77889 v2 OVERVIEW Global Tracking Framework overview 1 Global Tracking Framework Table of Contents Foreword 4 Acknowledgements 5 Overview 7 Data Annexes Energy access 42 Energy efficiency 51 Renewable energy 59 Foreword At the 2012 Rio+20 Conference on Sustainable Develop- the global objectives for energy efficiency and renewable ment, world leaders agreed to develop a set of Sustainable energy hinges on efforts in some 20 developed and Development Goals. For many, the Sustainable Energy for emerging economies that account for 80 percent of global All (SE4ALL) initiative launched that year—a year designat- energy consumption. Finally, the report identifies a number ed to highlight that same theme—and backed by a global of “fast-moving� countries whose exceptionally rapid prog- coalition of public and private sector organizations, as well ress on the triple energy agenda since 1990 provides not as civil society, is an illustration of what a Sustainable De- just inspiration, but know-how that can help us replicate velopment Goal for the energy sector would look like. their success elsewhere. SE4ALL seeks to achieve, by 2030, universal access to In many respects, what you measure determines what you electricity and safe household fuels, a doubled rate of im- get. That is why it is critical to get measurement right and provement of energy efficiency, and a doubled share of re- to collect the right data, which is what this report has done. newable energy in the global energy mix. As the Millennium It has charted a map for our achievement of sustainable Development Goals process has shown, measurable goals energy for all and a way to track progress. Let the journey that enjoy widespread consensus can mobilize whole soci- begin! eties behind them. An issue for any set of goals is how to measure progress towards their achievement. This can be —Kandeh Yumkella tricky on methodological and political grounds. In the light Secretary General’s Special Representative for of this challenge, the rigor and even-handedness evident Sustainable Energy for All in this first SE4ALL Global Tracking Framework is all the more welcome. A team of energy experts from 15 agencies worked un- der the leadership of the World Bank and the International Energy Agency to produce this comprehensive snapshot of the status of more than 170 countries with respect to energy access, action on energy efficiency and renewable energy, and energy consumption. The report’s framework for data collection and analysis will enable us to monitor progress on the SE4ALL objectives from now to 2030. It is methodologically sound and credible. It produces findings that are conclusive and actionable. The report also shows how different countries can boost progress toward sustainable energy. Reaching universal energy access depends decisively on actions in some 20 “high-impact� countries in Africa and Asia. Attaining 6 Global tracking framework Acknowledgments The development of the Global Tracking Framework was and Nigel Bruce (WHO); and Simon Trace (Practical Action). made possible by exceptional collaboration within a spe- Substantive comments were also provided by Radha cially constituted Steering Group led jointly by the World Muthiah, Ranyee Chiang, and Sumi Mehta (GACC); Drew Bank/Energy Sector Management Assistance Program Corbin (Practical Action); Stephen Gitonga (UNDP); and (ESMAP) and the International Energy Agency (IEA). Venkata Ramana Putti (WB/ESMAP). Dr Francis Vella, Edmond Villani Chair of Economics, Georgetown University Members of the Steering Group include the Global Alliance provided expert guidance to the team for the development for Clean Cookstoves (“the Alliance�), the International of the World Bank Global Electrification Database. Institute for Applied Systems Analysis (IIASA), the IEA, the International Partnership for Energy Efficiency Cooperation The energy efficiency chapter (chapter 3) was prepared by (IPEEC), the International Renewable Energy Agency (IRE- a working group comprising World Bank/ESMAP and IEA. NA), Practical Action, the Renewable Energy Network for The main contributing authors were Ivan Jaques, Ashok the 21st Century (REN21), UN Energy, the United Nations Sarkar, Irina Bushueva, and Javier Gustavo Iñon (World Development Programme (UNDP), the United Nations Bank/ESMAP); and Philippe Benoit, Robert Tromop, Sara Environment Programme (UNEP), the United Nations Bryan Pasquier, Laura Cozzi, Fabian Kesicki, Taejin Park, Foundation, the United Nations Industrial Development and Anna Zyzniewski (IEA). Substantive comments were Organization (UNIDO), the World Bank, the World Energy also provided by Amit Bando and Thibaud Voita (IPEEC), Council (WEC), and the World Health Organization (WHO). and by Mark Hopkins (UN Foundation). The Steering Group’s collaboration was made possi- The renewable energy chapter (chapter 4) was prepared ble by agreement among the senior management of the by a working group comprising the World Bank/ESMAP , member agencies, many of whom were represented on IEA, IRENA, REN21, and UNEP . The main contributing the Sustainable Energy for All High Level Group in 2012. authors were Gabriela Elizondo Azuela, Javier Gustavo Vijay Iyer (World Bank) and Fatih Birol (IEA), with Rohit Iñon, and Irina Bushueva (World Bank/ESMAP); Paolo Khanna (ESMAP), oversaw the development of the Global Frankl, Adam Brown, and Zuzana Dobrotkova (IEA); Dolf Tracking Framework. Directors of other Steering Group Gielen, Ruud Kempener, and Zuzana Dobrotkova (IRENA); agencies provided important strategic input: Radha Muthiah Christine Lins (REN21); and Martina Otto and Djaheezah (GACC); Nebojsa Nakicenovic (IIASA); Amit Bando (IPEEC); Subratty (UNEP). (Ms. Dobrotkova moved from IEA to IRENA Adnan Amin (IRENA); Simon Trace (Practical Action); in the course of the work.) Substantive comments were Christine Lins (REN21); Kandeh Yumkella (UN Energy); also provided by Pierre Audinet (ESMAP). Richenda van Leeuwen (UN Foundation); Veerle Vander- weerd (UNDP); Mark Radka (UNEP); Marina Ploutikhina All chapters draw on results of the IEA’s World Energy Outlook (UNIDO); Christoph Frei (WEC); and Maria Neira (WHO). and World Energy Statistics and Balances, and on IIASA’s Global Energy Assessment. Marco Baroni and Fabian The technical work on the Global Tracking Framework was Kesicki facilitated input from the World Energy Outlook. coordinated by Vivien Foster (World Bank) and Dan Dorner Jean-Yves Garnier, Pierre Boileau, Roberta Quadrelli, and (IEA). Karen Treanton provided substantive statistical input and comments. Nebojsa Nakicenovic, Keywan Riahi, Shonali The chapter on access to energy (chapter 2) was prepared Pachauri, Volker Krey, and Peter Kolp facilitated input from by a working group comprising World Bank/ESMAP and the Global Energy Assessment. IEA, GACC, Practical Action, UNDP and WHO. The main contributing authors were Sudeshna Ghosh Banerjee, The World Bank peer review process was led by Marianne Mikul Bhatia, Elisa Portale, and Nicolina Angelou (World Fay, with contributions from Jeff Chelsky, Mohinder Gulati, Bank/ESMAP); Dan Dorner, Jules Schers, and Nora Selmet Todd Johnson, Luiz Maurer, Mohua Mukherjee, and Dana (IEA); Carlos Dora, Heather Adair-Rohani, Susan Wilburn, Rysankova. foreword / Acknowledgments 7 The two rounds of public consultation were coordinated by The design and publication of the final documents was Simon Trace, Helen Morton, and Lucy Stevens from Practical coordinated by Ryan Hobert and Daniel Laender at the UN Action and benefited from use of the REN21 online consul- Foundation in collaboration with Nicholas Keyes of ESMAP . tation platform. More than 100 stakeholders participated The creation of the online data platform was undertaken by in the process. The first consultation event was organized Shaida Badiee, Neil Fantom, and Shelley Liu and Jonathan by Sandra Winkler at WEC as part of the WEC Executive Davidar of the World Bank. Assembly in Monaco, November 2012. The second con- sultation was facilitated by Christine Lins of REN21, as The report was edited by Steven B. Kennedy and designed a side event of the World Future Energy Summit in Abu by Eighty2degrees. The communications and launch pro- Dhabi, January 2013. cess was coordinated by Christopher Neal at the World Bank and Cynthia Scharf at the United Nations. The report has also benefitted from dialogue with the The work was largely funded by the participating agencies following government agencies: of the Steering Group. Financial support from ESMAP and Germany (Bundesministerium für wirtschaftliche Zusam- DFID was critical in covering certain costs. menarbeit und Entwicklung – BMZ, Deutsche Gesellschaft für Internationale Zusammenarbeit – GIZ, Kreditanstalt für Wiederaufbau – KfW); Netherlands (Energieonderzoek Centrum Nederland – ECN); Norway (Ministry of Foreign Affairs – MFA); United Kingdom (Department for International Development – DFID); and United States (Department of State – DOS, Office of Energy Efficiency and Renewable Energy – EERE). 8 Global tracking framework Overview Overview In declaring 2012 the “International Year of Sustainable Energy for All,� the UN General Assembly established three global objectives to be accomplished by 2030: to ensure universal access to modern energy services,1 to double the global rate of improvement in global energy efficiency, and to double the share of renewable energy in the global energy mix. Some 70 countries have formally embraced the Secretary General’s initiative, while numerous corporations and agencies have pledged tens of billions of dollars to achieve its objectives. As 2012 drew to a close, the UN General Assembly announced a “Decade of Sustainable Energy for All� stretching from 2014 to 2024. The Secretary General provided a compelling rationale for SE4ALL in his announcement of the new program. For further information about the SE4ALL initiative, please go to www.sustainableenergyforall.org. The SE4ALL Global Tracking Framework full report, overview paper, executive summary and datasets can be downloaded from: www.worldbank.org/se4all. The SE4ALL objectives are global objectives, applying to Framework described in this report provides a system for both developed and developing countries, with individual regular global reporting, based on rigorous—yet practical nations setting their own domestic targets in a way that is —technical measures. Although the technical definitions consistent with the overall spirit of the initiative. Because required for the framework pose significant methodological countries differ greatly in their ability to pursue each of the challenges, those challenges are no more complex than three objectives, some will make more rapid progress in those faced when attempting to measure other aspects of one area while others will excel elsewhere, depending on development—such as poverty, human health, or access their respective starting points and comparative advantages to clean water and sanitation—for which global progress as well as on the resources and support that they are able has long been tracked. to marshal. For the time being, the SE4ALL tracking framework must The three SE4ALL objectives, though distinct, form an inte- draw upon readily available global databases, which vary grated whole. Because they are related and complementary, in their usefulness for tracking the three central variables of it is more feasible to achieve all three jointly than it would interest. Over the medium term, the framework includes a be to pursue any one of them individually. In particular, concerted effort to improve these databases as part of the achievement of the energy efficiency objective would make SE4ALL initiative (table O.1). This report lays out an agenda the renewable energy objective more feasible by slowing for the incremental improvement of available global energy the growth in global demand for energy. Tensions between databases in those areas likely to yield the highest value the goals also exist, though they are less pronounced than for tracking purposes. the complementarities. One possible tension between the objectives is that the achievement of universal access to While global tracking is very important, it can only help to modern cooking solutions will tend to shift people from portray the big picture. Appropriate country tracking is an reliance on traditional biomass, a renewable source of essential complement to global tracking and will allow for a energy, to greater reliance on non-solid fuels that are typi- much richer portrait of energy sector developments. Global cally (though not always) based on fossil fuels. tracking and country tracking need to be undertaken in a consistent manner, and the Global Tracking Framework To sustain momentum for the achievement of the SE4ALL provides guidance that will be of interest to all countries objectives, a means of charting global progress over the participating in the SE4ALL initiative. years leading to 2030 is needed. The Global Tracking 1 The SE4ALL universal access goal will be achieved only if every person on the planet has access to modern energy services provided through electricity, clean cooking fuels, clean heating fuels, and energy for productive use and community services. 