far away distances affects health, but only through its effect on local pollution  concentrations.  The first‐stage (equation (2)) and second stage (equation (3)) of the two‐stage  least squares strategy are presented below.   , 3 , , 3   ′ ′    ′  ′ ′ ′ ′         (2)  ,            (3)  Coefficient  in equation (3) gives us the estimated impact of pollution exposure on health in  the average district. Together with the spillover health impact in downstream districts  estimated in equation (1), we are able to measure the full external health costs imposed by  pollution.  It is important to highlight that this paper does not include a structural model that describes  the mechanism(s) for our baseline results. Therefore, we interpret our main result as a reduced  form relationship between nitrogen pollution and adult health. We provide discussion on the  possible mechanisms in Section 7.     4. Results  Summary statistics are provided in Table 1. About 3% of the sample experienced high levels of  nitrate‐nitrogen pollution in water (exceeding 10 mg/l) in the year of birth and on average  women were exposed to high levels of nitrate‐nitrogen pollution for 2% of their lives up to age  three. Table 2 presents the main results from estimating equation (1). Column (1) presents  results from the preferred specification. We find that exposure to nitrate pollution that exceeds  safety standards over the entire period decreases height by 2.24 centimeters. At the mean  fraction of early life exposed to pollution, this decrease in height is 0.5 centimeters. Columns  (2), (3) and (4) use an indicator for high‐level exposure in‐utero, in the birth year and at age one  rather than a cumulative measure of exposure. The results show a lowering of height with  exposure but these effects are not  significant compared to the effect from cumulative  exposure in column (1).  Column (5) includes an indicator for whether concentrations of fecally  derived bacteria related to poor sanitation from upstream locations are above desired limits  from the time of birth to age three, to confirm that it is not this correlated water quality  indicator that is driving the result. Exposure to nitrogen pollution continues to be statistically  significant, and the magnitude is even higher. This suggests that exposure to nitrogen pollution  matters for health in addition to exposure from excreta‐related bacteria.  In Column (6), stricter  control of birth month‐by‐birth year fixed effects are included to control for unobserved factors  that are constant across all individuals born in the same year and month. Results are  qualitatively similar. The results show that exposure to nitrate pollution that exceeds safety  standards over the entire period decreases height by 1.96 centimeters.    10 So far, the results have focused on the persistence of water quality impacts in downstream  areas by measuring the direct spillover externality imposed by upstream pollution. In Table 3,  we provide the estimated impact of the within‐district externality by measuring the impact of  pollution on health in the same district using the 2SLS procedure outlined in equations (2) and  (3).  The first‐stage is strong across all columns and the upstream concentrations are significant.  When local concentrations are instrumented with upstream pollution levels in the second‐ stage, all specifications yield statistically significant estimates of the pollution impact and the  effect of nitrogen pollution in water on height is negative, and large in magnitude. Diagnostic  statistics for instrument relevance such as the Kleibergen‐Paap F (Kleibergen and Paap, 2006)  statistic show that the instrument is very strong. The F‐statistic exceeds the Stock‐Yogo (Stock  and Yogo, 2005) weak identification critical value for 10% maximal instrumental variables size.7   The point estimates from the 2SLS procedure are relatively much larger than the corresponding  downstream spillover impact in Table 2, supporting the logic that as water pollution decays  with river flow and time, the downstream impacts are likely to be smaller in magnitude than  the within‐district health impact. The results show that exceeding the nitrate‐nitrogen safety  standards over the entire period decreases height by 2.81 centimeters.   Because adult height is associated with income, this implies a productivity loss of around 7%  using decrease in height estimates under full exposure derived from column 1 and using  estimates of the economic returns to height assumed in the World Bank Human Capital Project  (Kraay, 2018).  