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Abstract
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Land area measurement is a fundamental component 
of agricultural statistics and analysis. Yet, commonly 
employed self-reported land area measures used in most 
analysis are not only potentially measured with error, but 
these errors may be correlated with agricultural outcomes. 
Measures employing Global Positioning Systems, on 
the other hand, while not perfect especially on smaller 
plots, are likely to provide more precise measures and 
errors less correlated with agricultural outcomes. This 
paper uses data from four African countries to compare 
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the use of self-reported and Global Positioning Systems 
land measures to (1) examine the differences between the 
measures, (2) identify the sources of the differences, and 
(3) assess the implications of the different measures on 
agricultural analysis focusing on the inverse productivity 
relationship. The results indicate that self-reported 
land areas systematically differ from Global Positioning 
Systems land measures and that this difference leads to 
potentially biased estimates of the relationship between 
land and productivity.
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From Guesstimates to GPStimates:  
Land Area Measurement and Implications for Agricultural Analysis  

 

Land area measurement is a fundamental component of agricultural statistics and analysis. Land is a 
key measure of farmer wealth, a critical input in production, and a key variable for normalizing 
agricultural input use and output measures. Failure to adequately measure land limits the ability to 
analyze the agricultural economy. In an econometric analysis, mismeasuring land can potentially 
lead to questionable estimates of agricultural relationships. 

In household surveys, land is commonly measured through farmer self-reported areas. Farmer 
reported land area is widely used since it can be easily incorporated into a standard household 
questionnaire and thus requires almost no additional time or money. The use of self-reported areas 
assumes that farmers are willing and capable of providing reasonably accurate estimates of land 
area. Evidence from previous studies suggests that land measures taken from farmers are measured 
with substantial error (Goldstein and Udry, 1999; Carletto, Savastano and Zezza, 2013). For data 
analysts, the question is one of how much error is associated with a self-reported measure and the 
implications of this error for conclusions drawn from the analysis of agricultural data.  

As Global Positioning Systems (GPS) technology becomes more affordable, accurate and user-
friendly, GPS-based area measurement provides a practical alternative to farmer self-reported areas 
that is increasingly being applied in surveys worldwide.3 For example, in an assessment of 
agricultural data collection in Sub-Saharan Africa, Kelly and Donovan (2008) highlight GPS 
technology as having the potential to enable land area measurement to become a much less time-
intensive and costly exercise. Using field experiments, Keita and Carfagna (2009) indicate that 80 
percent of the GPS-measured sample plots were measured with negligible error when compared 
with compass-and-rope estimates, the accepted gold standard. Recent empirical evidence based on 
the 2005/2006 Uganda National Household Survey (UNHS) comparing GPS-based and self-
reported measurement of parcel areas also suggests the existence of systematic errors in self-
reported parcel areas (Carletto, Savastano and Zezza, 2013). 

Our objectives in this paper are to systematically assess the suitability of GPS devices to replace 
farmers’ self-reporting of plot land area and to determine the implications of using a GPS-based 
system in agricultural analysis. Comparisons of household self-reported versus GPS-measured 
distances to market show that not only are self-reported distances characterized by measurement 
error, but also that the errors are non-classical and dependent on observable socioeconomic 
variables; this suggests that studies using self-reported measures may be estimating biased effects 
(Escobal and Laszlo, 2008). Given this is the case, Gibson and McKenzie (2007) argue that GPS 
can help overcome these problems of measurement in data collection. In the same vein, we 
demonstrate that using GPS for land area measurement may have extraordinary effects on the 
analysis of mundane agricultural questions.  

                                                           
3 The area of an agricultural parcel can also be measured by traversing or delineating parcel boundaries on ortho-

corrected remote sensing imagery. Traversing is completed using a tape and compass and is considered the gold 
standard of land measurement, but its implementation is time-consuming and costly. One Uganda study compared 
land measurement by traversing versus using GPS units, and found that the average time use per plot measured was 
over three hours for traversing, which was more than three times as much as the GPS technology (Schoning, Apuuli 
and Muwanga-Zake, 2005). Traversing is therefore infeasible in the context of national household surveys. 
Delineating parcel boundaries on satellite imagery is a potentially accurate alternative, but at present largely 
impractical, particularly in tree-dense areas and areas with regular cloud cover where the ability to make accurate and 
timely measures is limited. The spatial and temporal extent of national household surveys generally makes the 
acquisition and processing of such high resolution imagery largely cost prohibitive. 
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Three steps are taken to meet the objectives of the paper. First, we examine the differences 
between the two measures. Second, we determine to what degree the source of differences between 
self-reported area and GPS measures are due to observable factors. Finally, we compare the use of 
self-reported and GPS land measures in estimating the inverse farm-size productivity relationship to 
determine the implications for measurement error on agricultural analysis. To that end, we build on 
Carletto, Savastano and Zezza (2013) to systematically test the existence of an inverse farm size-
productivity relationship in a number of different geographic contexts. The choice of the inverse 
productivity relationship is motivated by the fact it is a controversial relationship widely discussed 
in the agricultural development literature and land measurement has been noted as a potential issue 
in estimating the relationship (Lamb, 2003; Barrett Bellemare and Hou, 2010).  

Meeting these objectives is possible because of recently collected, multicountry data coming out 
of the Living Standards Measurement Study—Integrated Surveys on Agriculture (LSMS-ISA). The 
project has collected relevant information from a number of countries in Sub-Saharan Africa to 
compare the approaches to land data collection and corresponding agricultural variables in order to 
assess the implications of such approaches to the analysis of agricultural relationships. We use data 
from four of the most recently completed surveys—Malawi, Uganda, Tanzania and Niger. 

We find that there is a systematic discrepancy between GPS and self-reported plot areas with 
results indicating that, on average, farmers tend to over-report land area. This is particularly true for 
farmers at the lower end of the farm size distribution. While rounding of self-reported areas plays an 
important role in the misreporting as do household and plot level factors, this systematic 
discrepancy remains, and even strengthens, when controlling for these factors. Exploring the 
implications of these results on the analysis of the inverse productivity relationship, we find that, 
while in most countries the relationship slightly weakens, it does not disappear or change sign, thus 
confirming in each country, as well as in the pooled data, the persistence of an inverse farm size 
productivity relationship. Further, gradual introduction in the specification of additional control 
variables creates a greater divergence between the GPS and self-reported estimates indicating a 
level of endogeneity of the self-reported areas.  

The remainder of this paper is organized as follows. Section 2 discusses the issue of land 
measurement and how it has been addressed in the LSMS-ISA surveys. The section also includes 
descriptive statistics comparing the measures and how they differ as well as an analysis of the 
difference between the two measures. Section 3 considers the implications for land measurement on 
agricultural analyses, particularly the widely analyzed inverse productivity relationship. Section 4 
then provides conclusions regarding the implications of the analysis for studies that use self-
reported land areas as well as the implications for collecting land data given time and monetary 
constraints. 

 

2. Data and land measurement 

Suppose that the GPS measure, 𝐺𝑃𝑆𝑖, represents the true area of a plot of land. Self-reported land 
area, 𝑆𝑅𝑖, can then be noted as follows: 

 𝑆𝑅𝑖 =  𝐺𝑃𝑆𝑖 +  𝜀𝑖          (1) 

where 𝜀𝑖 is the error associated with that estimate. Even if classical measurement error can be 
assumed, where this error (𝜀𝑖) in self reporting is considered to be independent of the GPS-level of 
land area as well as all other variables in an economic model, estimates of economic relationships 
can be biased (Bound, Brown and Mathiowetz, 2001). In this section, we begin by carefully 
considering how land area is determined and the implications for the error in this measurement. 
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There are a number of reasons why self-reported land areas may be subjected to measurement 
error. First, farmers may knowingly over- or under-state their landholdings for strategic reasons if 
they perceive information may be used for a certain purpose such as property taxes or access to a 
program. Second, there are also a number of factors that can lead to unintentional errors in 
reporting. There is a natural tendency to round off numbers and provide approximations of land 
areas, which leads to lumping of the data. Geography, particularly parcel slope, can also change the 
way farmers interpret the land (Keita and Carfagna, 2009). Slope-related effects on area 
measurement are rooted in the fact that the actual area should be the horizontal projection of the 
parcel, as opposed to the parcel area itself since plants and trees grow vertically rather than 
perpendicular to the slope and therefore require for their growth a vertical cylinder of soil (Keita, 
Carfagna and Mu’Ammar, 2010; Muwanga-Zake, 1985). The difference between actual area and 
projection appear to be particularly important for slopes greater than 10 degrees (Fremont and 
Benson, 2011). 

Survey design itself can lead to measurement error as well. When farmers are required to report 
in a single unit, enumerators may be forced to convert the self-reported area from local units if 
farmers are unfamiliar with the required unit. This can lead to inconsistent conversions across 
enumerators or data quality issues if the required unit is not used. In some cases, enumerators are 
advised on common conversion factors, but only for standard units (as opposed to local units) and 
for common fractions (quarter, half and three-quarters) or they are given conversion estimates in 
paces for square areas. Alternatively, farmers can report local units and conversion factors can be 
applied prior to analysis to standardize the units. This use of local units can severely limit reliability 
of self-reported areas because conversion factors may be unreliable or location specific and 
acquiring conversion factors for individual zones of the country is difficult to accomplish with 
accuracy.  

This range of factors—intentional or unintentional misreporting, rounding, topography and the 
existence of local units—opens the door for systematic measurement error in land data based on 
self-reported areas. It is the presence of these errors that led to a search for alternative measure and 
particularly the use of GPS. GPS is costly in terms of the units themselves—although this cost 
continues to decrease and is becoming negligible—and the cost of labor to visit plots and physically 
walk the perimeter. The question becomes whether these costs are justified by the benefit of more 
precise land measure. 