10 Global tracking framework Immediate Medium term Indicators that are essential for global Proxy indicators already available for global tracking and that would require a feasible Global tracking tracking, with all data needs (past, present, incremental investment in global energy and future) already fully met data systems over the next five years Indicators highly suitable for country-level Country-level tracking Not applicable tracking and desirable for global tracking Table o.1 A phased and differentiated approach to selecting indicators for tracking The SE4ALL Global Tracking team was able to construct and energy efficiency are primarily from national energy global energy databases that cover a large group of countries balances. Indicators for individual countries can be found —ranging from 181 for clean energy and 212 for modern in the data annex to this report, as well as on-line through energy services—that cover an upwards of 98 percent of the the World Bank’s Open Data Platform: http://data.world- world’s population (table O.2). The data on energy access bank.org/data-catalog. (electrification and cooking fuels) draw primarily on house- hold surveys, while those pertaining to renewable energy Category Data sources Country coverage (% of global population) Electrification Global networks of household surveys plus some censuses 212 (100) Cooking fuels Global networks of household surveys plus some censuses 193 (99) IEA and UN for energy balances Energy intensity 181 (98) WDI for GDP and sectoral value added IEA and UN for energy balances Renewable energy 181 (98) REN 21, IRENA, and BNEF for complementary indicators Table o.2 Overview of data sources and country coverage under global tracking NOTE: IEA = International Energy Agency; UN = United Nations; REN 21 = Renewable Energy Network for the 21st Century; IRENA = International Renewable Energy Agency; BNEF = Bloomberg New Energy Finance; WDI = World Development Indicators (World Bank); GDP= gross domestic product. The SE4ALL global tracking framework sets 2010 as the fuels.2 Solid fuels are defined to include both traditional starting point against which the progress of the initiative biomass (wood, charcoal, agricultural and forest residues, will be measured. The framework provides an initial sys- dung, and so on), processed biomass (such as pellets and tem for regular global reporting, based on indicators that briquettes), and other solid fuels (such as coal and lignite). are technically rigorous and at the same time feasible to As a proxy for energy efficiency, the framework takes the compute from current global energy databases, and that compound annual growth rate of energy intensity of gross offer scope for progressive improvement over time. For domestic product (GDP) measured in purchasing power energy access, household survey evidence is used to de- parity (PPP) terms, complemented by supporting analysis termine the percentage of the population with an electricity of underlying factors as well as sectoral disaggregation. connection and the percentage with access to non-solid For renewable energy, the indicator is the share of total final 2 Non-solid fuels include (i) liquid fuels (for example, kerosene, ethanol, and other biofuels), (ii) gaseous fuels (for example, natural gas, liquefied petroleum gas [LPG], biogas), and (iii) electricity. overview 11 energy consumption3 deriving from all renewable sources steering group for the framework is co-chaired by the World (bioenergy, aerothermal, geothermal, hydro, ocean, solar, Bank and its Energy Sector Management Assistance Pro- wind). Further methodological details and directions for gram (ESMAP , a multidonor technical assistance trust fund future improvement are provided below and described administered by the World Bank) and the IEA. Members extensively in the main report. of the group are the Global Alliance for Clean Cookstoves (the Alliance), IIASA, the International Partnership for In addition to measuring progress at the global level, the Energy Efficiency Cooperation (IPEEC), the International report sheds light on the starting point for regional and in- Renewable Energy Agency (IRENA), Practical Action, the come groupings. It also identifies two important categories Renewable Energy Network for the 21st Century (REN21), of countries: high-impact countries, whose efforts will be the United Nations Development Programme, UN–Energy, particularly critical to the achievement of the objectives the United Nations Environment Programme, the United globally; and fast-moving countries, which are already Nations Foundation, the United Nations Industrial Devel- making rapid progress toward the SE4ALL goals and may opment Organization (UNIDO), the World Energy Council have valuable policy and implementation lessons to share. (WEC), and the World Health Organization (WHO). Experts from all of these agencies have collaborated intensively in Scenarios based on the various existing global energy the development of this report. models—such as the World Energy Model of the Interna- tional Energy Agency (IEA) and the Global Energy Assess- The report also benefited from two rounds of public consul- ment (GEA) of the International Institute for Applied Sys- tation. The first round, which took place in October 2012, tems Analysis (IIASA)—clarify the scale of the challenge focused on the proposed methodology for global tracking. involved in meeting the SE4ALL objectives. In particular, It was launched by a special session of the World Ener- they illustrate the combinations of technological change, gy Council’s Executive Assembly in Monaco. The second policy frameworks, and financing flows that will be needed round, in February 2013, focused on data analysis. It was to reach the objectives. They also shed light on the rela- preceded by a consultation workshop held in conjunction tionship between the three objectives, as well as the differ- with the World Future Energy Summit in Abu Dhabi in Janu- ential contributions to global targets across world regions ary 2013. The consultation documents reached more than based on respective comparative advantage. a hundred organizations drawn from a broad cross-section of stakeholders and covering a wide geographic area. This Development of the Global Tracking Framework has been report benefited greatly from the contributions of those made possible through a unique partnership of interna- organizations. tional agencies active in the energy knowledge space. The Achieving universal access to modern energy services By some measures, progress on access to modern energy the global electrification rate increased only modestly, from services was impressive over the 20 years between 1990 76 to 83 percent, while the rate of access to non-solid fuels and 2010. The number of people with access to electricity rose from 47 to 59 percent (figure O.1). In both cases, this increased by 1.7 billion, while the number of those with represents an increase in access of about one percentage access to non-solid fuels for household cooking increased point of global population annually. by 1.6 billion. Yet this expansion was offset by global popu- lation growth of 1.6 billion over the same period. As a result, 3 Though technically energy cannot be consumed, in this report the term energy consumption means “quantity of energy applied�, following the definition in ISO 50001:2011 and the future standard ISO 13273-1 Energy efficiency and renewable energy sources - Common international terminology Part 1: Energy Efficiency. 12 Global tracking framework 80 60 100 100 80 40 80 60 60 20 40 40 20 20 0 0 0 sa ea a a a ea a c ev a d ia n w sas se c la el ia a sa a a c a a a ev d na a a a c ev a d ia d ss se w n c ea s n w la ss se rl c c r la n rl n d d c c a o o ea o e w w c c w o c o o figure O.1 Global and regional trends in electrification and non-solid fuel access rates, 1990–2010 figure O.1 Global and regional trends in electrification and non-solid fuel access rates, 1990–2010 figure O.1A Global and Regional Trends in figure O.1B Global 1990 and 2000 Regional 2010 Trends in 1990 2000 2010 IEA Electrification SOURCE: WB, WHO,figure 1990-2010, O.1 Global and regional Percent trends in electrificationAccess SOURCE: and WB, IEA to non-solid WHO, non-solid fuel 1990-2010, fuel access Percent rates, 1990–2010 1990 2000 2010 SOURCE: WB, WHO, IEA SOURCE: World Bank Global Electrification Database, 2012. Indicators (World Bank); WHO Global Household Energy Database, 2012. NOTE: Access numbers in millions of people. CCA = Caucasus and Central Asia; DEV = developed countries; EA = Eastern Asia; LAC = Latin America and Caribbean; NA = Northern Africa; SEA = South-Eastern Asia; SA = Southern Asia; SSA = Sub-Saharan Africa; WA = Western Asia. Starting point The starting point for global electrification against which Modern cooking solutions4 are important because they future progress will be measured is 83 percent in 2010. curtail harmful indoor air pollution that leads to the loss of The SE4ALL global objective is 100 percent by 2030. lives of 3.5 million people each year, mainly women and children; they also improve energy efficiency. Similar to Electrification rates likely overestimate access to electricity. electrification, rates of access to non-solid fuel do not fully The reason is that some of those with access to an elec- capture access to modern cooking solutions. The reason tricity connection receive a service of inadequate quantity, for this is that an unknown and likely growing percentage quality, or reliability of supply, which prevents them from of those without access to non-solid fuels may nonethe- reaping the full benefits of the service. A proxy for supply less be using acceptable cooking solutions based on pro- problems (albeit an imperfect one) is the average residential cessed biomass (such as fuel pellets) or other solid fuels electricity consumption derived from the IEA World Energy paired with stoves exhibiting overall emissions rates at or Statistics and Balances (2012a). Globally, the average near those of liquefied petroleum gas (LPG). At present, household electricity consumption was around 3,010 it is not possible to adequately measure the number of kilowatt-hours (kWh) per year in 2010. However, average households in this situation. It is believed to be relatively household electricity consumption varies considerably small but is expected to grow over time as governments ranging from over 6,000 kWh in developed countries to and donors place growing emphasis on more advanced around 1,000 kWh in underserved regions of South Asia biomass cookstoves as a relatively low-cost and accessible and Sub-Saharan Africa. method of improving the safety and efficiency of cooking practices. These and other methodological challenges The starting point for access to non-solid fuels for household associated with the measurement of energy access are cooking against which future progress will be measured more fully described in box O.1. is 59 percent in 2010. The SE4ALL global objective is 100 percent by 2030. 