When using estimates of a decrease in height under mean exposure derived  from column 1, this translates into a 1.7% fall in productivity or earning potential.8    5. Robustness Checks  We carry out several robustness exercises to further corroborate our baseline results.   In order to examine the possibility that these results are driven by spurious spatial or temporal  patterns, the analysis is subjected to falsification tests. The first test involves re‐estimating  equation (1) while replacing each individual’s exposure condition with exposures that occur for  6 different four‐year periods before or after birth up to age 9. The resulting coefficient  estimates are plotted in Figure 3 against the different window periods of exposure.  All the  7 Baum et al. (2007) and Bazzi and Clemens (2013) provide explanations of these tests. 8 As a robustness check, we also make use of the Indian Human Development Survey (IHDS) to measure the impact of early-life exposure to nitrogen pollution on later-life wages using a similar methodology described in Section 2. The IHDS is a nationally representative survey. The survey provided a more complete recording of men’s earnings that we use as our main variable of interest. In unreported results, we find that full exposure in early-life decreases wages in adult life by 9%, on average, providing direct proof of the impact on labor productivity. 11 “shifted” coefficients are smaller than the “true” coefficient, plotted at 0‐3, and are all  statistically insignificant.   The second test involves replacing the upstream pollution variable with a falsified value using  pollution data from the nearest off‐river region farther downstream—a location that is  disconnected from river flow dynamics and from where the pollution cannot flow (upstream) to  areas where the health outcomes are measured. In the case that the ‘falsified’ upstream  pollution variable shows a significant impact on health, then it would be likely that our baseline  results are capturing spurious spatial correlations. Table 4, however, reveals otherwise. There is  no significant impact of the falsified value on health, suggesting that the upstream variable  utilized in the analysis is indeed isolating quasi‐random variation in pollution.   In Table 5, in addition to the district fixed effect, we also include district time trends to address  the concern that broad secular trends at the district level might be influencing our results. The  results are of the same sign and magnitude as our baseline estimates, and remain significant at  the 5 percent level.     In Table 6, we cluster the standard errors by state in DHS, as well as survey cluster in DHS,  instead of district. Standard errors are more or less similar using either of these alternatives,  and the results remain significant and unchanged.     6. Evidence from Other Regions   In Vietnam, home to one of the fastest‐growing and urbanizing societies in the world,  agricultural growth and intensification have played significant roles in spurring development.  But in parts of the country, the environmental footprint of the agricultural sector is deepening.  In intensively farmed areas, agriculture has become a significant contributor to water pollution.  This is particularly so in the intensively farmed Mekong delta region (Cassou, Jaffee, and Ru  2018; Chea, Grenouillet, and Lek 2016). To measure the consequences of nitrogen pollution,  the analysis focuses on children aged four to twelve years surveyed in the latest Living  Standards Survey of 1997–98. Table 7 shows that repeated exposure to nitrate pollution for the  first three years of life substantially lowers height‐for‐age scores in childhood, with full  exposure decreasing height‐for‐age scores by 0.7 standard deviation. These effects occur  despite nitrate‐nitrogen concentrations being below the recommended safety thresholds of 10  mg/L and emerge even after accounting for exposures from other contaminants.    In Africa, although present‐day fertilizer usage is lower than in Asia, it is growing. Other sources  of nitrate exposure include expanding urban centers that lack wastewater treatment facilities  and increased livestock farming. The analysis is based on the entire universe of child records up  to age 5 years across 33 countries in Africa from DHS records. The results in Table 8 show that  12 in utero exposure to nitrate pollution emanating from upstream urban agglomerations lowers  the height‐for‐age scores and increases the likelihood of stunting for children younger than five  years, even at low levels of nitrate exposure. The negative effects are most pronounced  downstream from urban centers where nitrate levels are relatively higher. Stunting already  remains a widespread problem in Sub‐Saharan Africa, where more than 35 percent of children  younger than five years are considered stunted (World Development Indicators). This suggests  an urgent need for potable water treatment in urban agglomerations.    