40241 ESMAP Technical Paper 111/07 April 2007 Solar-diesel Hybrid Options Solar-diesel Hybrid Options for the Peruvian Amazon for the Lessons Learned from Padre Cocha Peruvian Amazon Lesso ns Learned from Padre Coch a Tec hnic alPaper 111/07 Energy Sector Management Assistance Program Energy Sector Management Assistance Program (ESMAP) Purpose The Energy Sector Management Assistance Program (ESMAP) is a global technical assistance partnership administered by the World Bank and sponsored by bi-lateral official donors, since 1983. ESMAP's mission is to promote the role of energy in poverty reduction and economic growth in an environmentally responsible manner. Its work applies to low-income, emerging, and transition economies and contributes to the achievement of internationally agreed development goals. ESMAP interventions are knowledge products including free technical assistance, specific studies, advisory services, pilot projects, knowledge generation and dissemination, trainings, workshops and seminars, conferences and round-tables, and publications. ESMAP work is focused on four key thematic programs: energy security, renewable energy, energy-poverty and market efficiency and governance. Governance and Operations ESMAP is governed by a Consultative Group (the ESMAP CG) composed of representatives of the World Bank, other donors, and development experts from regions which benefit from ESMAP's assistance. The ESMAP CG is chaired by a World Bank Vice-President, and advised by a Technical Advisory Group (TAG) of independent energy experts that reviews the Program's strategic agenda, its work plan, and its achievements. ESMAP relies on a cadre of engineers, energy planners, and economists from the World Bank, and from the energy and development community at large, to conduct its activities. Funding ESMAP is a knowledge partnership supported by the World Bank and official donors from Belgium, Canada, Denmark, Finland, France, Germany, the Netherlands, Norway, Sweden, Switzerland, and the United Kingdom. ESMAP has also enjoyed the support of private donors as well as in-kind support from a number of partners in the energy and development community. FurtherInformation For further information on a copy of the ESMAP Annual Report or copies of project reports, please visit the ESMAP Website: www.esmap.org. ESMAP can also be reached by E-mail at esmap@worldbank.org or by mail at: ESMAP c/o Energy and Water Department The World Bank Group 1818 H Street, NW Washington, D.C. 20433, U.S.A. Tel.: 202.458.2321 Fax: 202.522.3018 ESMAP Technical Paper 111/07 Solar-diesel Hybrid Options for the Peruvian Amazon Lessons Learned from Padre Cocha Task Manager: Ms. Xiaodong Wang Financial and Institutional Evaluation: Mr. Xavier Vallvé, Lead Consultant Mr. Santiago González and Mr. Pol. Arranz, Consultants Technical and Economic Evaluation: Mr. Ismael Aragón Castro, Lead Consultant Mr. Eduardo H. Zolezzi, Senior Advisor Energy Sector Management Assistance Program (ESMAP) Copyright © 2007 The International Bank for Reconstruction and Development/THE WORLD BANK 1818 H Street, N.W. Washington, D.C. 20433, U.S.A. All rights reserved Manufactured in India First printing April 2007 ESMAP reports are published to communicate the results of ESMAP's work to the development community with the least possible delay. The typescript of the paper therefore has not been prepared in accordance with the procedures appropriate to formal documents. Some sources cited in this paper may be informal documents that are not readily available. The findings, interpretations, and conclusions expressed in this paper are entirely those of the author and should not be attributed in any manner to the World Bank or its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility whatsoever for any consequence of their use. The boundaries, colors, denominations, other information shown on any map in this volume do not imply on the part of the World Bank Group any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries. The material in this publication is copyrighted. Requests for permission to reproduce portions of it should be sent to ESMAP Manager at the address shown in the copyright notice above. ESMAP encourages dissemination of its work and will normally give permission promptly and, when the reproduction is for noncommercial purposes, without asking a fee. (Papers in the ESMAP Technical Series are discussion documents, not final project reports. They are subject to the same copyright as other ESMAP publications.) Contents Units of Measure vii Currency Equivalents vii Acronyms and Abbreviations ix Acknowledgments xi 1. Introduction 1 2. Evaluation of the ILZRO/RAPS System in Padre Cocha 3 Demand Analysis 3 Demand Segment Analysis 3 Load Forecast 4 Financial Evaluation 4 Capital Costs of the RAPS System and Sources of Funding 4 Operation & Maintenance Costs for the RAPS System 5 Tariff Structure and Revenues of the RAPS System 6 Levelized Cost of the RAPS System 8 Technical Evaluation 9 Sizing 9 Design and Installation 10 Operation and Waste Treatment 10 Institutional Evaluation 10 3. Recommendations on Future Electricity Supply Options 13 Economic Comparison of Electricity Supply Alternatives 13 Optimum Sizing Results 13 Levelized Cost Comparison 14 iii SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Sensitivity Analysis 16 Sensitivity to Fuel Price 16 Sensitivity to Population Size 16 Sensitivity to Service Hours 16 Financial Sustainability ­ Tariff and Subsidy 18 Principle of Financial Sustainability for Renewable Energy Minigrids 18 Consumers' Willingness-To-Pay 19 Proposed Tariff for the Padre Cocha RAPS System 19 Proposed Tariff and Subsidy for Different Supply Alternatives 20 Recommended Business Models 21 Replication Potential 23 4. Conclusions 25 Annex 1: Levelized Cost Comparison for Different Techno\logical Options 29 Annex 2: Levelized cost comparison sustainability analysis for different 51 options, discount rates and fuel prices iv CONTENTS Tables Table 2.1: Padre Cocha Demand Segmentation 3 Table 2.2: Capital Costs of the Podre Cocha RAPS 5 Table 2.3: Sources of Funds US$ 5 Table 2.4: Operation and Administration Costs 6 Table 2.5: Revenues from the RAPS System 7 Table 2.6: Levelized Costs of RAPS System, Padre Cocha 9 Table 3.1: Optimum Sizing Results 14 Table 3.2: EconomicCostComparison 14 Table 3.3: Comparison between Levelized Energy Cost and Costs per Contract 15 Table 3.4: Proposed Tariff Levels with 0%, 50% and 80% Capital Subsidies 20 Table 3.5: The Lowest Hurdle Tariffs with 100% Capital Subsidy 21 Table 3.6: Typical Models for the Organization of a Rural Electricity Service 22 Figures Figure 3.1: Comparison of Cost Breakdown for each Option 15 Figure 3.2: Levelized Cost Comparison Without Distribution Costs (US$ per kWh) 17 Figure 3.3: Levelized Cost Generation and Distribution: Diesel Stand-alone Options 17 Boxes Box4.1: Designing Tariffs: Strategic Checklist for Replication 27 Box4.2: Organization Arrangement: Strategic Checklist for Replication 28 v UnitsofMeasure AC Alternating Current Ah Ampere Hour km Kilometer kV Kilo Volt kVA Kilo Volt Ampere kW Kilo Watt (s) kWh Kilo Watt (s) Per Hour kWp Kilo Watt (s) Peak LV Low Voltage MWp Mega Watt (s) Peak V Volts W Watt Wh Watt Hour Wp Watt Peak CurrencyEquivalents 1US$ = 3.4 S (Perú nuevo sol) vii AcronymsandAbbreviations AGI Association of Ghana Industries CFC Common Fund for Commodities DEP-MEM Executive Directorate of Projects-Ministry of Energy and Mines EOSA Electro Oriente S.A. ERPACO Electro RAPS of Padre Cocha FOSE Compensation Fund for Electricity Service (Fondo de Compensación Social Eléctrico) GOREL Loreto Regional Government ILZRO International Lead and Zinc Research Organization INEI National Institute for Statistics and Information Technologies (Instituto Nacional de Estadística e Informática) IRP ILZRO RAPS Perú M&O&M Management, Operation and Maintenance O&M Operation and Maintenance OSINERG Supervisory Agency for Energy Investment (Organismo Supervisor de Inversión en Energía) PV Photovoltaic RAPS Remote Area Power Supply RE Renewable Energy RESPAR Renewable Energy Systems in the Peruvian Amazon Region SEIA Solar Energy Industry Association SEIN National Interconnected System (Sistema Eléctrico Interconectado) WTP Willingness-To-Pay ix Acknowledgments This summary report was written by Ms. Xiaodong Wang, the Task Manager of the study, and Mr. Xavier Vallvé. It presents a consolidated synopsis of key conclusions of the two subreports: (1) Financial and Institutional Evaluation prepared by Mr. Xavier Vallvé, Mr. Santiago González and Mr. Pol Arranz; and (2) Technical and Economic Evaluation prepared by Mr. Ismael Aragón Castro and Mr. Eduardo H. Zolezzi. We would like to thank Mr. Marcos Alegre from ILZRO/RAPS and Mr. Jerry Cole from ILZRO for providing valuable data and information on the ILZRO/RAPS system, Mr. Douglas Barnes for his advice and Ms. Norma Adams for her editorial support. Special thanks are due to Ms. Dominique Lallement for her support. Funding from Energy Sector Management Assistance Program (ESMAP), World Bank, is greatly appreciated. Last, special thanks to Ms. Ananda Swaroop and Ms. Marjorie K. Araya for editing, producing and disseminating the final report. xi 1.Introduction Today, seven million Peruvians ­ 23 percent of the country's population ­ lack access to modern energy services. Most of these residents are located in the Peruvian Amazon, where 95 percent of people have no electricity supply. In the sparsely populated department of Loreto, Perú's vast northernmost region, more than one-third of residents lack access to energy services which could generate income and foster economic activity. In Loreto's isolated rural communities, grid extension is not an economic option. Diesel fuel delivery is expensive, difficult and environmentally harmful. Padre Cocha is a typical village of the Amazon jungle, located 5 Kilometers (km) upstream from Loreto's capital city of Iquitos. Padre Cocha's present population is 2,500 inhabitants with 331 households. In 1997, the International Lead and Zinc Research Organization (ILZRO) and Solar Energy Industry Association (SEIA), together with the Executive Directorate of Projects- Ministry of Energy and Mines (DEP-MEM), signed an agreement to promote development of Remote Area Power Supply (RAPS) hybrid system, consisting of solar Photovoltaic (PV), diesel generating sets and a distribution minigrid, in isolated zones of Perú. After performing studies, Padre Cocha was selected for installing the first diesel/PV system as a pilot demonstration to evaluate benefits and replicability of this technology. The Loreto Regional Government (GOREL) and the local municipality and the distribution company, Electro Oriente S.A. (EOSA), provided support. In June 2002, the RAPS system was installed in Padre Cocha. In July 2003, the RAPS system started operation, providing 24-hour of electricity services, where residents had no access to power services before the installation. The ESMAP study aims to: (1) evaluate whether the RAPS system at Padre Cocha is technically, financially and institutionally sustainable and replicable; and 1 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA (2) recommend supply options of electricity services to villages like Padre Cocha, and measures to ensure financial and institutional sustainability of such systems. This study consists of two subreports: (1) technical and economic evaluation; and (2) financial and institutional evaluation. This summary report presents a consolidated synopsis of key conclusions from both subreports, and the financial and institutional evaluation subreport can be found in Annex 1. 2 2. Evaluation of the ILZRO/RAPS System in Padre Cocha Demand Analysis Demand Segment Analysis At present, the system serves 240 consumers out of a potential total of 344 and public street lighting. Almost all consumers are residential. The daily total average energy consumption is near 220 Kilo Watt (s) Per Hour (kWh): 39 percent produced by the PV cells and the rest by the diesel generator. The maximum peak load is 22 Kilo Watt (kW), which occurs at night. The consumer demand pattern is typical of villages in the region. While average household consumption is 20.6 kWh per month, 74 percent of households consume below this level. When public lighting is added, an average consumption was 22.9 kWh per month. Distribution loss is 12 percent of the total consumption. Table 2.1 shows demand segment analysis for Padre Cocha. Table 2.1: Padre Cocha Demand Segmentation Segments ConsumptionRange Contracts SegmentDemand Wh/Day kWh/Mo No % kWh/Day % Very Low Usage 0 to 275 0 to 8.5 97 40 12.5 5 Low Usage 275 to 550 8.5 to 17 74 31 30.5 13 Medium Usage 550 to 985 17 to 30 35 14 25.6 10 Residential High Usage 985 to 2200 30 to 67 18 7 26.1 11 Very High Usage 2250 to 3300 67 to 100 8 3 22.0 9 Subtotal Residential 232 95 116.7 48 Nonresidential > 3300 >100 10 5 46.8 19 Subtotal Residential and Nonresidential 242 100 163.5 67 Public Lighting ­ 19.2 8 RAPS Power Plant and Community Hall ­ 12.4 5 Distribution Losses (Average 2 kW per hour) ­ 48.0 20 Total Generation 242 100 243.1 100 3 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Load Forecast Because 24-hour electricity service is relatively recent in Padre Cocha, the village lacks sufficient historic information with which to make demand forecasts, using auto-regression techniques or time series. Data for evaluating demand is derived mainly from government agencies ­ National Institute for Statistics and Information Technologies (Instituto Nacional de Estadística e Informática), Supervisory Agency for Energy Investment (Organismo Supervisor de Inversión en Energía) (INEI, OSINERG and DEP-MEM), ILZRO RAPS Perú (IRP) and field surveys and technical evaluations. Based on similar projects in rural Perú, the study applied a method which closely follows the one used by DEP-MEM in its demand forecasts to estimate individual household-level consumption. This study concluded that the RAPS system can meet Padre Cocha's demand beyond 2013, even in the high-demand-projection scenario considering increased demand resulting from productive use and ecotourism-related activities such as water pumping, new educational facilities and ecotourism services. Financial Evaluation Capital Costs of the RAPS System and Sources of Funding The RAPS system consists of: (i) two RPS-150-type solar PV modules, each of 14 Kilo Watt Peak (kWp) and 150 kWh/day (totaling 300 kWh/day) capacity; and (ii) a single diesel generator of 128 kW. Each solar PV module includes 180 solar PV panels of 80 Watt Peak (Wp), 240 storage batteries of 375 Ampere Hour (Ah), rectifier systems, charger and 40 kW inverter. The diesel genset is a second-hand unit supplied by EOSA, caused by a lack of funding to purchase a new unit of 100 kW as required in the system design. The system delivers electricity to the distribution grid at 240 Volts (V) Alternating Current (AC). The total cost of the system was estimated to be US$577,000 with the following breakdown, as shown in Table 2.2. 4 EVALUATION OF THE ILZRO/RAPS SYSTEM IN PADRE COCHA Table 2.2: Capital Costs of the Padre Cocha RAPS Concept Thousand Thousand Soles US$ PVModules 436.33 128.33 Batteries 195.84 57.60 Raps System Control and Power Conditioning 417.07 122.67 Building and Materials 79.33 23.33 Project Design, Commissioning and Legalization 282.15 82.98 Subtotal RAPS Equipment, Materials and Execution 1,410.72 414.91 DistributionGrids 413.72 121.68 Generator Set 137.68 40.50 Total Initial Investment 1,962.12 577.09 Note: Change rate 3.4 soles/US$ As of the end of 2004, IRP reports an expenditure of US$2 million in administration, promotion, studies and equipment acquisition. Table 2.3 shows the sources of funding. This figure does not include the GOREL contributions in the amount of US$130,000 for the purchase of PV panels and US$120,000 for the cost of distribution grid, as well as EOSA's contribution of US$40,000 for donation of the diesel genset. Table 2.3: Sources of Funds US$ Common Fund for Commodities (CFC) 540,000 Sandia Nat Lab (USDOE) 204,480 ILZRO & ILZRO RAPS Latin America 1,349,050 Total US$ 2,093,530 Operation & Maintenance Costs for the RAPS System Operation and Maintenance (O&M) costs, including purchase of fuel and provision for battery replacement, are US$37,704 per year as per the following breakdown, as shown in Table 2.4. 