Despite the great potential of GPS technology, GPS-based coordinates are subject to known 
types of measurement error rooted in satellite position, signal propagation, and receivers. 
Approximate contributions of these factors to the overall position error range from 0.5 to 4 meters 
(Hofmann-Wellenhof, Lichtenegger and Wasle, 2008). On a large plot this may not be substantial, 
but on a smaller plot, the errors may be significant. The number of satellites, in particular, can cause 
the distribution of position error to be elliptical, rather than spherical (van Diggelen, 2007). 
Although position estimates are subject to a certain level of inaccuracy and may be distributed in a 
non-spherical manner, in theory the error associated with area measurement should be random—
that is, the factors that cause non-spherical position error are largely macro level factors that are 
unlikely to change in the short period of time required to pace the perimeter of a plot, rendering the 
position error distribution consistent at all points along the perimeter.4 A study by Bogaert, Delince 
and Kay (2005) using simulated coordinates and European Geostationary Navigation Overlay 
Service (EGNOS) augmentation concluded the position error can be reasonably assumed to be 

                                                           
4 One factor that could possibly change the distribution of the position error around the plot is multipath, or signal 

reflection. Multipath is typically caused by large buildings, however, and given the rural setting analyzed here, this 
type of error is assumed negligible. 
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normally distributed. Overall, from a technical standpoint, GPS-measured areas would be expected 
to create land data with classical measurement error. 

While, technically speaking, GPS area measurement error should be random, the use of the 
technology in practice has produced different results. For reasons left unexplained by device 
manuals and technological articles, handheld GPS devices often slightly under report the true area 
on average with empirical evidence suggesting that the GPS-based area measurement appears to be 
less precise to a non-trivial degree for plots smaller than 0.5 hectares or 1.24 acres (Schoning, 
Apuuli and Muwanga-Zake, 2005; Keita and Carfagna, 2009). However, in field experiments using 
various GPS devices, Hejmanowska, et al (2005) found that Garmin units did not bias estimates 
either downward or upward in their sample of plots from 0.369 -3.92 hectares although other units 
did show bias in one direction or the other. The smaller area as measured by GPS could be 
explained if the GPS unit, and the enumerator using the device, cuts corners, thus shaving off the 
precise corner point of the plot if there is one, an effect that could be exacerbated by the speed with 
which the plot is navigated. Analysis by Bogaert, Delince and Kay (2005) confirms the hypothesis 
that operator speed has an impact on GPS measurement accuracy while adding that the optimal 
speed is not fixed, but rather varies with plot size. Finally, training of enumerators in the use of the 
device and the manner in which results are recorded could influence final measurement. 

Even with these issues, GPS is considered to be a more accurate method of area measurement 
than self-reporting. Although the issues with GPS measurement error should not be overlooked and 
are discussed again in the conclusion of the article, here GPS measurement is considered closer to 
the true land area and we refer to deviations from the GPS area as self-reported measurement error.  

LSMS-ISA data 
The LSMS-ISA data sets create an opportunity for analyzing the different methods of land data 
collection since the studies employ GPS measurement while continuing to collect self-reported land 
areas. Data are currently available for four LSMS-ISA countries: Malawi (2010/11), Uganda 
(2009/10), Tanzania (2010/11) and Niger (2011). For agricultural households in each of the 
countries, the plot manager or head of household is first asked to estimate the plot areas and then the 
plots are measured using GPS, so as not to influence the farmer’s reported figure.  

Depending on the survey, farmers may be required to report in a single unit (as in Uganda, 
Tanzania and Niger) or they may have the choice to report in a number of units (as in Malawi). In 
either scenario, the estimate is subject to previously noted errors. GPS devices allow for 
measurement in a variety of units, but are typically recorded in acres in LSMS-ISA projects and 
rounded to the nearest hundredth. 

The exclusion of certain plots from GPS measurement was mandated by the survey manual for 
the sake of time and budget. In Malawi, for example, enumerators were instructed to measure all 
plots within two hours of walking from the household. In Tanzania the guidelines were to measure 
all plots within one hour (via any mode of transportation) and Uganda required all plots within the 
enumeration area to be measured (Government of Malawi, NSO, 2010; World Bank Group, n.d.; 
UBOS, 2009). Table 1 provides basic information on the surveys considered in this study and how 
land data were collected in each case. The number and fraction of total plots or parcels that have 
both GPS and self-reported areas varies by country. In Niger and Uganda, the survey captured 47% 
and 58% of plots on GPS while Tanzania and Malawi have more complete data reaching 78% and 
96%, respectively. The variation is related both to the rules of data collection and the concentration 
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of agricultural production. For this analysis, the data are limited to households in which all plots 
were measured with GPS5 and the validity of the analysis is then solely for these subpopulations.  

Difference between self-reported and GPS land areas 
Looking at the mean GPS and self-reported land area measurements across LSMS-ISA countries 
gives cause for concern on the equality of the measurement methodologies. Table 2 reports the 
mean values for the GPS and self-reported plot and farm areas for Malawi, Uganda, Niger and 
Tanzania as well as a compilation of metadata.6 In simply looking at the overall means by country, 
the difference in the two methods is not remarkably distinct—at the plot level it is less than 0.4 
acres in all cases with an overall difference of only 1.3% in the combined data. Similar differences 
for the farm level are found.7 While differences between self-reported and GPS area (referred to as 
bias in this paper) at both the plot and farm level are found, the divergence in the overall mean 
values appears small, only rarely reaching over 10% (for the plot and farm level in Tanzania and 
Uganda). 

Disaggregating the data by size—constructed based on levels of GPS measurements—reveals 
systematic differences in the discrepancy between the two measures, matching the patterns observed 
by Carletto, Savastano and Zezza (2013) and De Groote and Traore (2005). Smaller plots show 
gross over reporting of areas by farmers. In the lowest group, the mean self-reported plot areas are 
over 90% of the average GPS measure for that group in all cases, suggesting systematic over 
reporting by farmers. The area of large plots, on the other hand, is systematically under reported. In 
the largest land area group of the metadata, the mean self-reported plot area is more than 30% 
below the average GPS measure for that group. Tanzania, Niger and Uganda show that the largest 
plots are under reported by more than 25%, while the largest plots in Malawi are cut short by 
59.1%. At the farm level similar patterns emerge with over reporting of land areas relative to GPS 
measures by smallholders and under reporting by largeholders. In interpreting whether plots and 
farm sizes are generally under or over reported it should be kept in mind that the number of plots 
over 5 acres in the metadata are 5% of the total and the number of farms 11% of the total. In most 
countries, it remains a relatively small fraction of the total with the largest fraction being 31% of 
plots in Niger. Given this is the case, plot size is generally over reported. 

In each of these countries, the bias in measurement begins with extreme highs for small plots 
and falls as the plot area increases, generally converting to under reporting by farmers in the third or 
fourth group. This transition from positive to negative bias results in the country average washing 
out to a passable difference. Even though there are more smallholders, the small positive absolute 
differences in the plot size average out with the fewer but larger negative absolute differences in 
plot size reported for large plots. However, differences in means tests confirm that the country 
averages of GPS and self-reported areas are, in fact, significantly different in all countries except for 
Niger, where the difference is only significantly different at each disaggregated level. Wilcoxon 
matched-pairs signed-rank tests (Wilcoxon, 1945) for each country indicate that the distribution of 

                                                           
5  Probit analysis on GPS reporting shows that distance from the household was a primary factor in the decision to 

measure. Additional factors (results available in the annex, Table A1) that appear to matter include if the household is 
urban, the number of household members, land tenure status, and plot size and slope, although with minor magnitude, 
suggesting that enumerators were less inclined to measure larger, steeper plots.  

6  In order to limit the impact of GPS imprecision at small areas, plots with self-reported or GPS areas less than 0.01 
acres were excluded from the analysis. This includes 16 plots from Tanzania, 16 plots from Niger, 47 from Malawi 
and 2 from Uganda. 

7  Using median values instead of means provides largely similar results. The primary difference is in the lower 
categories where the percent bias tends to be smaller as the weighting on larger values is reduced. The trends across 
land categories are the same. 
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GPS and self-reported areas are significantly different in the pooled data as well as in Malawi and 
Niger.  

Since a key potential component of the error in self-reported land area is rounding, as a first 
look at the source of mismeasurement Figure 1 provides histograms of the self-reported land data 
(left hand side) compared to the GPS data (right hand side) including all plots with 5 acres or less. 
The difference is striking. On both graphs there is clustering on the low end of the scale, which is to 
be expected given that at least 40% of plots in each country are less than 2 acres. In the self-
reported areas, however, there is clear heaping on whole numbers as well as intermediate rounding, 
especially on the lower end on the quarter, half and three-quarter acre marks. In Malawi, farmers 
had the option of reporting in acres, hectares or square meters but 99.7% chose to report in acres. In 
Uganda and Tanzania, acres were the only option, which could lead to rounding on the part of 
farmers or enumerators. In Niger, square meters were the only available unit and therefore the 
heaping is not centered on the same acre proportions. While the GPS histograms are markedly 
smoother, the existence of spikes in Malawi and Tanzania GPS figures suggest there is still some 
rounding of GPS-measured areas because of survey design and technology.8  

To assess whether rounding is the source of the trends noted in Table 2, Figure 2 reports the 
distribution of GPS measures relative to “rounded” self-reported areas for the metadata.9 For areas 
such as 0.5 acres, 1 acre, 2 acres and similar higher common rounding values, we check to see the 
distribution of GPS measures. Near perfect reporting of self-reported measures would lead to (i) a 
narrow distribution of GPS measures around the self-reported acre value, and (ii) symmetry in the 
distribution around the self-reported value indicating an equal level of under and over reporting.  