7. Mechanisms  These results are perhaps the first demonstration of such widespread links between exposure  to elevated nitrate levels during early‐life and long‐run health outcomes. Nevertheless, they are  consistent with several well‐established streams of biomedical literature that are indicative of  such a link. First, increased dietary‐nitrate intake has been associated with hypothyroidism and  thyroid cancer (Aschebrook‐Kilfoy et al. 2012; Ward et al. 2010, 2018). The thyroid is an  important gland for regulating hormone production and metabolism regulation.  Hypothyroidism in children is therefore linked to stunting of growth and a delay in the process  of maturation (Wilkins 1953). Thus, the path from increased nitrate consumption from water,  to diseases of the thyroid, to stunted growth and development is seemingly clear and direct.  Another potential causal link between nitrates in water and reduced health and growth is  through the buildup of algae and bacteria in water. Nitrogen in waterways often causes  cyanobacteria fueled algal blooms. These bacteria can emit cyanotoxins that are toxic to  humans and, if consumed, can lead to diarrhea‐related illnesses.  Repeated bouts of diarrhea  increase the probability of nutritional deficiencies in children and thus stunted child  development. Exposure to such toxins can also adversely affect birth outcomes by lowering  infant birthweight (Jones 2019), an important predictor of stunting later in childhood (Christian  et al. 2013).   Finally, and related to the prior point, exposure to higher levels of pathogens can disrupt the  gut microbiome. The first months after birth are particularly critical for establishing the  composition of the gut microbiome that persists for the rest of a person’s life (Robertson et al.  2019). There is evidence in the medical literature that this microbiome is difficult to  permanently change later in life, although this matter is under debate. If true, then the  resulting change in gut microbiome from exposure to nitrate‐induced toxins like those from  cyanobacteria could permanently handicap the digestive system of individuals and reduce their  capacity to absorb nutrients throughout their lives. However, more research is required on how  and when exposure of fetuses and young children to high nitrate levels influence microbiome  function, growth, and development, especially in settings in which pathogenic infections and  food insecurity are problematic.  13 8. Conclusion  Recent studies have focused attention on the loss of human lives and immediate birth  outcomes as a result of water pollution. In a departure from previous studies, this paper  underscores the long‐lasting health damages, and decreased economic capability that survivors  of water pollution endure. We find a statistically significant negative effect of early‐life  exposure to nitrogen pollution on women’s height in India, with supporting evidence of a  decrease in child height in Vietnam, and infant HAZ scores and increased incidence of stunting  in Africa. These results are robust to several checks for confounding factors.  By demonstrating  the long‐term effects of nitrogen pollution, our results draw attention to the critical role that  local environmental spillovers play for population health outcomes and highlight the need for  closer policy attention to nitrogen pollution.  The policy relevance of our results is underscored by the fact that health effects also emerge at  levels well below prescribed limits, raising questions about what constitutes safe standards for  nitrates in water. Emerging evidence from epidemiological studies has also found relationships  between nitrate ingestion and cancer, thyroid disease, and adverse pregnancy outcomes, such  as neural tube defects, at concentrations below regulatory limits (Temkin et al., forthcoming;  Ward et al. 2018). Even as far back as 1977, a report by the U.S. National Academy of Sciences  warned that “there is little margin of safety” in the 10 mg/L safety limit for nitrates (National  Research Council 1977). More research and assessments across even more geographies and  populations are needed to make definitive claims. It is possible that future research will  uncover even more health effects as more data become available to link exposures that began  decades ago to diseases that develop today. However, the body of evidence so far suggests that  there still remains a great deal of uncertainty surrounding drinking water standards for nitrates  set by environmental agencies. The magnitude of people impacted by nitrate contaminated  water is, therefore, likely to be much larger than presently thought.  