5 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Table 2.4: Operation and Administration Costs Cost Expenditure Monthly Yearly (S) US$ S US$ Fixed Costs (63%) Local Salaries1 2,550 750 30,600 9,000 Spare Parts and Maintenance 504 148 6,048 1,776 Administrative 150 44 1,800 528 Battery Replacement 2,686 790 32,232 9,480 IRP Technical Support 850 250 10,200 3,000 Subtotal 6,740 1,982 80,880 23,784 Variable Costs (37%) Fuel and Lubricant2 3,728 1,097 44,736 13,164 Fuel and Transport3 213 63 2,556 756 Subtotal 3,941 1,160 47,292 13,920 TotalCost 10,681 3,142 128,172 37,704 1Administrative and transaction duties associated with PV (primary energy source) (60 percent) and O&M duties related to running the diesel genset (secondary energy source) (40 percent). 2The September 2004 price of diesel in Iquitos was US$1.82 per gallon; the cost of each lubricant change (three times per year) was about US$ 103.18. 3The total transport cost per gallon was about US$0.0386 per gallon. Tariff Structure and Revenues of the RAPS System OSINERG applies special tariff-setting mechanisms for isolated systems which are not connected to the National Interconnected System (Sistema Eléctrico Interconectado) (SEIN). However, no special tariff scheme is established by OSINERG for installations like the Padre Cocha RAPS system. The generation systems of Padre Cocha and similar sites in the Peruvian Amazon are considered under tariff schemes of a Typical System I ­ diesel thermoelectric, with more than 50 percent of the electricity produced, derived from the diesel installation serving Electro Ucayali and EOSA distribution companies. Perú's current administration has established (under Law No 27510) a tariff compensation system, known as Compensation Fund for Electricity Service (Fondo de Compensación Social Eléctrico) (FOSE), to support low-income sectors. Using this cross-subsidy mechanism, 6 EVALUATION OF THE ILZRO/RAPS SYSTEM IN PADRE COCHA consumers who use more than 100 kWh per month, subsidize those who consume less than 100 kWh per month and, in greater proportion, those who consume less than 30 kWh per month. Unfortunately, Padre Cocha cannot utilize the FOSE subsidy mechanism, which applies only to utility companies registered with OSINERG. Since the RAPS system initiated 24-hour electricity service, two different tariff schemes have been applied, as shown below, but none can provide an adequate income to cover the O&M costs under the current demand pattern: · From October 2003 to July 2004, a flat charge of 21.7 S (US$6.38) per month was applied. This resulted in very high energy consumption per consumers and frequent complaints from small consumers. It was expected that revenue from this tariff would total 5,211 S (US$1,533) monthly, only 49 percent of the O&M costs; and · From August 2004 to date, an officially regulated tariff for rural areas was adopted. Although Padre Cocha is not part of any concession, it was decided to apply a regulated tariff (BTSB), the same which EOSA applies to its consumers in nearby Iquitos, with operation of diesel gensets. The fixed charge was reduced to 5 S (US$1.47) per month, with an additional energy charge of 0.6976 S (US$0.2052) per kWh. However, this new tariff did not increase revenue, it increased the number of connections. Expected revenue was 4,791 S (US$1,409) per month, representing only 45 percent of the O&M costs. Unfortunately, the regulated tariff proved inadequate for scattered rural villages characterized by many low consumption users. In Padre Cocha, more than 74 percent of contracted users consume less than 20.6 kWh per month. Annual projected revenues based on electricity bills between August 2004 and January 2005 is estimated at US$14,654 per year, compared to the annual O&M costs of US$37,704, as shown in Table 2.5. This generates a deficit of 61percent. Therefore, current tariff levels cannot recover the O&M cost, and the RAPS system is not financially viable. Table 2.5: Revenues from the RAPS System S/./Month US$/Month S/./Year US$/Year %ofTotal M&O&MCosts 10,681 3,142 128,172 37,704 100.0% AverageIncome 4,152 1,221 49,824 14,654 38.9% 7 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA The tariff level should be increased to recover at least the O&M costs, within consumers' Willingness-To-Pay (WTP). In addition, the current tariff structure does not adequately reflect the ratio between fixed and variable costs (energy-dependent) and, thus, is not robust to demand changes. A higher fixed charge should be applied for Renewable Energy (RE) minigrids. IRP management is considering a third tariff, to be proposed to Electro RAPS of Padre Cocha (ERPACO) and approved by the community, consisting on a binomial structure ­ a fixed charge of 5 S per month and an energy charge of 0.912 Perú nuevo sol per kWh. Although it will improve revenue, this new proposal still has a structural problem because the fixed charge, recovering the fixed O&M costs of the service, is low, therefore, it is unlikely to be robust to fluctuate the demand. With this new proposal, the expected revenue for the typical demand would be 5,896 S per month, still not sufficient to recover the O&M costs. As a reference, the socioeconomic evaluation conducted in 1998 by the consultants of Energía Total, recommended a flat charge of 34 S (US$10) per month for contracts up to 15 kWh per month, plus an energy charge of 1.8 S (US 0.53) per kWh for additional monthly consumption above 15 kWh. Expected revenue was 12,908 S (US$3,796), enough to cover the O&M costs and repay a small portion of investment costs. Unfortunately, this recommendation was never implemented. In sum, the current financial performance of the RAPS system is not sustainable. Considering the results of the different socioeconomic analysis available, it should be possible to establish a higher tariff within the user's WTP, which would collect sufficient revenue to pay at least for Management, Operation and Maintenance (M&O&M) cost. Therefore, a new tariff structure must be considered and applied. The paragraph under the heading "Proposed Tariff for the Padre Cocha RAPS System" in Chapter 3 ­ "Recommendation of Future Electricity Supply" recommends a cost recovery tariff structure for the RAPS system. Levelized Cost of the RAPS System Levelized cost of the Padre Cocha RAPS system is estimated at US$1.00 per kWh, as shown in Table 2.6: 8 EVALUATION OF THE ILZRO/RAPS SYSTEM IN PADRE COCHA Table 2.6: Levelized Costs of RAPS System, Padre Cocha Present Value ($) Levelized Cost Component Investment O&M Replacement Total $/kWh % PV 128,333 0 128,333 0.152 15.1 Generator 40,495 15,613 56,108 0.066 6.6 Battery 57,600 22,207 79,807 0.094 9.4 Converter 122,667 18,315 140,982 0.167 16.7 O&M 107,735 107,735 0.127 12.7 Fuel 93,171 93,171 0.110 11.0 Other 106,317 TotalRAPS 712,452 0.842 84.2 DistributionGrid 116,202 19,607 135,809 0.161 16.1 Total 465,297 220,513 56,135 741,945 1.719 171.8 Technical Evaluation Sizing While the present load in Padre Cocha is 22 kW, or 220 kWh/day, the RAPS system was designed for a peak load of 80 kW and a production of 300 kWh/day, which resulted in oversized power supply components. The distribution grid was also built for a total load of 250 Kilo Volt Ampere (kVA), oversized for the present load, which resulted in high transformer losses which initially surpassed 20 percent of the produced energy. After changing the transformer size, losses were reduced to 12 percent. Distribution should be done with a Low Voltage (LV) grid, and losses limited to the voltage drop in the lines. Since the PV part of the generation plant is not noisy, it could be located within the village to keep distribution lines compact. The diesel generator could remain, as it is in common practice, in the outskirts. 9 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Design and Installation The RAPS system adopts modern technology with proper installation. The project technology design is fairly sound. However, some design and construction aspects which increase installation costs, and affect system performance, should be corrected in similar projects. Among these aspects, the following have been detected: · To utilize properly sized (smaller) and efficient diesel generators; · The rectification, charge and discharge of batteries sequence and the conversion to AC incur high losses and lower the overall efficiency. It should consider the configuration of directly connecting the genset to the AC distribution grid; a switch to connect the inverter when the genset is off; and the possibility of smaller parallel inverters to match demand and conversion efficiency; · To install batteries in site constructions and not in factory containers; and · To install batteries with higher unit capacity. In addition, the use of variable angle PV panels should be evaluated to increase solar energy efficiency. Operation and Waste Treatment The present daily operation cycle is suitable, given the system size characteristics in regard to the load and configuration. In addition, the recycling plan for used lubricating oil and the disposal of used batteries are technically adequate. Institutional Evaluation Since its commissioning, a local community organization called Electro RAPS of Padre Cocha (ERPACO) has been responsible for the administration and operation of the RAPS system and the commercial service at Padre Cocha. The local community fully participated in this institutional structure, however, their technical and management capacity is somewhat limited. IRP provided the crucial technical and management support during this process. Unfortunately, since the revenues cannot recover the O&M costs, IRP continues to rely on ILZRO for funding. The ERPACO organization, self-management based on the grounds of technical and administrative support provided by IRP, Perú, has provided positive results till date. 10 This institution, however, needs substantial capacity-building to demonstrate that it can be self-sustainable and succeed without that support. The participation of the central government has been very limited, while the regional government has provided some infrastructure. Such a lack of effective involvement by these administrations can reduce the potential for successful replication of this initiative in other areas. The following sections provide recommendations on how to ensure technical, economic, financial and institutional sustainability to supply electricity services to villages like Padre Cocha, and specific suggestions on how to improve the financial viability and institutional arrangement of the RAPS system. 11 3. Recommendations on Future ElectricitySupplyOptions Economic Comparison of Electricity Supply Alternatives For a village like Padre Cocha, an economic analysis has been performed in order to determine the least-cost technology option. Five technically feasible options have been evaluated: · Diesel-only; · Diesel-battery-hybrid; · PV-diesel-battery-hybrid with four different PV array sizes; · PV only; and · PV-individual home systems. For each option, except for solar home systems, the HOMER model is used, combined with the field experience of the consultants to design the size and configuration most economically suitable for the reference load at Padre Cocha. After determining the size of each alternative option, the economic costs of different options were compared, which include capital investment costs, costs of equipment replacement, O&M costs, fuel costs and cost of distribution grid, over a 20-year period. The comparison parameter was the levelized cost per kWh generated (consumer plus public lighting), during all the evaluation period, considering an annual discount rate of 10 percent. Optimum Sizing Results Table 3.1 shows the optimum size of different system components for the nine technological options of minigrid and stand-alone systems to supply electricity services. 13 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Table 3.1: Optimum Sizing Results Power Conditioning PVArrays Genset Batteries Rectifier Inverter kWp kW kWh kW kW Padre Cocha RAPS (Optimized)1 30 128 40 1.Diesel-only 1a. Alternative One 1 x 36 kW 0 0 0 Stand-byUnit 1b. Alternative Peak 2 x 18 kW 0 0 0 andOff-peak 2. Diesel-battery-hybrid 1 x 36 kW 310 20 10 3. Diesel-PV- 3a. Solar PV 25% 25 36kW 310 20 10 hybrid 3b. Solar PV 50% 50 36kW 310 20 10 3c. Solar PV 75% 75 36kW 524 10 20 3d. Solar PV 85% 93 36kW 524 10 20 4. Solar PV 100% 140 0 765 0 25 1Actual figures from Padre Cocha but with improvements to significantly reduce distribution losses. Levelized Cost Comparison Economic evaluation results are shown in the following Tables and Figure: Table 3.2: Economic Cost Comparison Levelized Costs, Breakdown $kWh PV Genset Battery Power M&O&M Fuel Total Conditioning Padre Cocha Optimized 0.148 0.066 0.094 0.167 0.127 0.174 0.937 1a Genset Only ­ 0.056 ­ ­ 0.272 0.310 0.740 (1 on + 1 Back-up Unit) 1b Genset Only (2 on at ­ 0.054 ­ ­ 0.240 0.237 0.633 Peak and 1 on Off-peak) 2 Genset Battery-hybrid ­ 0.025 0.198 0.056 0.186 0.225 0.791 3a PV-hybrid 25 kWp 0.146 0.020 0.122 0.056 0.155 0.170 0.772 3b PV-hybrid 50 kWp 0.293 0.016 0.122 0.056 0.142 0.116 0.846 3c PV-hybrid 75 kWp 0.439 0.013 0.206 0.076 0.110 0.074 1.019 3d PV-hybrid 95 kWp 0.556 0.013 0.206 0.076 0.105 0.043 1.100 4 PV-only 140 kWp 0.819 ­ 0.301 0.076 0.098 ­ 1.395 14 RECOMMENDATIONS ON FUTURE ELECTRICITY SUPPLY OPTIONS Figure 3.1: Comparison of Cost Breakdown for each Option 1.40 30.0 1.20 25.0 1.00 20.0 0.80 15.0 $kWh 0.60 0.40 10.0 $/mo-avg-user 0.20 5.0 0.00 0.0 Padre Cocha 1a 1b 2 3a 3b 3c 3d 4 Optimized Fuel M&O&M Subtotal Power Plant Capital Table 3.3: Comparison between Levelized Energy Costs and Costs per Contract Levelized Energy Costs Costs per Contract ($/averagekWh) ( $/Contract Month) Capital Fixed Fuel Total Capital Fixed Fuel Total Initialand M&O&M Initialand M&O&M Replacement Replacement Cost Cost Padre Cocha Optimized 0.636 0.127 0.174 0.937 13.98 2.80 3.84 20.62 1a Genset Only 0.158 0.272 0.310 0.740 3.47 5.98 6.82 16.28 (1 on + 1 Back-up Unit) 1b Genset Only (2 on at 0.156 0.240 0.237 0.633 3.43 5.28 5.21 13.92 Peak and 1 on Off-peak) 2 Genset Battery-hybrid 0.380 0.186 0.225 0.791 8.36 4.10 4.94 17.40 3a PV-hybrid 25 kWp 0.446 0.155 0.170 0.771 9.81 3.41 3.75 16.97 3b PV-hybrid 50 kWp 0.588 0.142 0.116 0.846 12.93 3.12 2.56 18.61 3c PV-hybrid 75 kWp 0.835 0.110 0.074 1.019 18.37 2.43 1.62 22.42 3d PV-hybrid 95 kWp 0.952 0.105 0.043 1.100 20.95 2.32 0.94 24.20 4 PV-only 140 kWp 1.297 0.098 ­ 1.395 28.54 2.15 ­ 30.69 As is shown in Table 3.1, the 2x18 kW diesel-only system is the least-cost option. PV-diesel-hybrid options have higher levelized costs, because the high initial investment costs cannot be offset by the fuel savings, at current fuel price. Figure 3.1 clearly shows that RE systems have high capital investment costs but very low M&O&M and fuel costs, whereas diesel generators have quite low capital investment costs but very high O&M and fuel costs. 15 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Sensitivity Analysis A sensitivity analysis was performed for the technological options with three parameters of oil price, population size and service hours to address the following issues: · What is the price of fuel at which diesel stand-alone is not the least-cost option? · What is the load for which the PV or diesel-PV systems become attractive? · Which is the least-cost option ­ supply electricity for five hours or 24 hours? Sensitivity to Fuel Price The diesel price break-even point equals to US$1.58/liter (US$5.92/gallon) if compared to PV-diesel-hybrid systems, and US$2.38/liter (US$9.81/gallon) if compared to PV-only systems. In the first case, the break-even point results in 2.77 times the price used in the evaluation (US$0.57/liter) and, in the second case, 4.2 times. Sensitivity to Population Size In regard to population size, the break-even point is calculated for a 25-consumers locality, with a total daily average consumption of 25 kWh/day, including public lighting. Sensitivity to Service Hours The reduction of service hours reduces total energy supplied to the users, which affects the level of sales of the distribution company. In Padre Cocha, most of the electricity used during the daytime are for refrigerators, freezers and fans. Therefore, only a portion of consumption can be shifted to night hours, as shown in the projected figures for the year 2009: 5 Hours Service 122 kWh/day 51% 8 Hours Service 145 kWh/day 60% 24 Hours Service 241 kWh/day 100% As shown in Figure 3.2, without distribution grids, the levelized costs for 24-hour service are higher than that for five- or eight-hour service, particularly for diesel-battery and diesel-PV- hybrid systems. 