4 The term “modern cooking solutions� will be used throughout this document and includes solutions that involve electricity or gaseous fuels (including liquefied petroleum gas), or solid/liquid fuels paired with stoves exhibiting overall emissions rates at or near those of liquefied petroleum gas. overview 13 BOX O.1 Methodological challenges in defining and measuring energy access There is no universally agreed-upon definition of energy access, and it can be a challenge to determine how best to capture issues such as the quantity, quality, and adequacy of service, as well as complementary issues such as informality and affordability. Because currently available global databases only support binary global track- ing of energy access (that is, a household either has or does not have access, with no middle ground), this is the approach that will be used to determine the starting point for the SE4ALL Global Tracking Framework. Based on an exhaustive analysis of existing global household survey questionnaires, the following binary measures will be used: }} Electricity access is defined as availability of an electricity connection at home or the use of electricity as the primary source for lighting. }} Access to modern cooking solutions is defined as relying primarily on non-solid fuels for cooking. An important limitation of these binary measures is that they do not capture improvements in cookstoves that burn solid fuels, nor are they able to register progress in electrification through off-grid lighting products. In the case of electricity, the binary measure fails to take into account whether the connection provides an adequate and reliable service, which it may often fail to do. A variety of data sources—primarily household surveys (including national censuses) and in a few cases, utility data—contribute to the measurement of access. Two global databases—one on electricity and another on non-solid fuel—have been compiled: the World Bank’s Global Electrification Database and WHO’s Global Household Energy Database. IEA data on energy access were also reviewed in the preparation of these databases. Both databases encompass three datapoints for each country—around 1990, around 2000, around 2010. Given that surveys were carried out infrequently, statistical models have been developed to estimate missing datapoints. While the binary approach serves the immediate needs of global tracking, there is a growing consensus that measurements of energy access should be able to reflect a continuum of improvement. A candidate multi-tier metric put forward in this report for medium-term development under the SE4ALL initiative addresses many of the limitations of the binary measures described above: For electricity, the recommended new metric measures the degree of access to electricity supply along various dimensions. This is complemented by a parallel multi-tier framework that captures the use of key electricity services. For cooking, the candidate proposal measures access to modern cooking solutions by measuring the tech- nical performance of the primary cooking solution (including both the fuel and the cookstove) and assessing how this solution fits in with households’ daily life. For medium term country tracking, the further development of the multi-tier metric can be substantially strengthened by rigorous piloting of questionnaires, certification, and consensus building in SE4ALL opt-in countries. The metric is flexible and allows for country-specific targets to be set to adequately account for varying energy challenges. For medium-term global tracking, a condensed version of the new metric would support a three-tier access framework requiring only marginal improvements in existing global data collection instruments. The SE4ALL universal access goal will be achieved only if every person on the planet has access to modern energy services provided through electricity, clean cooking fuels, clean heating fuels, and energy for produc- tive use and community services. Although global tracking of energy sources for heating, community services, and productive uses will not be possible in the immediate future, it is recommended that an approach to track them at the country level be developed in the medium term. 14 Global tracking framework With respect to electricity, the global access deficit amounts cooking, the access deficit amounts to 2.8 billion people to 1.2 billion people. Close to 85 percent of those who live who primarily rely on solid fuels. About 78 percent of that without electricity (the “nonelectrified population�) live in ru- population lives in rural areas, and 96 percent are geo- ral areas, and 87 percent are geographically concentrated graphically concentrated in Sub-Saharan Africa, Eastern in Sub-Saharan Africa and South Asia (figure O.2). For Asia, Southern Asia, and South-Eastern Asia. Oth 157 SSA Oth 157 With electricity Without 590 rural 5714 electricity 993 83% 1166 SSA With electricity Without 17% electricity 590 SA rural 5714 993 1166 418 urban 173 83% 17% SA 418 urban 173 figure O.2A Source of electrification access deficit, 2010 Oth 124 urban 598 ssa 690 Oth 124 Non Solid Fuel Solid Fuel urban 598 SA 4076 2777 ssa 690 1018 59% 41% rural Non Solid Fuel Solid Fuel SeASA308 2179 4076 2777 1018 59% 41% eA rural 637 SeA 308 2179 eA 637 figure O.2b Source of non-solid fuel access deficit, 2010 SOURCE: World Bank Global Electrification Database, 2012; WHO Global Household Energy Database, 2012. NOTE: Access numbers in millions of people. EA = Eastern Asia; SEA = South-Eastern Asia; SA = Southern Asia; SSA = Sub-Saharan Africa; oth = others. Most of the incremental electrification over the period overall in the rural space. The rate of increase in access to 1990–2010 was in urban areas, where electrification in- non-solid fuel over the two decades was higher in urban creased by 1.7 percent of the population annually, about areas, at around 1.7 percent of the population annually, twice the rate in rural areas (0.8). However, even with this with the overall urban access rate rising from 77 to 84 per- significant expansion, electrification only just kept pace cent. Rural growth in non-solid fuel use was as low as 0.6 with rapid urbanization in the same period, so that the percent annually on average, while overall access in rural overall urban electrification rate remained relatively stable, areas grew from 26 to 35 percent. Thus, most of the ex- growing from 94 to 95 percent across the period. By con- pansion in energy access between 1990 and 2010 was in trast, more modest growth in rural populations allowed the urban areas, while most of the remaining deficit in 2010 electrification rate to increase more steeply, from 61 to 70 was in rural areas (figure O.3). percent, despite a much lower level of electrification effort overview 15 0 1000 2000 3000 4000 5000 6000 7000 Population (million) Population with access in 1990 Incremental access in 1990-2010 Population without access in electricity non-solid cooking fuels Rural Rural Rural Urban Urban Urban Total Total Total 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 Population (million) Population (million) 0 1000 2000 3000 4000 5000 6000 7000 figure Population with access in 1990 O.3A Global Incremental accesstrends in access in 1990-2010 Populationto without access Population figure in 2010 with access O.3B in 1990 Globalaccess trends Incremental in access in 1990-2010 to without access in Population Population electricity, 1990-2010, Population million (million) fuel, 1990-2010, Population million non-solid Population with access in 1990 Incremental access in 1990-2010 Population without access in 2010 Rural SOURCE: World Bank Global Electrification Database, 2012; WHO Global Household Energy Database, 2012. Urban High-impact countries Rural Total The achievement of universal access to modern energy The access challenge is particularly significant in Sub-Sa- will depend critically on the efforts of 20 high-impact coun- haran Africa, which is the only region where the rate of 0 1000 2000 3000 4000 5000 6000 7000 tries. Together, these Urbancountries account for more than two- progress on energy access fell behind population growth Population thirds of the population (million) presently living without electricity in 1990–2010, both for electricity and for non-solid fuels. (0.9 billion Population with access in 1990 people) and more than four-fifths Incremental access in 1990-2010 of the global Among the 20 countries with the highest deficits in access, Population without access in 2010 population without Total access to non-solid fuels (2.4 billion 12 are in Sub-Saharan African countries; of those, eight people). This group of 20 countries is split between Africa report an access rate below 20 percent. Similarly, among and Asia (figure O.4). For 0 electricity, 1000India has by 2000 far 3000 the 20 the countries 4000 with the lowest 5000 6000 rates7000 of use of non-solid largest access deficit, exceeding 300 million people, while fuel for cooking, nine are Sub-Saharan African countries, for non-solid cooking fuel India and China each have Population ac- (million) of which five have rates of access to non-solid fuel below cess deficits that exceed 600 million people. 10 percent. Population with access in 1990 Incremental access in 1990-2010 Population without access in 2010 Malawi 13.6 Ghana 20.4 Indonesia 14.0 Korea, DR 22.2 Niger 14.1 Mozambique 22.2 Burkina Faso 14.3 Nepal 24.6 Pakistan 15.0 Afghanistan 26.7 Philippines 15.6 Uganda 32.2 Madagascar 17.8 Kenya 32.6 Korea, DR 18.0 Sudan 34.6 Afghanistan 18.5 Tanzania 42.3 Mozambique 19.9 Myanmar 44.0 Myanmar 24.6 Philippines 46.2 Uganda 28.5 Vietnam 49.4 Sudan 30.9 Congo, DR 61.3 Kenya 31.2 Ethiopia 81.1 Tanzania 38.2 Pakistan 110.8 Congo, DR 55.9 Nigeria 117.8 Ethiopia 63.9 Indonesia 131.2 Bangladesh 66.6 Bangladesh 134.9 China 612.8 Nigeria 82.4 India 705.0 India 306.2 0 200 400 600 800 0 50 100 150 200 250 300 350 Population (million) Population (million) figure O.4A the 20 countries with the high- figure O.4b the 20 countries with the high- est deficit in access to electricity, 2010, est deficit in access to non-solid fuel, 2010, Population million Population million SOURCE: World Bank Global Electrification Database, 2012; WHO Global Household Energy Database, 2012. NOTE: DR = “Democratic Republic of.� 16 Global tracking framework Fast-moving countries In charting a course to universal access, it will be important to countries that have made the most progress on the cook- learn from those countries that have successfully achieved ing side—most of them in Asia—moved 1.2 billion people universal energy access and those that have advanced the to non-solid fuel use. Whereas the global annual average fastest toward this goal during the last two decades. The increase in access was 1.2 percent for electrification and 20 countries that have made the most progress provided 1.1 percent for non-solid fuels, the countries making the electricity to an additional 1.3 billion people in the past most progress in scaling up energy access reached an two decades. India has made particularly rapid progress, additional 3–4 percent of their population each year (figures electrifying an average of 24 million annually since 1990, O.5 and O.6). with an annual growth rate of 1.9 percent. Similarly, the 20 25 23.7 4% 20 3% 25 23.7 4% 15 12.9 20 2% 10 3% 15 12.9 5.1 5 4.6 1% 3 2.8 1.9 1.8 2% 1.6 1.3 1.3 1.1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 10 0 5.1 0% 5 4.6 1% a t o o bia pia l sia sh ria ey m n a nd a q ia an es 3 2.8 1.9 1.8 yp zi in ric di ra o xic cc na Ira 1.6 1.3 1.3 1.1 ia mb 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 n ey rk sh de a ist ud Sapia hio sia ne nd ila bia ra ria ige h yp Eg In i I az Br in ipp na Viet cc ro 0 ric Af C 0% xic Me mb lo rk Tu de gla ne do ra i A s Pak la Tha ge N o Et pp hil ro Mo lo Co Af th a t i A ud o Pl m n a a la ann q es do In i n di Ira a Ira u i ng Bt Ch ut So Eg In Br et hi Me Tu ki ai Ni Et ili Vi Pa Mo Th Co h Ph O.5 The 20 countries with the greatest annual increases in In figure Annual incremental access (million people) Annual growth in access (%) Ba Sa So access to electricity, 1990–2010 Annual incremental access (million people) Annual growth in access (%) SOURCE: World Bank Global Electrification Database, 2012. 