Looking at the figures, the distributions for lower estimates appear to include a range of GPS 
values and the distributions are generally asymmetric. For example, the self-reported 0.5 acre 
measure has GPS values that primarily range from very small levels up to 1 acre but the distribution 
appears largely symmetric and in fact 50% under report, 46% over report and 4% are almost exact. 
Similar results are found for those rounding to 1 acre with a primary range between 0 and 2 acres 
but largely symmetric. However, for measures rounded at slightly higher amounts (2, 3, 4 and 5 
acres) more systematic over reporting is found with nearly two-thirds of households providing 
estimates over the GPS measure. Generally, the distributions of GPS values display a heavier left 
tail and wider distribution with increasing self-reported plot size, suggesting that over reporting is 
more prevalent and self-reported precision declines as the self-reported figure increases. For even 
higher measures, there are too few observations to create clear distributions but the pattern remains 
the same with more over reporting of land size than under reporting relative to the GPS measure. In 
general, rounding appears to induce more over reporting.  

Regression analysis of bias 
To analyze the range of factors that may influence differences in land areas as measured by GPS 
units and farmer estimates, following Escobal and Laszlo (2008) we turn to regression analysis. 
Using plot-level data, we estimate the following equation: 

𝜀𝑖  = 𝛼 + 𝛽𝐺𝑃𝑆𝑖 + 𝛿𝑋𝑖′ +  𝜇𝑖     (2). 

                                                           
8 In Malawi, the interviewer manual instructs enumerators to record only two digits to the right of the decimal and the 

questionnaire itself only provides this much space—thus, the ten small spikes seen in Malawi’s GPS histogram 
between 0 and 1 acre. In Uganda, similar instructions led the enumerators to record two spaces to the right of the 
decimal. 

9 Self-reported areas are considered rounded if they are equal to the following: in meters – 1000, 5000, 10,000, 20,000, 
30,000, 40,000, 50,000, 100,000, 200,000 or 500,000; in acres – 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10, 15, 20, 
25, 30, 40, 50, 100 or 300; or, in hectares – 0.5, 1, 2 or 5. 
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𝜀𝑖 measures the difference between the area measures for plot i (𝑆𝑅𝑖 −  𝐺𝑃𝑆𝑖) and can be viewed as 
an estimate of bias associated with self-reporting land areas. Measuring in this manner makes it 
possible to assess the factors that determine the difference between measures.  

With no other controls, 𝛼 would simply represent the mean difference between the two 
measures. If 𝛼 is not significantly different from zero or very small it would suggest that the 
measures are similar. Adding a measure of the GPS area controls for bias by GPS reported area. If 
the coefficient 𝛽 is not significantly different from zero, it suggests that there is no systematic 
difference between self-reported and GPS-measured land area and the direction of overall bias 
would depend solely on 𝛼. If the coefficient is significant and negative, it suggests that as land size 
increases farmers systematically move towards under reporting land areas while if it is significant 
and positive it suggests that farmers move towards systematically over reporting land areas. 
Whether they are under or over reported on average for a given land area would depend on both the 
value of 𝛼 and the value of 𝛽. Of course, a nonlinear relationship between GPS area and bias might 
exist and this is explored. If neither 𝛼 nor 𝛽 are significantly different from zero it would suggest 
that self-reported land measures are reasonable substitutes for GPS measures. 

Including additional controls provides an assessment of whether other hypothesized factors may 
influence bias. Further, the inclusion of additional variables may drive out the results on GPS land 
area (𝛽) or general mean differences (𝛼)—that is, make them insignificantly different from zero—
and suggest that while there are differences in farmer estimates and GPS measures, these can be 
controlled for in any analysis of agricultural relationships. 𝑋𝑖′ is then a vector of control variables 
that are likely to influence self-reporting including those previously hypothesized to influence bias 
such as factors linked to intentional or unintentional misreporting, rounding, and topography. Since 
local units were not used in the included countries, this should not be a factor and is not considered. 
Finally, 𝜇𝑖 is the error term.  

Plot-level data are used in the analysis since this is the point of measure and it is this bias that 
we are interested in understanding. The equation is estimated for the metadata and then the 
individual country data. The analysis of the metadata takes a stepwise approach. First, the 
relationship between bias and GPS-measured land area is considered since this is the key 
relationship of interest as it forms the basis for understanding if self-reported areas are 
systematically different from GPS measures. Next, a series of rounding dummies are included first 
to see if these are important in bias and second to see whether this explains part of the relationship 
between GPS area and bias. Third, household fixed effects are added to the regression to determine 
the role household factors play in bias. Since household fixed effects require multiple plots per 
household, the estimates in this table only include plots in households with multiple plots (15,724 
observations). Fourth, plot level factors are added to establish if topography or other plot level 
factors play a role. Robust standard errors have been used in all estimations to control for 
heteroskedasticity. 

Table 3 reports the results of the four steps with mean values of variables reported in the first 
column. The results of the first specification show that bias in reporting is declining with plot GPS 
land area indicating that bias is relatively greater for small land sizes. While the squared term is 
negative, it is relatively small in the range of interest creating a near linear relationship. With a 
constant (𝛼) equivalent to half an acre and a point estimate on the linear term of -0.3, what this 
means is that self-reported areas are larger than GPS areas for very small plots but that bias tends to 
decline beyond this, reflecting the systematic differences found in Table 2. Above half an acre, 
farmers tend to systematically under report land areas. 

Adding in the rounding variables in the second specification, the importance of rounding is 
clearly shown as all categories of rounding are found to be significant and contribute to bias. Note 
that with the rounding variables included, the relationship between bias and GPS strengthens 
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substantially in effect creating a steeper estimate. Further, the constant (𝛼) increases to 1.25. The 
results then suggest that bias remains positive up until 2 acres—or equivalently, that controlling for 
rounding, plots under 2 acres tend to be over reported.  

The inclusion of household fixed effects leads to a decline in the land-bias relationship 
suggesting household factors matter to a degree. Note also that there are changes in the magnitude 
of the rounding coefficients indicating that rounding is partially linked to household factors. 
Separate analysis using household variables rather than fixed effects (available from the authors) 
shows that a number of factors including head education and gender are significant predictors of 
bias, but, as the fixed effect results show, the systematic bias remains. Looking at the fourth 
specification, the entry of plot characteristics has limited effect on the overall relationship. Only 
land tenure is linked to bias and topography does not seem to matter. The results for the inclusion of 
household and plot factors are important since they suggests that the use of household and plot 
control variables in regressions assessing agricultural relationships is insufficient to deal with the 
potential bias in self-reported areas.10 

The last two columns repeat the analysis of the final specification but limiting the sample to 
observations where the GPS measure is less than 1 acre and then more than 5 acres. The reason for 
including these specifications is to check the sensitivity of the results to different parts of the 
distribution. This is particularly important given the potential issues with using GPS measures for 
smaller land holdings. The results for the observations under 1 acre show an insignificant linear 
term but a negative and significant squared term for land area. Combined with the result for the 
constant term (𝛼), we again observe over reporting by farmers for very small plots and a shift 
towards under reporting with movement towards 1 acre. The results for the observations greater 
than 5 acres show a larger linear term on the GPS measure when combined with the constant, 
indicating that on average larger plots are under reported. These tests confirm the widespread over 
reporting by farmers. 

Table 4 repeats the analysis using the fourth specification for each of the individual countries 
included in the metadata. The country-level results confirm those found in the metadata. Constant 
terms are between 0.54 and 3.005 (although not always significant) and bias is significant and 
declining with GPS plot area with linear estimates between -0.405 and -0.755. Estimates on the 
rounding variables also confirm that rounding plays a significant role in the level of bias. 

The analysis of GPS and self-reported plot areas establish systematic and significant 
discrepancy between the two land measurement approaches. Results indicate that while small plots 
may be over reported by farmers, larger farmers tend to under report their holdings. These results 
hold even controlling for other factors including rounding, household factors and plot 
characteristics. These exist across the countries studied and are likely to hold true in other locations. 
Overall they suggest that land measurement error is non-classical. The results mirror those of 
Escobal and Laszlo (2008) who found the same result when comparing self-reported and GPS 
measured distances to market. 

The deviation in land area measurement across methodologies found in these countries could 
serve to either unravel or reinforce commonly trusted agricultural relationships. The implications of 
using readily available yet imprecise self-reported land area measurements are explored below 
through an analysis of the inverse productivity relationship.  

 

                                                           
10 To ensure metadata results were not driven solely by Malawi, the country with the largest share of plots, additional 

metadata analysis was conducted excluding Malawi. Results showed consistent trends (full results available from the 
authors). 
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3. Estimating the inverse productivity relationship 
Production is commonly shown to be negatively correlated with farm area. This inverse 
productivity relationship has been tried and tested by economists for decades, most recently by 
Carletto, Savastano and Zezza (2013). While some, such as Bhalla and Roy (1988), have argued 
that land quality differences fully or near-fully explain the inverse relationship, others, like Lamb 
(2003) and Barrett, Bellemare and Hou (2010) conclude that land quality does contribute to the 
relationship, but does not explain it away. However, Lamb (2003) notes that results from fixed and 
random effects models imply that the land size variable may be subject to measurement error 
suggesting that part of the inverse relationship may be explained by land mismeasurement. If 
measurement error is a contributing factor, the use of GPS could ameliorate some of the inverse 
relationship between productivity and land area. To analyze whether the measurement methodology 
influences this relationship, descriptive statistics are first examined. 

Table 5 provides means for the value of output11 per farm as well as the value of output per acre 
using both the GPS and self-reported areas as the basis. The means are disaggregated by land area 
designations to provide an initial assessment of the inverse productivity relationship. The existence 
of a basic inverse relationship is clear in the descriptive statistics. While the value of output per 
farm increases with size, as is expected, the value of output per acre falls. This is generally true for 
both the GPS-measured land area as well as with the self-reported areas although there are some 
exceptions within the countries. In Malawi, the mean values for both GPS and self-reported land 
areas do not explicitly exhibit an inverse productivity relationship with rising productivity for larger 
plot areas, which may be due to high returns in key crops such as tobacco. Niger also has one 
category that does not match the pattern although given the sample sizes for smaller areas this may 
be due to outliers.  

