Belarus: Enhancing Border-Crossing Time Release Studies to Support Trade Facilitation Reforms

By Gagik Gabrielyan, Clayton Kerswell, Irina Shemshenya, Aliaksandr Abrashkevich

May 2017

In Partnership With
Acknowledgments

The World Bank Group’s Business Regulation and National Quality Infrastructure Project in Belarus wishes to thank the Swedish International Development Cooperation Agency (SIDA) and the United States Agency for International Development (USAID), for their generous support in funding the Project’s activities.

The authors would like to also thank and acknowledge Lisa Kaestner, Practice Manager, Trade & Competitiveness Global Practice in Europe and Central Asia; Irina Niederberger, Senior Private Sector Specialist; Victoria Tetyora, Private Sector Specialist, Violane Konar-Leacy, Private Sector Specialist, Trade & Competitiveness Global Practice in Europe and Central Asia, for their valuable comments and peer review of this document.
Border-crossing time release studies are powerful tools for analyzing trade logistics and measuring the performance of border agencies. Insights from a border-crossing study can help in designing and accelerating trade facilitation reforms. Preparing and carrying out an effective study is a challenging exercise in itself, as it involves sensitive data, and complex multi-agency and cross-country relationships. The border-crossing time release study for commercial cargo undertaken by the World Bank Group’s Trade & Competitiveness Global Practice team in Belarus in 2015 is an example that provides important lessons that may be useful for other countries.

Belarus is a member of Eurasian Economic Union (EEU), bordering three EU countries (Poland, Lithuania and Latvia), Ukraine and Russia. As such, the country is strategically located for international transit trade. With the aim of boosting the country’s transit role, the Government of Belarus is undertaking several infrastructure development projects and regulatory reforms aimed at trade facilitation. In parallel with physical infrastructure (“hardware”) development, it is important to address “soft” aspects of trade, such as regulations and trade procedures. Thus, the Government undertook a “two agencies at the border” reform with the goal of reducing the number of agencies at the border to only two, namely Customs and the Border Police. Belarus’s efforts were supported by the World Bank Group (WBG), including the World Bank’s Transit Corridor Improvement Project (TCIP), which is financing the modernization of the transit Corridor-M6 Minsk-Grodno, and the Belarus Business Regulation and National Quality Infrastructure Advisory Project of the International Finance Corporation (IFC) with the aim of improving trade procedures. In this context, the border crossing time release study (BCTR study) was designed by these two WBG project teams, and implemented in close cooperation with the State Customs Committee of Belarus. The data collection was undertaken by the Belarus State University contracted by the IFC advisory project. The BCTR study was to serve as: (i) a baseline for performance measurement of border agencies in trade facilitation; and (ii) a tool for identifying bottlenecks in the border-clearance process and designing possible regulatory, operational, and physical infrastructure improvements to address them. The study took place at three border-crossing points (BCPs):

- Berestovitsa – Bobrowniki (Belarus-Poland)
- Bruzgi – Kuznitsa Belostotskaya (Belarus-Poland)
- Privalka – Raigardas (Belarus-Lithuania)
Designing a tailor-made border-crossing time release study

The BCTR study measurement method applied in Belarus was a customized, hybrid method combining elements of various international methodologies, such as the Time Release Study of the World Customs Organization (WCO), and driver-based surveys, with some modifications and additional elements.

Driver-based surveys

In these surveys, truck drivers are given a questionnaire to be completed as their trucks/cargos undergo border controls and cross the border. The survey makes use of a numbered questionnaire (data sheet) for every truck, with boxes to be ticked by border authorities and/or drivers for every control measure. Data sheets are given to drivers at the entrance point (when trucks join the queue at the exit country border-crossing point [BCP]) and collected at the exit point (when trucks depart from the entry country BCP). This method has already been used in various forms in (and by) many countries and organizations, for instance:

- The Laufzettel exercise, originally used in the Baltic states (Estonia, Lithuania and Latvia). Laufzettel means "routing slip or circulation sheet". This method has subsequently been used in other countries (Norway, Germany, Poland, Sweden, Greece, and FYR Macedonia).1
- Time-cost study, applied in East Asian countries by the United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP).
- Truck-by-truck survey, applied in a number of countries by the WBG, e.g., India and Pakistan.