16 RECOMMENDATIONS ON FUTURE ELECTRICITY SUPPLY OPTIONS Because the study concluded that the diesel stand-alone system is the least-cost supply option, levelized cost generation and distribution were calculated for five-, eight- and 24-hour diesel-only supply options, as shown in Figure 3.3. Given the same distribution grid, regardless of the number of hours of service provided, levelized cost with the distribution grid for five-hour daily service is higher than that for 24-hour service because of the lower amount of energy supplied. The study concluded that diesel-only generation with 24-hour service is the least levelized cost option because of distribution grid costs. Figure 3.2: Levelized Cost Comparison Without Distribution Costs (US$ per kWh) 0.400 LevelizedCost$/kWhWithoutDistributionCosts 0.350 0.300 0.250 0.200 $/kWh 0.150 0.100 0.050 ­ Diesel-alone Diesel-battery Diesel-PV-hybrid 5Hours 8Hours 24Hours Figure 3.3: Levelized Cost Generation and Distribution: Diesel Stand-alone Options Levelized CostGenerationDistribution Diesel- 0.450 alone Systems 0.400 0.350 0.300 0.250 $/kWh 0.200 0.150 0.100 0.050 ­ 5 Hours 8 Hours 24 Hours Generation Distribution 17 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Financial Sustainability ­ Tariff and Subsidy Principle of Financial Sustainability for Renewable Energy Minigrids Developing cost-recovery tariffs is probably the singlemost important factor determining the long-term commercial viability of minigrids and other rural electrification projects. However, in practice, it is usually unrealistic to expect full cost-recovery tariff given the low ability to pay in rural areas. It is important to keep a balance between ensuring commercial viability of the service providers and meeting rural consumers' ability to pay. When designing tariff structures for minigrid systems, a principle should be kept in mind that the tariff should at least recover M&O&M costs, replacement costs, preferably partial capital investment costs, while subsidies are applied to partial or total capital costs. Following the principle that tariffs should recover M&O&M costs, while subsidies should buy down initial investment costs, RE minigrids can become more attractive than diesel gensets, because they require lower tariffs compared to diesel generators, and are less exposed to fuel price volatility. Sometimes, in remote areas, where diesel price is quite high, the M&O&M costs for diesel generators can be higher than the local consumers' ability to pay. An adequate tariff structure for RE-based minigrids should follow these principles: · Enable to pay at least M&O&M and equipment replacement costs; · Reflect the cost structure (that is, include a higher fixed charge than in typical tariff structures applied in larger grids); and · Remain below users' WTP. The fixed and variable costs is a major issue in financial evaluation of PV-hybrid minigrids in particular, and consequently ought to be carefully established and understood in order to define an adequate tariff structure. The costs associated with energy generation from renewable sources are essentially fixed (investment, salaries, monitoring and surveillance, spare parts and maintenance provision) regardless of the fact whether the energy is sold or not. In contrast, electricity generation from diesel gensets has some fixed costs, but a significant amount of variable costs, related to energy generated and consumed (fuel purchase and transport, lubricant, etc). However, studies of diesel genset operated in minigrids supplying low energy demand patterns have shown that diesel gensets usually operate below nominal power (that is, inefficient operation), which significantly increases the cost per energy unit generated. This effect ultimately sets a fixed cost, a "minimum" cost when the genset is operating. 18 RECOMMENDATIONS ON FUTURE ELECTRICITY SUPPLY OPTIONS Following this principle, a fixed monthly fee may be a more appropriate tariff scheme for RE minigrids, since it is more directly related to the cost structure of a RE system and it provides the operator with reduced transaction costs and a clearer financial forecast. Consumers' Willingness-To-Pay Based on recent study results in the Peruvian Amazon on users' WTP1 any proposed tariff could at least have a monthly charge of 20 S, or about US$6 for the very low consumption users, and about 30 S, or about US$10 for the average consumption users. Proposed Tariff for the Padre Cocha RAPS System Given the high transaction costs and the large number of "very low" consumption contracts, the proposed monthly tariff to supply electricity services to villages like Padre Cocha is: { TT = 6 for contracts up to 8.5 kWh/month = 6 + 0.25 · (x ­ 8.5) for contracts above 8.5 kWh/month where T is the tariff (in $/month) and x is consumption (kWh/month). In the current case of Padre Cocha, this tariff would cover about 70 percent of M&O&M and replacement costs. To recover current M&O&M costs, the operator can consider the following two options: Apply the proposed general tariff, but reduce distribution losses and cut administrative costs; or Apply a higher tariff temporarily until improvements can be implemented, which should be no less than {TT = 8 for contracts up to 8.5 kWh/month = 8 + 0.35 · (x ­ 8.5)/kWh for contracts above 8.5 kWh/month In any case, it must try to get more consumers, especially in the very low consumption segment. 1Energía Total (1998), NRECA International (1999), and IRP (2004). 19 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Proposed Tariff and Subsidy for Different Supply Alternatives Tables 3.4 and 3.5 compares the minimum tariffs under different subsidy levels with consumers' WTP. As shown in Table 3.4, without any subsidies, the "full" tariffs (tariffs needed to recover the full costs including initial investment and M&O&M costs) of all the technological options would be above the users' WTP. Therefore, capital subsidy is required. Table 3.4: Proposed Tariff Levels with 0%, 50% and 80% Capital Subsidies % Subsidy on Initial Investment 80% 50% 0% Technological Tarifffor Required Subsidy on Tarifffor Required Subsidy on Tarifffor Options Average Initial Investment Average Initial Investment Average Consumption Consumption Consumption Contracts Total PerContract Contracts Total per Contract Contracts 22kWh/Mo $ $/Contract 22kWh/Mo $ $/Contract 22kWh/Mo 1a Genset Only $14.38 73,128 215 $15.09 45,705 134 $16.28 (1 On + 1 Back-up Unit) 1b Genset Only (2 On at $12.09 70,428 207 $12.78 44,017 129 $13.92 Peak and 1 on Off-peak) 2 Genset-battery-hybrid $13.30 157,598 464 $14.84 98,499 290 $17.40 3a PV-hybrid 25 kWp $10.48 256,588 755 $12.90 160,368 472 $16.97 3b PV-hybrid 50 kWp $ 9.60 355,579 1,046 $12.83 222,237 654 $18.61 3c PV-hybrid 75 kWp $ 9.57 507,657 1,493 $14.17 317,286 933 $22.42 3d PV-hybrid 95 kWp $ 9.35 586,849 1,726 $14.66 366,781 1,079 $24.20 4 PV Only 140 kWp $10.38 802,654 2,361 $18.01 501,658 1,475 $30.69 From Table 3.4, it is clear that a 50 percent subsidy level is not sufficient to enable affordable tariffs, regardless of the technological options considered. Even with 100 percent capital subsidy, Table 3.5 shows that the tariff levels for diesel gensets only and diesel-battery-hybrid systems (options 1a, 1b and 2) are higher than consumers' WTP. This implies that the diesel-based generation options would require subsidies for ongoing M&O&M costs to address affordability issues, which cannot ensure financial sustainability of the systems. 20 RECOMMENDATIONS ON FUTURE ELECTRICITY SUPPLY OPTIONS Diesel-PV-hybrid systems become attractive when capital subsidies are available. The study concluded that with an 80 percent initial capital subsidy (US$755/connection), PV-hybrid option (option 3a) can offer an affordable tariff. Table 3.5: The Lowest Hurdle Tariffs with 100% Capital Subsidy Technological B A C Tariff($/Contract) Tarifffor Required Subsidy on Options $/kWh $/Contract $/kWh T = A + (B+C)·x Average Initial Investment ( x in kWh) Consumption Contracts Total per Contact 22kWh/mo $ $/Contract Padre Cocha Optimized 0.090 2.80 0.174 2.80 + 0.264·x $ 8.61 461,829 1,358 1a Genset Only 0.050 5.98 0.310 5.98 + 0.360·x $13.90 91,409 269 (1 On + 1 Back-up Unit) 1b Genset only (2 on at 0.052 5.28 0.237 5.28 + 0.289·x $11.63 88,034 259 Peak and 1 on Off-peak) 2 Genset-battery-hybrid 0.147 4.10 0.225 4.10 + 0.372·x $12.28 196,997 579 3a PV-hybrid 25 kWp 0.067 3.41 0.170 3.41 + 0.237·x $ 8.63 320,735 943 3b PV-hybrid 50 kWp 0.062 3.12 0.116 3.12 + 0.178·x $ 7.05 444,473 1,307 3c PV-hybrid 75 kWp 0.085 2.43 0.074 2.43 + 0.158·x $ 5.92 634,571 1,866 3d PV-hybrid 95 kWp 0.085 2.32 0.043 2.32 + 0.127·x $ 5.12 733,562 2,158 4 PV Only 140 kWp 0.111 2.15 - 2.15 + 0.111·x $ 4.60 1,003,317 2,951 Recommended Business Models One of the key barriers to minigrid systems is the tragedy of common goods for scarce resources, that is the ownership and management of the system. Experience with minigrids demonstrated two business models ­ utility model and community-based organization model, under which utilities or community-based organizations own and maintain the infrastructure and provide service. Table 3.6 contains a brief description of the two organizational schemes which have been found most feasible for the RAPS project to provide rural electricity services with decentralized RE-based minigrids: 21 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Table 3.6: Typical Models for the Organization of a Rural Electricity Service Funding Model Initial Investment M&O&MCosts ResponsibleforMaintenance A. Utility Model Users and public funds Tariffs paid by users, with Utility (via a territorial (municipalities and other a cross-subsidy managed concession) governmental bodies) by a governmental body (for example, FOSE) B. Community Principally, public funds Tariffs paid by users. Communityorganization, Model (optionally, smaller (possible subsidy from acting like an energy contribution from users) governmental bodies for operator equipment replacement costs) Model MainAdvantages MainDisadvantages A. Utility Model · Protection of legal framework and · Usually not interested in minigrids in officialbodies remote areas, and slow response when · Technical expertise on M&O&M the systems run into problems duties, monitoring, transaction, · High M&O&M costs administration · Risk of distant perception by users, · Larger experience on managing causing eventual rejection electricity service provision · Risk of financial failure in the event of · Availability of financial resources neighbors rejection ­ refusal to pay (better access to funds and tariffs in one community, which may financing mechanisms) affect the service in other communities · Centralized corrective maintenance · Current regulated tariffs need to service, stock of spare parts recognize RE-based minigrids · Availability of service regulations and formal contracts B. Community · Only organizational alternative in · Lack of management, administrative Model remote areas, where no utilities and technical capacity and resources areoperating · Need for specific training on M&O&M · High sense of ownership · Limited access to spare part stocks · Social acceptance, neighbors · Little or no access to financial resources collaboration and coresponsibility (funds and financing mechanisms) for the equipment ownership · Risks associated with required and conduction of basic revenue transactions maintenanceduties · Creation of M&O&M jobs within thecommunity · Increased community self-sufficiency, less bureaucracy needed to manage the service · Possibility to apply specifically designed tariff structures 22 RECOMMENDATIONS ON FUTURE ELECTRICITY SUPPLY OPTIONS Given the limited technical and business skills of the community organization, the system is not operated on a financially viable basis. The distribution utility, on the other hand, is not interested in such a small system. A hybrid model is recommended as the first option for replication of RAPS systems. In the Padre Cocha community, EOSA could own the RE hybrid system and provide technical back-up, while ERPACO would be responsible for on-site basic maintenance and administrative duties. A major barrier to overcome for this model would be to improve the tariff structure so that the replication projects would have sound financial sustainability to attract EOSA investments. With the experience of Padre Cocha, the partnership IRP-ERPACO should be encouraged. The study recommended that IRP-ERPACO should replicate the RAPS systems to provide electricity services to other neighboring villages, so that the M&O&M costs of such partnerships can be funded by a larger portfolio of villages sharing the same technical and management assistance. Replication Potential Based on available data from the department of Loreto, combined with information on the proposed demand segmentation and costs and user demand identified by the RAPS system in Padre Cocha, the replication potential of PV power for supplying residential and public lighting demand in Loreto was assessed. Two approaches were used: 1) sites which already had diesel gensets and distribution grids; and 2) the rural and isolated population in Loreto.2 Using the first approach, it was estimated that a total PV power of 4,191 kWp would serve 137 PV-hybrid microgrids to supply residential and public lighting electricity needs of 15,508 households in Loreto. The overall system cost would be about US$56.6 million.3 Applying the second approach, it was found that 20.8 megawatt peak (MWp) would serve 2,149 PV-hybrid microgrids to supply residential and public lighting electricity needs of 77,131 households in Loreto, at a total estimated system cost of US$281.4 million.4 Based on these methods, the replication potential of PV-hybrid systems could be evaluated for other regions in the Peruvian Amazon. 2 Six provinces were assessed: Alto Amazonas, Loreto, Maynas, Ramón Castilla, Requena and Ucayali. 3 Urban sites supplied with large thermal power stations were excluded; the average family size of six was considered equivalent to one household user in terms of rural electrification. 4 Urban areas and sites with fewer than four households were excluded. It may be noted that the number of families considered, approximates the number of households without electricity (75,000), reported by INEI. 23 4.Conclusions The Padre Cocha system evaluation offers useful lessons when considering electricity supply options for other similar isolated villages in the developing world. Evaluation summary of the RAPS System: The RAPS system in Padre Cocha received 100 percent grant funding for its capital costs, and its current tariff level cannot recover the M&O&M costs. A primary reason for its high capital costs of US$2,400/connection is that the RAPS system is oversized compared to the peak power demand, which also resulted in high distribution losses. The RAPS system also has a high M&O&M cost, which the revenue does not recover. Therefore, it is not considered to be financially sustainable and replicable, under the current condition of sizing, costs and tariff. Least-cost Supply Options: In terms of levelized life cycle costs, diesel genset would be the least-cost option to supply electricity services in villages like Padre Cocha. The required technical configuration would be two properly sized units, one of them operating at off-peak hours and both of them in parallel at peak hours, directly connected to the distribution grid. Proposed Tariff Structure and Subsidy Level: An adequate tariff structure should be applied. For RE minigrids, existing rural electrification tariffs may not be suitable, since they do not reflect the specific demand patterns and supply characteristics. An adequate tariff structure for RE minigrids should follow these principles: 1) to at least recover M&O&M costs; 2) to reflect cost structure ­ a high fixed charge (higher than typical tariff structures applied in large grid systems) to reflect fixed M&O&M costs, a variable charge to reflect fuel costs and a levelized capital cost charge to partially reflect capital investment costs; and 3) to remain below consumers' ability to pay. Following these principles, a fixed monthly fee may be a more appropriate tariff scheme for RE minigrids, since it is more directly related to the cost structure of a RE system, and it provides the operator with reduced transaction costs and a clearer financial forecast. 