25 4% 20.1 20 15.9 3% 25 4% 15 20.1 20 2% 10 15.9 3% 15 1% 5 3.1 2.4 2.4 1.8 2% 1.7 1.5 1.4 1.4 1.3 1.1 1 10 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0 0% 5 3.1 1% il ria ia ia ria a a a a sia p. q o nd 2.4 2.4 1.8 es n m an t ey 1.7 1.5 in di a ric in il az Re 1.4 1.4 1.3 1.1 yp q Ira o xic ia mb ys n Ira m na 1 0.8 0.8 0.7 0.7 0.7 0.7 0.7 es in ey rk sia ne ria ige ria ge nd ila an kist in nt Ch In yp Eg Br ys la 0 0% , ric Af in ipp mb lo Re ea na Viet xic Me rk Tu ne do ge Al nt ge la a ge N la Ma lo Co ki Pa pp il r Af uth ai Th ia a a a p. t re Ko ge Ar do In ili Ph di in az Ira Ira st Ch In ut So Eg Br a, et Me Tu Ni Al Ma Vi Co Pa h Th Ko Ar In Ph figure O.6 The 20 countries with the greatest Annual incremental access (million poeple) annual increases in Annual growth in access (%) So access to non-solid fuels, 1990–2010 Annual incremental access (million poeple) Annual growth in access (%) SOURCE: WHO Global Household Energy Database, 2012. overview 17 Scale of the challenge If the global trends observed during the last two decades GEA projects 84 percent access to electricity by 2030 were to continue, the SE4ALL objective of universal ac- under business-as-usual assumptions. cess would not be met. The IEA’s World Energy Outlook for 2012 (IEA 2012b) projects that under a New Policies The IEA projects that under the New Policies Scenario ac- Scenario that reflects existing and announced policy com- cess to non-solid fuel would climb to 70 percent in 2030, mitments, access rates would climb to just 88 percent by leaving the number of people without access to non-sol- 2030, still leaving almost a billion people without access id fuels largely unchanged at 2.6 billion by the end of the to electricity (figure O.7). Access to electricity would im- period (figure O.7b). By comparison, the GEA projects prove for all regions except Sub-Saharan Africa, which is 64 percent access to non-solid fuels by 2030 under busi- expected soon to overtake developing Asia as the region ness-as-usual assumptions. with the largest electrification deficit. By comparison, the electricity 1200 1000 Million people Rest of the World 800 Sub-Saharan Africa 600 South-Eastern Asia South Asia 400 200 0 2010 2010 2030 2030 Rural Urban Rural Urban Modern cooking solutions 2500 Rest of the World Million people 2000 Sub-Saharan Africa 1500 South-Eastern Asia South Asia 1000 East Asia and Oceania 500 0 2010 2010 2030 2030 Rural Urban Rural Urban figure O.7 Number of people without access in rural and urban areas, by region, 2010 and 2030 SOURCE: IEA 2012b. 18 Global tracking framework Looking ahead, population growth over the next 20 years The IEA estimates that achievement of universal access for is expected to occur entirely in urban areas. Thus, while electricity and modern cooking solutions would add only today’s access deficit looks predominantly rural, consid- about 1 percent to global primary energy demand over erable future electrification efforts in urban areas will be current trends. About half of that additional demand would needed simply to keep electrification rates constant. likely be met by renewable energy and the other half by fossil fuels, including a switch to LPG for cooking. As a According to the IEA, achieving universal access to elec- result, the impact of achieving universal access on global tricity by 2030 will require an average annual investment CO2 emissions is projected to be negligible, raising total of $45 billion (compared to $9 billion estimated in 2009). emissions by around 0.6 percent in 2030. More than 60 percent of the incremental investment re- quired would have to be made in Sub-Saharan Africa and Several barriers must be overcome to increase access to 36 percent in developing Asia. Universal access to mod- electrification and modern cooking solutions. A high level ern cooking solutions by 2030 will require average annual of commitment to the objective from the country’s politi- investment of around $4.4 billion, a relatively small sum in cal leadership and the mainstreaming of a realistic energy global terms but a large increase compared with negligible access strategy into the nation’s overall development and current annual investments of about $0.1 billion. budget processes are important. So are capacity building for program implementation, a robust financial sector, a le- IIASA’s 2012 GEA provides estimates (based on different gal and regulatory framework that encourages investment, assumptions than those used by the IEA) of the cost of and active promotion of business opportunities to attract reaching universal access, which amount to $15 billion per the private sector. In some cases, carefully designed and year for electricity and $71 billion per year for modern cooking targeted subsidies may also be needed. Nonfinancial bar- solutions. The higher estimate for modern cooking solutions riers to the expansion of access include poor monitoring is based on the assumption that providing universal access systems and sociocultural prejudices. will not be feasible without fuel subsidies of around 50 per- cent for LPG, as well as microfinance (at an interest rate of 15 percent) to cover investments in improved cookstoves. Doubling the rate of improvement of energy efficiency The energy intensity of the global economy (the ratio of over the 20-year period (figure O.8). Strong demographic the quantity of energy consumption per unit of economic and economic growth around the world caused global pri- output) fell substantially during the period 1990–2010, from mary energy supply to continue to grow at a compound 10.2 to 7.9 megajoules per U.S. dollar (2005 dollars at annual rate of 2 percent annually over the period, nonethe- PPP).5 This reduction in global energy intensity was driven less improvements in energy intensity meant that global by cumulative improvements in energy efficiency, offset by energy demand in 2010 was more than a third lower than it growth in activity, resulting in energy savings of 2,276 EJ would otherwise have been. 900 900 600 600 300 300 00 1900 1900 2000 2000 2010 2010 figure O.8 Energy savings owing to realized improvements in energy intensity (exajoules) Primary Energy Primary Consumption Energy Consumption Avoided Avoided Energy Energy Consumption Consumption SOURCE: Based on World Development Indicators, World Bank; IEA 2012a; UN Energy Statistics Database. 5 Countries with a high level of energy intensity use more energy to create a unit of GDP than countries with lower levels of energy intensity. Throughout the report, energy intensity is measured in primary energy terms and GDP at PPP unless otherwise specified. More details on the accounting methodology and the terminology used can be found in the energy efficiency chapter of the report. overview 19 Starting point Globally, energy intensity decreased at a compound an- This is because energy intensity is affected by other factors, nual growth rate (CAGR) of –1.3 percent over the 20 years such as shifts in the structure of the economy over time, between 1990 and 2010. The rate of improvement slowed typically from less energy-intensive agriculture to higher considerably during the period 2000–2010, however, to a energy-intensive industry and then back toward lower energy CAGR of –1.0, compared to –1.6 per year for 1990–2000 -intensive services. A review of the methodological issues (figure O.9a). in measuring energy efficiency is presented in box O.2. With the starting point for measuring future progress in global Statistical techniques that allow for the confounding energy efficiency under the SE4ALL, set as –1.3 percent, effects of factors other than energy efficiency to be partially the SE4ALL global objective is therefore a CAGR in energy stripped out reveal that the adjusted energy intensity trend intensity of –2.6 percent for the period 2010–2030.6 with a CAGR of –1.6 could be significantly higher than the unadjusted CAGR of –1.3 (figure O.9b). The effect of this Energy intensity is an imperfect proxy for underlying energy adjustment is particularly evident for the period 2000–2010, efficiency (defined as the ratio between useful output and when globalization led to a major structural shift toward the associated energy input). Indeed, the global rate of industrialization in emerging economies, partially eclipsing improvement of global energy intensity may over- or under- their parallel efforts to improve energy efficiency. state the progress made in underlying energy efficiency. Energy intensity, CAGR Adjusted energy intensity, CAGR 1990-2000 2000-2010 1990-2000 1990-2010 2000-2010 1990-2010 1990-2000 2000-2010 1990-2000 1990-2010 2000-2010 1990-2010 -1.0% -1.0% -1.4% -1.4% -1.3% -1.3% -1.6% -1.6% -1.6% -1.6% -1.9% -1.9% Energy intensity Energy intensity Energy Intensity Energy Decomposition Intensity Decomposition figure O.9 Rate of improvement in global energy intensity, 1990–2010 (PPP terms) SOURCE: Based on World Development Indicators, World Bank; IEA 2012a. NOTE: PPP = purchasing power parity; CAGR = compound annual growth rate. “Adjusted energy intensity� is a measure derived from the Divisia decomposition method that controls for shifts in the activity level and structure of the economy. 6 When measured in final energy terms, the compound annual growth rate is –1.5 percent for the period 1990–2010. Thus the goal is –3.0 percent on average for the next 20 years. 20 Global tracking framework BOX O.2 Methodological challenges in defining and measuring energy efficiency Energy efficiency is defined as the ratio between useful outputs and associated energy inputs. Rigorous mea- surement of this relationship is possible only at the level of individual technologies and processes, and the data needed for such measures are available only for a handful of countries. Even where data are available, they result in hundreds of indicators that cannot be readily used to summarize the situation at the national level. For these reasons, energy intensity (typically measured as energy consumed per dollar of gross domestic product, GDP) has traditionally been used as a proxy for energy efficiency when making international compar- isons. Energy intensity is an imperfect proxy for energy efficiency because it is affected not only by changes in the efficiency of underlying processes, but also by other factors such as changes in the volume and sectoral structure of GDP . These concerns can be partially addressed by statistical decomposition methods that allow confounding effects to be stripped out. Complementing national energy intensity indicators with sectoral ones also helps to provide a more nuanced picture of the energy efficiency situation. Calculation of energy intensity metrics requires suitable measures for GDP and energy consumption. GDP can be expressed either in terms of market exchange rate or purchasing power parity (PPP). Market exchange rate measures may undervalue output in emerging economies because of the lower prevailing domestic price levels and thereby overstate the associated energy intensity. PPP measures are not as readily available as market exchange rate measures, because the associated correction factors are updated only every five years. Energy consumption can be measured in either primary or final energy terms. While it may make sense to use primary energy for highly aggregated energy intensity measures (relative to GDP) because it captures intensity in both the production and use of energy, it is less meaningful to use it when measuring energy intensity at the sectoral or subsectoral level, where final energy consumption is more relevant. Based on a careful analysis of these issues and of global data constraints, the SE4ALL Global Tracking Frame- work for energy efficiency will: }} Rely primarily on energy intensity indicators }} Use PPP measures for GDP and sectoral value-added }} Use primary energy supply for national indicators and final energy consumption for sectoral indicators }} Complement those indicators with energy intensity of supply and of the major demand sectors }} Provide a decomposition analysis to at least partially strip out confounding effects on energy intensity }} Use a five-year moving average for energy intensity trends to smooth out extraneous fluctuations For the purposes of global tracking, data for the period 1990–2010 have been compiled from energy balances for 181 countries published by the International Energy Agency and the United Nations. These are comple- mented by data on national and sectoral value-added from the World Bank’s World Development Indicators. Looking ahead, significant international efforts are needed to improve the availability of energy input and output metrics across the main sectors of the economy to allow for more meaningful measures of energy efficiency. overview 21 Global final energy consumption can be broadly divided By contrast, the ratio of final to primary energy consumption, among the following major economic sectors: agriculture, which provides a measure of the overall efficiency of con- industry, residential, transport, and services. For the pur- version in the energy supply industry, actually deteriorated pose of initial global tracking, residential, transport, and during the period 1990-2010, falling from 72 to 68 percent. services are aggregated into a single category of “other This reflects relatively little improvement in the efficiency of sectors� owing to data limitations. Industry is by far the the electricity supply industry over the same period. The most energy-intensive of these sectors, consuming around efficiency of thermal generation (defined as the percent- 6.8 megajoules per 2005 dollar in 2010, compared with 5.5 age of the energy content of fossil fuels that is converted to for “other sectors� (residential, transport, and services) and electricity during power generation) improved only slightly 2.1 for agriculture.7 The most rapid progress in reducing from 38 to 39 percent, while transmission and distribution energy intensity has come in the agricultural sector, which losses remained almost stagnant at around 9 percent recorded a CAGR of –2.2 percent during 1990–2010 (fig- of energy produced. Gas supply losses fell a little more ure O.10a). Although progress was significantly slower in steeply, from 1.4 to 0.9 percent. the industry and other sectors, due to their much-higher levels of energy consumption they made far larger con- tributions to global energy savings than did agriculture during the same period (figure O.10b). Industry Agriculture Other Sectors 0% 10 Industry Agriculture Other Sectors 0% 10 (MJ/$2005 at PPP) (MJ/$2005 at PPP) 5 -1.4% -1.4% 5 -1.4% -1.4% -3% -2.2% 0 -3% -2.2% 0 Energy intensity trends by sector Energyintensity figure O.10A Energy trends intensity trends by sector (PPP terms) by sector CAGR 1990-2010 (left) EI in 1990 (right) EI in 2010 (right) CAGR 1990-2010 (left) EI in 1990 (right) EI in 2010 (right) industry (40%) agriculture (4%) other sectors (56%) figure O.10B Share of Share cumulative ofsavings energy cumulative by sector energy savings by sector Source: Based on World Development Indicators, World Bank; IEA 2012a. Note: “Other sectors� include residential, transport, and services. CAGR = compound annual growth rate; EI = energy intensity; PPP = purchasing power parity. 7 Owing to data limitations, in this report the category “other sectors� includes transport, residential, services, and others. The medium- and long-term methodology considers them separately. 22 Global tracking framework The rate of progress on energy intensity varied dramati- as the Middle East) was the only region to show a deterio- cally across world regions over the period 1990–2010. At rating trend in energy intensity, with a CAGR of +0.8 per- one end of the spectrum, the Caucasus and Central Asia cent. Overall, 85 percent of the energy savings achieved region achieved a CAGR of –3.2 percent while nonethe- between 1990 and 2010 were contributed by Eastern Asia less remaining the region with the highest energy intensity and the developed countries (figure O.11b). (figure O.11a). At the other end, Western Asia (also known 2% 40 2% 40 0.8% 0.8% 30 30 0% (MJ/$2005 0% (MJ/$2005 -0.1% -0.5% -0.5% -0.1% -0.5% -0.5% -1.1% -1.1% 20 -1.3% -1.3% -1.1% -1.3% -1.5% -1.3% -1.1% 20 -1.7% -1.5% at -1.7% at -2% -2.3% PPP) -2% -2.3% PPP) 10 10 -3.2% -3.2% -4% 0 -4% 0 mm eu ee aa aa ea aa sa iaia cc ff aa aa ww cc ss se la eu ee ea oo sa aa nn nn ss cc se la nn ea ea cc figure O.11A Energy figure O.11 figure O.11 Energy Energyintensity trends intensity trends intensity trends by 1990-2010 by region, by region, region (PPP terms) 1990-2010 CAGR 1990-2010 (left) EI in 1990 (right) EI in 2010 (right) CAGR 1990-2010 (left) EI in 1990 (right) EI in 2010 (right) SOURCE: IEA, WDI SOURCE: IEA, Note: nam WDI = northern america; eu = europe; ee = eastern europe; cCA = Caucasus and Central Asia; Note: nam = northern WA = Western Asia; EA = Eastern eu america; = europe; AsiA; ee = eastern europe; SEA = South-Eastern cCA Asia; SA = Caucasus = Southern and Asia; LACCentral Asia; = Latin America WA = Western Asia; EA = AsiA; SEA Eastern Africa; and Caribbean; NAF = Northern = South-Eastern SSA = Sub-Saharan Asia; SA = Southern Asia; LAC = Latin America Africa. and Caribbean; NAF = Northern Africa; SSA = Sub-Saharan Africa. EA (58%) NAm (17%) EU (10%) EE (6%) SA (4%) CCA (2%) LAC (1%) SSA (1%) Oceania ( <1%) SEA (<1%) figure O.11B Share of cumulative energy savings by region Source: Based on World Development Indicators, World Bank; IEA 2012a; UN Energy Statistics Database. Note: PPP = purchasing power parity; CAGR = compound annual growth rate; EI = energy intensity; NAm = North America; EU = Europe; EE = Eastern Europe; CCA = Caucasus and Central Asia; WA = Western Asia; EA = Eastern Asia; SEA = South- Eastern Asia; SA = Southern Asia; LAC = Latin America and the Caribbean; NAf = Northern Africa; SSA = Sub-Saharan Africa. High-impact countries Energy consumption is distributed unequally across for 40 percent of the total (figure O.12). The achievement countries, almost to the same degree as income. The of the global objective of doubling the rate of improvement 20 largest energy consumers account for 80 percent of of energy efficiency will therefore depend critically on primary energy consumption, with the two largest consum- energy consumption patterns in these countries. ers (the United States and China) together accounting overview 23 As of 2010, the high-income countries (with the exception mix of the countries of the former Soviet Union and those of Saudi Arabia) show the lowest energy intensity relative of Sub-Saharan Africa—report intensities of 20–30 mega- to GDP . Nevertheless, energy consumption per capita varies joules per 2005 PPP dollar (figure O.13). At the other hugely across this group, from 110 gigajoules per capita in extreme, the least energy-intensive countries—predom- Western Europe to 300 in North America. By contrast, the inantly small island developing states with exceptionally middle-income countries (with the exception of Russia and high energy costs—report intensities of 2–4 megajoules Kazakhstan) show much lower levels of per capita energy per 2005 PPP dollar (figure O.14). Even among the 20 larg- consumption but vary widely in their energy intensities. In est energy consuming countries, energy intensities range particular, energy intensities in Latin America are comparable from more than 12 megajoules per 2005 PPP dollar in to those found in Western Europe, whereas in the Ukraine Ukraine, Russia, Saudi Arabia, South Africa, and China to and Uzbekistan they are exceptionally high (figure O.13). less than 5 in the United Kingdom, Spain, Italy, Germany, and Japan. The gap between the world’s most and least energy- intensive economies is wide—more than tenfold. At one ex- treme, the most energy-intensive countries—a heterogenous Primary energy supply/GDP (PPP) hics Uzbekistan umics lmics Ukraine Kazakhstan iraq Russia nigeria south africa Saudi Arabia china iran vietnam venezuela canada indonesia S. Korea Primary energy pakistan Thailand consumption/capita Malaysia egypt Czech Rep. Belgium uaE india algeria Sweden Poland mexico France Australia brazil italyjapan Philippines argentina Netherlands usa turkey Germany spain uk figure O.12 Energy intensity (PPP) vs. energy consumption per capita in 40 largest energy consumers, 2010 Source: Based on World Development Indicators, World Bank; IEA 2012a. Note: Values are normalized along the average. Bubble size represents volume of primary energy consumption. PPP = purchasing power parity. GDP = gross domestic product; PPP = purchasing power parity; HICs = higher-income countries; UMICs = upper-middle-income countries; LMICs = lower-middle-income countries; UAE = United Arab Emirates. 24 Global tracking framework Liberia 59.8 St. Lucia 3.9 Congo, DRC 47.6 Botswana 3.8 Burundi 33.3 Ireland 3.7 Trinidad & T. 28.8 Bahamas 3.7 Sierra Leone 26.7 Switzerland 3.7 Turkmenistan 23.8 Malta 3.7 Uzbekistan 23.3 Grenada 3.6 Guinea 22.2 Kiribati 3.6 Mozambique 22.2 Panama 3.6 Iceland 21.6 Albania 3.5 Togo 20.8 Colombia 3.4 Ukraine 19.8 Antigua & Barb. 3.4 Zambia 18.8 Peru 3.3 Uganda 18.2 Solomon Isl. 3.0 Ethiopia 18.0 St. Vincent 2.9 Kazakhstan 17.6 Afghanistan 2.9 Sao Tome & P. 16.3 Vanuatu 2.7 Guyana 16.3 Dominica 2.6 Bhutan 16.0 Hong Kong 2.0 Swaziland 15.9 Macau 1.0 figure O.13 Countries with highest energy figure O.14 Countries with lowest energy intensity level in 2010 (MJ/$2005) intensity level in 2010 (MJ/$2005) Source: Based on World Development Indicators, World Bank; IEA 2012a; UN Energy Statistics Database. Note: PPP = purchasing power parity; DR = “Democratic Republic of.� Fast-moving countries In doubling the rate of energy efficiency improvement glob- countries of the former Soviet Union, and several countries ally, it will be important to learn from those countries that in Sub-Saharan Africa (figure O.16). By far the largest ab- made the most rapid progress toward this goal during the solute energy savings have been made by China, where 20 years between 1990 and 2010. While the global CAGR energy efficiency efforts have yielded savings equivalent of energy intensity was only –1.3 percent over the period in magnitude to the energy used by the country over the 1990–2010, 20 countries achieved rates of –4.0 percent or same time frame. Savings in the United States, the Euro- greater (figure O.15). The countries making the most rapid pean Union, and India have also been globally significant. progress on energy intensity often started out with partic- ularly high levels of energy intensity—notably China, the   Unadjusted adjusted Bosnia & Herz. 11.9% Armenia 11.2% Estonia 8.4% Estonia 9.3% Azerbaijan 7.9% Azerbaijan 8.5% Armenia 7.3% China 6.5% Afghanistan 6.8% Myanmar 5.6% East Timor 6.3% Uganda 5.5% Sao Tome & P. 5.9% Dominican Rep. 5.5% Belarus 5.3% Mongolia 5.2% Georgia 4.9% Laos 5.0% China 4.7% Georgia 4.8% Lithuania 4.6% Lithuania 4.7% Kyrgyzstan 4.5% Belarus 4.6% Albania 4.4% Turkmenistan 4.5% Bhutan 4.3% Moldova 4.1% Laos 4.2% Swaziland 4.1% Eritrea 4.1% India 4.1% Romania 4.0% Romania 4.0% Turkmenistan 4.0% Uzbekistan 3.9% Moldova 3.9% Bulgaria 3.8% Uganda 3.9% Slovakia 3.7% figure O.15 Reductions in energy intensity of 20 fastest-moving countries, CAGR, 1990–2010 (PPP terms) Source: Based on World Development Indicators, World Bank; IEA 2012a; UN Energy Statistics Database. Note: CAGR = compound annual growth rate. “Adjusted energy intensity� is a measure derived from the Divisia decomposition method that controls for shifts in the activity level and structure of the economy. overview 25 Cumulative primary energy demand, 1990-2010 Cumulative energy savings, 1990–2010 USA 1,904 China 1,320 China 1,269 USA 369 Russia 595 India 114 Japan 435 Germany 69 India 413 UK 47 Germany 297 Poland 46 France 221 Bosnia & Herz. 38 Canada 214 Russia 35 UK 190 Iraq 