WCO Time Release Study (TRS)

A Time Release Study (TRS) is a well-known and internationally applied study method developed and endorsed by the WCO for, “… measuring the actual performance of Customs activities as they directly relate to trade facilitation at the border…”2

The TRS collects data from Customs’ computerized systems and through questionnaires. Questionnaires move with the drivers and are completed by the drivers/border agencies, as with the driver-based surveys. Compared with driver-based surveys, a TRS is more sophisticated and detailed, requiring more formal involvement of the Customs authorities. While the TRS covers control by all border agencies, it mostly focuses on Customs control. It does not normally include details of other border agency control operations (sanitary and phytosanitary [SPS], transport, conformity assessment).

Studies via Cross-country Electronic Systems of Data Exchange

Examples of such systems are: (I) the SEED3 system, an intra-regional system linking Customs authorities in the Central European Free Trade Agreements (CEFTA); and (2) NCTS4, a European-wide system, based on electronic declarations and processing, to provide paperless and better management, and control of transit across Europe. It involves all EU Member States and the EFTA. These systems can be used to study, monitor, and compare border-crossing times. However, they usually focus on Customs procedures and provide only general information about border-crossing times, limiting their usefulness in the deeper analysis of border-crossing processes.

References:
1References to Laufzettel can be found in various EU documents, e.g. “Guidelines for Integrated Border Management in the Western Balkans”, http://ec.europa.eu/enlargement/pdf/financial_assistance/cards/publications/ibm_guidelines_en.pdf
Belarus BCTR study

In addition to drivers and border authorities, the Belarus BCTR study included independent observers at the BCPs, and made use of data from Customs’ computerized system and from questionnaires (based on truck plate numbers). The important features of the Belarus BCTR study were:

- Inclusion of independent observers for data collection.
- The design of the data sheets, including the structure and content (in addition to the drivers’ data sheet, it included observers’ data sheets for key locations and actions).
- Greater emphasis and detail on other operations in addition to Customs control procedures.
- Coverage of the border-crossing zone from both countries’ sides.

This combination of participants, data-sheet design, and data sources enable important cross-checks of time stamps to be studied, as well as ensuring comprehensive and detailed coverage of border-crossing processes and steps.

Independent observers were located at pre-agreed positions in the BCPs (see Annex 1 and the table below) and recorded the time of trucks passing through the stages of clearance (on Belarus, Polish, and Lithuanian sides). In general, the number and positioning of observers at a BCP vary depending on the objectives of the study, and the organization and sequence of clearance procedures, as well as the physical layout of the BCP. In the Belarus study, seven observers were involved in the data collection on the outbound flow, and eight observers on the inbound flow. Of these observers, two were positioned in the territory of Poland/Lithuania to collect data on the time of entry and departure from the adjacent BCP. Overall, 19 observers were involved in studies at three BCPs. The number of observers was higher on the Belarus side, given that the study aimed be conduct a more detailed analysis of the process on the Belarus side.

An important feature of the Belarus BCTR study was the simplification and splitting of the data sheet into several smaller data sheets. Based on the characteristics of the border-crossing process, the physical layout of the BCP, and the movement of trucks in the BCP zone. Subsequently, all data from the data sheets were incorporated into a single matrix. (See Annex 1 for the flowchart and time stamps of the border crossing process, and Annex 2 for data sheets.) The table below shows the data collection sheets used for the inbound traffic. These simplified data sheets and the positioning of independent observers provided several advantages to the Belarus study, in particular:

- Data collection was easier from a practical viewpoint. Shorter data sheets were easier to complete and manage, while observers could avoid moving back and forth with data sheets and instead could focus on specific operations at their position. Also, drivers no longer had any data to record.
- The probability of mistakes and bias in the data-collection process was reduced. Using one long and complicated data sheet circulating with a driver involves a greater risk of mistakes, and bias by the driver and border authorities in recording the actions and time. Drivers often confuse various types of inspections, do not make distinctions between types of physical examinations, and/or do not indicate time accurately. Splitting the data sheets meant that driver involvement could be minimized (or actually eliminated in the Belarus case).

The participation of independent observers was a critical element in ensuring the comprehensiveness, accuracy and objectivity of the measurements.

Splitting and customizing data-collection sheets helped to simplify the data-collection process, reduce mistakes and bias, and capture more critical details about border agency control actions.