25 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Given the low consumers' WTP, none of the supply options considered can offer a tariff level below users' WTP without any subsidies. Therefore, subsidies are required to cover partial capital investment. Following these principles, however, diesel-genset-based schemes are neither affordable nor sustainable, even with 100 percent capital subsidies. On the other hand, diesel-PV- hybrid systems become more attractive, since they require lower tariffs compared to diesel-only options, and are less exposed to fuel price volatility. For a village similar to the load demand in Padre Cocha, the study concluded that a properly designed diesel-PV-hybrid system (option 3a.) can offer an affordable tariff level below consumers' WTP, with an 80 percent initial capital subsidy. Proper Technical Design: System designs should be properly sized to meet the peak demand, efficient gensets should be adopted and distribution losses should be reduced. When possible, the use of local components should be prioritized. Recommended Business Model: A hybrid of utility and community-based organization business model is recommended, since the utilities have the resources and technical capacity required to invest and provide technical back-up to such systems, while the community- based organization can provide day-to-day maintenance and administration to ensure community involvement. Regardless of the business model, it is important to clearly define the ownership and management issues of minigrid systems from the beginning to ensure technical and financial sustainability over the long term. Efficient management of the system can also reduce O&M costs. Box 4.1 and Box 4.2 provide a strategic checklist for replication when designing tariffs for RE minigrids and selecting organizational arrangement respectively. 26 CONCLUSIONS Box 4.1: Designing Tariffs: Strategic Checklist for Replication Determine net-demand rates and characterize them according to consumption segments, separating residential, nonresidential (commercial and industrial) and communal (public lighting and buildings) demand. If this is not possible, use data from similar electrified sites in the region. Identify and characterize users' WTP for electricity service, preferably by defined consumption segments (very low, low, medium, high and very high). Assess funding availability for initial investment. · If funding is accessible, consider RE hybrid systems as a first option; next... ­ Assess the RE system resource potential. If not significant, consider combustion genset generation. If significant, design RE system generation capacity to cover at least residential and communal demand; ­ Evaluate the legal framework for tariff structures in the region; ­ Design a tariff structure for financial sustainability (at least for the first five years); - Calculate the levelized cost of energy and cost per contract under various financial scenarios; - Separate capital costs from fixed M&O&M and variable O&M costs; - Define the tariff which covers at least all M&O&M and replacement costs and remains close to users' WTP; and - Consider a flat charge for residential contracts (at least for very low consumption contracts, typically below 8.5 kWh per month). · If funding is not accessible, consider combustion genset generation; next... ­ Assess the resource potential of the fuel; ­ Complete steps IIIA-1, -2, -3a, and -3b; ­ Define the tariff which enables repayment of initial investment costs and remains close to users' WTP; and ­ Complete step IIIA-3d. 27 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Box 4.2: Organization Arrangement: Strategic Checklist for Replication ·Define the roles and responsibilities of each key player; ·Identify candidate organizations to perform each role; and ·Assess the legal framework for electricity service provision in the region and the nature of the candidate service operator. ·Select the business model: ­ Concessionaire management is the most common option; and ­ If the legal framework does not define a concession system, or no candidate concessionaires can be found, follow a user management model. ·Assess the skills and resources (financial, infrastructure, references...) of each candidate organization. Emphasis must be put on the service operator, which should be competent for both financial management and technical O&M; ·Appoint specific organizations to perform each key role, by setting up formal agreements in compliance with applicable regulations. (Do not proceed without a formal appointment to perform each of the indispensable key roles); and ·Define the ownership. ·Develop service regulations, including: ­ Penalization and incentives (for example, reconnection fees); ­ Maintenance and basic conservation; ­ Spare parts provisioning; ­ Ongoing training for users and local technicians; and ­ Monitoring and evaluation. ·Set up service contracts between the operator and the users. 28 Annex 1 Levelized Cost Comparison for Different Technological Options 21 2025 Value 20 30 80 2024 Residual 8.9 9.62 80.0 29.2 77.6 86.2 0.39 116.6 106.8 319.5 292.6 212.6 128x 480 4.32 33,629 1 33,629 19 8.9 6.8 2023 9.62 30 80 480 3.42 116.6 10 80.0 319.5 29.2 292.6 12.62 77.6 86.2 0.39 128x 33,629 1 33,629 18 6.6 8.9 2022 9.62 .0 30 80 11 106.8 319.5 92.62 80 29.2 77.6 86.2 0.39 212.6 128x 480 3.42 33,629 1 33,629 17 8.9 9.5 2021 9.62 30 80 80.0 29.2 77.6 86.2 0.39 116.6 106.8 31 292.6 212.6 128x 480 3.42 33,629 1 33,629 16 8.9 2020 9.62 29 116.6 106.8 319.5 292.6 80.0 29.2 77.6 6.28 30 80 0.39 212.6 128x 480 3.42 33,629 1 33,6 15 8.9 2019 9.62 80.0 29.2 77.6 2.68 30 80 0.39 116.6 106.8 319.5 292.6 212.6 128x 480 3.42 33,629 1 33,629 14 8.9 2018 9.62 80.0 29.2 77.6 2.68 30 80 0.39 116.6 106.8 319.5 292.6 212.6 128x 480 3.42 33,629 1 33,629 13 8.9 2017 9.62 116.6 106.8 319.5 292.6 80.0 29.2 77.6 2.68 30 80 0.39 ,629 212.6 128x 480 3.42 33 1 33,629 12 8.9 2016 9.62 30 80 116.6 106.8 319.5 292.6 80.0 29.2 77.6 2.68 0.39 212.6 128x 480 3.42 33,629 1 33,629 11 8.9 2015 9.62 116.6 106.8 319.5 80.0 29.2 77.6 2.68 30 80 292.6 0.39 212.6 128x 480 3.42 33,629 1 33,629 10 8.9 2014 9.62 80.0 29.2 77.6 2.68 30 80 0.39 116.6 106.8 319.5 292.6 212.6 128x 480 3.42 33,629 1 33,629 9 8.9 2013 9.62 80.0 29.2 75.5 9.38 30 80 0.39 114.5 104.7 313.8 286.9 206.9 128x 480 6.32 32,724 1 32,724 8 8.9 2012 8.62 30 80 480 0.32 112.5 102.7 308.1 80.0 281.3 29.2 73.5 6.18 0.39 201.3 128x 31,840 1 31,840 7 8.9 2011 8.62 30 80 480 4.22 110.4 100.7 302.6 80.0 275.8 29.2 71.5 4.97 0.39 195.8 128x 30,975 1 30,975 6 7.9 2010 7.89 7.62 30 80 480 7.12 108.5 297.2 80.0 270.5 29.2 69.5 3.77 0.39 190.5 128x 30,130 1 30,130 5 7.9 2009 8.69 7.62 30 80 80.0 480 2.12 106.6 291.9 265.3 29.2 67.6 1.57 0.39 185.3 128x 29,304 1 29,304 52 01 01 51 03 %1 Lifetime 4 7.9 2008 0.59 6.62 30 80 80.0 480 6.02 104.7 286.8 260.2 29.2 65.8 1.37 0.39 180.2 128x 28,497 1 28,497 US$ 30 2011 821x 084 08 Cost 1 128333 594,04 0 0 ry/$S 57600 122667 U elbairaV 3 7.9 30 80 2007 1.39 6.62 80.0 0.39 480 0.02 102.8 281.7 255.2 29.2 63.9 0.17 175.2 128x 27,708 1 27,708 Replacement 2 7.9 2006 4.19 5.62 80.0 29.2 62.2 1.96 30 80 0.39 101.0 276.8 250.3 170.3 128x 480 4.91 26,936 1 26,936 30 2005 821x 084 08 75.0 US$ Cost 1 594,04 57,600 333,32 489,28 42 2303 30 80 480 128,333 122,667 121683 not/$S 1 577,095 U 2005 3.99 7.9 6.98 5.62 80.0 29.2 60.4 1.76 0.39 128x 9.81 272.0 245.5 165.5 1 26,182 26,182 Capital 0 2004 Wk Wk Wk 03 type) $/liter 821x 084 08 Legalization yad/ 0 0.0007217 Size/qty. 1 Wk ry/h ry/h ry/h volts and xiF W W W yad/h yad/h yad/h yad/h yad/h ry/h h W ry/sretil Wk Wk reb Wk not mu RAPS (2 S stso M M M Wk Wk Wk Wk MWh/yr Wk MWh/yr M Wk/sretil N CITSIRET C stin sreht O latipa U M& Losses) Costs Cocha CARA C O + &) Commissioning Materials dir de de egas (US$) egas H C )stin dir Wk( G G Losses and Emissions detarene Losses musno yad/detarene Losses musno U U Generation (Net stin snoissi sretil mE Generator Units ) Generator U( Design, G C G C leuF leuF U Padre METSYS yarrA FLOW Net otalT .sno Wk( LAT noitarene C G VP Diesel Battery Converter Fuel COSTS VP Diesel yrettaB retrevno noitubirtsi C Building Project D OT noitubirtsi D Distribution Carbon CASH ygrenE Distribution ygrenE ygrenE Distribution ygrenE VP Diesel Diesel ificepsE launnA EQUIPMENT VP rotarene G yrettaB retrevno nobra C C leuF 31 21 ­ ­- ­ ­ ­ 2025 -25,667 -81,778 -40,561 -148,006 ­ ­ ­ ­ ­ ­ ­ ­ ­ 20 -­ 2024 9,886 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 19 2023 9,886 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 18 2022 9,886 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 17 2021 9,886 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 16 2020 9,886 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ 15 2019 9,886 2,303 19,169 122,667 154,025 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 14 2018 ,169 886,9 2,303 19 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ 13 2017 688,9 ­ 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ 12 2016 688,9 ­ 2,303 19,169 31,358 ­ ­ ­ ­ ­ ­ ­ ­ ­ 11 2015 688,9 ­ 2,303 19,169 31,358 ­ ­ ­ 10 2014 594,04 006,75 ­ ­ 688,9 ­ 2,303 19,169 129,453 ­ ­ ­ ­ ­ ­ ­ ­ 9 2013 688,9 ­ %9.31 %2.6 %9.8 %7.51 %0.21 %4.61 %0.0 1.37 %1.51 100.0% 2,303 18,653 30,842 Cost ­ ­ ­ ­ ­ ­ ­ ­ 8 2012 18,149 403,41 ­ Levelized 2,303 ­ 34,756 $/kWh 0.148 0.066 0.094 0.167 0.127 0.174 677.0 0.161 360.1 ­ ­ ­ ­ ­ ­ ­ ­ 7 2011 17,656 403,41 ­ 2,303 34,263 MWh ­ ­ ­ ­ ­ ­ ­ ­ 6 2010 17,174 403,41 ­ 648 648 648 648 648 648 648 648 648 2,303 6,768 33,781 Consummp ­ ­ ­ ­ ­ ­ ­ ­ 5 2009 16,703 403,41 ­ 2,303 33,310 )$(lat 801,65 708,97 0 ­ ­ ­ ­ ­ ­ ­ To ­ 4 2007 16,243 403,41 ­ 124,865 140,982 107,735 147,520 106,317 763,334 135,809 899,142 2,303 32,850 ($) ­ ­ ­ ­ ­ ­ ­ ­ 3 2007 15,793 403,41 ­ ($) 0 2,303 Value 32,400 316,51 702,22 18,315 56,135 Present ­ ­ ­ ­ ­ ­ ­ ­ 2 2006 15,354 403,41 ­ Replacement S/./kWh 2,303 31,961 S/./User/Month 0.6976 0 ­ ­ ­ ­ ­ ­ ­ ­ 1 2005 14,924 403,41 -­ ($) 1.85 2,303 31,531 O&M 706,91 107,735 147,520 274,862 ­ 0 2004 594,04 ­ 006,75 ­ ­ MWh 15.3 1.063 Month $/kWh / 128,333 122,667 106,317 121,683 577,095 899,142 846 ($) ­ 594,04 316,51 006,75 702,22 ­ ­ 10% 594,04 006,75 User 0.211 / $ 124,865 122,667 116,202 461,829 18,315 19,607 $/kWh 124,865 122,667 106,317 116,202 147,520 107,735 899,143 S/./kWh Investment 0.561 COMPONENTS VP Replacement M& BY de O and dir m COSTS tne tne tne tne G dir Costs stin G VALUE Emissions musno dir COSTS COSTS G egrah Array COSTS Capital PV mecalpeR Generator Diesel mecalpeR U COSTS C Emission C yrettaB mecalpeR retrevno C mecalpeR sreht noitubirtsi stso Costs O D OPERATION CleuF noitubirti LAT RAPS LAT Charge O&M Carbon D OT PRESENT ygrenE LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O&M leuF Others Carbon otalT noitubirtsi D OT REVENUES Fix ygrenE 32 2025 514 106.8 2,792 22,578 25,370 2024 304 6.8 10 2,711 22,578 25,289 2023 293 106.8 2,637 22,578 25,215 2022 183 106.8 ,5632 22,578 25,141 2021 073 106.8 2,489 22,578 25,067 2020 063 8 106.8 2,422 22,57 25,000 2019 053 106.8 2,355 22,578 24,933 2018 043 106.8 2,287 22,578 24,865 2017 133 106.8 2,227 22,578 24,805 2016 223 106.8 2,166 22,578 24,744 2015 313 106.8 2,106 22,578 24,684 2014 403 104.7 2,045 22,137 24,182 2013 692 102.7 1,991 21,705 23,696 2012 882 100.7 1,937 21,283 23,220 2011 082 7.89 1,884 20,871 22,755 2010 272 8.69 1,830 20,468 22,298 2009 562 0.59 1,783 20,074 21,857 2007 852 1.39 1,736 19,689 21,425 2007 152 4.19 1,689 19,313 21,002 2006 442 6.98 %22 %87 1,641 18,945 20,586 % 2005 US$ %22 %87- %95 %14- 195,730 195,730 703,412 2004 30.1 ry/h $ $ $ %01 US$ W M 195,730 899,142 -703,412 195,730 330,997 -135,267 tne adidneV E M O C EULAV mecalpeR dna T PV Number Users aígrenE egrah NI e Costs C INGRESOS xiF ygrenE LAT OT NESERP Income edisbuS PV e Costs mocnI ecnereffi NPV D mocnI noitarep ecnereffi O D 33 21 ­ ­ _ ­ ­ ­ ­ ­ 2025 Value 953,42- ­- ­- -­ -­ ­- ­- ­- ­- ­- 20 2024 Residual 2.81 0 0 6.6 310.8 106.8 2x36 10.4 0.49 113.45 55,210 19 2023 2.81 0 0 6.6 ­- ­- -­ -­ ­- ­- ­- ­- ­- 6.8 310.8 10 2x36 10.4 0.49 113.45 55,210 18 2022 2.81 0 0 6.6 ­- ­- -­ -­ ­- ­- ­- ­- ­- 310.8 106.8 2x36 10.4 0.49 113.45 55,210 17 0.8 2021 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 31 106.8 2x36 10.4 0.49 113.45 55,210 16 2020 3.45 2.81 0 0 6.6 ­- ­- -­ -­ ­- ­- ­- ­- ­- 310.8 106.8 2x36 10.4 0.49 11 55,210 15 2019 2.81 0 0 6.6 310.8 106.8 2x36 10.4 113.45 012,55 ­- ­- -­ ­- ­- ­- ­- ­- 0.49 20,760 14 2018 2.81 0 0 6.6 10.4 0.49 13.451 310.8 106.8 2x36 012,55 ­- ­- -­ -­ ­- ­- ­- ­- ­- 13 2017 2.81 0 0 6.6 310.8 106.8 2x36 10.4 113.45 012,55 ­- ­- -­ -­ ­- ­- ­- ­- ­- 0.49 12 2016 2.81 0 0 6.6 310.8 106.8 2x36 10.4 113.45 012,55 ­- ­- -­ -­ ­- ­- ­- ­- ­- 0.49 11 2015 2.81 0 0 6.6 310.8 106.8 2x36 10.4 113.45 012,55 ­- ­- -­ -­ ­- ­- ­- ­- ­- 0.49 10 2014 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 310.8 106.8 2x36 10.4 0.49 113.45 55,210 20,760 9 2013 1.