This work also speaks to the consequentiality of fertilizer subsidies in developing countries that  are tipped in the favor of nitrogen fertilizer use. In India, a system of domestic price controls by  way of large subsidies has significantly distorted market prices for nitrogen fertilizer compared  to other nutrients, resulting in an inefficient balance of fertilizer application (Gulati and  Banerjee 2015). By 2015, subsidy costs amounted to $11.6 billion per year in India, roughly five  times more than what was recorded 15 years earlier (Gulati and Banerjee 2015). This is  exemplified by the wide gap between global and Indian domestic nitrogen prices ‐‐‐world prices  were almost four times higher than regulated Indian prices in 2014 (Huang, Gulati, and Gregory  2017).  In recent years the government has made  efforts to improve nitrogen use efficiency in  agriculture and has mandated urea manufacturers to produce neem‐coated urea. Since neem  acts as a nitrification inhibitor, it allows a more gradual release of nitrogen into the soil, thereby  14 improving nitrogen use efficiency. More research is needed to quantify the environmental and  economic consequences of such measures, and their impacts on water pollution.    Finally, unlike much of the literature on water quality and health that focuses on developed  countries, this work adds to the growing evidence on water pollution impacts in the developing  world, which is subject to different exposure profiles, institutions and levels of economic  development. While our analysis controlled for correlated pollutants where possible, it was  primarily focused on a single pollutant. It is possible that the combined health impacts of co‐ occurring pollutants are different or even more harmful (Stoiber et al. 2019). More work is  needed to investigate these issues in the developing world.                                    15 References  Almond, D., and J. Currie. 2011. “Killing Me Softly: The Fetal Origins Hypothesis.” Journal of  Economic Perspectives 25 (3): 153–72.  Almond, D., J. Currie, and V. Duque. 2018. “Childhood Circumstances and Adult Outcomes: Act  II.” Journal of Economic Literature 56 (4): 1360–446.  Aschebrook‐Kilfoy, B., S. L. Heltshe, J. R. Nuckols, M. M. Sabra, A. R. Shuldiner, B. D. Mitchell, M.  Airola, T. R. Holford, Y. Zhang, and M. H. Ward. 2012. “Modeled Nitrate Levels in Well  Water Supplies and Prevalence of Abnormal Thyroid Conditions among the Old Order  Amish in Pennsylvania.” Environmental Health 11 (1): 6.  Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301:1111.  Barker, D. J. (1995). Fetal origins of coronary heart disease. Bmj, 311(6998), 171‐174.  Brainerd, Elizabeth and Menon, Nidhiya, 2014. Seasonal effects of Water quality: the hidden  costs of the Green revolution to infant and child health in India. Journal of Development  Economics. 107, 49–64.  Cassou, E., S. M. Jaffee, and J. Ru. 2018. The Challenge of Agricultural Pollution: Evidence from  China, Vietnam, and the Philippines. Washington, DC: World Bank.  Chea, R., G. Grenouillet, and S. Lek. 2016. “Evidence of Water Quality Degradation in Lower  Mekong Basin Revealed by Self‐Organizing Map.” PloS ONE 11 (1): e0145527.  Christian, P., S. E, Lee, M. D. Angel, L. S. Adair, S. E. Arifeen, P. Ashorn, F. C. Barros, C. H. Fall,  W.W. Fawzi, W. Hao, and G. Hu. 2013. “Risk of Childhood Undernutrition Related to  Small‐for‐Gestational Age and Preterm Birth in Low‐ and Middle‐Income Countries.”  International Journal of Epidemiology 42 (5): 1340–55.   Currie, J. and Vogl, T. 2013. Early‐life health and adult circumstance in developing countries,  Annual Review of Economics, Annual Reviews, vol. 5(1), pp. 1–36, 05  Fields, S. 2004. Global nitrogen: cycling out of control.  Environ Health Perspect 112(10):A556‐ 63.  Damania, R., Desbureaux, S., Rodella, A. S., Russ, J., & Zaveri, E. (2019). Quality Unknown: The  Invisible Water Crisis. World Bank: Washington, DC.  Do, Quy‐Toan, Shareen Joshi, and Samuel Stolper. 2018. Can environmental policy reduce infant  mortality? Evidence from the Ganga Pollution Cases. Journal of Development Economics  133 : 306‐325.  Fishman, R., Carrillo, P., & Russ, J. (2019). Long‐term impacts of exposure to high temperatures  on human capital and economic productivity. Journal of Environmental Economics and  Management, 93, 221‐238.  Garg, Teevrat, Hamilton, Stuart, Hochard, Jacob, Plous, Evan, Talbot, John, 2016. Not So Gently  Down the Stream: River Pollution and Health in Indonesia. Grantham Research Institute  on Climate Change and the Environment. Working Paper #234.  