An important feature of the Belarus BCTR study was the simplification and splitting of the data sheet into several smaller data sheets, based on the characteristics of the border-crossing process, the physical layout of the BCP, and the movement of trucks in the BCP zone. Subsequently, all data from the data sheets were incorporated into a single matrix. (See Annex 1 for the flowchart and time stamps of the border crossing process, and Annex 2 for data sheets.) The table below shows the data collection sheets used for the inbound traffic. These simplified data sheets and the positioning of independent observers provided several advantages to the Belarus study, in particular:

- Data collection was easier from a practical viewpoint. Shorter data sheets were easier to complete and manage, while observers could avoid moving back and forth with data sheets and instead could focus on specific operations at their position. Also, drivers no longer had any data to record.
- The probability of mistakes and bias in the data-collection process was reduced. Using one long and complicated data sheet circulating with a driver involves a greater risk of mistakes, and bias by the driver and border authorities in recording the actions and time. Drivers often confuse various types of inspections, do not make distinctions between types of physical examinations, and/or do not indicate time accurately. Splitting the data sheets meant that driver involvement could be minimized (or actually eliminated in the Belarus case).
It allowed the more effective incorporation of detailed information on actions by all border agencies and the waiting times for those actions, especially the types and intensity of documentary and physical examinations. This was important in the Belarus case, bearing in mind the Government’s goal of implementing a “two agencies at the border” system.

The use of separate data sheets at each observation position and the participation of independent observers increased the objectivity of measurements. This was critical for ensuring effective cross-checks and the verification of the data on the actions and time in the border-crossing process.

Greater objectivity was also important to improve the credibility of the results from the perspective of stakeholders, including those from the private and public sectors, NGOs, and international organizations. This, in turn, was important in facilitating the promotion of reforms that were identified based on the results of the Belarus BCTR study.

Compared with other BCTR study methods, the Belarus BCTR study had a higher focus on, and coverage of, the details involved in control procedures, including physical examinations by Customs, Transport, and SPS agencies (veterinary, phytosanitary, sanitary/health).

While other methods capture only general information about non-Customs control (i.e., usually there is only one question on whether an SPS inspection was carried out or not), the Belarus BCTR study captured details such as the types of physical examination, the sampling procedures, the duration of physical examinations, and the time between the arrival of a truck at the examination zone and the start of the actual examination. This high level of detail provided a clearer picture of the border-crossing process and the roles of each of the border agencies. It also helped to identify bottlenecks in the process with greater precision, while establishing causal links between delays and actions with greater accuracy. This is important in enabling the effective design and implementation of reforms to improve BCP processes.
As seen in many countries, physical examination by Customs, and especially by non-Customs agencies, is a major source of delays in the cargo-clearance and release process. Therefore, it is important to understand the exact stages and/or actions in the physical examination process that cause the delays. For instance, some delays may be caused not by the physical examination itself, but by delays in decision-making and/or in starting the examination after decisions have been made. In Belarus, the waiting time for starting physical examinations was often significantly longer than the examination itself, indicating a problem with process design. In many Western Balkan countries, as indicated by the IFC Western Balkans Trade Logistics Project, a major source of delays is the high frequency of laboratory testing and related burdensome procedures (but not tailgate or intensive/intrusive examinations) in SPS controls.

To capture and record the details, the Belarus BCTR study team ensured that the questionnaires were properly completed, and that there was a clear description of types of physical examination, and a clear understanding of them by the observers. Importantly, the descriptions were in accordance with legal definitions and terms used in Belarus. The physical examinations defined included the following:

- External physical examination: visual inspection, without opening the truck;
- Tailgate examination: opening the truck, verification of identity of cargo/consignment, without moving, unloading and loading the goods;
- Detailed (non-intrusive) examination: X-ray scanning of the truck/cargo;
- Detailed (intrusive) examination: physical examination, which involves opening the truck, moving and/or unloading and loading the goods, opening packages of goods; and
- Detailed (intrusive) examination with sampling: as above, but with samples taken from cargo and sent for laboratory testing.

Greater detail on non-Customs control operations provided a clearer picture of the border-crossing process and the roles of each border agency in it, identifying bottlenecks with greater precision and with more accurate causal links.

Inclusion of three BCPs and two sides of the border provided important insights.