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 305.0 104.7 2x36 10.2 0.49 111.32 54,838 8 2012 0.81 0 0 6.6 ­- ­- -­ -­ ­- ­- ­- ­- ­- 299.3 102.7 2x36 10.0 0.50 109.24 54,490 7 2011 9.71 0 0 6.5 8.9 ­- ­- -­ -­ ­- ­- ­- ­- ­- 293.7 100.7 2x36 0.51 107.21 54,166 6 2010 8.71 6.5 7.89 0 0 6.9 ­ ­ ­ ­ ­ ­ ­ ­ ­ 288.3 2x36 0.51 105.22 53,870 5 2009 7.71 6.4 8.69 0 0 4.9 ­ ­ -­ ­ ­ ­ ­ ­ 282.9 2x36 0.52 103.27 53,589 20,760 0 5 01 51 03 %2 Lifetime 4 2008 6.71 6.4 0.59 0 0 2.9 ­ ­ ­ ­ ­ ­ ­ ­ ­ 277.7 2x36 0.53 101.37 53,333 US$ 0 2014 63x 0 Cost 0 2 067,02 0 0 ry/$S 0 0 U elbairaV 3 6.4 1.9 ­ ­ ­ ­ ­ ­ ­ ­ ­ 2007 5.71 1.39 0.53 99.51 272.6 2x36 53,094 Replacement 2 2006 4.71 6.3 4.19 0 0 9.8 ­- ­- -­ -­ ­- ­- ­- ­- ­- kW 0.54 97.69 267.7 2x36 52,873 36 0 2005 63x 0 US$ 0 x 2 Cost 526,12 0 0 670,37 609,1 21 75.0 not/$S 1 U 2005 3.71 6.3 6.98 0 0 8.8 ­ ­ ­ ­ ­ ­ ­ ­ ­ 0.55 95.92 262.8 2x36 52,662 Capital units 0 ­ ­ ­ ­ ­ ­ ­ 2 2004 Wk Wk h 0 0 0 Wk 36x yad/ 5 526,12 73,076 2 Size/qty. Wk $/liter xiF yad/h yad/h ry/h ry/h Wk Wk h Wk not sretil h ­ ­ ­ ­ ­ ­ ­ ­ ­ W W MWh/yr Wk Wk M M Wk/sretil S CITSIRET Costs REPLACEMENT ya Costs (kW) AND Stand-alone: CARA Capital O&M (US$) .sno C dir H C stin Grid Grid Losses ) (kW) Emissions detarene D/detarene de musno stin snoissi COSTS tne tne stin tne tne G Generator U ) Generator G G C mE FLOW U leuF U Diesel METSYS yarrA Wk( Generator VP Diesel yrettaB .sno Wk( yarrA COSTS VP Diesel yrettaB Converter Distribution Distribution Distribution Fuel Carbon CASH ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL VP mecalpeR Diesel mecalpeR yrettaB mecalpeR retrevno C mecalpeR noitubirtsi D 34 21 2025 514 ­ 106.8 2,792 2,792 -24,359 20 52 2024 304 ­ 6.8 9,200 5,564 1,906 10 2,711 2,711 31,470 12,264 60,456 19 52 2023 293 ­ 9,200 5,564 1,906 106.8 2,637 2,637 31,470 12,264 60,456 18 52 2022 183 ­ 9,200 5,564 1,906 106.8 ,5632 2,563 31,470 12,264 60,456 17 52 2021 073 ­ 9,200 5,564 1,906 106.8 2,489 2,489 31,470 12,264 60,456 16 52 2020 063 ­ 9,200 5,564 1,906 106.8 2,422 2,422 31,470 12,264 60,456 15 70 52 2019 053 ­ 9,200 5,564 31,4 2,2641 1,906 106.8 2,355 2,355 60,456 ­ 14 52 2018 9,200 564,5 31,470 462,21 6 043 1,906 106.8 2,287 2,287 60,45 13 2017 9,200 465,5 31,470 462,21 52 133 ­ 1,906 106.8 2,227 2,227 60,456 12 2016 9,200 465,5 31,470 462,21 52 223 ­ 1,906 106.8 2,166 2,166 60,456 11 2015 9,200 465,5 31,470 462,21 52 313 ­ 1,906 106.8 2,106 2,106 60,456 10 2014 9,200 465,5 31,470 462,21 52 403 ­ 1,906 104.7 2,045 2,045 60,456 9 2013 9,200 465,5 31,258 462,21 %0.0 %0.0 %0.0 51 %7.63 %9.14 %1.0 78.7% 13.7% %4.29 692 ­ 1,906 102.7 1,991 1,991 60,243 Cost 8 2012 9,200 465,5 31,059 462,21 50 Levelized 882 ­ 1,906 - 60,043 $/kWh 650.0 - - 0.272 0.310 000.0 0.638 201.0 147.0 100.7 1,937 1,937 7 2011 9,200 465,5 30,875 462,21 49 1,906 858,95 082 7.89 ­ 1,884 1,884 MWh 6 2010 9,200 465,5 30,706 462,21 48 648 846 648 648 648 648 648 648 846 846 272 8.69 ­ 1,906 1,830 1,830 59,688 Consummp 5 2009 9,200 465,5 30,546 462,21 47 562 0.59 ­ 1,906 59,527 )$(lat 1,783 1,783 0 0 0 411 To 47,489 86,011 4 2008 9,200 465,5 30,400 462,21 230,101 262,270 540,271 626,282 46 852 1.39 ­ 1,906 1,736 1,736 59,380 ($) 3 2007 9,200 465,5 30,264 462,21 ($) 45 0 0 0 152 4.19 ­ 1,906 Value 1,689 1,689 59,243 25,864 25,864 Present 2 2006 9,200 465,5 30,138 462,21 45 1,906 711,95 Replacement 442 6.98 ­ %3 %79 %3 1,641 1,641 S/./kWh ($) 0 1 2005 002,9 710,03 465,5 462,21 44 609,1 411 O&M 16,227 230,101 262,270 509,009 S/./User/Month 58,995 429,61 US$ 16,924 16,924 609,359 626,282 534,873 -517,949 1.85 $ $ $ $ 0 - 2004 107,49 MWh 44.2 0.740 30.1 ry/h %01 W 626,282$ 846 ($) 0 0 0 M 10% 21,625 487,96 th 91,409 $/kWh $/kWh S/./kWh Investment 0.000 $/User/Mon tne noitarep COMPONENTS M& 0.561 BY COSTS O ecivreS snoissi O dir de SUBSIDY G COSTS COSTS noissi dir mecalpeR E G M O dna stso O&M STS mE VALUE O musno mE egrah adidneV C VALUE Operators nobra C C C VP LAT nobra LAT Number egrah NI e PV e OPERATION dexiF CleuF SPARlat Charge C LAT noitarep Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT ygrenE LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O&M leuF noitubirtsi C To D OT REVENUES Fix ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI edisbuS Costs mocnI ecnereffi O D 35 21 ­ ­ ­ ­ ­ ­ ­ ­ 2025 Value 953,42- 20 2024 Residual 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 2x18 0.38 113.45 43,311 19 2023 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 8.3 310.8 10 2x18 0.38 113.45 43,311 18 2022 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 2x18 0.38 113.45 43,311 17 0.8 2021 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 31 106.8 2x18 0.38 113.45 43,311 16 2020 3.45 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 2x18 0.38 11 43,311 16,425 15 2019 2.81 0 0 6.6 8.3 310.8 106.8 2x18 113.45 113,34 ­ ­ ­ ­ ­ ­ ­ ­ ­ 0.38 14 2018 2.81 0 0 6.6 8.3 0.38 13.451 310.8 106.8 2x18 113,34 ­ ­ ­ ­ ­ ­ ­ ­ ­ 13 2017 2.81 0 0 6.6 8.3 310.8 106.8 2x18 113.45 113,34 ­ ­ ­ ­ ­ ­ ­ ­ ­ 0.38 12 2016 2.81 0 0 6.6 8.3 310.8 106.8 2x18 113.45 113,34 ­ ­ ­ ­ ­ ­ ­ ­ 0.38 16,425 11 2015 2.81 0 0 6.6 8.3 310.8 106.8 2x18 113.45 113,34 ­ ­ ­ ­ ­ ­ ­ ­ ­ 0.38 10 2014 2.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 2x18 0.38 113.45 43,311 9 2013 1.81 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.1 305.0 104.7 2x18 0.38 111.32 42,730 8 2012 0.81 0 0 ­ ­ ­ ­ ­ ­ ­ 6.6 8.0 299.3 102.7 2x18 0.39 109.24 42,182 16,425 7 2011 9.71 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.5 7.8 293.7 100.7 2x18 0.39 107.21 41,651 6 2010 8.71 6.5 7.89 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 7.7 288.3 2x18 0.39 105.22 41,132 5 2009 7.71 6.4 8.69 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 7.5 282.9 2x18 0.39 103.27 40,611 0 4 01 51 03 Lifetime 4 2008 6.71 6.4 0.59 0 0 ­ ­ ­ ­ ­ ­ ­ 7.4 277.7 2x18 0.40 101.37 40,095 16,425 US$ 0 2014 81x 0 Cost 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 0 0 0 %2 3 6.4 7.3 2007 5.71 1.39 2x18 0.40 2 16425 99.51 272.6 39,558 Replacement 2 2006 4.71 6.3 4.19 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 7.1 kW 0.40 97.69 267.7 2x18 39,044 18 0 2005 81x 0 US$ x 2 Cost 0 052,81 0 0 US$/yr 73076 elbairaV 75.0 not/$S 1 U 2005 3.71 6.3 6.98 0 0 ­ ­ ­ ­ ­ ­ ­ ­ 7.0 0.40 1906 21 95.92 262.8 2x18 38,515 Capital units 0 ­ ­ ­ ­ ­ ­ ­ 2 2004 Wk Wk h 052,81 670,37 Wk 0 81x2 yad/ 0 0 Wk 5 h h Size/Qty. xiF $/liter yad/h yad/h ry/h ry/h Wk Wk Wk not sretil W W stso MWh/yr Wk Wk M M Wk/sretil C latipa REPLACEMENT M& Costs (kW) C O Stand-alone: dir dir (US$) .sno AND C dir CHARACTERISTICS stin G G Losses (kW) Emissions detarene yad/detarene de musno stin snoissi G mE leuF COSTS tne tne stin tne tne yarrA Generator U ) Generator (kWh) G G C FLOW U .sno Wk( yarrA Generator U Diesel SYSTEM VP Diesel yrettaB COSTS VP noitubirtsi noitubirtsi Diesel Battery Converter D D Distribution Fuel Carbon CASH ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL VP mecalpeR Diesel mecalpeR yrettaB mecalpeR Converter mecalpeR noitubirtsi D 36 21 2025 514 ­ 106.8 2,792 2,792 -24,359 20 41 2024 304 ­ 6.8 9,200 5,564 9,084 1,906 10 2,711 2,711 24,687 50,482 19 41 2023 293 ­ 9,200 5,564 9,084 1,906 106.8 2,637 2,637 24,687 50,482 18 41 2022 183 ­ 9,200 5,564 9,084 1,906 106.8 ,5632 2,563 24,687 50,482 17 41 2021 073 ­ 9,200 5,564 9,084 1,906 106.8 2,489 2,489 24,687 50,482 16 41 2020 9,200 5,564 9,084 1,906 24,687 284,05 063 ­ 106.8 2,422 2,422 0 15 41 2019 687 053 ­ 9,20 5,564 9,084 1,906 106.8 2,355 2,355 24, 50,482 ­ 14 41 2018 9,200 564,5 084,9 043 1,906 106.8 2,287 2,287 24,687 50,482 13 2017 9,200 465,5 480,9 ­ 41 1,906 24,687 ,48205 133 106.8 2,227 2,227 12 2016 9,200 465,5 480,9 41 1,906 24,687 284,05 223 ­ 106.8 2,166 2,166 11 2015 9,200 465,5 480,9 41 1,906 24,687 284,05 313 ­ 106.8 2,106 2,106 10 2014 9,200 465,5 480,9 41 1,906 24,687 284,05 403 ­ 104.7 2,045 2,045 9 2013 9,200 465,5 480,9 41 1,906 24,356 151,05 %0.0 %6.8 %0.0 %0.0 %9.73 %4.73 %1.0 %48 16.1% %1.001 692 ­ 102.7 1,991 1,991 Cost 8 2012 9,200 465,5 480,9 40 1,906 24,044 838,94 Levelized 882 -­ - $/kWh 450.0 - - 0.240 0.237 000.0 135.0 201.0 336.0 100.7 1,937 1,937 7 2011 9,200 465,5 480,9 39 1,906 23,741 435,94 082 7.89 ­ 1,884 1,884 MWh 6 2010 9,200 465,5 480,9 38 1,906 23,445 732,94 648 846 648 648 648 648 648 846 5,922 867,6 272 8.69 ­ 1,830 1,830 Consummp 5 2009 9,200 465,5 480,9 38 1,906 23,148 049,84 562 0.59 ­ )$(lat 1,783 1,783 0 0 0 329 To 45,939 86,011 4 2008 9,200 465,5 480,9 37 1,906 22,854 546,84 203,026 200,239 335,944 35,5445 852 1.39 ­ 1,736 1,736 ($) 3 2007 9,200 465,5 480,9 36 1,906 22,548 833,84 ($) 0 0 0 152 4.19 ­ Value 1,689 1,689 27,689 27,689 Present 2 2006 9,200 465,5 480,9 36 1,906 22,255 540,84 Replacement 442 6.98 ­ %3 %79 %4 1,641 1,641 ($) 1 2005 9,200 465,5 480,9 35 1,906 21,954 347,74 329 S/./kWh 0 US$ O&M 16,227 203,026 200,239 419,821 S/./User/Month 16,924 16,924 16,924 518,621 535,544 447,510 -430,586 $ $ $ $ 0 ­ 2004 623,19 MWh 90.2 0.633 1.85 30.1 ry/h 10% 535,544 W 846 ($) 0 0 0 M 10% 18,250 487,96 th 88,034 $/kWh $/kWh 535,544 S/./kWh Investment 0.000 $/User/Mon tne noitarep COMPONENTS M& 0.561 BY COSTS O ecivreS snoissi O dir de mecalpeR SUBSIDY G stso O&M mE VALUE musno COSTS COSTS noissi dir G mE egrah adidneV E M O C VALUE dna Operators nobra COSTS C C Number egrah NI VP e PV e OPERATION dexiF CleuF ALT nobra SPARlat LAT Charge C LAT noitarep Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT ygrenE LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O&M leuF noitubirtsi C To D OT REVENUES Fix ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI edisbuS Costs mocnI ecnereffi O D 37 21 ­ ­ ­ 2025 Value 029,6- ­ ­ ­ 953,42- 20 2024 Residual 2.81 0 ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 113.45 41,978 333,32- ­ 19 2023 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 8.3 310.8 10 1x36 310 0.37 113.45 41,978 18 2022 2.81 0 ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 113.45 41,978 083,01 ­ ­ ­ ­ ­ 17 0.8 2021 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 31 106.8 1x36 310 0.37 113.45 41,978 16 2020 3.45 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 11 41,978 15 2019 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 978 0.37 113.45 41, 74,400 14 2018 2.81 0 ­ ­ ­ ­ ­ ­ ­ 6.6 1x36 310 8.3 0.37 13.451 310.8 106.8 41,978 000,53 ­ 13 2017 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 113.45 41,978 12 2016 2.81 0 ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 113.45 41,978 083,01 ­ ­ ­ ­ ­ 11 2015 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 113.45 41,978 10 2014 2.81 0 ­ ­ ­ ­ ­ ­ ­ 6.6 8.3 310.8 106.8 1x36 310 0.37 113.45 41,978 74,400 9 2013 1.81 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.1 305.0 104.7 1x36 310 0.37 111.32 41,190 8 2012 0.81 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 8.0 299.3 102.7 1x36 310 0.37 109.24 40,419 7 2011 9.71 0 ­ ­ ­ ­ ­ ­ ­ ­ 6.5 7.8 293.7 100.7 1x36 310 0.37 107.21 39,666 yr $ 042 6 2010 8.71 6.5 7.89 0 ­ ­ ­ 7.7 288.3 1x36 310 0.37 Unit 105.22 38,930 083,01 ­ ­ ­ ­ Each Batte 5 2009 7.71 6.4 8.69 0 ­ ­ ­ ­ ­ ­ ­ 7.5 282.9 1x36 310 0.37 103.27 38,210 74,400 0 6 5 rgeaL. 51 03 %2 Lifetime 4 2008 6.71 6.4 0.59 0 ­ ­ ­ ­ ­ ­ ­ ­ 7.4 277.7 1x36 310 0.37 101.37 37,507 US$ kW 0 2011 63x1 Cost 0 7.3 310 36 083,01 74,400 000,53 ry/$S 0 U elbairaV ­ ­ ­ ­ ­ ­ ­ ­ 3 6.4 2007 5.71 1.39 310 0.37 99.51 272.6 1x36 36,819 x Replacement 0 ­ ­ ­ ­ ­ ­ ­ ­ 2 6.3 7.1 2006 4.71 4.19 310 unit 0.37 97.69 267.7 1x36 36,147 1 0 2005 63x1 US$ 0 310 Cost 318,01 74,400 000,24 670,37 609,1 21 75.0 not/$S 1 U 2005 3.71 6.3 6.98 0 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 310 7.0 0.37 95.92 262.8 iesel 35,490 D. Capital 0 ­ ­ ­ ­ ­ idrby 2004 42,000 Wk Wk h 0 Wk 63x1 013 yad/ 5 318,01 004,47 670,37 h h ­ ­ Size/qty. Wk $/liter xiF yad/h yad/h ry/h ry/h Wk Wk Wk not sretil W W y-hr MWh/yr Wk Wk M M Wk/sretil Costs Control REPLACEMENT tte + Costs (kW) Capital O&M (US$) .sno AND C dir CHARACTERISTICS stin )h Grid Grid Losses Emissions detarene yad/detarene de musno stin snoissi sretiL G mE leuF COSTS tne tne stin tne tne iesel-ba yarrA Generator U ) Generator Wk( Conditioning G G C FLOW U .sno Wk( yarrA Generator U D SYSTEM VP Diesel yrettaB COSTS VP Diesel yrettaB Power Distribution Distribution Distribution Fuel Carbon CASH ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL VP mecalpeR Diesel mecalpeR yrettaB mecalpeR retrevno C mecalpeR noitubirtsi D 38 21 2025 514 ­ 106.8 2,792 2,792 -54,612 20 41 2024 304 ­ 6.8 9,200 3,709 5,610 1,906 10 2,711 2,711 23,928 44,394 19 41 2023 293 ­ 9,200 3,709 5,610 1,906 106.8 2,637 2,637 23,928 44,394 18 41 2022 183 ­ 9,200 3,709 5,610 1,906 106.8 ,5632 2,563 23,928 54,774 17 41 2021 073 ­ 9,200 3,709 5,610 1,906 106.8 2,489 2,489 23,928 44,394 16 41 2020 063 ­ 9,200 3,709 5,610 1,906 106.8 2,422 2,422 23,928 44,394 ­ 15 2019 9,200 097,3 016,5 41 053 1,906 106.8 2,355 2,355 23,928 153,794 14 00 2018 ,928 9,2 907,3 016,5 41 043 ­ 1,906 106.8 2,287 2,287 23 44,394 13 2017 9,200 907,3 016,5 41 133 ­ 1,906 106.8 2,227 2,227 23,928 44,394 12 2016 9,200 907,3 016,5 41 223 ­ 1,906 106.8 2,166 2,166 23,928 54,774 11 2015 9,200 907,3 016,5 41 313 ­ 1,906 106.8 2,106 2,106 23,928 44,394 10 2014 9,200 907,3 016,5 41 403 ­ 1,906 104.7 2,045 2,045 23,928 118,794 9 2013 9,200 907,3 016,5 %0.0 %1.3 41 %0.52 %1.7 %6.32 %4.82 %0.0 87.2% 12.9% 100.1% 692 ­ 1,906 102.7 1,991 1,991 23,478 43,944 Cost 8 2012 9,200 907,3 016,5 40 Levelized 882 ­ 1,906 - 23,039 43,504 $/kWh 520.0 891.0 650.0 0.186 0.225 000.0 0.690 201.0 100.7 1,937 1,937 0.792 7 2011 9,200 907,3 016,5 39 082 7.89 ­ 1,906 1,884 1,884 22,610 43,074 MWh 6 2010 9,200 907,3 016,5 38 648 846 648 846 648 648 648 648 846 648 272 8.69 ­ 1,906 1,830 1,830 22,190 53,033 Consummp 5 2009 9,200 907,3 016,5 38 562 0.59 ­ 1,906 21,780 116,643 )$(lat 1,783 1,783 0 329 To 20,911 47,226 86,011 4 2008 9,200 907,3 016,5 167,092 157,664 190,054 583,276 669,287 37 852 1.39 ­ 1,906 1,736 1,736 21,379 41,841 ($) 3 2007 9,200 907,3 016,5 ($) 36 0 152 4.19 ­ 1,906 Value 1,689 1,689 20,987 41,448 5,226 10,098 92,692 108,016 Present 2 2006 9,200 907,3 016,5 Replacement 36 442 6.98 ­ %3 %79 %4 1,906 1,641 1,641 20,604 41,065 S/./kWh 0 ($) 1 2005 9,200 907,3 016,5 h 329 S/./User/Month 35 W 1,906 M US$ O&M 16,227 157,664 190,054 364,273 20,229 40,689 1.85 16,924 16,924 16,924 652,363 669,287 472,289 -455,366 $ $ $ $ 0 - 648 16.2 2004 0.791 30.1 ry/h 10% 669,287 W ($) 0 M 200,289 th - 78,325 875,13 167,74 923 10% 10,813 74,400 42,000 487,96 $/kWh 196,997 16,227 $/kWh 190,054 669,287 S/./kWh Investment 0.000 $/User/Mon tne noitarep COMPONENTS M& 0.561 BY COSTS O ecivreS snoissi O dir SUBSIDY G COSTS COSTS noissi dir G stso O&M mE VALUE mE egrah adidneV mecalpeR E M O C VALUE dna Operators nobra COSTS Consumed C VP LAT nobra RAPS LAT Number egrah NI e PV e OPERATION dexiF CleuF Charge C LAT noitarep Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT Energy LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O&M leuF C otalT noitubirtsi D OT REVENUES Fix ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI edisbuS Costs mocnI ecnereffi O D 39 21 2025 Value 534,52- ­ 091,5- ­ ­ ­ 333,32- 953,42- 20 2024 Residual 2.81 6.6 25 ­ ­ ­ ­ ­ ­ ­ ­ ­ 310 6.4 0.37 25.55 87.90 310.8 106.8 1x36 113.45 32,525 19 2023 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 25 310 6.4 0.37 25.55 87.90 310.8 10 1x36 113.45 32,525 18 2022 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 25 310 6.4 0.37 25.55 87.90 310.8 106.8 1x36 113.45 32,525 17 0.8 2021 5.552 2.81 ­ 6.6 25 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 310 6.4 0.37 87.90 31 106.8 113.45 32,525 ­ ­ ­ ­ ­ ­ ­ ­ 16 6.6 25 6.4 2020 25.55 3.45 2.81 310 87.90 310.8 106.8 1x36 0.37 11 32,525 083,01 15 2019 2.81 6.6 25 ­ ­ ­ ­ ­ ­ ­ 310 6.4 525 0.37 25.55 87.90 310.8 106.8 1x36 113.45 32, 000,53 ­ 14 6.6 25 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.4 2018 25.55 7.908 2.81 310 0.37 13.451 310.8 106.8 1x36 32,525 13 2017 25.55 09.78 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 25 6.4 310.8 106.8 1x36 310 0.37 113.45 32,525 12 2016 25.55 09.78 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 25 6.4 310.8 106.8 1x36 310 0.37 113.45 32,525 11 2015 25.55 09.78 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 25 6.4 310.8 106.8 1x36 310 0.37 113.45 32,525 10 2014 25.55 09.78 2.81 ­ ­ ­ 6.6 25 ­ ­ ­ 6.4 310.8 106.8 1x36 310 0.37 113.45 32,525 !eulaV ­ ­ # 9 2013 25.55 77.58 1.81 ­ ­ ­ ­ ­ 6.6 25 ­ ­ ­ ­ 6.3 305.0 104.7 1x36 310 0.37 111.32 31,736 8 2012 25.55 96.38 0.81 ­ ­ ­ 6.6 25 6.1 299.3 102.7 1x36 310 0.37 109.24 30,966 083,01 ­ ­ ­ ­ ­ 7 2011 25.55 66.18 9.71 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.5 25 6.0 293.7 100.7 1x36 310 0.37 Array 107.21 30,212 PV ­ ­ ­ ­ ­ ­ ­ ­ ­ $ . 25 Unit 780,5 6 2010 25.55 76.97 8.71 6.5 7.89 5.8 288.3 1x36 310 0.37 105.22 29,476 kWp Each ­ ­ ­ ­ ­ ­ ­ ­ ­ 5 6.4 25 5.7 2009 0.37 25.55 27.77 7.71 8.69 1x36 310 282.9 25 103.27 28,757 52 8 01 51 03 %2 Lifetime 4 2008 25.55 28.57 6.71 6.4 0.59 25 5.5 ­- -­ -­ -­ -­ ­- -­ ­- -­ 277.7 1x36 310 0.37 Units. 101.37 28,053 US$ 25 2011 63x1 Cost 310 083,01 !E ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.4 25 5.4 ULAV 000,53 ry/$S U Diesel 127,175 # elbairaV 3 2007 25.55 69.37 5.71 1.39 310 0.37 99.51 272.6 1x36 27,366 kW Replacement 2 2006 25.55 41.27 4.71 6.3 4.19 25 ­- -­ -­ -­ -­ ­- -­ ­- -­ 310 5.3 0.37 97.69 267.7 1x36 26,694 36 25 x 2005 63x1 US$ 310 Cost 318,01 !E 21 ULAV 000,24 670,37 609,1 0.57 not/$S 1 1 5.1 127,175 # U 2005 25.55 73.07 3.71 6.3 6.98 ­ ­ ­ ­ ­ ­ ­ ­ ­ 25 310 0.37 95.92 262.8 1x36 $/liter 26,036 Capital 0 ­ ­ 2004 !eulaV ­ ­ Wk Wk h Wk 52 63x1 013 yad/ 5 318,01 127,175 # 000,24 670,37 h h Size/Qty. Wk ry/h ry/h xiF W W yad/h yad/h ry/h ry/h Wk Wk Wk not sretil W W M M MWh/yr Wk Wk M M Wk/sretil Costs Control VP REPLACEMENT Diesel + Costs yb by (kW) Capital O&M (US$) .sno AND C dir CHARACTERISTICS stin Grid Grid Losses Emissions detarene detarene yad/detarene de musno stin snoissi sretiL G mE leuF COSTS tne tne stin tne tne yarrA Generator U ) Generator (kWh) Conditioning G Generated G G C FLOW U .sno Wk( yarrA Generator U Conditioning+Control PV-diesel-battery-hybrid: SYSTEM VP Diesel yrettaB COSTS VP Diesel Battery Power Distribution Distribution Distribution Fuel Carbon CASH ygrenE Energy ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL VP mecalpeR Diesel mecalpeR yrettaB mecalpeR Power mecalpeR noitubirtsi D 40 21 2025 514 ­ 106.8 2,792 2,792 -78,317 20 32 2024 304 ­ 6.8 9,200 1,855 4,332 1,906 10 2,711 2,711 18,539 35,864 19 32 2023 293 ­ 9,200 1,855 4,332 1,906 106.8 2,637 2,637 18,539 35,864 18 32 2022 183 ­ 9,200 1,855 4,332 1,906 106.8 ,5632 2,563 18,539 35,864 17 32 2021 073 ­ 9,200 1,855 4,332 1,906 106.8 2,489 2,489 18,539 35,864 16 32 2020 9,200 1,855 4,332 1,906 18,539 468,53 063 ­ 106.8 2,422 2,422 0 15 32 2019 539 053 ­ 9,20 1,855 4,332 1,906 106.8 2,355 2,355 18, 35,864 ­ 14 32 2018 9,200 855,1 332,4 ,864 043 1,906 106.8 2,287 2,287 18,539 35 13 2017 9,200 558,1 233,4 32 $/kWh 0.7495 133 ­ 1,906 106.8 2,227 2,227 18,539 35,864 12 2016 9,200 558,1 233,4 32 223 ­ 1,906 106.8 2,166 2,166 18,539 35,864 Annuity$ 14,534 11 2015 9,200 558,1 233,4 32 313 ­ 1,906 106.8 2,106 2,106 18,539 35,864 kWh 19,332 10 2014 9,200 558,1 233,4 ­ 32 !E 1,906 18,539 ULAV 403 104.7 2,045 2,045 # 9 2013 9,200 558,1 233,4 !eulaV !eulaV !eulaV !eulaV !eulaV !eulaV !eulaV 31 # # #Value! # # # # #Value! # !eulaV# 692 ­ 1,906 102.7 1,991 1,991 18,090 35,414 Cost 8 2012 9,200 558,1 233,4 31 Levelized 882 ­ 1,906 17,650 34,974 $/kWh 0.146 020.0 650.0 0.155 0.170 000.0 201.0 #Value! #Value! !eulaV# 100.7 1,937 1,937 7 2011 9,200 558,1 233,4 30 082 7.89 ­ 1,906 1,884 1,884 17,221 34,544 MWh 6 2010 9,200 558,1 233,4 ­ 29 1,906 648 846 648 846 648 648 648 648 846 648 272 8.69 1,830 1,830 16,801 34,123 Consummp 5 2009 9,200 558,1 233,4 28 562 0.59 ­ 1,906 16,391 33,712 )$(lat 1,783 1,783 250 To 17,213 47,226 86,011 4 2008 9,200 558,1 S/./kWh 233,4 123,738 #Value! 