While looking at the means, an inverse productivity relationship appears to emerge for both 
GPS and self-reported areas. With simple mean relationships, however, it is difficult to compare 
across the two measures and hard to know whether other factors besides land size, which are not 
controlled for, are driving the relationship. To assess whether the measurement methodology used 
impacts the strength of the relationship to any significant degree, we turn to regression analysis. 

Analysis of value of output and productivity 
Following the standards for productivity (Carlson, Zilberman, & Miranowski, 1993), to assess the 
inverse productivity relationship one or two of the following reduced-form empirical relationships 
are estimated: 

ln(𝑌𝑖) =  𝛼0 +  𝛼1 ln(𝐿𝑖) +  𝛼2𝑃𝑖 + 𝛼3𝐻𝑖 + 𝛼4𝑋𝑖 +  𝜗𝑟 + 𝜖𝑖 (3) 

ln �𝑌𝑖
𝐿𝑖
� =  𝛽0 + 𝛽1 ln(𝐿𝑖) +  𝛽2𝑃𝑖 + 𝛽3𝐻𝑖 +  𝛽4

𝑋𝑖
𝐿𝑖

+ 𝜗𝑟 + 𝑣𝑖 (4) 

where 𝑌𝑖 is the value of output on farm “i”, 𝐿𝑖 is land area in acres, 𝑃𝑖 are plot characteristics—
including farmer-reported soil type—and control for land quality variation, 𝐻𝑖 are household 
characteristics, 𝑋𝑖 are farm inputs, and 𝜗𝑟 are locational (enumeration area) effects that control for 
local factors not controlled for otherwise (market prices, agroecology, etc.).  

                                                           
11 Output values are calculated using household-provided conversion factors to kilograms and imputing market prices 

based on enumeration area medians (with a minimum of three observations per crop and enumeration area to 
minimize the influence of seasonality and outliers). Unit prices are specific to crop and crop condition where 
applicable (i.e, fresh, dry, shelled, unshelled, etc). The value of output was separately constructed for some countries 
using unit-specific prices rather than kilogram conversions to validate the robustness of the output calculations. 



 11 

In equation (3), 𝛼1 measures the elasticity of the value of output with respect to operated land 
area. If this is estimated to be less than one and significant, it suggests that the value of output rises 
less quickly than operated land area and therefore the inverse productivity hypothesis holds (Lamb, 
2003). If constant returns to scale are assumed, all production factors, including yields and inputs, 
can be converted to per acre terms and equation (4) estimated. For this equation, the inverse 
productivity relationship holds if 𝛽1 is found to be significantly less than zero.  

Researchers that estimate this relationship using self-reported land areas assume that land has 
been adequately measured or that mismeasurement can be controlled for in some manner within the 
specification. If this is not the case, the estimate may be biased. The direction of bias depends 
largely on the manner in which self-reported areas deviate from the actual land size. For example, it 
may be the case that farmers consistently over or under report land areas across the land distribution 
or, alternatively, that over or under reporting varies with land size. The specific issues in reporting 
will influence the direction of bias associated with the inverse productivity relationship. The 
previous analysis of the deviation between self-reported and GPS-measured areas indicates that 
farmers over report small land areas and under report larger areas suggesting estimates of the 
inverse productivity relationship will vary between the two measures. 

To test this hypothesis, we estimate equations (3) and (4) with GPS and with self-reported land 
areas to identify the difference. Estimating both equations allows verification of the consistency in 
the relationship regardless of the approach. In running these equations we are testing two distinct 
hypotheses. First, whether the inverse productivity relationship holds even when using a GPS land 
measure. Second, whether the estimate using the GPS land measure differs in a statistical sense 
from the estimate using self-reported land area. 

Along with providing a basic estimate of the productivity-land relationship, as seen in equations 
(3) and (4) additional variables are included (e.g. 𝑃𝑖,𝐻𝑖 ,𝑋𝑖,𝜗𝑟) in the specification to check whether 
any estimated discrepancy in the productivity-land relationship between the two land measures can 
be controlled for through the inclusion of these additional variables. Towards this end, a stepwise 
approach is taken to see how the difference between the two measures varies with the addition of 
controls. Each step includes the addition of key sets of controls noted in the equations. The basic 
model includes only the land variables with locational (enumeration area) fixed effects to control 
for differences across location (particularly agroecological differences). The initial analysis focuses 
on the metadata, which is subsequently confirmed using the individual country data.  

Table 6 reports the results for the analysis of value of output (equation 3) using the metadata. 
Tests of difference (p-values) between the estimates using GPS measured land area and self-
reported land area are reported at the bottom of the table. The first estimations, which include no 
control variables but include enumeration area fixed effects, show that for both land measures the 
estimated elasticities are substantially lower than one, supporting the inverse productivity 
relationship. The elasticities for the self-reported areas are lower than for GPS areas—tests show 
that they are significantly lower—indicating that while the results confirm an inverse productivity 
relationship, the self-reported area results suggest it is stronger than when using GPS areas. The 
subsequent regressions incorporate plot level variables, household factors and finally labor and non-
labor inputs. The inclusion of these factors, while lowering the elasticities for both measures, 
reduces the estimate more for self-reported areas. The final results provide support for the inverse 
productivity relationship and indicate that self-reported area indicates a significantly stronger 
inverse productivity relationship than estimated by the GPS measure.  

Table 7 follows a similar analysis estimating in a stepwise fashion the value of output per acre 
(equation 4) using the metadata. Again, tests of difference between the estimates using GPS and 
self-reported areas are reported at the bottom of the table. The results are consistent with Table 6. 
The estimates for both self-reported and GPS land measures suggest an inverse productivity 
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relationship, but the estimates again diverge with self-reported areas indicating a significantly 
stronger relationship than GPS.  

The inclusion of appropriate control variables in both sets of regressions (Tables 6 and 7) 
appears to create greater divergence between the two land area measures. First, this suggests that 
self-reported area is more responsive to the inclusion of these controls indicating this land measure 
is capturing characteristics of the land operator in addition to the land area. This is consistent with 
the earlier analysis which showed household- and plot-level factors are significant determinants of 
bias. It is also consistent with the presence of land measurement error, which is expected to lead to 
biased estimates (Bound, Brown and Mathiowetz, 2001). Second, it suggests that the inclusion of 
controls in assessing the inverse productivity relationship may lead to an overestimate of the true 
relation. At minimum, it indicates that control variables do not help overcome the inherent bias 
generated by using self-reported land areas. 

Of course, as noted earlier in the paper, GPS units potentially underestimate land areas for 
smaller plots (less than 0.5 hectares or 1.24 acres). If that is the case, the overestimate of the inverse 
productivity relationship might reflect under reporting of smaller plots by GPS rather than over 
reporting of self-reported areas. To check this possibility, the two equations are first re-estimated 
using land area dummies to see if the relationship is greater at lower levels (suggesting this is 
driving the results). The results (available from the authors) indicate that on the contrary, the 
differences are greater at larger land areas. Second, the equations are estimated separately for farms 
under 1 acre and those over 5 acres to see if the estimates vary depending on the observations used. 
The results (reported in the last columns of Tables 6 and 7) appear consistent and suggest self-
reporting of land areas overestimates the inverse productivity relationship at all land sizes. 

Finally, Table 8 presents the results for the four individual countries included in the metadata 
using the final specification. For the individual countries, a few differences emerge from the 
metadata analysis. First, all estimates suggest an inverse productivity relationship although when 
using self-reported areas for value of output (equation 3) for Niger, the results are not significant, 
raising the possibility that self-reported areas include sufficient error to falsely reject the hypothesis 
of an inverse productivity relationship. In the value of output per acre model, however, the results 
for Niger are consistent in that the inverse productivity relationship is stronger with farmer self-
reported areas. Second, while Malawi and Uganda have trends consistent with what is found in the 
metadata, the Tanzania results imply that the self-reported land area estimates suggest a weaker 
inverse productivity relationship compared to using GPS.  

 

4. Conclusions  
The objectives of this paper are to compare the use of GPS devices to traditional self-reporting of 
plot land area and to determine the implications of using a GPS-based system for the analysis of 
agricultural relationships. Particularly, we compare GPS land measurement to self-reported land 
area in estimating the inverse farm-size productivity relationship. Meeting these objectives is 
possible because of recently collected LSMS-ISA data which includes GPS and self-reported land 
areas along with detailed agricultural information from four countries in Sub-Saharan Africa. 

The analysis indicates that there is a systematic discrepancy between GPS and self-reported plot 
areas. The data indicate that small plot areas are generally over reported by farmers while larger plot 
areas are generally under reported. Given the majority of plots in Sub-Saharan Africa are small, 
over reporting in this critical area of the land distribution appears to dominate. Of course, in other 
contexts where the land distribution differs, underreporting may dominate. The source of 
misreporting seems to be related to rounding as well as a number of household factors. While these 
factors play an important role in the misreporting, systematic discrepancies between the two 
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measures remain, and even strengthen, when controlling for these factors. This suggests that in 
assessing agricultural relationships using control variables will not address measurement error. The 
implications of this study mirror those articulated by Escobal and Laszlo (2008) in their assessment 
of self-reported access to market or public infrastructure; namely, those who use self-reported land 
areas in an analysis of agricultural relationships need to address the likelihood that responses are 
reported with error and that this error is correlated with other household characteristics. 