A border is not a one-side, but a two-side, zone. The Belarus BCTR study included observations and data collection on both sides of the border at each of the three BCPs. This provided important insights through comparison and cross-checking of findings, for instance, trade and transportation/logistics patterns.
Implementing the study – selected insights and lessons

Following a 3-month-long preparatory process, the field implementation of the Belarus BCTR study took place from April 14 to May 24, 2015. Over this period, all trucks crossing the three BCPs on Tuesdays, Saturdays and Sundays from 9 am to 6 pm were surveyed.\(^6\)

Involvement of stakeholders from the very beginning is crucial

One of the crucial success factors in conducting such a complex and sensitive study was the Belarus WBG team’s successful engagement with Customs and the effective coordination with the other border agencies. This coordination applied from the Belarus BCTR study design stage through to its completion and the analysis of the findings.

First, the involvement and participation of all the relevant agencies is necessary to obtain all the necessary formal agreements and permissions for conducting research activities, entering and moving around the BCPs, and obtaining data from official systems. Second, close coordination is vital for reaching a common understanding among border agencies, and adequately addressing inter-agency competition or conflicts/disagreements. Third, close coordination allows important practical advice from border agencies to be shared, necessary for the effective design of the Belarus BCTR study, including the choice of days for high, low and average traffic intensity, the position of observers, and important nuances in the procedures. Finally, effective coordination is crucial for the later acceptance and promotion of findings of a study by the stakeholders, and the subsequent design of reforms to address issues identified by the study.

Coordination with bordering countries may be time-consuming and resource-demanding

An effective BCTR study should include both sides of the border zone. Thus, it is crucial to have close coordination and cooperation with border and other relevant authorities of the neighboring country. In the Belarus case, all activities were agreed and coordinated with relevant Customs and Border Police services in Poland and Lithuania. Such formal communications, meetings and other arrangements, were time-consuming and resource-demanding, and required diplomatic involvement. The embassies of Poland and Lithuania in Belarus were informed of the Belarus BCTR study and, as a result, attention was given to such issues as:

- Obtaining formal agreements for carrying out the survey;
- Agreeing the time for the field survey, and the position of observers;
- Making visa arrangements for the observers; and
- Informing border agencies and businesses about the survey.

\(^6\) At Bruzgi, 396 incoming and 308 outgoing, and at Berestovitsa, 512 incoming and 314 outgoing trucks, were surveyed.
Preparatory site visits are necessary

A critical part of the implementation was to make preparatory site visits to the BCPs in order to walk through the whole process with Customs and other officials, and truck drivers. This was instrumental for:

- the effective design of the study methodology;
- the identification of the number and the position of observers;
- the design of data sheets (structure and contents); and
- understanding key nuances in the landscape and layout of the BCPs that could affect the process.

Measuring queueing time can be challenging and resource-demanding

Recording queueing times is critical, but also challenging. Sometimes a queue to enter a BCP may be several kilometers long. Long queues make it difficult in practice for observers to record queueing times, or to distribute data sheets to drivers, as observers have to travel long distances outside the BCP zone. One way to address this is to hire more observers. Alternatively, observers may be transported by car along the queue. However, this second option may be technically difficult, or impracticable and unsafe, as roads near the BCP gate are often highly congested. A third option, and one used for the Belarus BCTR study, is to briefly interview drivers at the entry gate to find out when they joined the queue or how long they had already been in the queue.

Language barriers need to be considered

Cross-border movement of goods can involve transportation companies and drivers from multiple countries, and language differences can cause difficulties. It is important that observers have foreign language skills, and that the questionnaires are multi-lingual. In Belarus, the design of the questionnaires and the involvement of observers helped to reduce the need for communication with the drivers, and eliminated altogether the drivers’ involvement in data recording. However, data sheets were only available in Russian, causing problems in the survey process.
Looking at the results – selected insights and lessons

The more developed a system, the more difficult is to make further improvements. In a sophisticated system of controls, reform demands a high level of precision to identify pressing issues and specificity in designing practical reforms. This was the case in the Belarus study. Below are some of the survey findings.

Border-crossing times start from joining the queue, and include any waiting time needed for subsequent operations

Queueing and waiting times are essential indicators in identifying and addressing critical bottlenecks in the border-crossing process. Queueing times to enter a BCP may be even longer than the total time needed for clearance inside the BCP. Thus, it is critical to start the time calculation from the moment a truck joins the queue in front of a BCP gate, not when it enters the BCP. Similarly, waiting times to undergo a specific control action may be longer than the action itself. Customs authorities often focus on the time spent on Customs control inside the BCP, disregarding queueing and waiting times. Moreover, Customs often only consider the time spent on an actual operation, not the waiting times prior to the operation. This was the case with Belarus Customs. The Belarus BCTR study team therefore paid particular attention to ensuring that queueing and waiting times were captured accurately and without bias.