24 Brazil 168 Canada 23 Korea 155 Belarus 18 Italy 146 Romania 18 Ukraine 138 Estonia 16 Indonesia 134 Mexico 14 Mexico 131 France 14 Iran 118 Australia 13 Spain 103 Kazakhstan 12 S. Africa 101 Argentina 11 S. Arabia 99 Nigeria 11 Australia 93 Czech Rep. 10 figure O.16 Largest cumulative consumers of primary energy, and cumulative energy savings as a result of reductions in energy intensity, 1990–2010 (exajoules) Source: Based on World Development Indicators, World Bank; IEA 2012a; UN Energy Statistics Database. Note: Bosnia & = Bosnia & Herzegovina. Scale of the challenge Looking ahead, analysis from the IEA’s World Energy Out- policies (referred to as the New Policies Scenario in figure look 2012 indicates that energy efficiency policies currently O.17; IEA 2012b). Under an Efficient World Scenario that in effect or planned around the world would take advantage exploits all cost-effective improvements, it would be pos- of just a third of all economically viable energy efficiency sible to improve energy intensity by an average CAGR of measures. The current or planned uptake of available –2.8 percent through 2030, more than double historic rates measures is highest in the industrial sector at 44 percent, and even somewhat beyond the SE4ALL objective. About followed by transport at 37 percent, power generation at 21 80 percent of the energy savings that are achievable under percent, and buildings at 18 percent. this scenario would result from measures taken by energy consumers in end-use sectors, with much of the remaining Recent analysis shows that the existing potential for 20 percent attributable to fuel switching and supply-side cost-effective improvements in energy efficiency goes far efficiency measures. By far the largest potential for energy beyond what will be captured through current and planned efficiency improvements is to be found in developing Asia. 800 Efficiency in end-uses 750 Fuel switching 700 Activity 650 Energy supply 600 550 New Policies Scenario 500 Current Policies Scenario 450 Efficient World Scenario 2010 2015 2020 2025 2030 figure O.17 Change in global primary energy demand by measure between IEA Efficient World Scenario and IEA New Policies Scenario, 2010–2030 (exajoules) Source: IEA 2012b. 26 Global tracking framework The Efficient World Scenario would slow the CAGR of global adoption of a strong set of energy policy measures, including energy demand to 0.6 percent through 2030, compared the phasing out of fossil-fuel subsidies, the provision of with an anticipated 1.3 percent under current and planned price signals for carbon emissions, and the adoption of policies. It should be noted that even the Efficient World strict energy efficiency standards. Scenario does not bring about an overall decline in global energy demand over the period 2010–2030. IIASA’s GEA presents six scenarios that meet all three SE4ALL objectives while also meeting the requirement to Mobilizing these improvements would call for cumulative limit global temperature increases to 2°C. All six of these additional investments of close to $400 billion annually scenarios require CAGRs for energy intensity on the or- through 2030, more than triple historic levels. These invest- der of –3.0 percent annually. Achieving the global objec- ments—although high—would offer the prospect of rapid tive would entail CAGRs for energy intensity in the range of payback, giving a boost to the global economy of $11.4 –4.0 to –6.0 percent for Asia and the former Soviet Union trillion over the same period. As in the case of renewable (figure O.18). energy, achieving change on this scale is contingent on the d rl EU M EA O M PA U FR S S U d o A PA PA SA LA EE FS W M N C A rl W 0% EU M EA O M PA U FR S S U o A PA PA SA LA EE FS W -1% M N C A W 0% -2% -1% -3% -2% -4% -3% -5% -4% -6% -5% -6% figure O.18 Annual rate of improvement in primary energy intensity: IIASA Global Energy AssessmentBaseline SE4ALL baseline vs. SE4ALL scenario, CAGR, 2010–2030 Baseline SE4ALL Source: IIASA (2012). Note: On the chart above GDP is measured at market exchange rate and primary energy is measured using direct equivalent method as opposed to the physical content method used elsewhere. CAGR = compound annual growth rate. NAM = North America; WEU = Western Europe; PAO = Pacific OECD; MEA = Middle East and North Africa; AFR = Sub-Saharan Africa; EEU = Eastern Europe; LAM = Latin America; FSU = former Soviet Union; PAS = Pacific Asia; SAS = South Asia; CPA = Centrally Planned Asia. Doubling the share of renewable energy in the global energy mix The amount of energy provided from renewable sources the consumption of energy from renewable sources rose, for electricity, heating, and transportation has expanded global TFEC grew at a comparable pace of 1.1 percent rapidly since 1990, and particularly since 2000, with a com- during 1990–2000 and 2.0 percent during 2000–2010. As pound annual growth rate (CAGR) of 1.5 percent during a result, the share of renewable energy in the total final en- 1990–2000 and 2.4 percent during 2000–2010.8 Global ergy consumption remained relatively stable, growing from consumption of renewable energy grew from 40 exajoules 16.6 percent in 1990 to 18.0 percent in 2010. (EJ) in 1990 to almost 60 EJ in 2010 (figure O.19). Yet as 8 Nuclear energy is not considered renewable. overview 27 70 18.0% 17.2% 17.4% 17.0% 16.6% 60 50 Other RE 40 Hydro 30 Modern Biomass Traditional Biomass 20 RE share in TFEC 10 - 1990 1995 2000 2005 2010 figure O.19 World consumption of renewable energy (exajoules) and share of renewable energy in TFEC (%) SOURCE: IEA 2012a. Note: TFEC = total final energy consumption; RE = renewable energy. Focusing specifically on electricity, power generation from electricity generation of China, the United States, and India renewable sources increased from 2,300 terawatt-hours in 2010. As of 2011, renewable energy sources account- (TWh) in 1990 to 4,160 TWh in 2010. The increase in ed for more than 20 percent of global power generated, electricity generation from renewable sources is equivalent 25 percent of global installed power generation capacity, to the combined electricity output of Russia and India and half of newly installed power generation capacity in 2010. Global electricity generation almost doubled in added that year. More than 80 percent of all renewable the 20-year period, growing from 11,800 TWh in 1990 to electricity generated globally was from hydropower. 21,400 TWh in 2010, which is equivalent to the combined The starting point The starting point for the share of renewable energy in total of the renewable energy total relates to modern forms of final energy consumption against which future progress bioenergy, and most of the remainder is hydropower. will be measured is estimated to be at most 18 percent of Remaining forms of renewable energy—including wind, TFEC in 2010, reflecting uncertainties over whether some solar, geothermal, waste, and marine—together contribute types of renewable energy usage (notably traditional bio- barely 1 percent of global energy consumption, though mass) meet sustainability criteria (figure O.20). The implied they have been growing at an exponential rate. For example, SE4ALL global objective is up to 36 percent by 2030. wind power grew at a CAGR of 25.0 percent and solar at 11.4 percent, compared with a growth rate of slightly over It is estimated that traditional biomass accounts for about 1 percent for traditional biomass (figure O.21). half of the renewable energy total, although data on these traditional usages are imprecise, and the sustainability of An examination of the methodological issues of measuring these sources cannot be reliably gauged.9 A further quarter the renewable energy share can be found in box O.3. 9 The UN Food and Agriculture Organization defines traditional biomass as “woodfuels, agricultural by-products, and dung burned for cooking and heating purposes.� In developing countries, traditional biomass is still widely harvested and used in an unsustainable and unsafe way. It is mostly traded informally and non-commercially. So-called modern biomass, by contrast, is produced in a sustainable manner from solid wastes and residues from agriculture and forestry. 28 Global tracking framework traditional biomass (9.6%) modern biomass (3.7%) liquid biofuels (0.8%) fossil fuels (79.1%) wind (0.3%) Nuclear (2.5%) 18.0% solar (0.2%) renewable energy (18%) biogas (0.2%) geothermal (0.2%) waste (0.1%) marine (0.01%) hydro (3.1%) figure O.20 Global Share of Renewable Energy in TFEC, 2010 figure O.20 Share of renewable energy in global TFEC, 2010 SOURCE: IEA SOURCE: IEA 2012a. Note: TFEC = total final energy consumption; 25.0% 16.7% 11.1% 11.4% 6.6% 5.1% 1.2% 1.9% 2.3% 0.0% e ss ss ro l e s r s d a el a n st la in a a m g ri yd fu a W m m So o er a W o o H Bi M o th Bi Bi Bi eo l n a er n G d io o it M d a Tr figure O.21 Compound annual growth rates (CAGRs) by renewable energy source, 1990–2010 SOURCE: IEA 2012a. overview 29 Box O.3 Methodological challenges in defining and measuring renewable energy There are various definitional and methodological challenges in measuring and tracking the share of renew- able energy in the global energy mix used for heating, electricity, and transportation. First, while there is a broad consensus among international organizations and government agencies on what constitutes renewable energy, their legal and formal definitions vary slightly in the type of resources included and the sustainability considerations taken into account. For the purposes of the SE4ALL Global Tracking Framework, it is important that the definition of renewable energy should be specific about the range of sources to be included, should embrace the notion of natural replenishment, and should espouse sustainability. But the data and agreed-upon definitions needed to determine whether renewable energy—notably biomass—has been sustainably produced are not currently available. Therefore, it is proposed that, as an interim measure for immediate tracking purposes, renewable energy should be defined and tracked without the application of specific sustainability criteria. Accordingly, its broad definition is as follows: “Renewable energy is energy from natural sources that are replenished at a faster rate than they are con- sumed, including hydro, bioenergy, geothermal, aerothermal, solar, wind, and ocean.� Second, an important methodological choice is whether tracking should be undertaken at the primary level of the energy balance or on the basis of final energy. Power generation from fossil fuels leads to substantial energy losses in conversion, leading to a discrepancy between primary energy, or fuel input, and final energy, or useful energy output. Since renewable energy sources do not have fuel inputs, they are only reported in final energy terms; expressing them in primary terms would require the use of somewhat arbitrary conversion factors. Third, the high aggregation levels and data gaps in certain categories of available data repositories still limit the analysis. Data gaps have also been identified in the areas of distributed generation and off-grid electricity services. An additional challenge is related to measuring the heat output from certain renewable sources of energy such as heat pumps and solar water heaters. These missing components of renewable energy are relatively small in scale at present but are expected to grow significantly through 2030, making it increasingly important to develop methodologies and systems for capturing the associated data. For the purposes of global tracking, data for the period 1990–2010 have been compiled from energy balances for 181 countries published by the International Energy Agency and the United Nations. Those data will be complemented by indicators on: (i) policy targets for renewable energy and adoption of relevant policy measures; (ii) technology costs for each of the renewable energy technologies; and (iii) total investment in renewable energy from the Renewable Energy Network 21, the International Renewable Energy Agency, and Bloomberg New Energy Finance, respectively. Looking ahead, significant international efforts are needed to improve data collection methodologies and bridge identified data gaps. In particular, there is a need to develop internationally agreed-upon standards for sustainability for each of the main technologies, which can then be used to assess the degree to which deployment meets the highest sustainability standards. This is particularly critical in the case of biomass, where traditional harvesting practices can be associated with deforestation. 