Exploring the implications of these results on the analysis of the inverse productivity 
relationship, we find that using self-reported land areas to assess the inverse productivity 
relationship tends to lead to an over-estimate of the relationship. While GPS land area measures still 
find the inverse productivity relationship exists, in our particular analysis it is not found to be as 
strong as when self-reported areas are used with estimated coefficients for the two measures being 
statistically significantly different. Further, the use of control variables in assessing the relationship 
creates a greater divergence between the GPS and self-reported estimates indicating a level of 
endogeneity of the self-reported areas. It might be argued that the results are driven by under 
reporting of land areas using GPS measures, particularly on plots smaller than 0.5 hectares where 
some studies have shown issues with GPS measures (Schoning et al., 2005; Keita and Carfagna, 
2009). However, sensitivity analysis suggests that even for larger land sizes, where the confidence 
of GPS measure is greater, self-reported land areas still overestimate the inverse productivity 
relationship.  

While the results indicate the inverse productivity relationship is overestimated, the results do 
not appear to consistently hold across all countries. This suggests that the deviation between self-
reported and GPS land areas is context specific depending on circumstances within a country. This 
makes self-reported areas even more problematic as it becomes unclear what exactly it is measuring 
and what omitted factors the self-reported measure might be capturing. As such, there will always 
be the potential for biased estimates of agricultural relationship given the endogeneity of self-
reporting. Even with potential errors in GPS measures, it should remain exogenous to household 
characteristics and a preferred option for analyzing agricultural relationships. The final conclusion 
then reinforces the arguments made by Gibson and McKenzie (2007) that GPS information should 
become a routine part of survey data collection since they tend to provide better measure and help to 
identify causal relationships.  
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Figure 1: Distribution of Self-Reported and GPS Plot Area

Metadata

Malawi

Uganda



 17 

  

Tanzania 

Niger



 18 

 

 Figure 2: Distribution of GPS Measurements at Selected SR Areas

SR Areas <= 2 Acres:

SR Areas 2-5 Acres:



 
 

Table 1: Overview of Data

GPS unit: Acres Acres Acres Square Meters

Self-reported units: Square Meters, Hectares, Acres Acres Acres Square Meters

An acre is a measure on the ground of approximately 
70 yd x 70 yd or half a standard football field;

An acre is a measure on the ground of approximately 
70 yd x 70 yd or half a standard football field;

By casually walking round a square of 50 steps by 50 
steps, one covers an area of approximately ¼ or 0.25 

acres;           

By casually walking round a square of 50 steps by 50 
steps, one covers an area of approximately ¼ or 0.25 

acres;           
An area measuring 22 yd x 22 yd covers 0.1 acres; An area measuring 22 yd x 22 yd covers 0.1 acres;

An area measuring 16 yd x 16 yd covers 0.05 acres;          An area measuring 16 yd x 16 yd covers 0.05 acres;          
1 hectare =10,000 m2 ≅ 2.5 acres; 1 hectare =10,000 m2 ≅ 2.5 acres; 
1 acre ≅ 4000 m2 ≅ 0.4 hectares. 1 acre ≅ 4000 m2 ≅ 0.4 hectares.

Measurement level: Plot Parcel° Plot Plot

Plots/parcels with GPS and self-reported 
areas: 18,281 3,372 4,717 3,102

% of total observations 96% 58% 78% 47%

In Niger, GPS measurements were taken in either or both the post-planting and post-harvest data collection rounds.  Farmer self-reported areas were collected only in the post-planting phase, thus the GPS figures reported here reflect only the measurements taken in the post-planting round.

Malawi Uganda Tanzania Niger

°A plot is defined as a contiguous piece of land within the parcel on which a specific crop or a crop mixture is grown. A parcel may be made up of one or more plots. - UNPS 2009/2010 Interviewer Manual

None.

Guidelines for GPS measurement: Measurement of plots greater than 2 hours walking 
distance is decided in consultation with field supervisor.

All parcels located within the enumeration area are to 
be measured.

Plots within 1 hour of the household by any means of 
transportation are to be measured.

None.

Enumerator instructions for converting 
self-reported areas to required unit when 
farmer provides an alternate unit:

The enumerator must encourage the use of sq. meters, 
hectares or acres when possible.  If a different unit was 
used, the following conversions were provided for the 

enumerator:            

The following conversions were provided for the 
enumerator:               

Enumerator manual includes conversion factors for 
square meters, yards and  hectares only.  No instruction 

for local units.



 
 

Table 2: Discrepancy by Plot Size

GPS Area
No. of 
plots GPS Area SR Area

Mean Bias  
(SR-GPS)

Bias as % of 
GPS area

No. of 
farms GPS SR

Mean Bias  
(SR-GPS)

Bias as % of 
GPS area

Metadata
< 0.5 5332 0.30 0.60 0.30 100.0% 1051 0.31 0.71 0.4 129.0%

0.5 - 0.99 6346 0.72 0.89 0.17 23.6% 2250 0.74 1.11 0.37 50.0%
1 - 1.99 5856 1.35 1.43 0.07 5.2% 3819 1.43 1.63 0.2 14.0%

2 - 5 2446 2.90 2.88 -0.02 -0.7% 3130 3.01 3.13 0.11 3.7%
> 5 956 11.56 7.80 -3.76 -32.5% 1213 12.64 10.29 -2.35 -18.6%

Total 0.01 - 97.02 20936 1.54 1.52 -0.02 -1.3% 11463 2.81 2.77 -0.04 -1.4%
Malawi

< 0.5 4243 0.31 0.59 0.28 90.3% 837 0.32 0.68 0.36 112.5%
0.5 - 0.99 5456 0.72 0.86 0.14 19.4% 1980 0.74 1.07 0.34 45.9%
1 - 1.99 4757 1.33 1.29 -0.04 -3.0% 3371 1.42 1.56 0.13 9.2%

2 - 5 1230 2.63 2.27 -0.35 -13.3% 2354 2.94 2.94 0.00 0.0%
> 5 69 7.98 3.26 -4.72 -59.1% 257 7.48 5.82 -1.65 -22.1%

Total 0.02 - 25 15755 0.98 1.04 0.06 6.1% 8799 1.77 1.87 0.11 6.2%
Uganda

< 0.5 384 0.26 0.54 0.28 107.7% 84 0.28 0.7 0.42 150.0%
0.5 - 0.99 321 0.73 0.93 0.19 26.0% 118 0.75 1.20 0.45 60.0%
1 - 1.99 314 1.43 1.49 0.05 3.5% 172 1.54 1.72 0.17 11.0%

2 - 5 297 3.09 2.88 -0.21 -6.8% 256 3.23 3.35 0.12 3.7%
> 5 151 13.34 9.79 -3.55 -26.6% 201 12.38 9.62 -2.76 -22.3%

Total 0.01 - 63.75 1467 2.41 2.17 -0.25 -10.4% 831 4.25 3.81 -0.44 -10.4%
Tanzania

< 0.5 554 0.26 0.63 0.37 142.3% 110 0.26 0.75 0.48 184.6%
0.5 - 0.99 420 0.74 1.02 0.28 37.8% 138 0.77 1.20 0.43 55.8%
1 - 1.99 529 1.43 1.60 0.17 11.9% 239 1.49 2.07 0.58 38.9%

2 - 5 508 3.16 3.01 -0.15 -4.7% 371 3.33 3.43 0.10 3.0%
> 5 296 11.02 7.44 -3.58 -32.5% 344 12.46 9.55 -2.91 -23.4%

Total 0.02 - 97.02 2307 2.67 2.35 -0.32 -12.0% 1202 5.08 4.47 -0.61 -12.0%
Niger

< 0.5 151 0.30 2.11 1.81 603.3% 20 0.3 2.76 2.46 820.0%
0.5 - 0.99 149 0.78 2.70 1.93 247.4% 14 0.77 2.57 1.8 233.8%
1 - 1.99 256 1.49 3.46 1.97 132.2% 37 1.53 5.49 3.96 258.8%

2 - 5 411 3.29 5.00 1.71 52.0% 149 3.37 6.92 3.55 105.3%
> 5 440 11.57 8.39 -3.18 -27.5% 411 16 15.29 -0.7 -4.4%

Total 0.025 - 84.96 1407 4.75 5.14 0.39 8.2% 631 10.86 11.74 0.89 8.2%
Note: National data uses sample weights while the metadata does not.
Includes all plots and farms with full GPS measurement.

Plot Mean (acres) Farm Mean (acres)



 
 

Table 3: Determinants of Bias - Metadata

Mean Bias Bias
Specification (1) (2) (3) (4) (4) w/GPS<1 (4) w/GPS>5
GPS Plot Area (Acres) 1.41 -0.305*** -0.683*** -0.583*** -0.584*** -0.061 -0.809***

(0.052) (0.051) (0.056) (0.056) (0.115) (0.159)
GPS Area Squared 9.30 -0.005** -0.001 -0.004*** -0.004*** -0.540*** -0.001

(0.002) (0.002) (0.001) (0.001) (0.096) (0.002)
Rounding of SR Areas
Rounding at areas <1 acre 0.35 -0.982*** -0.892*** -0.889*** -0.166*** -5.471***

(0.061) (0.077) (0.077) (0.053) (1.573)
Rounding at areas >=1 and <2 acres 0.34 -0.501*** -0.592*** -0.583*** 0.296*** -7.157***

(0.060) (0.081) (0.080) (0.083) (1.475)
Rounding at areas >=2 and <3 acres 0.11 0.240*** -0.105 -0.097 1.218*** -5.510***

(0.080) (0.113) (0.110) (0.084) (1.286)
Rounding at areas >=3 and <4 acres 0.03 0.887*** 0.539*** 0.547*** 1.873*** -3.824***

(0.109) (0.132) (0.130) (0.297) (1.403)
Rounding at areas >=4 and <5 acres 0.03 1.806*** 0.695*** 0.702*** 2.331*** -4.274**

(0.162) (0.206) (0.206) (0.433) (1.723)
Rounding at areas >=5 and <10 acres 0.02 3.825*** 2.091*** 2.108*** 4.073*** -2.768**

(0.222) (0.400) (0.398) (0.510) (1.269)
Rounding at areas >=10 acres 0.01 13.054*** 10.171*** 10.181*** 39.218*** 2.943