- The queueing times in front of the Polish BCP gate for trucks exiting Poland and entering the Belarus BCPs were far longer (from 5 to 20 times longer) than the queueing times in front of the Belarus BCP gate for trucks exiting Belarus to enter Poland. In general, a long queue at the exit BCP indicates insufficient physical release capacity and/or inefficient control procedures at the entry BCP, because clearance procedures for outgoing goods (exit) are usually fewer, and therefore faster, than those for incoming goods. In this case, long queues in front of the exit BCP (Polish side) indicate possible inefficiencies in the control procedures at the entry BCP (Belarus side). Another factor to consider is the ratios of loaded and empty trucks entering the bordering countries, since the clearance of incoming loaded trucks usually takes longer than that of empty trucks. Over 95 percent of trucks entering Belarus from Poland were loaded, while the share of loaded trucks entering Poland from Belarus was around 50 percent.
The proportion of time spent waiting for business processes in the Belarus BCPs was high. The waiting times to start inspection actions by Customs and other border agencies, after a truck arrived in the physical examination zone, were often longer than the inspection itself. For incoming consignments at the Bruzgi BCP, the average waiting time was 2.4 times longer than the average time required for the inspection itself, while at the Berestovitsa BCP the average waiting time and average inspection time were equal.

Customs control times increased dramatically in cases where the documentary package submitted by the declarant were incomplete, or where Customs requested additional documents. For instance, in the Berestovitsa BCP, when documents were incomplete, the duration of Customs control for inland traffic increased 2.8 times.

Border-crossing times increase with traffic intensity at the BCPs

Such a relationship was observed for both outbound and inbound flows on the Belarus, Polish, and Lithuanian sides. This may indicate inefficiencies in border-crossing processes (related to the physical layout of the BCP or control procedures), some of which were revealed by the study.

It was noticed that when there was an increase in the load (traffic) at a BCP, the average duration of Customs control rose. For instance, the impact of preliminary Customs control (including waiting time) of incoming trucks – a control carried out before parking the truck and approaching the Customs office for clearance – increased with traffic intensity. At the Berestovitsa BCP, the waiting time increased more than twofold during peak periods. This control action involved preliminary document screening, external visual examination of the truck, and physical examination of the driver’s cabin by a Customs officer.

Time pressure can be handled by enhancing the risk management system

A time-traffic relationship indicates the need to enhance effectiveness in the selection of cargos for inspections, i.e., only high-risk cargos should be subject to intensive controls, while low-risk cargos should be cleared via simplified and faster procedures, with minimal control.

The most common type of physical examination observed in the Belarus BCPs (for Customs and SPS controls) was tailgate examinations. The experience of many countries in the Europe and Central Asia region demonstrates that tailgate examinations of all cargos is a remnant of an historical total control culture, and unnecessary if using contemporary risk-based controls. With more effective risk management, this type of examination can be reduced or even eliminated for low-risk cargos, without damaging safety and/or the fiscal objectives of a government.

Belarus Customs operates a sophisticated risk management system, and its officers possess skills to assess risks based on experience and historical data. However, the study revealed an institutional preference for manually confirming automated targeting outcomes and obtaining authorization from higher-level management for intervention (adding extra time to the process). The lack of confidence in either automation or the capability of operational staff, and/or imperfections in the business processes of decision-making, suggest a need to: (a) further enhance risk profiles and validate their effectiveness; and (b) further streamline the risk-related decision-making process with a view to increasing the level of automation.

Effective risk management is also critical for other border agencies, given that the time between the start and end of Customs clearance includes clearance by other agencies. Thus, in addition to effective coordination and optimization of business processes, it is important that the risk management system also allows all agencies to feed data into the system, especially for Belarus given its desire to implement a “two agencies at the border” reform.
The impact of other agency operations is significant

Control activities of other border agencies have a significant impact on overall clearance and border crossing times, especially when such controls involve physical examination. A large proportion of inbound trucks in the Belarus BCPs was subject to non-Customs controls. For instance, at the Bruzgi BCP, 33 percent of inbound trucks were subject to sanitary/health controls, 17 percent were subject to phytosanitary controls, and 13 percent were subject to veterinary controls.