130,998 144,179 #Value! !eulaV# 28 852 1.39 ­ 1,906 1,736 1,736 15,990 33,311 S/./User/Month ($) 3 2007 9,200 558,1 233,4 ($) ­ 27 0 1,906 Value 15,598 32,918 6,400 5,226 #Value! !eulaV# 58.1 0 152 4.19 1,689 1,689 Present 2 2006 9,200 558,1 233,4 Replacement 26 442 6.98 ­ 1,906 1,641 1,641 15,215 32,534 !eulaV !eulaV # #Value! # ($) h 1 2005 9,200 558,1 233,4 250 26 Wk/$ US$ 1,906 O&M 16,227 130,998 144,179 14,841 32,160 291,654 16,924 16,924 #Value! #Value! 16,924 !eulaV !eulaV # # 0 ­ 2004 !eulaV MWh !eulaV $/User/Month 30.1 ry/h $ $ $ $ 10% #Value! 846 #Value! # W ($) # 165.0 000.0 10% 10,813 123,738 #Value! 42,000 487,96 !eulaV# M $/kWh S/./kWh Investment noitarep COMPONENTS M& BY COSTS O ecivreS snoissi O dir de SUBSIDY G COSTS COSTS noissi dir Replacements E G M O and stso O&M STS mE VALUE O musno mE egrah adidneV C VALUE Operators nobra C C VP LAT nobra LAT egrah C Number egrah NI e PV e OPERATION dexiF CleuF SPARlat C C LAT Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT ygrenE LEVELIZED LEVELIZED VP rotarene retrevno G Battery C O&M leuF noitubirtsi C To D OT REVENUES xiF ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI Subside Costs mocnI Operation Difference 41 21 ­ 2025 Value 029,6- ­ ­ ­ -50,870 333,32- 953,42- .1 20 2024 Residual 51 2.81 ­ 6.6 50 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 310 4.6 0.37 62.35 310.8 106.8 113.45 23,071 19 2023 51.1 2.81 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 50 ­ 1x36 310 4.6 0.37 62.35 310.8 10 113.45 23,071 18 2022 51.1 2.81 ­ 6.6 50 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 310 4.6 0.37 62.35 310.8 106.8 113.45 23,071 17 0.8 2021 51.1 2.81 ­ 6.6 50 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 310 4.6 0.37 62.35 31 106.8 113.45 23,071 16 2020 51.1 3.45 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 50 1x36 310 4.6 62.35 310.8 106.8 0.37 11 23,071 15 2019 51.1 2.81 ­ 6.6 50 ­ ­ ­ ­ ­ ­ ­ 1x36 310 4.6 071 0.37 62.35 310.8 106.8 113.45 23, 000,53 14 2018 51.1 2.356 2.81 ­ ­ ­ ­ ­ 6.6 50 ­ ­ ­ -­ 1x36 310 4.6 0.37 13.451 310.8 106.8 23,071 13 2017 51.1 53.26 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 50 4.6 310.8 106.8 1x36 310 0.37 113.45 23,071 12 2016 51.1 53.26 2.81 ­ ­ ­ 6.6 50 4.6 310.8 106.8 1x36 310 0.37 113.45 23,071 083,01 ­ ­ ­ ­ ­ 11 2015 51.1 53.26 2.81 ­ ­ ­ ­ ­ ­ ­ 6.6 50 ­ ­ 4.6 310.8 106.8 1x36 310 0.37 113.45 23,071 10 2014 51.1 53.26 2.81 ­ ­ 6.6 50 ­ ­ ­ ­ 4.6 310.8 106.8 1x36 310 0.37 113.45 23,071 004,47 ­ ­ 9 2013 51.1 22.06 1.81 ­ ­ 6.6 50 ­ ­ ­ ­ ­ ­ ­ 4.4 305.0 104.7 1x36 310 0.37 111.32 22,283 8 2012 51.1 41.85 0.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 50 4.2 299.3 102.7 1x36 310 0.37 109.24 21,512 7 2011 51.1 11.65 9.71 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.5 50 4.1 293.7 100.7 1x36 310 0.37 Array 107.21 20,759 PV ­ ­ ­ ­ ­ ­ ­ ­ ­ $ 50 Unit 780,5 042 6 2010 51.1 21.45 8.71 6.5 7.89 4.0 288.3 1x36 310 0.37 105.22 20,023 kWp Each ­ ­ ­ ­ ­ ­ ­ ­ ­ 5 6.4 50 3.8 2009 51.1 71.25 7.71 8.69 1x36 310 0.37 282.9 50 103.27 19,303 52 21 01 51 03 %2 Lifetime 4 2008 51.1 72.05 6.71 6.4 0.59 ­ ­ ­ ­ ­ ­ ­ ­ ­ 50 3.7 277.7 1x36 310 0.37 Units. 101.37 18,600 US$ 50 2011 63x1 Cost 310 083,01 74,400 000,53 ry/$S U Diesel 254,350 elbairaV ­ ­ ­ ­ ­ ­ ­ ­ ­ 3 6.4 50 3.5 2007 51.1 14.84 5.71 1.39 310 0.37 99.51 272.6 1x36 17,912 Replacement kW 2 2006 51.1 95.64 4.71 6.3 4.19 ­ ­ ­ ­ ­ ­ ­ ­ ­ 50 1x36 310 3.4 0.37 97.69 267.7 17,240 36 50 x 2005 63x1 US$ 310 Cost 318,01 74,400 000,24 670,37 609,1 21 0.57 not/$S 1 1 254,350 U 2005 51.1 28.44 3.71 6.3 6.98 ­ ­ ­ ­ ­ ­ ­ ­ ­ 50 1x36 310 3.3 0.37 95.92 262.8 $/liter 16,583 Capital 0 ­ ­ ­ 2004 000,24 ­ Wk Wk h Wk 05 63x1 013 yad/ 5 318,01 004,47 670,37 254,350 h h Size/Qty. Wk ry/h ry/h xiF W W yad/h yad/h ry/h ry/h Wk Wk Wk not sretil W W M M MWh/yr Wk Wk M M Wk/sretil S CITSIRET Costs Control VP REPLACEMENT Diesel + Costs yb by (kW) CARA Capital O&M (US$) .sno AND C dir H C stin )h Grid Grid Losses Emissions detarene detarene yad/detarene de musno stin snoissi sretiL COSTS tne tne stin tne tne G Generator U ) Generator Conditioning FLOW G Generated G G C mE U leuF U PV-diesel-battery-hybrid: METSYS yarrA Wk( Generator VP Diesel yrettaB .sno Wk( Array COSTS VP Diesel yrettaB Power Distribution Distribution Distribution Fuel Carbon CASH ygrenE Energy ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL PV mecalpeR Diesel mecalpeR yrettaB mecalpeR retrevno C mecalpeR noitubirtsi D 42 21 2025 514 ­ 106.8 2,792 2,792 -105,482 20 23 2024 304 ­ 6.8 9,200 1,855 3,055 1,906 10 2,711 2,711 13,151 29,190 19 23 2023 293 ­ 9,200 1,855 3,055 1,906 106.8 2,637 2,637 13,151 29,190 18 23 2022 183 ­ 9,200 1,855 3,055 1,906 106.8 ,5632 2,563 13,151 29,190 17 23 2021 073 ­ 9,200 1,855 3,055 1,906 106.8 2,489 2,489 13,151 29,190 16 23 2020 063 ­ 9,200 1,855 3,055 1,906 106.8 2,422 2,422 13,151 29,190 0 1 15 23 2019 053 ­ 9,20 1,855 3,055 1,906 106.8 2,355 2,355 13,15 29,190 ­ 14 23 2018 9,200 855,1 055,3 043 1,906 106.8 2,287 2,287 13,151 29,190 13 2017 9,200 558,1 550,3 23 1.4990 $/kWh 133 ­ 1,906 106.8 2,227 2,227 13,151 29,190 12 2016 9,200 558,1 550,3 23 1,906 13,151 091,92 29068 223 ­ 106.8 2,166 2,166 Annuity$ 11 2015 9,200 558,1 550,3 23 1,906 13,151 091,92 313 ­ 106.8 19392 2,106 2,106 kWh 10 2014 9,200 558,1 550,3 23 1,906 13,151 091,92 403 ­ 104.7 2,045 2,045 9 2013 9,200 558,1 550,3 22 1,906 12,701 937,82 %6.43 %8.1 %4.41 %6.6 %8.61 %0.0 13.7% %9.78 12.0% %9.99 692 ­ 102.7 1,991 1,991 Cost 8 2012 9,200 558,1 550,3 21 1,906 12,262 992,82 Levelized 882 ­ $/kWh 0.293 610.0 221.0 650.0 0.142 611.0 000.0 0.744 201.0 195.1 100.7 1,937 1,937 7 2011 9,200 558,1 550,3 20 1,906 11,833 968,72 082 7.89 ­ 1,884 1,884 MWh 6 2010 9,200 558,1 550,3 20 1,906 11,413 944,72 648 846 648 846 648 846 648 648 846 648 272 8.69 ­ 1,830 1,830 Consummp 5 2009 9,200 558,1 550,3 19 1,906 11,003 830,72 562 0.59 ­ )$(lat 1,783 1,783 170 To 13,185 47,226 98,303 86,011 4 2008 9,200 558,1 550,3 18 1,906 10,602 636,62 247,476 103,084 120,126 629,571 715,582 852 1.39 ­ 1,736 1,736 ($) 3 2007 9,200 558,1 550,3 18 1,906 10,210 442,62 ($) 0 152 4.19 ­ Value 1,689 1,689 2,372 5,226 28,684 36,282 Present 2 2006 9,200 9,827 558,1 550,3 17 1,906 068,52 Replacement 442 6.98 ­ %2 %89 %6 1,641 1,641 S/./kWh 0 ($) 1 2005 9,200 9,452 558,1 550,3 16 1,906 484,52 h 170 S/./user/month W M US$ O&M 98,303 16,227 120,126 234,826 1.85 16,924 16,924 16,924 698,659 715,583 271,109 -254,186 $ $ $ $ 0 - 648 97.2 2004 0.846 30.1 ry/h 10% 715,583 W ($) M 454,639 10% 10,813 74,400 42,000 487,96 onth $/kWh 247,476 444,473 $/kWh $/user/m 0.000 715,583 S/./kWh Investment 0.561 tne noitarep COMPONENTS M& BY COSTS O ecivreS snoissi O dir SUBSIDY G COSTS COSTS noissi dir G stso O&M mE VALUE mE egrah adidneV mecalpeR E M O C VALUE dna Operators nobra COSTS Consumed C RAPS Number egrah NI VP e PV e OPERATION dexiF CleuF ALT LAT Charge C LAT noitarep Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT Energy LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O&M leuF nobra C otalT noitubirtsi D OT REVENUES Fix ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI edisbuS Costs mocnI ecnereffi O D 43 21 ­ ­ ­ 2025 Value -76,305 766,13- 953,42- 20 2024 Residual 2.81 6.6 75 ­ ­ ­ ­ ­ ­ ­ 3.1 -­ ­ 1x36 524 0.37 42.28 310.8 106.8 71.175 113.45 15,644 19 2023 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 75 1x36 524 3.1 0.37 42.28 310.8 10 71.175 113.45 15,644 18 2022 2.81 ­ 6.6 75 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 524 3.1 0.37 42.28 310.8 106.8 71.175 113.45 15,644 17 0.8 2021 2.81 ­ 6.6 75 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 524 3.1 0.37 42.28 31 106.8 71.175 113.45 15,644 16 2020 3.45 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 75 4 1x36 524 3.1 42.28 310.8 106.8 0.37 71.175 11 15,64 15 2019 2.81 ­ 6.6 75 ­ ­ ­ ­ ­ ­ 1x36 524 3.1 0.37 42.28 310.8 106.8 71.175 113.45 15,644 005,74 ­ 14 2018 2.284 2.81 ­ 6.6 75 ­ ­ ­ ­ ­ ­ ­ ­ 3.1 310.8 106.8 1x36 524 0.37 71.175 13.451 15,644 13 2017 82.24 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 75 3.1 310.8 106.8 1x36 524 0.37 71.175 113.45 15,644 12 2016 82.24 2.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 75 3.1 310.8 106.8 1x36 524 0.37 71.175 113.45 15,644 11 2015 82.24 2.81 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 75 ­ 3.1 310.8 106.8 1x36 524 0.37 71.175 113.45 15,644 10 2014 82.24 2.81 ­ ­ 6.6 75 ­ ­ ­ ­ ­ ­ 3.1 310.8 106.8 1x36 524 0.37 71.175 113.45 15,644 125,760 9 2013 51.04 1.81 ­ ­ ­ ­ 6.6 75 ­ ­ ­ ­ ­ 2.9 305.0 104.7 1x36 524 0.37 71.175 111.32 14,855 8 2012 70.83 0.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 75 2.8 299.3 102.7 1x36 524 0.37 71.175 109.24 14,084 7 2011 30.63 9.71 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.5 75 2.6 293.7 100.7 1x36 524 0.37 Array 71.175 107.21 13,331 PV $ 6 2010 40.43 8.71 6.5 7.89 ­ ­ ­ ­ ­ ­ ­ ­ ­ 75 2.5 288.3 1x36 524 0.37 Unit 780,5 042 71.175 105.22 12,595 kWp Each ­ ­ ­ ­ ­ ­ ­ ­ ­ 5 6.4 75 2.3 2009 01.23 7.71 8.69 1x36 524 0.37 282.9 75 71.175 103.27 11,875 52 02 01 51 03 %2 Lifetime 4 2008 91.03 6.71 6.4 0.59 ­ ­ ­ ­ ­ ­ ­ ­ ­ 75 2.2 277.7 1x36 524 0.37 Units. 71.175 101.37 11,172 US$ 75 2011 63x1 Cost ­ ­ 524 083,01 005,74 ry/$S ­ ­ ­ ­ ­ ­ ­ U Diesel 381,525 125,760 elbairaV 3 6.4 75 2.1 2007 43.82 5.71 1.39 524 0.37 99.51 272.6 1x36 71.175 10,484 Replacement kW 2 2006 25.62 4.71 6.3 4.19 ­ ­ ­ ­ ­ ­ ­ ­ ­ 75 1x36 524 1.9 0.37 97.69 267.7 9,812 71.175 36 75 x 2005 63x1 US$ 524 Cost 318,01 000,75 670,37 609,1 21 75.0 not/$S 1 1 381,525 125,760 U 2005 47.42 3.71 6.3 6.98 ­ ­ ­ ­ 75 ­ ­ ­ ­ ­ 1x36 524 1.8 0.37 95.92 262.8 9,155 71.175 Capital 0 ­ ­ ­ ­ 2004 Wk Wk h Wk 57 63x1 425 yad/ 5 318,01 000,75 670,37 381,525 125,760 h h Size/Qty. Wk $/liter ry/h ry/h xiF W W yad/h yad/h ry/h ry/h Wk Wk Wk not sretil W W M M MWh/yr Wk Wk M M Wk/sretil S CITSIRET Costs Control VP REPLACEMENT Diesel + Costs yb by (kW) CARA Capital O&M (US$) .sno AND C dir H C stin )h Grid Grid Losses Emissions detarene detarene yad/detarene de musno stin snoissi COSTS tne tne stin tne tne G Generator U ) Generator Conditioning FLOW G Generated G G C mE U leuF U PV-diesel-battery-hybrid: METSYS yarrA Wk( Generator VP Diesel yrettaB .sno Wk( Array COSTS VP Diesel yrettaB Power Distribution Distribution Distribution Fuel Carbon CASH ygrenE Energy ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL PV mecalpeR Diesel mecalpeR yrettaB mecalpeR retrevno C mecalpeR noitubirtsi D 44 21 2025 514 ­ 106.8 2,792 2,792 -132,330 ­ 20 15 2024 304 ­ 6.8 9,200 8,917 1,777 1,906 10 2,711 2,711 21,815 ­ 19 15 2023 293 ­ 9,200 8,917 1,777 1,906 106.8 2,637 2,637 21,815 ­ 18 15 2022 183 ­ 9,200 8,917 1,777 1,906 106.8 ,5632 2,563 21,815 ­ 17 17 15 2021 073 ­ 9,200 8,9 1,777 1,906 106.8 2,489 2,489 21,815 ­ 16 15 2020 063 ­ 9,200 8,917 1,777 1,906 106.8 2,422 2,422 21,815 0 ­ 15 15 2019 053 ­ 9,20 8,917 1,777 1,906 106.8 2,355 2,355 69,315 ­ ­ 14 15 2018 9,200 8,917 777,1 043 1,906 1,8152 106.8 2,287 2,287 ­ 13 2017 9,200 8,917 777,1 15 1,906 518,12 $/kWh 2.2485 133 ­ 106.8 2,227 2,227 $ ­ 12 2016 9,200 8,917 777,1 15 1,906 518,12 43,603 223 ­ Annuity 106.8 2,166 2,166 ­ 11 2015 9,200 8,917 777,1 15 1,906 518,12 313 ­ kWh 106.8 19,392 2,106 2,106 ­ 10 2014 9,200 8,917 777,1 15 1,906 518,12 403 ­ 104.7 2,045 2,045 ­ 9 2013 9,200 8,467 777,1 15 1,906 563,12 %3.1 43.1% %2.02 %4.7 %2.7 %0.0 10.8% 90.0% 10.0% 100.0% 692 ­ 102.7 1,991 1,991 Cost ­ 8 2012 9,200 8,028 777,1 14 1,906 529,02 Levelized 882 ­ $/kWh 0.439 310.0 602.0 670.0 011.0 470.0 000.0 0.918 201.0 100.7 1,937 1,937 1.02 ­ 7 2011 9,200 7,599 777,1 13 1,906 594,02 082 7.89 ­ 1,884 1,884 MWh ­ 6 2010 9,200 7,179 777,1 12 1,906 470,02 648 846 648 846 846 846 648 846 272 8.69 ­ 5,922 6,786 1,830 1,830 Consummp ­ 5 2009 9,200 6,769 777,1 12 1,906 466,91 562 0.59 ­ )$(lat 1,783 1,783 108 ­ To 10,813 64,092 93,453 62,259 86,011 S/./kWh 4 2008 9,200 6,368 777,1 11 1,906 262,91 371,214 174,246 776,185 862,196 852 1.39 ­ 1,736 1,736 S/./User/Month ($) ­ 3 2007 9,200 5,976 777,1 10 1,906 968,81 ($) ­ 0 0 Value 58.1 0 152 4.19 1,689 1,689 7,092 48,486 55,578 Present ­ 2 2006 9,200 5,593 777,1 10 1,906 684,81 Replacement 442 6.98 ­ %2 %89 %7 1,641 1,641 ($) h ­ 1 2005 9,200 5,218 777,1 9 1,906 011,81 h 108 W Wk/$ M US$ O&M 93,453 62,259 16,227 172,047 16,924 16,924 16,924 845,272 862,196 227,624 -210,701 $/User/Month $ $ $ $ 0 - 648 63.3 2004 1.019 30.1 ry/h 10% 862,196 W ($) M 648,174 10,813 57,000 487,96 165.0 000.0 371,214 125,760 634,571 $/kWh S/./kWh Investment tne noitarep COMPONENTS M& BY COSTS O ecivreS snoissi O dir SUBSIDY G COSTS COSTS noissi dir G stso O&M mE VALUE mE egrah adidneV mecalpeR E M O C VALUE dna Operators nobra COSTS Consumed RAPS egrah C Number egrah NI VP e PV e OPERATION dexiF CleuF ALT M& LAT C C LAT noitarep Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT Energy LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O leuF nobra C otalT noitubirtsi D OT REVENUES xiF ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI edisbuS Costs mocnI ecnereffi O D 45 21 2025 Value 356,69- ­- -­ -­ -­ ­- 766,13- 953,42- 20 2024 Residual .155 2.81 6.6 95 ­ ­ ­ ­ ­ ­ ­ 1.7 -­ ­ 1x36 524 0.37 23.30 310.8 106.8 8,621 90 113.45 19 2023 2.81 ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 95 ­ ­ 1x36 524 1.7 0.37 23.30 310.8 10 8,621 90.155 113.45 18 2022 2.81 ­ 6.6 95 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 524 1.7 0.37 23.30 310.8 106.8 8,621 90.155 113.45 17 0.8 2021 2.81 ­ 6.6 95 ­ ­ ­ ­ ­ ­ ­ ­ 1x36 524 1.7 0.37 23.30 31 106.8 8,621 90.155 113.45 16 2020 3.45 2.81 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 95 ­ 1.7 310.8 106.8 1x36 524 0.37 90.155 23.30 8,621 11 15 2019 2.81 ­ 6.6 95 ­ ­ ­ ­ ­ ­ ­ 1x36 524 1.7 0.37 23.30 310.8 106.8 8,621 90.155 113.45 005,74 14 2018 3.302 2.81 6.6 95 ­ ­ ­ ­ ­ ­ ­ ­ ­ 1.7 310.8 106.8 1x36 524 0.37 90.155 13.451 8,621 13 2017 90.155 03.32 2.81 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 95 ­ 1.7 310.8 106.8 1x36 524 0.37 8,621 113.45 12 2016 90.155 03.32 2.81 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 95 ­ 1.7 310.8 106.8 1x36 524 0.37 8,621 113.45 11 2015 90.155 03.32 2.81 ­ ­ ­ ­ ­ ­ ­ ­ 6.6 95 ­ 1.7 310.8 106.8 1x36 524 0.37 8,621 113.45 10 2014 90.155 03.32 2.81 ­ 6.6 95 ­ ­ ­ ­ ­ ­ ­ 1.7 310.8 106.8 1x36 524 0.37 8,621 113.45 125,760 9 2013 90.155 71.12 1.81 ­ 6.6 95 ­ ­ ­ ­ ­ ­ ­ ­ 1.5 305.0 104.7 1x36 524 0.37 7,832 111.32 8 2012 83.22 20.62 0.81 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 95 1.9 299.3 102.7 1x36 524 0.37 9,628 109.24 7 2011 83.22 99.32 9.71 ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.5 95 1.8 293.7 100.7 1x36 524 0.37 8,875 Array 107.21 PV $ 6 2010 83.22 00.22 8.71 6.5 7.89 ­ ­ ­ ­ ­ ­ ­ ­ ­ 95 1.6 288.3 1x36 524 0.37 8,138 Unit 780,5 042 105.22 kWp Each ­ ­ ­ ­ ­ ­ ­ ­ ­ 5 6.4 95 1.5 2009 83.22 50.02 7.71 8.69 1x36 524 0.37 282.9 95 7,419 103.27 52 02 01 51 03 %2 Lifetime 4 2008 83.22 51.81 6.71 6.4 0.59 ­ ­ ­ ­ ­ ­ ­ ­ ­ 95 1.3 277.7 1x36 524 0.37 6,715 Units. 