(1.323) (1.639) (1.634) (7.389) (2.122)
Plot Characteristics
Plot is irrigated 0.01 -0.142 -0.008 -10.151***

(0.164) (0.050) (1.907)
Plot has full or partial tree cover 0.11 -0.021 -0.040* 1.986

(0.042) (0.021) (1.478)
Slope is steep 0.03 -0.026 -0.000 0.977

(0.096) (0.035) (1.302)
Soil is sandy 0.25 0.098 0.041 2.255*

(0.072) (0.076) (1.165)
Soil is clay 0.20 0.011 0.018 -0.171

(0.045) (0.027) (1.296)
HH has property rights for plot 0.10 0.733** 0.007 4.367*

(0.307) (0.027) (2.643)
Land used for free but not owned 0.12 0.049 -0.035 2.095

(0.149) (0.025) (1.586)
Land rented for a fee 0.06 0.022 -0.017 1.839

(0.047) (0.014) (1.364)
Constant - 0.490*** 1.254*** 1.265*** 1.157*** 0.351*** 4.559*

(0.053) (0.073) (0.089) (0.092) (0.028) (2.392)

Number of observations 15,724 15,724 15,724 15,724 15,724 9,226 626
R2 - 0.323 0.565 0.609 0.610 0.715 0.788
Household Fixed Effects - No No Yes Yes Yes Yes
Notes:  
*** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parenthesis (clustered at fixed effects level where applicable)

Tree variable is at the farm level for Niger

Bias (SR - GPS)

Limited to farms with more than one plot



 
 

Table 4: Determinants of Bias - Country Level

Malawi Uganda Tanzania Niger
Bias Bias Bias Bias

Specification (4) (4) (4) (4)
GPS Plot Area (Acres) -0.755*** -0.405*** -0.461*** -0.656***

(0.067) (0.081) (0.111) (0.075)
GPS Area Squared -0.002 -0.004* -0.008*** -0.003***

(0.014) (0.002) (0.003) (0.001)
Rounding of SR Areas
Rounding at areas <1 acre -0.393*** -0.664*** -1.324*** -1.911***

(0.060) (0.138) (0.249) (0.453)
Rounding at areas >=1 and <2 acres 0.087 -0.551*** -1.234*** -2.715***

(0.075) (0.176) (0.223) (0.489)
Rounding at areas >=2 and <3 acres 0.848*** -0.325 -0.676*** -2.257***

(0.127) (0.272) (0.210) (0.430)
Rounding at areas >=3 and <4 acres 1.601*** -0.058 -0.312 -

(0.165) (0.308) (0.275)
Rounding at areas >=4 and <5 acres 2.547*** 0.647 0.222 -1.012**

(0.185) (0.427) (0.336) (0.479)
Rounding at areas >=5 and <10 acres 3.572*** 0.343 0.457 1.272*

(0.213) (1.000) (0.510) (0.703)
Rounding at areas >=10 acres 23.452*** 3.155*** 6.967*** 10.356***

(7.129) (0.835) (1.870) (2.665)
Plot Characteristics
Plot is irrigated 0.024 0.308 -0.761 0.414

(0.044) (0.714) (0.482) (0.799)
Plot has full or partial tree cover -0.023 -0.106 -0.000 -

(0.024) (0.079) (0.080)
Slope is steep -0.004 -0.036 -0.050 0.179

(0.035) (0.253) (0.261) (0.840)
Soil is sandy 0.049 -0.004 -0.029 0.963**

(0.074) (0.121) (0.148) (0.447)
Soil is clay 0.004 -0.084 -0.199 0.830

(0.033) (0.136) (0.174) (0.707)
HH has property rights for plot -0.026 0.459 1.390 0.394

(0.072) (0.359) (0.861) (0.792)
Land used for free but not owned 0.236 -0.023 0.314 -0.357

(0.231) (0.133) (0.786) (0.295)
Land rented for a fee 0.017 -0.090 1.330 -0.194

(0.049) (0.122) (0.831) (0.396)
Constant 0.691*** 1.011*** 0.540 3.005***

(0.045) (0.152) (0.828) (0.426)

Number of observations 11,721 1,046 1,794 1,163
R2 0.500 0.606 0.671 0.691
Household Fixed Effects Yes Yes Yes Yes
Notes:  
*** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parenthesis (clustered at fixed effects level where applicable)

Tree variable is at the farm level for Niger
Limited to farms with more than one plot
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Table 5: Value of Output by Farm Size 
Weighted Means (USD)

GPS Farm Area
No. of 
Farms

Value of 
Output per 

Farm

Value of 
Output per 

Acre SR Farm Area
No. of 
Farms

Value of 
Output per 

Farm

Value of 
Output per 

Acre
Metadata

< 0.5 1051 55.4 195.68 < 0.5 418 62.83 314.42
0.5 - 0.99 2250 97.65 133.66 0.5 - 0.99 1667 87.45 144.87
1 - 1.99 3819 162.13 113.66 1 - 1.99 4107 138.53 111.47

2 - 5 3130 309.36 102.8 2 - 5 4141 279.89 98.75
> 5 1213 477.96 55.74 > 5 1130 482.42 55.06

Total 0.02 - 200.30 11463 213.31 116.01 0.0247 - 252.04 11463 213.31 113.57
Malawi

< 0.5 837 52.35 185.31 < 0.5 311 58.86 338.58
0.5 - 0.99 1980 90.41 124.4 0.5 - 0.99 1458 79.81 134.31
1 - 1.99 3371 152.57 107.12 1 - 1.99 3648 131.83 106.17

2 - 5 2354 346.39 116.19 2 - 5 3105 307.48 109.06
> 5 257 1045.94 146.37 > 5 277 893.67 123.59

Total 0.02 - 34.18 8799 210.32 122.17 0.0247 - 52.1 8799 210.32 121.2
Uganda

< 0.5 84 99.23 372.92 < 0.5 52 86.47 390.24
0.5 - 0.99 118 193.37 264.44 0.5 - 0.99 104 180.8 275.41
1 - 1.99 172 409.42 269.75 1 - 1.99 187 263.5 218.13

2 - 5 256 421.98 125.8 2 - 5 334 433.79 147.21
> 5 201 1064.33 101.13 > 5 154 1328.24 126.37

Total 0.02 - 73.94 831 491.78 199.01 0.08 - 60 831 491.78 194.71
Tanzania

< 0.5 110 23.43 101.67 < 0.5 37 24.84 96.41
0.5 - 0.99 138 75.25 97.7 0.5 - 0.99 97 55.35 88.44
1 - 1.99 239 47.28 32.06 1 - 1.99 245 52.11 40.53

2 - 5 371 84.04 27.28 2 - 5 538 72.81 23.62
> 5 344 158.5 15.95 > 5 285 180.01 18.06

Total 0.02 - 97.02 1202 92.24 38.36 0.1 - 100 1202 92.24 32.58
Niger

< 0.5 20 31.76 96.31 < 0.5 18 71.91 219.19
0.5 - 0.99 14 24.31 32.92 0.5 - 0.99 8 141.02 170.20
1 - 1.99 37 71.32 46.78 1 - 1.99 27 58.77 43.25

2 - 5 149 108.43 34.07 2 - 5 164 95.78 29.06
> 5 411 221.7 16.83 > 5 414 210.47 16.20

Total 0.0247 - 200.3 631 171.16 26.45 0.049 - 252.04 631 171.16 27.23
Note: National data uses sample weights while the metadata does not.

GPS Area Self-Reported Area



 
 

Table 6: Log Value of Output per Farm -- Metadata

GPS SR GPS SR GPS SR GPS SR GPS SR GPS SR
Log farm size (acres) 0.802*** 0.748*** 0.780*** 0.723*** 0.555*** 0.452*** 0.370*** 0.266*** 0.364*** 0.127** 0.316*** 0.109

(0.018) (0.020) (0.018) (0.020) (0.019) (0.021) (0.019) (0.019) (0.040) (0.064) (0.117) (0.086)
Plot Characteristics

Share of farm with irrigation 0.598*** 0.517** 0.536** 0.492** 0.393* 0.357 0.389 0.564** 0.998 0.340
(0.205) (0.213) (0.218) (0.225) (0.216) (0.222) (0.274) (0.265) (1.118) (0.880)

HH has full or partial tree cover 0.508*** 0.523*** 0.482*** 0.490*** 0.459*** 0.465*** 0.515*** 0.268** 0.920*** 0.675***
(0.044) (0.045) (0.042) (0.043) (0.042) (0.042) (0.094) (0.128) (0.198) (0.186)

Share of farm with steep slope 0.018 -0.008 -0.011 -0.025 0.025 0.021 0.074 0.045 0.387 -0.199
(0.087) (0.087) (0.083) (0.083) (0.082) (0.081) (0.144) (0.152) (0.313) (0.343)

Share of farm with sandy soil 0.002 0.000 0.004 0.002 0.011 0.010 0.031 0.061 0.025 -0.060
(0.032) (0.033) (0.031) (0.032) (0.030) (0.030) (0.051) (0.077) (0.129) (0.138)

Share of farm with clay soil 0.035 0.019 0.013 0.002 0.019 0.014 0.015 0.108 0.021 0.255
(0.032) (0.032) (0.030) (0.031) (0.028) (0.029) (0.056) (0.073) (0.223) (0.212)

Share of farm with property rights 0.154* 0.210*** 0.192** 0.236*** 0.177** 0.207*** 0.062 0.121 -0.066 -0.017
(0.079) (0.080) (0.078) (0.079) (0.077) (0.078) (0.157) (0.148) (0.186) (0.178)

Share of farm used free but not owned -0.006 -0.035 -0.008 -0.036 0.008 -0.007 -0.010 0.096 -0.130 -0.392**
(0.037) (0.039) (0.036) (0.037) (0.035) (0.035) (0.057) (0.087) (0.170) (0.165)