16 Gulati, A., and P. Banerjee. 2015. “Rationalizing Fertilizer Subsidy in India: Key Issues and Policy  Options.” Working Paper 307, Indian Council for Research on International Economic  Relations, New Delhi.  https://www.academia.edu/14970315/Rationalizing_Fertilizer_Subsidy_in_India‐ Key_Issues_and_Policy_Options.  Huang, J., A. Gulati, and I. Gregory, editors. 2017. Fertilizer Subsidies: Which Way Forward?  IFDC/FAI report. https://ifdcorg.files.wordpress.com/2017/02/fertilizer‐subsidieswhich‐ way‐forward‐2‐21‐2017.pdf.   Hyland, M., & Russ, J. (2019). Water as destiny–The long‐term impacts of drought in sub‐ Saharan Africa. World Development, 115, 30‐45.  The Indian Nitrogen Assessment (INA). 2017. Eds Abrol, Y. P. et al.   Jones, B. A. 2019. “Infant Health Impacts of Freshwater Algal Blooms: Evidence from an Invasive  Species Natural Experiment.” Journal of Environmental Economics and Management 96:  36–59.  Kanter, D. R. 2018. “Nitrogen Pollution: A Key Building Block for Addressing Climate Change.”  Climatic Change 147 (1–2): 11–21.  Keeler, B. L., J. D. Gourevitch, S. Polasky, F. Isbell, C. W. Tessum, J. D. Hill, and J. D. Marshall.  2016. “The Social Costs of Nitrogen.” Science Advances 2 (10): e1600219.  Keiser D, The missing benefits of clean water and the role of mismeasured pollution data. 2019.  J Assoc Environ Resour Econ 6 (4): 669‐707.  Keiser, D.A., and J.S. Shapiro. 2018. “Consequences of the Clean Water Act and the Demand for  Water Quality.” Quarterly Journal of Economics 134 (1): 349–96.  Kleibergen, Frank and Richard Paap. 2006. Generalized reduced rank tests using the singular  value decomposition. Journal of Econometrics 133 (1): 97–126.  Kraay, Aart C.. 2018. Methodology for a World Bank Human Capital Index (English). Policy  Research working paper; no. WPS 8593. Washington, D.C. : World Bank Group.   Peterson, Erin E., and Jay M. Ver Hoef.  2010. A mixed‐model moving‐average approach to  geostatistical modeling in stream networks. Ecology 91, no. 3: 644‐651.  Lipscomb, Molly, Moshfiq Mobarak, A., 2017. Decentralization and Water pollution spillovers:  evidence from the redrawing of county boundaries in Brazil. Rev. Econ.Stud. 84 (1), 464– 502.  Maccini, S. L., & Yang, D. (2009). Under the weather: Health, schooling, and economic  consequences of early‐life rainfall. American Economic Review, 99(3), 1006–1026.  OECD/SWAC (2018), Africapolis (database), www.africapolis.org (accessed 05 February 2019)  Ravelli, A. C., van der Meulen, J. H., Michels, R. P. J., Osmond, C., Barker, D. J., Hales, C. N., &  Bleker, O. P. (1998). Glucose tolerance in adults after prenatal exposure to famine. The  Lancet, 351(9097), 173‐177.  17 Risnes, K. R., Vatten, L. J., Baker, J. L., Jameson, K., Sovio, U., Kajantie, E., ... & Sundh, V. (2011).  Birthweight and mortality in adulthood: a systematic review and meta‐analysis.  International journal of epidemiology, 40(3), 647‐661.  Sigman, Hilary, 2002. International spillovers and Water quality in rivers: do countries free ride?  Am. Econ. Rev. Pap. Proceed. 92 (4), 1152–1159.  Sigman, Hilary, 2005. Transboundary spillovers and decentralization of environmental policies.  J. Environ. Econ. Manag. 50, 82–101.  Steffen, W., K. Richardson, J. Rockstrom, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, et al.  2015. “Planetary Boundaries: Guiding Human Development on a Changing Planet.”  Science 347: 736.   Stock, James H. and Motohiro Yogo. 2005. Testing for Weak Instruments in Linear IV  Regression. In Identification and Inference for Econometric Models: Essays in Honor of  Thomas Rothenberg, ed. Donald W. K. Andrews and James H. Stock. Cambridge  University Press.  Stoiber, T., A. Temkin, D. Andrews, C. Campbell, and O. V. Naidenko. 2019. Applying a  Cumulative Risk Framework to Drinking Water Assessment: A Commentary.”  Environmental Health 18 (1): 37  Temkin, A., S. Evans, T. Manidis, C. Campbell, and O. V. Naidenko. Forthcoming. “ Exposure‐ Based Assessment and Economic Valuation of Adverse Birth Outcomes and Cancer Risk  Due to Nitrate in United States Drinking Water.” Environmental Research.  Van Meter, K. J., Van Cappellen, P., & Basu, N. B. (2018). Legacy nitrogen may prevent  achievement of water quality goals in the Gulf of Mexico. Science, 360(6387), 427‐430.  Wilkins, L. 1953. “Disturbances in Growth.” Bulletin of the New York Academy of Medicine 29  (4): 280.  Ward, M., R. Jones, J. Brender, T. de Kok, P. Weyer, B. Nolan, C. M. Villanueva, and S. van Breda.  2018. “Drinking Water Nitrate and Human Health: An Updated Review.” International  Journal of Environmental Research and Public Health 15 (7): 1557.  