30 Global tracking framework Looking across regions, it is striking that lower-income energy (in the range of 10 to 15 percent), although those regions, such as Africa and Asia, have the highest shares shares grew steadily over the two decades. Overall, Africa of renewable energy, ranging from 20 to 60 percent. These and Asia alone accounted for about two-thirds of global shares declined significantly in 1990–2010, however, in part share of renewable energy in TFEC in 2010, while Europe due to decreased reliance on traditional biomass for cook- and North America together contributed about 20 percent ing and wider adoption of non-solid cooking fuels (figure (figure O.23). O.22). By contrast, higher-income regions such as Europe and America present much lower shares of renewable 80% ssa 70% sa sea 60% lac 50% ea 40% oceania eu 30% nam 20% ee naf 10% cca 0% wa 1990 2000 2010 figure O.22 Evolving renewable energy share by region, 1990-2010 (percentage of total final energy consumption) SOURCE: IEA 2012a. Note: TFEC = total final energy consumption; RE = renewable energy. CCA = Caucasus and Central Asia; EA = Eastern Asia; LAC = Latin America and Caribbean; NAf = Northern Africa; SEA = South-Eastern Asia; SA = Southern Asia; SSA = Sub-Saharan Africa; WA = Western Asia; EU = Europe. Ssa (21%) Ea (20%) Sa (16%) LAC (11%) eu (10%) nam (10%) sea (8%) other (5%) figure O.23 Regional contributions to global renewable energy 2010 (percentage contribution to the global share of renewable energy in TFEC) SOURCE: IEA 2012a. Note: CCA = Caucasus and Central Asia; EA = Eastern Asia; LAC = Latin America and Caribbean; NAf = Northern Africa; SEA = South-Eastern Asia; SA = Southern Asia; SSA = Sub-Saharan Africa; WA = Western Asia; EU = Europe; other = All other regions. overview 31 If we confine attention to power generation only, the regional highest regions – Caucuses and Central Asia, Europe, picture for the share of renewable energy in the electricity Oceania and Sub-Saharan Africa – all of them above 20 mix looks quite different. Latin America and Caribbean percent. Globally, 80 percent of renewable electricity gen- emerges as the region with by far the highest share of eration is found evenly spread across just four regions: renewable energy in the electricity generation portfolio of East Asia, Europe, Latin America and Caribbean and North 56 percent, which is more than twice the level in the next America. High-impact opportunities Substantial potential exists for further tapping of renewable and solar—have been falling steeply and are expected to energy sources. Studies have consistently found that the fall further as the scale of production increases. As a result, technical potential for renewable energy use around the renewable energy sources—in particular hydropower, globe is substantially higher than projected global energy wind, and geothermal—are increasingly competitive in demand in 2050. The technical potential for solar energy many environments, while solar energy is becoming com- is the highest among the renewable energy sources, but petitive in some environments. Nevertheless, it is still chal- there is also substantial untapped potential for biomass, lenging for renewable energy to compete financially with geothermal, hydro, wind, and ocean energy. Available data conventional fossil-fuel alternatives, particularly given that suggest that most of this technical potential is located in the local and global environmental impact of these con- the developing world. For instance, at least 75 percent of ventional sources of energy is not fully reflected in costs. the world’s unexploited hydropower potential is found in The further integration of renewable energy sources into Africa, Asia, and South America, and about 65 percent of the public electricity supply system also calls for more total geothermal potential is found in countries that are not proactive expansion of both transmission grids and back- members of the Organisation for Economic Co-operation up capacity for handling higher levels of variability in the and Development (OECD). The solar belt—that is, the trop- production of wind and solar energy and this further adds ical latitudes that have the highest solar irradiance across to the associated cost. The relatively high capital costs of the globe—endows many developing countries with a high renewable energy, even when overall lifecycle costs may potential for solar-based power generation and heating. be lower, adds further to the financing challenge. Despite the major technical potential of renewable energy, large-scale adoption will ultimately depend on economic factors. The costs of renewable energy—particularly wind Fast-moving countries Over the 20 years between 1990 and 2010, renewable the United States, Brazil, Germany, India, Italy, and Spain energy technologies matured and became more widely (figure O.24). The technology of focus differs from case adopted. Both developed and developing countries are to case, with China focusing mainly on hydropower; the increasingly motivated by the social benefits offered by United States on liquid biofuels; Brazil, Germany, and renewable energy, including enhanced energy security, re- India on modern biomass; and Spain on wind power. Those duced greenhouse gas emissions and local environmental countries moving most rapidly, such as China and Germany, impacts, increased economic and industrial development, experienced average annual rates of growth of 8–12 and more options for reliable and modern energy access. percent in 1990–2010. As of 2010, the countries with the Today, about 120 countries—more than half of them devel- highest shares of renewable energy (excluding traditional oping countries—have a national target related to renew- biomass) were Norway, Sweden, and Tajikistan, where the able energy. Moreover, 88 countries have introduced price- shares were about 50 percent (figure O.25). Many other or quantity-based incentives for renewable energy. Just emerging countries—among them Argentina, Mexico, Tur- over half of those countries are in the developing world. key, Indonesia, Philippines, and a few African countries— are starting to show progress in adopting policies to scale Almost 80 percent of renewable energy other than traditional up renewables. biomass has been produced and consumed by high- income and emerging economies, most notably China, 32 Global tracking framework china 2,804 United States 2,274 brazil 1,719 Germany 730 india 546 Waste Italy 340 spain 297 Modern Biomass Sweden (4) 221 Biogas thailand 214 France (1) 209 liquid Biofuels canada (0) 204 Hydro Poland 198 nigeria 159 Geothermal Austria 139 Solar finland 138 United Kingdom 142 Wind congo, drc 118 Chile 112 pakistan 95 Venezuela 94 (500) - 500 1000 1500 2000 2500 3000 figure O.24 Volume of incremental consumption of renewable energy (excluding traditional biomass), 1990–2010 (petajoules) SOURCE: IEA 2012a. Note: “Incremental consumption� indicates additional consumption of renewable energy over and above the level of consumption in 1990. DRC = Democratic Republic of Congo. Share of RE in TFEC norway 55% Tajikistan hics Sweden Brazil umics 45% lmics Paraguay lics 35% Finland Canada Chile Sri Lanka 25% Colombia DRC Tanzania Mozambique Turkey Spain 15% Thailand Germany mexico India Italy China 5% Indonesia Myanmar russia japan USA Compound Annual -2% 0% 2% 4% 6% 8% 10% 12% 14% Growth Rate, -5% 1990-2010 figure O.25 Share of renewable energy in total final energy consumption and compound annual growth rate in consumption of renewable energy, 2000–10 SOURCE: IEA 2012a. Note: TFEC = total final energy consumption; CAGR = compound annual growth rate; RE = renewable energy. Figure excludes traditional biomass, but includes the use of modern biomass. Congo and Tanzania appear due to their high use of modern biomass in the industrial sector. Negative CAGRs shown denote a reduction in the use of non- traditional solid biomass (most notably in industry) in Turkey, Mexico, and Indonesia. Unlabeled bubbles represent countries with a low share of RE in TFEC and a low CAGR. overview 33 Scale of the challenge If current trends were to continue, the expansion of renew- greatly in terms of their methodologies (that is, forecasting able energy would barely keep pace with the projected versus goal-seeking) as well as their assumptions about expansion of global energy demand. Consequently, the the prevailing policy environment. A review of energy mod- expected renewable energy share in 2030 would be no eling scenarios by the Intergovernmental Panel on Climate greater than 19.4 percent—barely one percentage point Change finds that more than half of 116 scenarios indicate higher than it is today. a renewable energy share in total primary energy supply of less than 17 percent by 2030, with the highest cases Furthermore, if current overall growth in energy demand projecting a renewable energy share of 43 percent (figure continues, renewable energy consumption would have O.26). Those scenarios in which renewable energy shares to triple, growing at an annual rate of 5.9 percent—or two rise above the 30 percent mark typically assume a strong and a half times the current growth rate—in order meet the package of policy measures, such as elimination of fossil target of doubling by 2030. Given that traditional biomass -fuel subsidies, imposition of carbon pricing, aggressive (representing about half of renewable energy use in 2010) pursuit of energy efficiency, sustained support for research is not expected to expand greatly, the annual growth rate and development of emerging renewable technologies, for other forms of renewable energy would have to be in and the advent of advanced transport fuels and technologies. double digits. Achieving the SE4ALL renewable energy objective within By contrast, if overall energy demand were to stabilize a supportive policy environment will call for sustained (due to greater energy efficiency, for example), doubling global investments in the range of $250 to $400 billion per the renewable energy contribution would require an annual year, depending on the pace of growth in energy demand. growth rate of 3.5 percent, or a 50 percent increase over Financing for renewable energy rose exponentially in the levels observed in 1990–2010. This analysis highlights 2000–2010, reaching $277 billion in 2011. Only the last four the critical linkage between the SE4ALL objectives for years of this period, however, saw an investment exceed- renewable energy and energy efficiency. ing the bottom of the required range; the total investment over the ten-year period amounted to an annual average of Several agencies and organizations have modeled sce- just $120 billion. narios of the evolution of renewable energy. These vary 60% 50% Greenpeace 60% 40% GEA6 & GEA 4 50% Greenpeace GEA1 & GEA 2 GEA3 & GEA 5 30% 40% GEA6 & GEA 4 WEO 450 GEA1 & GEA 2 GEA3 & GEA WEO NPS 5 & EM 20% 30% WEO CPS WEO 450 10% 20% WEO NPS & EM WEO CPS 0% 10% 1990 2000 2010 2020 2030 0% figure 1990 % RE - Historical O.26 Projections 2000 % RE - Trends of share 2010 Continued 2020 % RE2030 of renewable energy- SE4ALL Target Growth Rate in TFEC, 1990–2030 % RE - Historical % RE - Trends Continued % RE - SE4ALL Target Growth Rate Source: IEA (2012b): Greenpeace International (2012); IIASA (2012); ExxonMobil (2012). Note: TFEC = total final energy consumption; RE = renewable energy; WEO = World Energy Outlook; GEA = Global Energy Assessment; NPS = New Policies Scenario (IEA); CPS = Current Policies Scenario (IEA); EM = ExxonMobil; SEFA = Sustainable Energy for All (SE4ALL). 