As shown in Figure 1, for inbound cargos, SPS controls accounted for 27 percent and 31 percent of total average time spent by drivers of trucks on formalities at the Customs offices in Bruzgi and Berestovitsa, respectively. For outbound trucks, the shares of Customs clearance times were 26.7 percent and 20.8 percent, in Bruzgi and Berestovita, respectively.

SPS controls involved frequent physical examinations. For instance, over 95 percent of physical inspections of incoming goods at the Bruzgi BCP were conducted by the phytosanitary agency, probably because this BCP was more frequently used for fruit and vegetables.

Of all the non-Customs controls, certification of conformity (standards) resulted in the greatest delay, even longer than the delays for goods subject to restrictions. It is also the control that is easiest to move inland (away from the BCP) without any significant increase in risk.

Customs brokerage services in Belarus were mainly provided by a state-owned company, Beltamozhservice. The services required a considerable amount of time at the Bruzgi BCP, over 36 percent of incoming transactions used Beltamozhservice, requiring an average 30 percent of total time spent on formalities at the Customs office. This could either be due to traders’ frequent failure to submit complete and accurate documents, or inefficiencies in Beltamozhservice's operations.
Some processes are out of Customs’ (and other border agency) control

Some activities undertaken by drivers or goods owners – of a voluntary or commercial nature – impact release time and are often outside Customs’ (and other agencies’) control.

- Time spent by drivers relaxing or/and shopping in duty free shops impacts border-crossing times, but is outside Customs’ control. The average time spent by drivers of outgoing trucks from Belarus inside the BCP zone after completing all controls was around one-quarter of the total time spent on the Belarus side (23 percent at Bruzgi and 27 percent at Berestovista).

- In some cases, drivers’ decisions were affected by external factors unrelated to Belarus procedures, such as commercial demands or regulations in third countries through which the trucks were to travel. For instance, drivers of trucks destined for the EU delayed their departure from Belarus to comply with demands from transport operators and consignees, or because of restrictions on HGV movements imposed by EU Member States (e.g., Germany).

- Another factor that resulted in an uneven distribution of traffic volumes was the different fuel taxes applied by EU Member States (e.g., Poland and Lithuania). This resulted in the most direct routes not always being chosen. For example, a limit on the export of fuel to Poland and the absence of any restrictions in Lithuania led to the use of the Privalka BCP (bordering Lithuania) mainly for outbound flows, while the Bruzgi and Berestovitsa BCPs (bordering Poland) were mainly used for inbound flows. This distorts traffic volumes and makes it difficult to utilize infrastructure and resources in the most efficient way.
Conclusion and outlook

The tailor-made border-crossing time study in Belarus helped reveal important insights into the border-crossing process and identify possible opportunities for reform. In addition to the improvement of physical infrastructure, enhancing the risk management system and the relevant business processes were identified as areas for further improvement. Following reform implementation, this study will be repeated in order to monitor developments and evaluate the impact of reforms.

Border-crossing is only part of the process

Border-crossing is an important stage in the total clearance and release of goods, but it is not the whole story. Customs and/or other authorities are usually interested in speeding up procedures at BCPs, but this often leads to moving the delays inland. Many critical control and clearance procedures occur at inland terminals, and not at the BCPs, such as customs valuation and duty payment procedures, mandatory conformity assessment (certification) procedures, and physical examination by SPS agencies. These procedures often require significant time to be spent inland, while goods wait at terminals prior to being cleared and released.

For trade facilitation reforms to be fully effective, it is therefore important to supplement a BCTR study at border-crossings, with research and analysis of inland clearance and release processes in order to have a complete picture.
Annex 1.
Border-crossing process flow-chart (with time stamps and observers), incoming traffic (Poland-Belarus)
Annex 2. Questionnaires – Belarus border-crossing time study (incoming traffic)

Dear drivers! We are inviting you to take part in the research project «Study of Cross Border Trade Clearance Times in Belarus». The collected data will make it possible to optimize the process of border-crossing and clearance procedures. Would you pass this questionnaire to the employees of the corresponding services for filling? When all the procedures are finished, while leaving the territory of the border-crossing point (BCP), could you hand the filled-in questionnaire to a staff member at the BCP exit, please?

Dear officers of Customs and other border agencies! Please, fill in corresponding boxes in the table.