Ward, M. H., B. A. Kilfoy, P. J. Weyer, K. E. Anderson, A. R. Folsom, and J. R. Cerhan. 2010.  “Nitrate Intake and the Risk of Thyroid Cancer and Thyroid Disease.” Epidemiology  (Cambridge, Mass.) 21 (3): 389.  Zheng, L., Cardenas, M. B., & Wang, L. (2016). Temperature effects on nitrogen cycling and  nitrate removal‐production efficiency in bed form‐induced hyporheic zones. Journal of  Geophysical Research: Biogeosciences, 121(4), 1086‐1103.          18 Tables  Table 1: Descriptive Statistics  Variable  Mean  Std. Dev.  Min  Max  Height (cm)  151.584  6.315048  80  209.2  Mean upstream nitrate‐N concentrations  1.776662  2.887341  0  20.18191  1[Exceedance of nitrate‐N in year of birth]  0.0257691  0.1584502  0  1  Fraction of early childhood nitrate‐N exposure  0.0190851  0.0732628  0  0.5  Annual Precipitation (mm)  882.8155  500.6614  99.29888  4463.666  Average temperature in the Wet Season  28.57736  1.785982  22.61299  32.91105  Average temperature in the Dry Season  20.75181  2.642523  13.20256  27.45295  Notes: Table shows descriptive statistics from the DHS surveys as well as the water quality data from CWC. Sample  based on 19,138 respondents who have not migrated from their birth place.    19 Table 2: The long‐term impacts of upstream pollution on health     Dependent variable: Height (cm)        (1)     (2) (3)       (4) (5)  (6)  Fraction early childhood    N exposure  ‐2.246***        ‐3.044***  ‐1.963***      (0.497)         (0.996)     (0.506) Exposure  in‐utero    0.541                (0.463)       Exposure  at birth      ‐0.385                (0.458)     Exposure at age 1  ‐0.411              (0.392)        Observations  19138  17399  17618  17417  13862  19138  mean Dependent Variable  151.6  151.6  151.6  151.7  151.4  151.6  R‐sq  0.0793  0.0812  0.0795  0.0769  0.0656  0.0908  RMSE  6.082  6.076  6.093  6.114  6.089      6.046 Birth‐year Fixed Effects  Y  Y  Y  Y  Y    Birth‐Month Fixed Effects  Y  Y  Y  Y  Y  District Fixed Effects  Y  Y  Y  Y  Y  Y  State Trends  Y  Y  Y  Y  Y  Y  Weather controls     Y Y    Y    Y   Y  Y   Fraction early childhood FColi  Y  exposure            Birth‐Year by Month Fixed Effects  Y  Notes: Table shows results from estimating Eq. (1) via ordinary least squares (OLS). Each column displays estimates  from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of years from year of  birth to age 3 that nitrate pollution exceeds safety guidelines.   Standard errors are clustered at the district level,  and are presented in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels  respectively.                          20 Table 3: The long‐term impacts of local pollution on health using instrumental variables     (1)  (2)  (3)  (4)     First‐stage  Second‐ First‐stage  Second‐     stage     stage    childhood N exposure  Upstream: Fraction early 0.748***    0.745***        (0.166)     (0.163) Local: Fraction early childhood N exposure  ‐2.819***  ‐2.604***        (0.645)     (0.634)  Observations      17755 17755      17755 17755  mean Dependent Variable    151.6    151.6  R‐sq  0.0186  0.0187  RMSE      0.0407 5.956      0.0407 5.921  Kleibergen‐Papp F‐stat  20.34  20.94  (F=16.38)    (F=16.38)     Birth‐year Fixed Effects  Y  Y      Birth‐Month Fixed Effects  Y  Y  District Fixed Effects  Y  Y  Y  Y  State Trends  Y  Y  Y  Y  Weather controls  Y  Y  Y  Y  Birth‐Year by Birth‐Month Fixed Effects        Y  Y  Notes: Table shows results from estimating Eq. (2) and Eq. (3) using Two‐Stage Least Squares (2SLS). Each column  displays estimates from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of  years from year of birth to age 3 that nitrate pollution exceeds safety guidelines. Columns 2 and 4 show 2nd‐stage  results and columns 1 and 3 show 1st‐stage results. The endogenous variable(Local: Fraction early childhood N  exposure) is instrumented using its upstream analog.  For Kleibergen‐Paap rkWald F Stat, Stock‐Yogo weak  identification critical value for 10% maximal instrumental variable size in parentheses. Critical value for 15%  maximal instrumental variable size equals 8.96. Standard errors are clustered at the district level, and are  presented in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively.        21 Table 4: Falsification test      Placebo Districts        (1)  (2)  Fraction childhood N exposure   0.106  ‐0.010     (0.430)  (0.413)  Observations  23338  23338  R‐sq  0.0773  0.0683  RMSE  5.796  5.821  Birth‐year Fixed Effects  Y  Y  Birth‐Month Fixed Effects  Y  Y  District Fixed Effects  Y  Y  State Trends  N  Y  Weather controls  Y  Y  Notes: Columns 1 and 2 show results from a placebo test, in which the upstream district for each observation is  replaced by a different, neighboring district that is not upstream. Each column displays estimates from a separate  regression. Fraction of early childhood exposed to N pollution is the fraction of years from year of birth to age 3  that nitrate pollution exceeds safety guidelines.   