101.37 US$ 95 2011 63x1 Cost 524 083,01 005,74 ry/$S U Diesel 483,265 125,760 elbairaV ­ ­ ­ ­ ­ ­ ­ ­ ­ 3 6.4 95 1.2 2007 83.22 92.61 5.71 1.39 524 0.37 99.51 272.6 1x36 6,028 Replacement kW 2 2006 83.22 74.41 4.71 6.3 4.19 ­ ­ ­ ­ ­ ­ ­ ­ 95 ­ 524 1.1 0.37 97.69 267.7 1x36 5,356 36 95 x 2005 63x1 US$ 524 cost 318,01 000,75 670,37 609,1 21 0.57 not/$S 1 1 483,265 125,760 U 2005 83.22 07.21 3.71 6.3 6.98 95 ­ ­ ­ ­ ­ ­ ­ ­ ­ 524 0.9 0.37 95.92 262.8 1x36 4,698 $/liter Capital 0 ­ ­ ­ ­ 2004 Wk Wk h Wk 59 63x1 425 yad/ 5 318,01 000,75 670,37 483,265 125,760 Size/qty. Wk ry/h ry/h xiF W W yad/h yad/h ry/h ry/h Wk Wk h Wk not sretil h W W M M MWh/yr Wk Wk M M Wk/sretil S CITSIRET Costs Control VP REPLACEMENT Diesel + Costs yb by (kW) CARA Capital O&M (US$) .sno AND C dir H C stin )h Grid Grid Losses Emissions detarene detarene yad/detarene de musno stin snoissi COSTS tne tne stin tne tne G Generator U ) Generator Conditioning FLOW G Generated G G C mE U leuF U PV-diesel-battery-hybrid: METSYS yarrA Wk( Generator VP Diesel yrettaB .sno Wk( Array COSTS VP Diesel yrettaB Power Distribution Distribution Distribution Fuel Carbon CASH ygrenE Energy ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL PV mecalpeR Diesel mecalpeR yrettaB mecalpeR retrevno C mecalpeR noitubirtsi D 46 21 2025 514 - 106.8 2,792 2,792 -152,678 - 9 20 2024 304 - 6.8 9,200 4,914 1,266 1,906 10 2,711 2,711 17,295 - 9 19 2023 293 - 9,200 4,914 1,266 1,906 106.8 2,637 2,637 17,295 - 9 18 2022 183 - 9,200 4,914 1,266 1,906 106.8 ,5632 2,563 17,295 - 9 17 14 2021 073 - 9,200 4,9 1,266 1,906 106.8 2,489 2,489 17,295 - 9 16 2020 063 - 9,200 4,914 1,266 1,906 106.8 2,422 2,422 17,295 0 - 9 15 2019 053 - 9,20 4,914 1,266 1,906 106.8 2,355 2,355 17,295 - 9 - 14 2018 9,200 4,914 266,1 043 1,906 7,2951 106.8 2,287 2,287 - 13 2017 9,200 4,914 662,1 9 1,906 592,71 $/kWh 133 - 2.8481 106.8 2,227 2,227 - 12 2016 9,200 4,914 662,1 9 1,906 592,71 223 - 106.8 2,166 2,166 Annuity$ 55,230 - 11 2015 9,200 4,914 662,1 9 1,906 592,71 313 - 106.8 2,106 2,106 kWh 19,392 - 10 2014 9,200 4,914 662,1 9 1,906 592,71 403 - 104.7 2,045 2,045 - 9 2013 9,200 4,464 662,1 8 1,906 448,61 %2.1 50.5% %7.81 %9.6 %6.9 %9.3 %0.0 %2.9 90.8% 100.0% 692 - 102.7 1,991 1,991 Cost - 8 2012 9,200 5,488 662,1 9 1,906 968,71 Levelized 882 - $/kWh 0.556 310.0 602.0 670.0 501.0 340.0 0.000 0.999 201.0 100.7 1,937 1,937 1.101 - 7 2011 9,200 5,058 662,1 9 1,906 934,71 082 7.89 - 1,884 1,884 MWh - 6 2010 9,200 4,639 662,1 8 1,906 910,71 648 846 648 846 846 846 648 648 846 846 272 8.69 - 1,830 1,830 Consummp - 5 2009 9,200 4,229 662,1 7 1,906 806,61 562 0.59 - )$(lat 1,783 1,783 26 - To 10,813 64,092 89,103 35,983 86,011 4 2008 9,200 3,828 662,1 7 1,906 702,61 470,204 174,246 844,503 930,514 852 1.39 - 1,736 1,736 ($) - 3 2007 9,200 3,436 662,1 6 1,906 418,51 ($) 0 0 152 4.19 - Value 1,689 1,689 7,092 48,486 55,578 - Present 2 2006 9,200 3,053 662,1 5 1,906 034,51 Replacement 442 6.98 - %2 %89 %9 1,641 1,641 S/./kWh 0 - ($) 26 1 2005 9,200 2,678 662,1 5 1,906 550,51 S/./user/month US$ O&M 89,103 35,983 16,227 141,375 1.85 16,924 16,924 16,924 913,591 930,514 196,953 0 - MWh 36.3 -180,029 2004 1.100 30.1 ry/h $ $ $ $ 10% 930,514 W 846 ($) M 749,914 10% 10,813 57,000 487,96 $/kWh 470,204 125,760 733,561 $/kWh S/./kWh Investment $/user/month 0.000 tne noitarep COMPONENTS M& 0.561 BY COSTS O ecivreS snoissi O dir de mecalpeR SUBSIDY G stso O&M mE VALUE musno COSTS COSTS noissi dir G mE egrah adidneV E M O C VALUE dna Operators nobra COSTS C C Number egrah NI VP e PV e OPERATION dexiF CleuF ALT M& nobra SPARlat LAT Charge C LAT noitarep Diesel echnicalT noitubirtsi C D INVESTMENT OT PRESENT ygrenE LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O leuF noitubirtsi C To D OT REVENUES Fix ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI edisbuS Costs mocnI ecnereffi O D 47 21 ­ ­ ­ ­ 2025 Value 766,13- -142,436 20 2024 Residual 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 19 2023 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 6.8 140 765 310.8 10 113.45 18 2022 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 17 0.8 2021 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 31 106.8 113.45 16 2020 3.45 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 11 15 2019 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 005,74 14 2018 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 13.451 310.8 106.8 13 2017 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 12 2016 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 11 2015 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 10 2014 2.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 310.8 106.8 113.45 183,600 9 2013 1.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 305.0 104.7 111.32 8 2012 0.81 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.6 140 765 299.3 102.7 109.24 7 2011 9.71 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 6.5 140 765 293.7 100.7 107.21 $ 6 2010 8.71 6.5 7.89 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 140 765 288.3 Unit 780,5 042 105.22 Each 5 2009 7.71 6.4 8.69 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 140 765 282.9 103.27 52 02 01 51 03 Lifetime 4 2008 6.71 6.4 0.59 0 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 140 765 277.7 101.37 US$ 140 2011 63x1 Cost 0 765 005,74 0 %2 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 3 6.4 2007 5.71 1.39 140 765 99.51 272.6 712,180 183,600 Replacement 2 2006 4.71 6.3 4.19 0 -­ -­ ­- -­ ­ ­ ­ ­ ­ ­ ­ 140 765 97.69 267.7 140 2005 63x1 US$ 0 765 yarr Cost 000,75 670,37 US$/yr 712,180 183,600 elbairaV 75.0 not/$S 1 U 2005 3.71 6.3 6.98 0 ­ ­ ­ ­ -­ -­ -­ ­- ­- ­- ­- 140 765 21 5 95.92 262.8 Capital 1906 A 0 ­ ­ ­ ­ ­ 2004 PV Wk Wk h Wk 041 567 yad/ %0.0 000,75 712,180 183,600 Size/qty Wk $/liter ry/h ry/h Wk Wk h Wk not h xiF yad/h yad/h sretil W W kWp MWh/yr Wk Wk M M Wk/sretil Costs Control REPLACEMENT 140 + . (kW) Capital O&M Costs de sno AND C CHARACTERISTICS stin )h Grid Grid Losses (US$) snoissi Emission O&M detarene yad/detarene musno stin mE leuF COSTS tne tne stin tne tne yarrA Generator U ) Generator Wk( Conditioning G G C U Generator U Wk( Flow sno PV-only Array SYSTEM VP Diesel yrettaB COSTS VP Diesel yrettaB Power Distribution Distribution Distribution Fuel Carbon Inflation Cash ygrenE ygrenE Losses ygrenE EQUIPMENT VP rotarene G yrettaB nobra C CleuF cificepS COSTS CAPITAL PV mecalpeR Diesel mecalpeR yrettaB mecalpeR retrevno C mecalpeR 48 21 2025 -198,461 - - 20 2024 005 - 514 - 9,200 1,906 106.8 2,792 2,792 11,606 - - 19 2023 005 - 304 - 6.8 9,200 1,906 10 2,711 2,711 11,606 - - 18 2022 005 - 293 - 9,200 1,906 106.8 2,637 2,637 11,606 - - 17 2021 005 - 183 - 563 9,200 1,906 106.8 2, 2,563 11,606 - - 16 2020 005 - 073 - 9,200 1,906 106.8 2,489 2,489 11,606 0 - - 15 2019 005 - 063 - 9,20 1,906 106.8 2,422 2,422 59,106 - - 14 2018 005 - 053 - 9,200 1,906 106.8 2,355 2,355 11,606 h - - 13 2017 005 - W $/k 043 - 9,200 1,906 4,1972 106.8 2,287 2,287 11,606 - - 12 2016 005 - 606 133 - 9,200 1,906 106.8 2,227 2,227 11, Annuity$ 81,392 - - 11 2015 005 - 223 - 9,200 1,906 106.8 2,166 2,166 11,606 kWh 19,392 - - 10 2014 005 - 313 - 9,200 1,906 106.8 2,106 2,106 11,606 - - 9 2013 005 - 9,200 1,906 606,11 %0.0 58.7% %6.12 %4.5 %0.7 %0.0 %0.0 %7.29 %3.7 100.0% 403 - 104.7 2,045 2,045 Costs - - 8 2012 005 - 9,200 1,906 606,11 Levelized 692 - - $/kWh 0.819 103.0 670.0 890.0 - - 2934.1 201.0 102.7 1,991 1,991 1.396 - - 7 2011 005 - 9,200 1,906 606,11 882 - 100.7 1,937 1,937 MWh - - 6 2010 005 - 9,200 1,906 606,11 648 648 648 846 846 648 648 846 082 - 5922 6768 7.89 1,884 1,884 Consummp - - 5 2009 005 - 9,200 1,906 606,11 272 8.69 - )$(lat 1,830 1,830 0 0 0 - - - To 64,092 82,582 86,011 4 2007 005 S/./kWh 9,200 1,906 606,11 692,933 254,386 1,093,992 180,004,1 562 0.59 - 1,783 1,783 S/./User/Month ($) - - 3 2007 005 - 9,200 1,906 606,11 ($) - 0 0 Value 58.1 0 852 1.39 1,736 1,736 7,092 70,786 77,878 - - Present 2 2006 005 - 9,200 1,906 606,11 Replacement 152 4.19 - 1,689 1,689 0 0 - - - ($) h 1 2005 005 9,200 1,906 606,11 h 82,582 16,227 Wk/$ 442 - %1 %99 %01 W O&M 209.48 6.98 146,1 146,1 M $/User/Month 0 - 648 06.4 2004 1.395 US$ 1,180,003 ($) 16,924 16,924 16,924 0 1,025,856 10% 57,000 487,96 165.0 000.0 176,686 -159,763 1,163,080 1,180,003 692,933 183,600 30.1 ry/h $ $ $ $/kWh S/./kWh Investment 1,003,317 W 10% M 1,180,003 $ noitarep COMPONENTS tne M& BY COSTS O ecivreS snoissi O dir dir G Subsidy COSTS COSTS G stso O&M mE VALUE Emission egrah adidneV E mecalper M O dna C VALUE Operators nobra COSTS Consumed LAT egrah C Number egrah NI VP e PV e OPERATION dexiF CleuF M& SPARlat LAT C C LAT noitarep Diesel echnicalT noitubirtsi C D Investment OT PRESENT Energy LEVELIZED LEVELIZED VP rotarene G yrettaB retrevno C O leuF noitubirtsi Carbon To D OT REVENUES xiF ygrenE Users aígrenE INGRESOS xiF ygrenE OT PRESENT mocnI Subside Costs mocnI ecnereffi O D 49 Annex 2 Levelized cost comparison sustainability analysis for different options, discount rates and fuel prices ANNEX 2: LEVELIZED COST COMPARISON SUSTAINABILITY ANALYSIS FOR DIFFERENT OPTIONS, DISCOUNT RATES AND FUEL PRICES latoT 0.937 0.740 0.633 0.791 .0772 0.846 1.019 1.100 1.395 latoT Incl. Grid 0.636 0.158 0.156 0.380 0.446 0.588 0.835 0.952 1.297 Capital Grid Capital 0.161 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 Distribution resu-gva-om/$ Power Plant 0.777 0.639 0.531 0.690 0.344 0.744 0.918 0.998 1.293 Subtotal 30.0 25.0 20.0 15.0 10.0 5.0 0.0 Plant Subtotal Capital 0.475 0.056 0.054 0.278 0.670 0.486 0.733 0.850 1.196 p Power Only Wk $/kWh PV ­ 4 041 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Carbon Emissions Breakdown p Costs, leuF ­ Wk PV-hybrid 0.174 0.310 0.237 0.225 0.170 0.116 0.074 0.043 59 3d Levelized p M&O&M 0.127 0.272 0.240 0.186 0.155 0.142 0.110 0.105 0.098 Wk PV-hybrid 57 3c ­ ­ Capital Power 0.167 0.056 0.056 0.056 0.076 0.076 0.076 p Plant Conditioning Wk ­ ­ PV-hybrid 05 atteryB 3b Power 0.094 0.198 0.122 0.122 0.206 0.206 0.301 p ­ Wk Subtotal PV-hybrid Configurations 0.066 0.056 0.054 0.025 0.020 0.016 0.013 0.013 Generator a3 52 ­ ­ ­ VP 0.148 0.146 0.293 0.439 0.556 0.819 M&O&M Genset System 2 US$ Battery-hybrid Total Present Costs 899,142 626,282 535,544 669,287 652.699 715,583 862,196 930,514 and 1,180,003 Only Fuel Wk kW kW kW kW kW Wk Peakta Off-peak) ph Genset n O 4.00 08/ 03 no Different Power 08 0/201 1b 10/20 10/20 30/10 30/10 2( 1 Conditioning of Inverter/Charger Only 1 + Unit) h Wk Battery 063 310 013 013 425 425 567 n O Genset 1( Back-up 1a (kWh/day) Wk 821x Wk Wk Wk kW kW kW kW 245 Genset 1 63x 81x 63x 36x 36x 36x 36x Cocha 2 2 1 1 1 1 1 Demand Optimized Net 03 52 05 57 59 Sustainability Array Wk 041 Padre PV of 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 hWk/$ Off-peak) $/liter 0.57 On Unit) 1 and Analysis Back-up 1 Peak + at on On Cost Idealized (1 (2 kWp kWp Rate %01 kWp kWp Optimized kWp 25 50 75 95 Only Only 140 Cocha Only Discount Genset Genset Genset-battery-hybrid PV-hybrid PV-hybrid PV-hybrid PV-hybrid PV Padre 1a 1b 2 3a 3b 3c 3d 4 Levelized Condition10057: 53 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA PV Fraction Capital Cost M&O&M+ Total RAPS Power Fuel Plant Without Grid Genset Only 0.0% 0.056 0.582 0.638 12.5% 0.236 0.412 0.648 PV 25 kWp 25.0% 0.344 0.325 0.670 37.5% 0.415 0.292 0.707 PV 50 kWp 50.0% 0.486 0.258 0.744 62.5% 0.610 0.221 0.831 PV 75 kWp 75.0% 0.733 0.184 0.917 PV 95 kWp 82.5% 0.850 0.148 0.998 PV Only 100.0% 1.196 0.098 1.294 Levelized Cost vs. PV Fraction 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 82.5% 100.0% PV Fraction Capital Cost Total RAPS Power Plant Without Grid M&O&M + Fuel 54 ANNEX 2: LEVELIZED COST COMPARISON SUSTAINABILITY ANALYSIS FOR DIFFERENT OPTIONS, DISCOUNT RATES AND FUEL PRICES latoT 1.245 1.288 1.051 1.188 1.073 1.051 1.149 1.175 1.395 latoT Incl. Grid 0.636 0.158 0.156 0.380 0.446 0.588 0.835 0.952 1.297 Capital Grid 0.161 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 Capital Distribution latotbuS resu-gva-om/$ Power Plant 1.085 1.186 0.950 1.086 0.971 0.950 1.048 1.074 1.293 latotbuS 30.0 25.0 20.0 15.0 10.0 5.0 0.0 Plant 0.475 0.056 0.054 0.278 0.344 0.486 0.733 0.850 1.196 Capital p Power Only Wk $/kWh leuF - PV 4 041 0.482 0.858 0.655 0.622 0.472 0.321 0.204 0.118 Breakdown p Wk Costs, M&O&M 0.127 0.272 0.240 0.186 0.155 0.142 0.110 0.105 0.098 PV-hybrid 59 3d - - Levelized Power 0.167 0.056 0.056 0.056 0.076 0.076 0.076 p Wk Conditioning PV-hybrid 57 - - 3c Battery 0.094 0.198 0.122 0.122 0.206 0.206 0.301 Capital p Wk Plant - PV-hybrid 05 3b Configurations Genset 0.066 0.056 0.054 0.025 0.020 0.016 0.013 0.013 Power - - - p VP 0.148 0.146 0.293 0.439 0.556 0.819 Wk PV-hybrid Subtotal a3 52 System US$ Total Present Costs 889,205 907,346 889,205 972,156 994,066 1,159,692 1,089,501 1,004,959 1,180,003 Genset M&O&M kW kW kW kW kW kW Wk 2 Battery-hybrid ph 4.00 03 Different Power 80/80 10/20 10/20 10/20 30/10 30/10 and Only Conditioning of Inverter/Charger h Peakta Off-peak) Fuel Wk Battery 063 no 310 013 013 425 425 567 Genset no 1b 2( 1 (kWh/day) Wk 821x Wk Wk Wk Only 1 kW kW kW kW + Unit) 245 Genset 1 63x 81x 63x 36x 36x 36x 36x no 2 2 1 1 1 1 1 Genset 1( Back-up 1a Demand Sustainability p 03 52 05 57 59 Net Array Wk 041 PV Cocha of Off-peak) Padre Optimized $/liter 1.58 Unit) On 1 1.40 1.20 1.00 0.80hWk0.60/$ 0.40 0.20 0.00 and Analysis Back-up 1 Peak + at On On Cost Idealized (1 (2 Rate %01 kWp kWp kWp kWp Optimized kWp 25 50 75 95 Only Only 140 Cocha Only Discount Genset Genset Genset-battery-hybrid PV-hybrid PV-hybrid PV-hybrid PV-hybrid PV Padre 1a 1b 2 3a 3b 3c 3d 4 Levelized Condition10158: 55 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA PV Fraction Capital Cost M&O&M+ Total RAPS Power Fuel Plant Without Grid Genset Only 0.0% 0.056 1.130 1.186 12.5% 0.236 0.798 1.034 PV 25 kWp 25.0% 0.344 0.626 0.971 37.5% 0.415 0.545 0.960 PV 50 kWp 50.0% 0.486 0.464 0.949 62.5% 0.610 0.389 0.998 PV 75 kWp 75.0% 0.733 0.314 1.048 PV 95 kWp 82.5% 0.850 0.223 1.073 PV Only 100.0% 1.196 0.098 1.293 Levelized Cost vs. PV Fraction 1.40 1.20 1.00 0.80 ($/kWh) 0.60 Cost 0.40 Levelized 0.20 0.00 0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 82.5% 100.0% PV Fraction Capital Cost Total RAPS Power Plant Without Grid M&O&M + Fuel 56 ANNEX 2: LEVELIZED COST COMPARISON SUSTAINABILITY ANALYSIS FOR DIFFERENT OPTIONS, DISCOUNT RATES AND FUEL PRICES latoT 1.245 1.288 1.051 1.188 1.073 1.051 1.149 1.175 1.395 latoT Incl. Grid 0.636 0.158 0.156 0.380 0.446 0.588 0.835 0.952 1.297 Capital Grid 0.161 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 Capital Distribution latotbuS resu-gva-om/$ Power Plant 1.085 1.186 0.950 1.086 0.971 0.950 1.048 1.074 1.293 latotbuS 30.0 25.0 20.0 15.0 10.0 5.0 0.0 Plant 0.475 0.056 0.054 0.278 0.344 0.486 0.733 0.850 1.196 Capital p Power Only Wk $/kWh leuF - PV 4 041 0.482 0.858 0.655 0.622 0.472 0.321 0.204 0.118 Breakdown p Wk Costs, M&O&M 0.127 0.272 0.240 0.186 0.155 0.142 0.110 0.105 0.098 PV-hybrid 59 3d - - Levelized Power 0.167 0.056 0.056 0.056 0.076 0.076 0.076 p Wk Conditioning PV-hybrid 57 - - 3c atteryB 0.094 0.198 0.122 0.122 0.206 0.206 0.301 Capital p Wk Plant - PV-hybrid 05 3b Configurations Genset 0.066 0.056 0.054 0.025 0.020 0.016 0.013 0.013 Power - - - p VP 0.148 0.146 0.293 0.439 0.556 0.819 Wk PV-hybrid Subtotal a3 52 System US$ Total Present Costs 889,205 907,346 889,205 972,156 994,066 1,159,692 1,089,501 1,004,959 1,180,003 Genset M&O&M kW kW kW kW kW kW Wk 2 ry-hybridettaB ph 4.00 03 Different Power 0/808 0/201 10/20 10/20 30/10 30/10 and Only Conditioning of Inverter/Charger h Peakta Off-peak) Fuel Wk Battery 063 no 310 013 013 425 425 567 Genset no 1b 2( 1 (kWh/day) Wk 821x Wk Wk Wk Only 1 kW kW kW kW + Unit) 245 Genset 1 63x 81x 63x 36x 36x 36x 36x no 2 2 1 1 1 1 1 Genset 1( Back-up 1a Demand Sustainability p 03 52 05 57 59 Net Array Wk 041 PV Cocha of Off-peak) Padre Optimized $/liter 1.58 Unit) On 1 1.40 1.20 1.00 0.80hWk0.60/$ 0.40 0.20 0.00 and Analysis Back-up 1 Peak + at On On Cost Idealized (1 (2 Rate %01 kWp kWp kWp kWp Optimized kWp 25 50 75 95 Only Only 140 Cocha Only Discount Genset Genset Genset-battery-hybrid PV-hybrid PV-hybrid PV-hybrid PV-hybrid PV Padre 1a 1b 2 3a 3b 3c 3d 4 