<table>
<thead>
<tr>
<th>#</th>
<th>Actions</th>
<th>Start time</th>
<th>End time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>minute</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Weighing of the trucks and transport control</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Passport Control</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Preliminary Customs Control</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Payment of fees and duties in the bank</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Preparation of documents with Customs (broker) Service (Beltamozhservice)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

*External physical examination (visual examination, without opening the truck)
**Tailgate examination (opening the truck, identity verification, without moving, unloading and loading the goods)
***Detailed examination (physical examination, which involves opening of the truck, moving and/or unloading and loading the goods, opening packages of the goods)

10. Additional information about the cargo and the truck (to be filled in by Customs officer): 1. Empty. 2. Loaded
11. Number of consignments (CMR): ___________
12. The number of product types: ___________
13. Product type: 1. Perishable 2. Subject to certification 3. Subject to restrictions
14. Type of Customs Formality: 1. Import for free circulation 2. Transit to Eurasian Economic Union (EAEU) 3. Transit to a third (non EAEU) country 4. Other (please specify) ___________
15. Examination via X-ray scanning (at the Station of Inspection and Physical Examination): 1. Yes 2. No
16. Time of departure from BCP: _____ [hour]/ _____ [minute]

WE THANK YOU VERY MUCH FOR PARTICIPATION IN THE SURVEY AND WISH YOU SUCCESS!
INCOMING TRAFFIC
Observer #1 (Poland)

Data Sheet (#1) Entry to the territory of the BCP on the Polish side

BCP name: __________________

Date: __________________

Name of the main observer: ___________________

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Waiting time from the moment of joining the queue to the moment of entry into BCP (information obtained from drivers)</th>
<th>Time of entry into BCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCOMING TRAFFIC
Observer #2 (Poland)

Data Sheet (#2) Entry to the territory of the BCP on the Polish side

BCP name: __________________

Date: __________________

Name of the main observer: ___________________

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Time of exit from BCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCOMING TRAFFIC
Observer #1 (Belarus)

Data Sheet (#1-1) Entry to the territory of the BCP on the Belarus side

BCP name: __________________

Date: __________________

Name of the main observer: ___________________

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Time of entry into BCP</th>
<th>Time of issuing the Control Slip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hour</td>
<td>minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCOMING TRAFFIC
Observer #2-3

Data Sheet (#3) Preliminary Customs control (carried out by Customs officers)

BCP name: __________________

Date: __________________

Name of the main observer: ___________________

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>The beginning of the external visual examination by the Customs Officer</th>
<th>Control actions by the Customs officer (please tick the box)</th>
<th>The end of the examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>External visual examination</td>
<td>Physical examination of the cabin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INCOMING TRAFFIC

Observer #4

Data Sheet (#4) Joining the electronic queue in the Customs Hall (office) for customs clearance

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Time of joining the electronic queue (data from the screen of the electronic queueing system)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observer #5

Data Sheet (#5) Platform/zone for physical examination of cargo

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Arrival of the truck for undergoing examination/controls</th>
<th>Beginning of examination actions by the inspector</th>
<th>Type of examination</th>
<th>Were samples taken for testing?</th>
<th>Inspectors of which control agencies participated in control physical examinations?</th>
<th>Departure of the truck from the examination platform to the parking lot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hour</td>
<td>minute</td>
<td>hour</td>
<td>minute</td>
<td>External (visual)</td>
<td>Tailgate examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1. External physical examination (visual examination, without opening the truck)
2. Tailgate examination (opening the truck, identity verification, without moving, unloading and loading the goods)
3. Detailed examination (physical examination, which involves opening of the truck, moving and/or unloading and loading the goods, opening packages of the goods)

INCOMING TRAFFIC

Observer #5 (Belarus)

Data Sheet (#5-1) Departure from parking lot to exit the BCP, Belarus side

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Time of departure of the truck towards exit gates from BCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inset:

<table>
<thead>
<tr>
<th>#</th>
<th>Plate number of the vehicle/truck</th>
<th>Arrival of the truck for undergoing examination/controls</th>
<th>Beginning of examination actions by the inspector</th>
<th>Type of examination</th>
<th>Were samples taken for testing?</th>
<th>Inspectors of which control agencies participated in control physical examinations?</th>
<th>Departure of the truck from the examination platform to the parking lot</th>
</tr>
</thead>
</table>