Standard errors are clustered at the district level, and are  presented in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively.                        22   Table 5: Main results with trends for districts     Dependent variable:  Height (cm)     (1)  (2)     N exposure  Fraction childhood ‐2.273**  ‐2.392***  (0.887)  (0.891)  Observations  19450  19138  R‐sq  0.0846  0.0835  RMSE  6.047  6.064  Birth‐year Fixed Effects  Y  Y  District Fixed Effects  Y  Y  District Trends  Y  Y  Weather controls  N  Y  Notes: Table shows results from estimating Eq. (1) via ordinary least squares (OLS). Each column displays estimates  from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of years from year of  birth to age 3 that nitrate pollution exceeds safety guidelines.   Standard errors are clustered at the district level,  and are presented in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels  respectively.      23 Table 6: Alternative clustering     Dependent variable: Height (cm)     (1)  (2)  Fraction childhood N exposure   ‐2.246  ‐1.963          s.e. clustered by district  (0.497)***  (0.506)***     s.e. clustered by state  (0.552)**  (0.488)**                   s.e. clustered by survey cluster  (0.928)***  (0.944)***  Observations  19138  19138  R‐sq  0.0793  0.0908  Birth‐year Fixed Effects  Y    Birth‐Month Fixed Effects  Y    District Fixed Effects  Y  Y  State Trends  Y  Y  Weather controls  Y  Y  Birth‐Year by Month Fixed Effects     Y  Notes: Table shows results from estimating Eq. (1) via ordinary least squares (OLS). Each column displays estimates  from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of years from year of  birth to age 3 that nitrate pollution exceeds safety guidelines.   Standard errors are clustered at the district level,  state level and survey cluster level and are presented in parentheses. ***, **, * denote statistical significance at  the 1%, 5% and 10% levels respectively.        24 Table 7: Impacts in Vietnam                     Height‐for‐age scores  (1)  (2)  Fractional Exposure to Nitrate‐Nitrite   ‐0.776**  ‐0.779**     (0.338)  (0.337)  Birth‐year Fixed Effects  Y  Y  Birth‐Month Fixed Effects  Y  Y  Commune Fixed Effects  Y  Y  Province Trends  Y  Y  Other controls  N  Y  N  691  691   R‐sq  0.132  0.156  Notes: Statistical significance is given by * p<0.10 ** p <0.05 ***p < 0.01. Standard errors in parentheses are  clustered at the commune level. Other controls include precipitation, temperature, ethnicity (tribe), sex,  conductivity, phosphorus, water‐treatment at home, household asset value, years of education of head, farm/non‐ farm household      25 Table 8: Impacts in Africa   In‐utero exposure  Stunting  HAZ  Stunting  HAZ  Downstream of N pollution  0.0172***  ‐0.0729***      (0.00636)  (0.0228)      Downstream of N pollution x Rural      0.0209***   ‐ 0.0848***            (0.00597)  (0.0222)  Fixed effects  Year‐Month of Birth, Grid Cell  Other controls  Y                   Y              Y     Y  N  204,886  204,886  204,886  204,886  R‐Sq  0.106  0.143  0.106  0.144  Notes: Statistical significance is given by * p<0.10 ** p <0.05 ***p < 0.01. Standard errors in parentheses are  clustered at gridcell level. Other controls include household variables – if it is in a rural location, indicator for  improved sanitary facilities, improved water source and no sanitation facility (open defecation), child age in  months, age of mother at birth giving, if child is a girl, a household wealth index, body mass index (BMI) of mother,  an index of mother empowerment (health decisions), mother’s years of education and mother’s partner’s years of  education – and community variables – percentage of improved water source, improved sanitation and open  defecation, and total population of urban area; temperature and precipitation; and year specific country trend.                        26 Figures  Figure 1: Upstream‐Downstream hydrologic breakdown    Note: The map shows direction of streamflow from upstream to downstream districts                      27 Figure 2: Countries Studied, Africa                              Note: The map shows locations of enumeration areas that were surveyed as part of the DHS Program.                    