Levelized Condition10158: 57 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA PV Fraction Capital Cost M&O&M+ Total RAPS Power Fuel Plant Without Grid Genset Only 0.0% 0.056 1.130 1.186 12.5% 0.236 0.798 1.034 PV 25 kWp 25.0% 0.344 0.626 0.971 37.5% 0.415 0.545 0.960 PV 50 kWp 50.0% 0.486 0.464 0.949 62.5% 0.610 0.389 0.998 PV 75 kWp 75.0% 0.733 0.314 1.048 PV 95 kWp 82.5% 0.850 0.223 1.073 PV Only 100.0% 1.196 0.098 1.293 Levelized Cost vs. PV Fraction 1.40 1.20 1.00 0.80 ($/kWh) 0.60 Cost 0.40 Levelized 0.20 0.00 0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 82.5% 100.0% PV Fraction Capital Cost Total RAPS Power Plant Without Grid M&O&M + Fuel 58 ANNEX 2: LEVELIZED COST COMPARISON SUSTAINABILITY ANALYSIS FOR DIFFERENT OPTIONS, DISCOUNT RATES AND FUEL PRICES latoT 0.881 0.885 0.737 0.850 0.747 0.736 0.808 0.826 0.983 latoT Incl. Grid 0.475 0.118 0.117 0.301 0.316 0.405 0.576 0.652 0.886 Capital Grid 0.108 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 Capital Distribution otaltbuS Power Plant 0.773 0.815 0.667 0.780 0.677 0.666 0.738 0.756 0.912 30.0 25.0 20.0 15.0 10.0 5.0 0.0 p $/kWh latotbuS Only Wk Plant PV re 0.367 0.048 0.047 0.231 0.246 0.335 0.506 0.582 0.816 4 041 woP Capital Breakdown Costs, leuF - p Wk 0.285 0.498 0.382 0.364 0.278 0.191 0.123 0.071 PV-hybrid 59 3d Levelized M&O&M 0.121 0.268 0.236 0.184 0.153 0.140 0.109 0.104 0.096 p Wk - - PV-hybrid 57 3c Power 0.121 0.040 0.040 0.040 0.054 0.054 0.054 Conditioning Capital p - - Wk PV-hybrid Plant Battery 0.074 0.170 0.096 0.096 0.161 0.161 0.236 05 3b Power - p Configurations 0.077 0.048 0.047 0.021 0.016 0.011 0.009 0.009 Wk Generator PV-hybrid - - - a3 52 Subtotal VP 0.095 0.094 0.188 0.282 0.357 0.526 System US$ Genset 2 Total M&O&M Present Battery-hybrid Costs 925,728 938,521 924,939 1,181,547 1,111,794 1,068,120 1,015,841 1,038,226 1,234,819 and Only Wk Wk kW kW kW kW Wk ph Off-peak) Fuel 4.00 Different Power 08/08 02/01 03 Peakta Genset 10/20 10/20 30/10 30/10 no no Conditioning 1b 2( 1 of Inverter/Charger h Wk Battery 063 310 013 013 425 425 567 Only 1 + Unit) no Genset 1( (kWh/day) 542 Wk 821x Wk Wk Wk Back-up kW kW kW kW 1a Genset 1 63x 81x 63x $/mo-avg-user 36x 36x 36x 36x 2 2 1 1 1 1 1 Cocha Demand Sustainability 03 52 05 57 59 Net Array Wk 041 Padre Optimized PV of 1.40 1.20 1.00 0.80hWk/0.60 $ 0.40 0.20 0.00 Off-peak) $/liter 0.925 unit) On 1 and Analysis Back-up 1 Peak + at On On Cost Idealized (1 (2 kWp kWp kWp kWp Rate %5 Optimized kWp 25 50 75 95 Only Only 140 Cocha 05092: Only Discount Genset Genset Genset-battery-hybrid PV-hybrid PV-hybrid PV-hybrid PV-hybrid PV Padre 1a 1b 2 3a 3b 3c 3d 4 Levelized Condition 59 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA PV Fraction Capital Cost M&O&M+ Total RAPS Power Fuel Plant Without Grid Genset Only 0.0% 0.048 0.766 0.814 12.5% 0.173 0.544 0.717 PV 25 kWp 25.0% 0.246 0.430 0.676 37.5% 0.290 0.381 0.671 PV 50 kWp 50.0% 0.335 0.331 0.666 62.5% 0.421 0.281 0.702 PV 75 kWp 75.0% 0.506 0.232 0.738 PV 95 kWp 82.5% 0.582 0.174 0.756 PV Only 100.0% 0.816 0.096 0.912 Levelized Cost vs. PV Fraction 1.40 1.20 1.00 0.80 ($/kWh) 0.60 Cost 0.40 Levelized 0.20 0.00 0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 82.5% 100.0% PV Fraction Capital Cost Total RAPS Power Plant Without Grid M&O&M + Fuel 60 List of Technical Reports Region/Country Activity/Report Title Date Number SUB-SAHARAN AFRICA (AFR) Africa Power Trade in Nile Basin Initiative Phase II (CD Only): 04/05 067/05 Part I: Minutes of the High-level Power Experts Meeting; and Part II: Minutes of the First Meeting of the Nile Basin Ministers Responsible for Electricity Introducing Low-cost Methods in Electricity Distribution Networks 10/06 104/06 Cameroon Decentralized Rural Electrification Project in Cameroon 01/05 087/05 Chad Revenue Management Seminar. Oslo, June 25-26, 2003. (CD Only) 06/05 075/05 Côte d'Ivoire Workshop on Rural Energy and Sustainable Development, 04/05 068/05 January 30-31, 2002. (Atelier sur l'Energie en régions rurales et le Développement durable 30-31, janvier 2002) Ethiopia Phase-Out of Leaded Gasoline in Oil Importing Countries of 12/03 038/03 Sub-Saharan Africa: The Case of Ethiopia - Action Plan Sub-Saharan Petroleum Products Transportation Corridor: 03/03 033/03 Analysis and Case Studies Phase-Out of Leaded Gasoline in Sub-Saharan Africa 04/02 028/02 Energy and Poverty: How can Modern Energy Services Contribute to Poverty Reduction 03/03 032/03 East Africa Sub-Regional Conference on the Phase-out Leaded Gasoline in 11/03 044/03 East Africa. June 5-7, 2002 Ghana Poverty and Social Impact Analysis of Electricity Tariffs 12/05 088/05 Women Enterprise Study: Developing a Model for Mainstreaming 03/06 096/06 Gender into Modern Energy Service Delivery Sector Reform and the Poor: Energy Use and Supply in Ghana 03/06 097/06 Kenya Field Performance Evaluation of Amorphous Silicon (a-Si) Photovoltaic Systems in Kenya: Methods and Measurement in Support of a Sustainable Commercial Solar Energy Industry 08/00 005/00 The Kenya Portable Battery Pack Experience: Test Marketing an Alternative for Low-Income Rural Household Electrification 12/01 05/01 Malawi Rural Energy and Institutional Development 04/05 069/05 Mali Phase-Out of Leaded Gasoline in Oil Importing Countries of 12/03 041/03 Sub-Saharan Africa: The Case of Mali - Action Plan (Elimination progressive de l'essence au plomb dans les pays importateurs de pétrole en Afrique subsaharienne Le cas du Mali -- Mali Plan d'action) Mauritania Phase-Out of Leaded Gasoline in Oil Importing Countries of 12/03 040/03 Sub-Saharan Africa: The Case of Mauritania - Action Plan (Elimination progressive de l'essence au plomb dans les pays importateurs de pétrole en Afrique subsaharienne Le cas de la Mauritanie ­ Plan d'action.) 71 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Region/Country Activity/Report Title Date Number Nigeria Phase-Out of Leaded Gasoline in Nigeria 11/02 029/02 Nigerian LP Gas Sector Improvement Study 03/04 056/04 Taxation and State Participation in Nigeria's Oil and Gas Sector 08/04 057/04 Regional Second Steering Committee: The Road Ahead. Clean Air Initiative In Sub-Saharan African Cities. Paris, March 13-14, 2003 12/03 045/03 Lead Elimination from Gasoline in Sub-Saharan Africa. Sub-regional Conference of the West-Africa group. Dakar, Senegal March 26-27, 2002 (Deuxième comité directeur : La route à suivre - L'initiative sur l'assainissement de l'air. Paris, le 13-14 mars 2003) 12/03 046/03 1998-2002 Progress Report. The World Bank Clean Air Initiative 02/02 048/04 in Sub-Saharan African Cities. Working Paper #10 (Clean Air Initiative/ESMAP) Landfill Gas Capture Opportunity in Sub Saharan Africa 06/05 074/05 The Evolution of Enterprise Reform in Africa: From 11/05 084/05 State-owned Enterprises to Private Participation in Infrastructure-and Back? Senegal Regional Conference on the Phase-Out of Leaded Gasoline in 03/02 022/02 Sub-Saharan Africa (Elimination du plomb dans I'essence en Afrique subsaharienne Conference sous regionales du Groupe Afrique de I'Ouest Dakar, Sénégal. March 26-27, 2002.) 12/03 046/03 Alleviating Fuel Adulteration Practices in the Downstream Oil Sector in Senegal 09/05 079/05 Maximisation des Retombées de l'Electricité en Zones Rurales, 03/07 Application au Cas du Sénégal South Africa South Africa Workshop: People's Power Workshop. 12/04 064/04 Swaziland Solar Electrification Program 2001 2010: Phase 1: 2001 2002 (Solar Energy in the Pilot Area) 12/01 019/01 Tanzania Mini Hydropower Development Case Studies on the Malagarasi, Muhuwesi, and Kikuletwa Rivers Volumes I, II, and III 04/02 024/02 Phase-Out of Leaded Gasoline in Oil Importing Countries of 12/03 039/03 Sub-Saharan Africa: The Case of Tanzania - Action Plan Uganda Report on the Uganda Power Sector Reform and Regulation Strategy Workshop 08/00 004/00 WEST AFRICA (AFR) Regional Market Development 12/01 017/01 EAST ASIA AND PACIFIC (EAP) Cambodia Efficiency Improvement for Commercialization of the Power Sector 10/02 031/02 TA For Capacity Building of the Electricity Authority 09/05 076/05 China Assessing Markets for Renewable Energy in Rural Areas of Northwestern China 08/00 003/00 Technology Assessment of Clean Coal Technologies for China Volume I-Electric Power Production 05/01 011/01 Technology Assessment of Clean Coal Technologies for China Volume II-Environmental and Energy Efficiency Improvements for Non-power Uses of Coal 05/01 011/01 Technology Assessment of Clean Coal Technologies for China Volume III-Environmental Compliance in the Energy Sector: Methodological Approach and Least-Cost Strategies 12/01 011/01 Policy Advice on Implementation of Clean Coal Technology 09/06 104/06 Scoping Study for Voluntary Green Electricity Schemes in Beijing and Shanghai 09/06 105/06 Papua New Guinea Energy Sector and Rural Electrification Background Note 03/06 102/06 Philippines Rural Electrification Regulation Framework. (CD Only) 10/05 080/05 Thailand DSM in Thailand: A Case Study 10/00 008/00 Development of a Regional Power Market in the Greater Mekong Sub-Region (GMS) 12/01 015/01 72 LIST OF TECHNICAL REPORTS Region/Country Activity/Report Title Date Number Vietnam Options for Renewable Energy in Vietnam 07/00 001/00 Renewable Energy Action Plan 03/02 021/02 Vietnam's Petroleum Sector: Technical Assistance for the Revision 03/04 053/04 of the Existing Legal and Regulatory Framework Vietnam Policy Dialogue Seminar and New Mining Code 03/06 098/06 SOUTH ASIA (SAS) Bangladesh Workshop on Bangladesh Power Sector Reform 12/01 018/01 Integrating Gender in Energy Provision: The Case of Bangladesh 04/04 054/04 Opportunities for Women in Renewable Energy Technology Use 04/04 055/04 In Bangladesh, Phase I EUROPE AND CENTRAL ASIA (ECA) Azerbaijan Natural Gas Sector Re-structuring and Regulatory Reform 03/06 099/06 Macedonia Elements of Energy and Environment Strategy in Macedonia 03/06 100/06 Poland Poland (URE): Assistance for the Implementation of the New Tariff Regulatory System: Volume I, Economic Report, Volume II, Legal Report 03/06 101/06 Russia Russia Pipeline Oil Spill Study 03/03 034/03 Uzbekistan Energy Efficiency in Urban Water Utilities in Central Asia 10/05 082/05 MIDDLE EASTERN AND NORTH AFRICA REGION (MENA) Turkey Gas Sector Strategy 05/07 114/07 Regional Roundtable on Opportunities and Challenges in the Water, Sanitation 02/04 049/04 And Power Sectors in the Middle East and North Africa Region. Summary Proceedings, May 26-28, 2003. Beit Mary, Lebanon. (CD) Morocco Amélioration de d´Efficacité Energie: Environnement de la Zone Industrielle de Sidi Bernoussi, Casablanca 12/05 085/05 LATIN AMERICA AND THE CARIBBEAN REGION (LCR) Brazil Background Study for a National Rural Electrification Strategy: 03/05 066/05 Aiming for Universal Access How do Peri-Urban Poor Meet their Energy Needs: A Case Study of Caju Shantytown, Rio de Janeiro 02/06 094/06 Integration Strategy for the Southern Cone Gas Networks 05/07 113/07 Bolivia Country Program Phase II: Rural Energy and Energy Efficiency 05/05 072/05 Report on Operational Activities Bolivia: National Biomass Program. Report on Operational Activities 05/07 115/07 Chile Desafíos de la Electrificación Rural 10/05 082/05 Colombia Desarrollo Económico Reciente en Infraestructura: Balanceando las necesidades sociales y productivas de la infraestructura 03/07 325/05 Ecuador Programa de Entrenamiento a Representantes de Nacionalidades Amazónicas en Temas Hidrocarburíferos 08/02 025/02 Stimulating the Picohydropower Market for Low-Income Households in Ecuador 12/05 090/05 Guatemala Evaluation of Improved Stove Programs: Final Report of Project 12/04 060/04 Case Studies Haiti Strategy to Alleviate the Pressure of Fuel Demand on National Woodfuel Resources (English) 04/07 112/07 (Stratégie pour l'allègement de la Pression sur les Ressources Ligneuses Nationales par la Demande en Combustibles) 73 SOLAR-DIESEL HYBRID OPTIONS FOR THE PERUVIAN AMAZON: LESSONS LEARNED FROM PADRE COCHA Region/Country Activity/Report Title Date Number Honduras Remote Energy Systems and Rural Connectivity: Technical Assistance to the Aldeas Solares Program of Honduras 12/05 092/05 Mexico Energy Policies and the Mexican Economy 01/04 047/04 Technical Assistance for Long-Term Program for Renewable Energy Development 02/06 093/06 Nicaragua Aid-Memoir from the Rural Electrification Workshop (Spanish only) 03/03 030/04 Sustainable Charcoal Production in the Chinandega Region 04/05 071/05 Perú Extending the Use of Natural Gas to Inland Perú (Spanish/English) 04/06 103/06 Solar-diesel Hybrid Options for the Peruvian Amazon Lessons Learned from Padre Cocha 04/07 111/07 Regional Regional Electricity Markets Interconnections - Phase I Identification of Issues for the Development of Regional Power Markets in South America 12/01 016/01 Regional Electricity Markets Interconnections - Phase II Proposals to Facilitate Increased Energy Exchanges in South America 04/02 016/01 Population, Energy and Environment Program (PEA) Comparative Analysis on the Distribution of Oil Rents (English and Spanish) 02/02 020/02 Estudio Comparativo sobre la Distribución de la Renta Petrolera Estudio de Casos: Bolivia, Colombia, Ecuador y Perú 03/02 023/02 Latin American and Caribbean Refinery Sector Development Report - Volumes I and II 08/02 026/02 The Population, Energy and Environmental Program (EAP) (English and Spanish) 08/02 027/02 Bank Experience in Non-energy Projects with Rural Electrification 02/04 052/04 Components: A Review of Integration Issues in LCR Supporting Gender and Sustainable Energy Initiatives in 12/04 061/04 Central America Energy from Landfill Gas for the LCR Region: Best Practice and 01/05 065/05 Social Issues (CD Only) Study on Investment and Private Sector Participation in Power 12/05 089/05 Distribution in Latin America and the Caribbean Region Strengthening Energy Security in Uruguay 05/07 116/07 GLOBAL Impact of Power Sector Reform on the Poor: A Review of Issues and the Literature 07/00 002/00 Best Practices for Sustainable Development of Micro Hydro Power in Developing Countries 08/00 006/00 Mini-Grid Design Manual 09/00 007/00 Photovoltaic Applications in Rural Areas of the Developing World 11/00 009/00 Subsidies and Sustainable Rural Energy Services: Can we Create Incentives Without Distorting Markets? 12/00 010/00 Sustainable Woodfuel Supplies from the Dry Tropical Woodlands 06/01 013/01 Key Factors for Private Sector Investment in Power Distribution 08/01 014/01 Cross-Border Oil and Gas Pipelines: Problems and Prospects 06/03 035/03 Monitoring and Evaluation in Rural Electrification Projects: 07/03 037/03 A Demand-Oriented Approach Household Energy Use in Developing Countries: A Multicountry 10/03 042/03 Study Knowledge Exchange: Online Consultation and Project Profile 12/03 043/03 from South Asia Practitioners Workshop. Colombo, Sri Lanka, 74 LIST OF TECHNICAL REPORTS Region/Country Activity/Report Title Date Number June 2-4, 2003 Energy & Environmental Health: A Literature Review and 03/04 050/04 Recommendations Petroleum Revenue Management Workshop 03/04 051/04 Operating Utility DSM Programs in a Restructuring Electricity Sector 12/05 058/04 Evaluation of ESMAP Regional Power Trade Portfolio 12/04 059/04 (TAG Report) Gender in Sustainable Energy Regional Workshop Series: 12/04 062/04 Mesoamerican Network on Gender in Sustainable Energy (GENES) Winrock and ESMAP Women in Mining Voices for a Change Conference (CD Only) 12/04 063/04 Renewable Energy Potential in Selected Countries: Volume I: 04/05 070/05 North Africa, Central Europe, and the Former Soviet Union, Volume II: Latin America Renewable Energy Toolkit Needs Assessment 08/05 077/05 Portable Solar Photovoltaic Lanterns: Performance and 08/05 078/05 Certification Specification and Type Approval Crude Oil Prices Differentials and Differences in Oil Qualities: A Statistical Analysis 10/05 081/05 Operating Utility DSM Programs in a Restructuring Electricity Sector 12/05 086/05 Sector Reform and the Poor: Energy Use and Supply in Four Countries: 03/06 095/06 Botswana, Ghana, Honduras and Senegal 75 Energy Sector Management Assistance Program (ESMAP) 1818 H Street, NW Washington, DC 20433 USA Tel: 1.202.458.2321 Fax: 1.202.522.3018 Internet: www.esmap.org E-mail: esmap@worldbank.org