Share of farm rented for a fee 0.213*** 0.177*** 0.151*** 0.124** 0.079 0.055 0.131* 0.073 0.230 0.320
(0.055) (0.057) (0.054) (0.055) (0.052) (0.052) (0.074) (0.101) (0.246) (0.261)

Household Characteristics
Log household head age 0.100*** 0.191*** 0.023 0.075*** 0.091* 0.111 -0.241 -0.312*

(0.030) (0.030) (0.028) (0.028) (0.055) (0.083) (0.182) (0.180)
Female HH head -0.172*** -0.188*** -0.141*** -0.149*** -0.110** -0.145** -0.137 -0.376**

(0.025) (0.026) (0.024) (0.025) (0.045) (0.059) (0.143) (0.152)
Log household head education (years) 0.104*** 0.111*** 0.053*** 0.054*** 0.086*** 0.086** -0.115* -0.135**

(0.013) (0.014) (0.013) (0.013) (0.024) (0.035) (0.064) (0.062)
Head's primary occupation is agriculture 0.059** 0.087*** 0.074*** 0.093*** 0.032 0.165*** 0.035 0.340**

(0.024) (0.025) (0.023) (0.023) (0.044) (0.059) (0.172) (0.138)
Log number of plots on farm 0.605*** 0.659*** 0.370*** 0.387*** 0.367*** 0.455*** 0.318*** 0.256**

(0.029) (0.031) (0.031) (0.032) (0.062) (0.092) (0.110) (0.112)
Log HH population 0.102*** 0.152*** 0.035* 0.058*** 0.069* 0.145*** 0.126 0.159

(0.021) (0.021) (0.020) (0.021) (0.037) (0.049) (0.093) (0.105)
Inputs

Log non-labor inputs value (USD) 0.222*** 0.240*** 0.224*** 0.237*** 0.079** 0.127***
(0.012) (0.012) (0.022) (0.031) (0.037) (0.042)

Log family labor days 0.136*** 0.164*** 0.118*** 0.215*** 0.086 0.216**
(0.016) (0.016) (0.029) (0.038) (0.092) (0.084)

Log hired labor days 0.120*** 0.136*** 0.114*** 0.173*** 0.119*** 0.141***
(0.009) (0.009) (0.024) (0.036) (0.033) (0.032)

Constant 4.083*** 4.064*** 3.967*** 3.954*** 3.132*** 2.691*** 2.330*** 1.920*** 2.241*** 1.390*** 3.501*** 3.414***
(0.008) (0.011) (0.018) (0.019) (0.121) (0.120) (0.124) (0.121) (0.238) (0.342) (0.713) (0.659)

Number of observations 11,463 11,463 11,463 11,463 11,463 11,463 11,463 11,463 3,301 2,085 1,213 1,130
R2 0.258 0.214 0.273 0.230 0.330 0.299 0.389 0.373 0.259 0.265 0.204 0.242
Fixed Effects EA EA EA EA EA EA EA EA EA EA EA EA
Test of difference (GPS and SR; p-values)
note:  *** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parenthesis, clustered at EA level

Farms < 1 acre Farms > 5 acresBase                            
(with fixed effects)

Plot           
Characteristics

Household   
Characteristics

Inputs

0.0013 0.08520.0010 0.0004 0.0000 0.0000



 
 

Table 7: Log Value of Output per Acre -- Metadata
Farm Level

GPS SR GPS SR GPS SR GPS SR GPS SR GPS SR
Log farm size (acres) -0.130*** -0.194*** -0.150*** -0.217*** -0.367*** -0.481*** -0.191*** -0.251*** -0.234*** -0.419*** -0.273*** -0.337***

(0.019) (0.020) (0.018) (0.019) (0.020) (0.020) (0.022) (0.022) (0.056) (0.076) (0.085) (0.094)
Plot Characteristics

Share of farm with irrigation 0.584*** 0.500** 0.524*** 0.476** 0.391** 0.353* 0.414 0.503** 0.799 0.311
(0.186) (0.198) (0.198) (0.210) (0.192) (0.198) (0.278) (0.241) (0.894) (0.744)

HH has full or partial tree cover 0.480*** 0.486*** 0.455*** 0.454*** 0.426*** 0.424*** 0.537*** 0.313** 0.631*** 0.491***
(0.042) (0.043) (0.041) (0.041) (0.040) (0.040) (0.102) (0.135) (0.156) (0.145)

Share of farm with steep slope 0.000 -0.020 -0.028 -0.036 0.001 0.006 0.037 0.025 0.239 -0.185
(0.086) (0.083) (0.082) (0.079) (0.081) (0.077) (0.169) (0.169) (0.225) (0.216)

Share of farm with sandy soil -0.002 -0.004 0.000 -0.003 0.012 0.008 0.034 0.068 0.043 -0.018
(0.031) (0.032) (0.030) (0.031) (0.028) (0.029) (0.054) (0.082) (0.104) (0.115)

Share of farm with clay soil 0.027 0.011 0.006 -0.006 0.013 0.008 -0.000 0.107 0.063 0.222
(0.031) (0.031) (0.029) (0.030) (0.028) (0.028) (0.061) (0.077) (0.170) (0.169)

Share of farm with property rights 0.147* 0.205*** 0.183** 0.229*** 0.153** 0.183** 0.066 0.114 -0.088 -0.058
(0.077) (0.076) (0.076) (0.075) (0.075) (0.073) (0.176) (0.157) (0.149) (0.139)

Share of farm used free but not owned -0.013 -0.038 -0.014 -0.039 0.005 -0.007 -0.027 0.101 -0.062 -0.319**
(0.037) (0.038) (0.036) (0.036) (0.035) (0.034) (0.064) (0.093) (0.130) (0.129)

Share of farm rented for a fee 0.211*** 0.164*** 0.150*** 0.111** 0.075 0.044 0.136* 0.090 0.105 0.209
(0.054) (0.054) (0.053) (0.053) (0.050) (0.050) (0.077) (0.109) (0.208) (0.210)

Household Characteristics
Log household head age 0.094*** 0.191*** 0.023 0.076*** 0.105* 0.112 -0.211 -0.194

(0.029) (0.029) (0.028) (0.027) (0.060) (0.091) (0.130) (0.142)
Female HH head -0.169*** -0.185*** -0.135*** -0.142*** -0.109** -0.153** -0.151 -0.374***

(0.026) (0.026) (0.024) (0.025) (0.051) (0.064) (0.108) (0.119)
Log household head education (years) 0.102*** 0.110*** 0.054*** 0.054*** 0.098*** 0.091** -0.090* -0.105**

(0.013) (0.013) (0.012) (0.013) (0.026) (0.037) (0.053) (0.053)
Head's primary occupation is agriculture 0.051** 0.083*** 0.070*** 0.091*** 0.028 0.168*** -0.029 0.233**

(0.023) (0.023) (0.022) (0.022) (0.047) (0.064) (0.115) (0.096)
Log number of plots on farm 0.580*** 0.634*** 0.353*** 0.367*** 0.379*** 0.489*** 0.214** 0.171*

(0.028) (0.029) (0.029) (0.030) (0.065) (0.097) (0.090) (0.092)
Log HH population 0.101*** 0.154*** 0.031 0.057*** 0.087** 0.163*** 0.069 0.098

(0.020) (0.021) (0.019) (0.020) (0.041) (0.054) (0.069) (0.081)
Inputs

Log non-labor inputs value per acre (USD) 0.239*** 0.259*** 0.206*** 0.222*** 0.184*** 0.219***
(0.012) (0.012) (0.023) (0.032) (0.044) (0.050)

Log family labor days per acre 0.141*** 0.168*** 0.122*** 0.213*** 0.110 0.216***
(0.016) (0.016) (0.031) (0.039) (0.075) (0.074)

Log hired labor days per acre 0.136*** 0.161*** 0.093*** 0.141*** 0.234*** 0.274***
(0.011) (0.011) (0.021) (0.031) (0.064) (0.060)

Constant 4.092*** 4.078*** 3.985*** 3.979*** 3.187*** 2.725*** 2.279*** 1.860*** 2.207*** 1.379*** 3.130*** 2.772***
(0.009) (0.010) (0.018) (0.019) (0.116) (0.115) (0.120) (0.116) (0.254) (0.376) (0.507) (0.516)

Number of observations 11,463 11,463 11,463 11,463 11,463 11,463 11,463 11,463 3,301 2,085 1,213 1,130
R2 0.010 0.019 0.029 0.038 0.105 0.127 0.189 0.229 0.160 0.248 0.217 0.318
Fixed Effects EA EA EA EA EA EA EA EA EA EA EA EA
Test of difference (GPS and SR; p-values)
note:  *** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parenthesis, clustered at EA level

0.47150.0002 0.0001 0.0000 0.0001 0.0298

Farms < 1 acre Farms > 5 acresBase                            
(with fixed effects)

Plot           
Characteristics

Household   
Characteristics

Inputs

 



 
 

Table 8: Country Level

GPS SR GPS SR GPS SR GPS SR GPS SR GPS SR GPS SR GPS SR
Log farm size (acres) 0.372*** 0.262*** -0.177*** -0.241*** 0.351*** 0.307*** -0.154* -0.169* 0.256*** 0.356*** -0.195** -0.173** 0.317*** 0.087 -0.313*** -0.425***

(0.019) (0.021) (0.024) (0.024) (0.067) (0.065) (0.087) (0.089) (0.073) (0.084) (0.082) (0.081) (0.103) (0.060) (0.086) (0.087)
Plot Characteristics

Share of farm with irrigation 0.241 0.178 0.291* 0.209 0.003 0.076 0.092 0.185 1.453** 1.391** 1.274** 1.216** 0.751 0.838 0.514 0.617
(0.163) (0.166) (0.160) (0.169) (0.302) (0.334) (0.279) (0.285) (0.662) (0.648) (0.548) (0.565) (0.944) (1.042) (0.871) (0.943)