28 Figure 3: Different window periods of exposure     Woman's height (cm) 4   Coefficient on fraction childhood exposure   2       0     -2     -4   L6-L3 L5-L2 L4-L1 L3-0 L2-1 L1-2 0-3 1-4 2-5 3-6 4-7 5-8 6-9 Note: Estimated  coefficients from  variants of the main regression equation, in which the period of pollution exposure is shifted by 6 four‐year  periods (horizontal axis) from the main 0‐3 period. Each marker’s vertical position therefore measures the  estimated impact of exposure at the appropriate period of exposure. For example, the purple marker represents  the impact of exposure discussed in the report. Other markers represent the impact of “placebo” exposures. Error  bars represent 95% confidence intervals.                            29 Appendix 1: Spatial Stream Network Model  Water quality downstream directly depends on upstream water quality as well as weather  related variables and anthropogenic activities happening in between.  Models developed by ver  Hoef, Peterson and Theobald (2006) and ver Hoef and Peterson (2010) allow to statistically  represent these stream dependencies within a network and predict water quality in a spatially  valid framework.  They allow to flexibly control for spatial auto‐correlation between  observations belonging to the same river network based on stream distances, to take into  account accumulation of pollutants as well as their dilution. They present important  improvement to classic geospatial models based on Euclidean distances which were proved to  be biased in such settings.  Here, we used the model developed by ver Hoef and Peterson (2010) to fill missing  observations in the CWC nitrogen data between 1986 and 2017 where over 60% of the nitrogen  observations are missing in this data set, limiting our understanding of the evolution of water  quality over the period. More specifically, we used the openSTARS package in R (Kattwinkel and  Szcos 2018) to derive a topographically correct stream network for all India. First, a Digital  Elevation Model from the SRTM mission was used to derive all streams across India.  For  computational limits, the original DEM 30 meters model was resampled at a 100m resolution.  Second, the upstream area of each CWC station was determined. Third, the stream distance  between each station belonging to a given network was calculated. Fourth, the annual level of  rainfall, average temperature, average elevation and average slope were computed to better  account for dilution of pollution.    Then, we used the SSN package (ver Hoef et al. 2014) to model the determinants of water  quality in CWC stations.  The original model developed by the authors is:    Where n  is the nitrogen level in station i, X X … X  are environmental covariates  defined over the upstream area of each station. S , S , S  are a set of spatially auto‐correlated  random variables that models spatial dependence inside a network. The main dependency we  want to capture is the upstream to downstream relation between stations (S ). The authors  also provide the possibility to incorporate downstream to upstream dependencies (S ), as well  as standard Euclidean relationships (S ). Following common practices in spatial statistics, we  assumed exponential spatial dependencies between observations. Finally,  represents a  possible set of fixed effects, such as watershed fixed effects. The model was estimated for each  year between 1986 and 2008 – the year of birth of the last woman in the DHS data used in the  analysis. Years before 1986 were excluded for an insufficient number of observations (<100).   Our objective year is to find the model that predict best nitrogen levels.  To do so, we create  loops to estimate for each year 93 models that represent all the possible combinations of  covariates and spatial dependencies. Models were validated through a Leave One Out Cross  Validation (LOOCV) strategy. The final model was chosen based on a Mean Square Prediction  Error (MPSE) criteria. The maximization of the predictive power of the model was achieved by  introducing one trick in the original approach: we included as a predictor the average value of  nitrate in a station between 1986‐2008.  For each year, the model was trained on available  30 observations and prediction of nitrate was done for missing observations. The final data set was  then used to study the long term impact of nitrogen level on health outcomes.    Additional references  Kattwinkel M, Szocs E. 2018, openSTARS: open source implementation of the STARS ArcGIS  toolbox. Seehttps://github.com/MiKatt/openSTARS    Ver Hoef, Jay M., Erin Peterson, and David Theobald. "Spatial statistical models that use flow  and stream distance." Environmental and Ecological statistics 13.4 (2006): 449‐464.    Ver Hoef, Jay, et al. "SSN: An R package for spatial statistical modeling on stream networks."  Journal of Statistical Software 56.3 (2014): 1‐45.          31