HH has full or partial tree cover 0.295*** 0.293*** 0.287*** 0.283*** 0.151 0.136 0.125 0.124 1.618*** 1.619*** 1.416*** 1.394*** 0.711*** 0.749** 0.604** 0.688**
(0.040) (0.041) (0.039) (0.040) (0.138) (0.137) (0.139) (0.133) (0.137) (0.136) (0.132) (0.126) (0.271) (0.306) (0.249) (0.302)

Share of farm with steep slope 0.034 0.035 0.014 0.025 -0.244 -0.404 -0.198 -0.276 0.040 -0.051 -0.080 -0.234 0.142 0.140 -0.046 -0.008
(0.084) (0.083) (0.088) (0.083) (0.284) (0.313) (0.282) (0.309) (0.363) (0.380) (0.323) (0.328) (0.405) (0.395) (0.318) (0.314)

Share of farm with sandy soil -0.019 -0.022 -0.016 -0.024 0.031 0.071 0.043 0.078 0.367** 0.375** 0.313** 0.330** 0.231 0.242 0.191 0.204
(0.031) (0.031) (0.030) (0.030) (0.106) (0.107) (0.101) (0.100) (0.155) (0.157) (0.148) (0.145) (0.156) (0.169) (0.131) (0.139)

Share of farm with clay soil 0.001 -0.009 -0.003 -0.009 0.040 0.107 0.081 0.078 0.290* 0.310** 0.197 0.212 0.459 0.434 0.357 0.353
(0.028) (0.029) (0.028) (0.028) (0.161) (0.157) (0.153) (0.153) (0.149) (0.152) (0.140) (0.144) (0.315) (0.311) (0.267) (0.264)

Share of farm with property rights -0.022 -0.008 -0.001 0.006 -0.152 -0.151 -0.216 -0.167 0.309** 0.288* 0.238 0.204 0.073 0.164 0.007 0.130
(0.108) (0.112) (0.110) (0.109) (0.152) (0.150) (0.149) (0.146) (0.157) (0.158) (0.149) (0.144) (0.277) (0.287) (0.242) (0.258)

Share of farm used free but not owned 0.039 0.028 0.037 0.025 -0.207 -0.281 -0.243 -0.278 -0.028 -0.020 -0.062 -0.078 -0.238 -0.261 -0.231 -0.189
(0.037) (0.037) (0.037) (0.036) (0.178) (0.182) (0.205) (0.196) (0.206) (0.204) (0.191) (0.182) (0.164) (0.171) (0.153) (0.155)

Share of farm rented for a fee 0.070 0.049 0.076 0.048 -0.351 -0.369 -0.425 -0.392 -0.380 -0.315 -0.407 -0.420 0.407 0.316 0.330 0.266
(0.053) (0.054) (0.052) (0.051) (0.271) (0.267) (0.267) (0.267) (0.465) (0.463) (0.390) (0.395) (0.308) (0.320) (0.301) (0.335)

Household Characteristics
Log household head age 0.021 0.073** 0.029 0.077*** -0.020 0.019 -0.047 -0.003 0.356** 0.347** 0.204 0.217 -0.476** -0.416** -0.384*** -0.255*

(0.028) (0.028) (0.028) (0.028) (0.137) (0.137) (0.149) (0.141) (0.167) (0.163) (0.166) (0.155) (0.193) (0.196) (0.147) (0.149)
Female HH head -0.125*** -0.136*** -0.127*** -0.134*** -0.026 -0.001 -0.000 0.002 -0.280** -0.226* -0.243* -0.185 -0.363* -0.480** -0.375** -0.495***

(0.025) (0.026) (0.026) (0.026) (0.101) (0.105) (0.103) (0.106) (0.127) (0.131) (0.124) (0.126) (0.210) (0.216) (0.177) (0.192)
Log household head education (years) 0.069*** 0.068*** 0.072*** 0.069*** 0.015 0.006 0.026 0.015 -0.051 -0.044 -0.073 -0.048 -0.097 -0.096 -0.089 -0.085

(0.013) (0.014) (0.013) (0.013) (0.056) (0.058) (0.056) (0.058) (0.067) (0.066) (0.062) (0.061) (0.067) (0.065) (0.057) (0.054)
Head's primary occupation is agriculture 0.045* 0.061** 0.043* 0.064*** 0.162* 0.174** 0.172** 0.209** 0.201 0.218 0.168 0.185 0.252 0.260 0.161 0.113

(0.024) (0.024) (0.023) (0.023) (0.089) (0.089) (0.087) (0.086) (0.135) (0.133) (0.136) (0.131) (0.188) (0.189) (0.139) (0.133)
Log number of plots on farm 0.367*** 0.391*** 0.373*** 0.391*** 0.358*** 0.307*** 0.337*** 0.295*** 0.077 0.072 0.003 0.028 0.169 0.232* 0.154 0.216*

(0.034) (0.036) (0.033) (0.034) (0.084) (0.084) (0.082) (0.082) (0.134) (0.137) (0.125) (0.127) (0.123) (0.131) (0.106) (0.114)
Log HH population 0.015 0.037* 0.012 0.039** 0.238** 0.248** 0.203** 0.220** 0.121 0.122 0.130 0.118 0.126 0.163 0.127 0.149

(0.020) (0.021) (0.020) (0.020) (0.093) (0.097) (0.089) (0.094) (0.113) (0.114) (0.109) (0.111) (0.123) (0.124) (0.092) (0.096)
Inputs

Log non-labor inputs value (per acre) 0.269*** 0.289*** 0.270*** 0.289*** 0.087** 0.093*** 0.113*** 0.121*** 0.008 -0.008 0.024 -0.011 0.110* 0.161*** 0.082 0.144**
(0.013) (0.013) (0.013) (0.013) (0.034) (0.034) (0.043) (0.042) (0.035) (0.036) (0.046) (0.048) (0.058) (0.056) (0.080) (0.071)

Log family labor days (per acre) 0.127*** 0.149*** 0.129*** 0.153*** 0.285*** 0.331*** 0.312*** 0.341*** 0.209*** 0.184*** 0.187*** 0.168*** 0.171** 0.234*** 0.167** 0.227***
(0.016) (0.017) (0.016) (0.016) (0.079) (0.080) (0.088) (0.085) (0.071) (0.070) (0.069) (0.065) (0.075) (0.067) (0.067) (0.067)

Log hired labor days (per acre) 0.132*** 0.149*** 0.137*** 0.165*** 0.127*** 0.140*** 0.162*** 0.153*** 0.129*** 0.118*** 0.102* 0.120** 0.102*** 0.115*** 0.193*** 0.173**
(0.010) (0.010) (0.011) (0.012) (0.026) (0.027) (0.035) (0.033) (0.039) (0.038) (0.054) (0.057) (0.038) (0.038) (0.069) (0.080)

Constant 2.465*** 2.057*** 2.424*** 2.014*** 2.429*** 2.050*** 2.369*** 2.041*** -1.470** -1.424** -0.566 -0.599 3.676*** 3.338*** 3.460*** 2.923***
(0.122) (0.121) (0.122) (0.120) (0.634) (0.630) (0.674) (0.641) (0.733) (0.722) (0.696) (0.659) (0.705) (0.684) (0.514) (0.522)

Number of observations 8,799 8,799 8,799 8,799 831 831 831 831 1,202 1,202 1,202 1,202 631 631 631 631
R2 0.418 0.403 0.205 0.245 0.488 0.479 0.259 0.285 0.440 0.446 0.286 0.271 0.259 0.235 0.217 0.366
Fixed Effects EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA
Test of difference (GPS and SR; p-values)
note:  *** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parenthesis, clustered at EA level

  Per Farm Per Acre
Malawi Uganda Tanzania Niger

  Per Farm Per Acre   Per Farm Per Acre   Per Farm Per Acre

0.0005 0.6972 0.6660 0.04470.0000 0.3754 0.1539 0.0169



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1: Probability of GPS Measurement
Dependant Variable: 1 if GPS is measured
Marginal Effects

Malawi Uganda Tanzania Niger
Plot Characteristics
SR plot size (acres) -0.0001 -0.010*** 0.003 -0.0005

[0.000] [0.001] [0.420] [0.807]
Steep slope -0.007 -0.072 -0.125*** -0.151***

[0.407] [0.161] [0.000] [0.000]
Number of plots per HH 0.0006 -0.012** -0.002 -0.018**

[0.719 [0.045] [0.647] [0.015]
Property Rights -0.03 0.043 0.050** -0.045

[0.123] [0.264] [0.043] [0.308]
Rented In -0.025*** -0.313*** -0.202*** -0.074*

[0.000] [0.000] [0.000] [0.086]
Used Free -0.007 -0.260*** -0.174*** -0.124***

[0.182] [0.000] [0.000] [0.000]
Distance from HH (km) - - -0.028*** -0.072***

[0.000] [0.000]
Distance from HH (mins):

15 - 30 mins - -0.317*** - -
[0.000]

30 -60 mins - -0.531*** - -
[0.000]

1 - 2 hours - -0.617*** - -
[0.000]

More than 2 hours - -0.626*** - -
[0.000]

Household Characteristics
Head age 0.0004*** 0.001 -0.0001 -0.003***

[0.000] [0.366] [0.928] [0.003]
Female HH Head 0.010** 0.042 0.01 -0.060

[0.016] [0.112] [0.620] [0.215]
Head years of education 0.0003 -0.002 -0.003 0.006

[0.542] [0.476] [0.191] [0.269]
HH population -0.002** -0.007* -0.005* 0.001

[0.015] [0.057] [0.066] [0.680]
Urban -0.092*** -0.329*** 0.031 0.050

[0.000] [0.000] [0.294] [0.383]

N° 18426 5003 4797 5609
P-values in brackets
* Significant at 10%,  **Significant at 5%, ***Significant at 1%
°Limited to cultivated plots with SR areas
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