34 Global tracking framework The way forward On the basis of the Global Tracking Framework, it is possi- energy intensity will need to double from –1.3 percent in ble to establish the following starting points against which 1990–2010 to –2.6 percent in 2010–30; and the share of progress will be measured under the SE4ALL initiative: the renewable energy in the global energy mix will need to rate of access to electricity and primary non-solid fuel will double from an estimated 18 percent in 2010 to up to 36 have to increase from 83 and 59 percent in 2010, respec- percent by 2030 (table O.3). tively, to 100 percent by 2030; the rate of improvement of Objective 1 Objective 2 Objective 3 Doubling share Doubling global of renewable Universal access to modern energy services rate of improvement energy in global of energy efficiency energy mix Percentage of Percentage of population with Rate of improvement Renewable energy Proxy indicator population with primary reliance on in energy intensity* share in TFEC electricity access non-solid fuels Historic reference 1990 76 47 16.6 –1.3 Starting point 2010 83 59 18.0 Objective for 2030 100 100 –2.6 36.0 Table o.3 SE4ALL historic references, starting points, and global objectives (%) Source: Authors. Note: TFEC = total final energy consumption *Measured in primary energy terms and GDP at purchasing power parity While progress in all countries is important, achievement of the progress that can be supported in these countries. A the global SE4ALL objectives will depend critically on prog- third group of 20 high-income and emerging economies ress in the 20 high-impact countries that have a particularly accounts for four-fifths of global energy consumption. large weight in aggregate global performance. Two over- Therefore, the efforts of those high-impact countries to lapping groups of 20 high-impact countries in Asia and accelerate improvements in energy efficiency and develop Africa account for about two-thirds of the global electrifica- renewable energy will ultimately determine the global tion deficit and four-fifths of the global deficit in access to achievement of the corresponding targets. non-solid fuels (figure O.27). Meeting the universal access objective globally will depend to a considerable extent on   overview 35 Electricity access Electricity access deficit non-solid fuel Non-solid fuel access access deficit Primary Primary energy energy demand demand deficit (million) (millions of people) deficit (million) (millions of people) (exajoules) (exajoules) India 306 306.2 India 705 705 China 107 107.4 Nigeria 82 82.4 China 613 612.8 USA 93 92.8 Bangladesh 67 66.6 Bangladesh 135 134.9 Russia 29 29.4 Ethiopia 64 63.9 Indonesia 131 131.2 India 29 29 Congo, DR 56 55.9 Nigeria 118 117.8 Japan 21 20.8 Tanzania 38 38.2 Pakistan 111 110.8 Germany 14 13.7 Kenya 31 31.2 Ethiopia 81 81.1 Brazil 11 11.1 Sudan 31 30.9 Congo, DR 61 61.3 France 11 11 Uganda 28 28.5 Vietnam 49 49.4 Canada 10 10.5 Myanmar 25 24.6 Philippines 46 46.2 S. Korea 10 10.5 Mozambique 20 19.9 Myanmar 44 44 Iran 9 8.7 Afghanistan 18 18.5 Tanzania 42 42.3 Indonesia 9 8.7 Korea, DR 18 18 Sudan 34.6 UK 8 8.5 Madagascar 18 17.8 Kenya 32.6 Mexico 8 7.5 Philippines 16 15.6 Uganda 32.2 Italy 7 7.1 Pakistan 15 15 Afghanistan 26.7 S. Arabia 7 7.1 Burkina Faso 14 14.3 Nepal 24.6 S. Africa 6 5.7 Niger 14 14.1 Mozambique 22.2 Ukraine 6 5.5 Indonesia 14 14 Korea, DR 22.2 Spain 5 5.3 Malawi 14 13.6 Ghana 20.4 Australia 5 5.2 figure o.27 Overview of high-impact countries Source: IEA, WB Global Electrification Database, WHO Global Household Energy Database. Note: DR = “Democratic Republic of.� FIG o.27 overview of high-impact countries SOURCE: WB, WHO, IEA In charting a course toward the achievement of the SE4ALL more than 3–4 percentage points annually. In the case objectives, it will also be important to learn from the of energy efficiency, the countries with the most rapid experience of the fast-moving countries that made the improvements in energy intensity have seen CAGRs of most progress during the 20 years between 1990 and 2010 minus 4–8 percent annually. In the case of renewable ener- (figure O.28). China and (to a lesser extent) India stand out gy, the most rapidly moving countries experienced CAGRs as both high-impact and fast-moving countries on all three of 10–20 percent (excluding traditional biomass). aspects of energy sector development.   In the case of electrification and cooking, even the most rapidly moving countries have not expanded access by 36 Global tracking framework average annual rate global average fast moving countries of improvement (%) Electrification 1.2 2.5 to 3.7 Non-solid fuel use 1.1 2.2 to 4.0 Energy intensity 1.3 3.9 to 11.9 Renewable energy [w/o trad. biomass] 3.0 7.0 to 18.2 Table o.4 Fast moving countries relative to global average, Average annual rate of improvement (%) Cumulative population connected to Cumulative population gaining electricity (million) access to non-solid fuels (million) India 474 473.7 India 402 402.5 India 474 473.7 India 402 402.5 China 258 258.1 China 318 318.4 China 258 258.1 China 318 318.4 Indonesia 103 102.6 Brazil 62 62.5 Indonesia 103 102.6 Brazil 62 62.5 Pakistan 92 92 Pakistan 49 49 Pakistan 92 92 Pakistan 49 49 Bangladesh 59 59.3 Indonesia 47 47.1 Bangladesh 59 59.3 Indonesia 47 47.1 Brazil 55 55.4 Vietnam 36 36.3 Brazil 55 55.4 Vietnam 36 36.3 Philippines 37 37.4 Mexico 34 34.4 Philippines 37 37.4 Mexico 34 34.4 Nigeria 35 35.2 Thailand 30 30.1 Nigeria 35 35.2 Thailand 30 30.1 Mexico 32 32.3 Egypt, Arab Rep. 28 28.4 Mexico 32 32.3 Egypt, Arab Rep. 28 28.4 Egypt 26 26.5 Turkey 27 27.4 Egypt 26 26.5 Turkey 27 27.4 Vietnam 25 25.3 Iran, Islamic Rep. 26 25.5 Vietnam 25 25.3 Iran, Islamic Rep. 26 25.5 Iran 21.5 Philippines 22.5 Iran 21.5 Philippines 22.5 Morocco 19.4 South Africa 20.1 Morocco 19.4 South Africa 20.1 Turkey 18.6 Iraq 16.2 Turkey 18.6 Iraq 16.2 South Africa 17.5 Colombia 15.1 South Africa 17.5 Colombia 15.1 Thailand 15.7 Nigeria 14.8 Thailand 15.7 Nigeria 14.8 Iraq 15.1 Malaysia 14.2 Iraq 15.1 Malaysia 14.2 Colombia 14.8 Korea, Rep. 13.9 Colombia 14.8 Korea, Rep. 13.9 Ethiopia 14.2 Algeria 13.7 Ethiopia 14.2 Algeria 13.7 Saudi Arabia 11.8 Argentina 13.2 Saudi Arabia 11.8 Argentina 13.2 Cumulative energy saved through Cumulative renewable energy consumed, reductions in energy intensity (exajoules) excluding traditional biomass (exajoules) China 1320 1,320 USA 62 62 China 1320 1,320 USA 62 62 USA 369 369 Brazil 50 50 USA 369 369 Brazil 50 50 India 114 114 India 32 32 India 114 114 India 32 32 Germany 69 Canada 29 29 Germany 69 Canada 29 29 UK 47 China 24 24 UK 47 China 24 24 Poland 46 France 13 13 Poland 46 France 13 13 Bosnia H. 38 Russia 11 11 Bosnia H. 38 Russia 11 11 Russia 35 Sweden 11 11 Russia 35 Sweden 11 11 Iraq 24 Japan 10 10 Iraq 24 Japan 10 10 Canada 23 Mexico 9 9 Canada 23 Mexico 9 9 Belarus 18 Norway 9 9 Belarus 18 Norway 9 9 Romania 18 Germany 9 9 Romania 18 Germany 9 9 Estonia 16 Turkey 8 8 Estonia 16 Turkey 8 8 Mexico 14 Indonesia 8 8 Mexico 14 Indonesia 8 8 France 14 Nigeria 7 7 France 14 Nigeria 7 7 Australia 13 Spain 6 6 Australia 13 Spain 6 6 Kazakhstan 12 Finland 6 6 Kazakhstan 12 Finland 6 6 Argentina 11 Italy 6 6 Argentina 11 Italy 6 6 Nigeria 11 Austria 5 5 Nigeria 11 Austria 5 5 Czech Rep. 10 Chile 5 5 Czech Rep. 10 Chile 5 5 figure o.28 Overview of fast moving countries (1990-2010) Source: IEA, UN, WB Global Electrification Database, WHO Global Household Energy Database. Note: Bosnia H. = Bosnia and Herzegovina. overview 37 Global energy model scenarios enable us to gauge the The global energy models also help to clarify the kinds of scale of the global challenge of achieving the SE4ALL ob- policy measures that would be needed to reach the Sec- jectives. Based on these scenarios, it is clear that business retary General’s three sustainable energy objectives. The as usual will not suffice (table O.4). With regard to universal WEO and GEA coincide in highlighting the importance access, business as usual would leave 12–16 percent and of phasing out fossil-fuel subsidies, adopting measures 31–36 percent of the world’s population in 2030 without to provide price signals for carbon, embracing stringent electricity and non-solid fuels, respectively. Implement- technology standards for energy efficiency, and carefully ing all currently available energy efficiency measures with designing and targeting subsidies to increase access. reasonable payback periods would be enough to meet or even exceed the SE4ALL objective. However, numerous In addition, global models help to clarify the likely pattern barriers prevent wider adoption of many of those mea- of efforts to achieve the SE4ALL objectives across geo- sures, so that the current uptake ranges from around 20 graphical regions based on starting points, potential for percent for power generation and building construction to improvement, and comparative advantage. On energy around 40 percent for manufacturing and transportation. access, greatest efforts are needed in Sub-Saharan Africa Furthermore, few scenarios point to renewable energy and South Asia. For energy efficiency, the highest rates of shares above 30 percent by 2030. improvement are projected at around –4 percent annually in Asia (particularly China) and the countries of the former Existing global investment in the areas covered by the Soviet Union. For renewable energy, Latin America and three SE4ALL objectives was estimated at around $400 Sub-Saharan Africa (with its strong reliance on traditional billion in 2010 (table O.5). The additional annual invest- biomass) emerge as the regions projected to reach the ments required to achieve the three objectives are tenta- highest share of renewable energy in 2030—in excess of tively estimated to be at least $600–800 billion—a doubling 50 percent, compared to the 20–40 percent range in much or tripling of current levels. The bulk of those investments of the rest of the world (table O.6). is associated with the renewable energy and energy effi- ciency objectives, with access-related expenditures rep- resenting a relatively small share (10–20 percent) of the incremental costs. 38 Global tracking framework Objective 1 Objective 2 Objective 3 Doubling share Doubling global of renewable Universal access to modern energy services rate of improvement energy in global of energy efficiency mix Population with Global rate of Renewable energy Population with Percentage in 2030 primary reliance on improvement in share in total final electricity access non-solid fuels energy intensity* energy consumption IEA scenarios   New policies 88 69 –2.3 20   Efficient world 88 69 –2.8 22  450 n.a. n.a. –2.9 27 GEA scenarios Baseline 84 64 –1.0 12   GEA Pathways 100 100 –3.0 to –3.2 34 to 41  20 Celsius n.a. n.a. –1.8 to –3.2 23 to 41 Table o.5 Overview of projected outcomes for 2030 from IEA World Energy Outlook and IIASA Global Energy Assessment Source: IEA (2012) and IIASA (2012). n.a. = not applicable. * IEA scenarios are presented in primary energy terms while GEA scenarios in final energy terms (GDP at purchasing power parity in both cases) Objective 1 Objective 2 Objective 3 Average annual Doubling global rate Doubling share Universal access to investment 2010–30 of improvement of of renewable Total modern energy services (US$ billion) energy efficiency energy in global mix Electrification Cooking Energy efficiency Renewable energy Actual for 2010 9.0 0.1 180 228 417.1 Additional from WEO 45.0 4.4 393 >>174 >>616.4* Additional from GEA 15.0 71.0 259–365 259–406 604–858** Table o.6 Overview of projected annual investment needs for 2010–2030 from World Energy Outlook and Global Energy Assessment Source: IEA (2012) and IIASA (2012). * WEO estimates are taken to be those closest to the corresponding SE4ALL objective: the Energy for All Scenario in the case of universal access, the Efficient World Scenario in the case of energy efficiency, and the 450 Scenario in the case of renewable energy. The 450 Scenario corresponds to a 27 percent renewable energy share, which is significantly below the SE4ALL objective. The Efficient World Scenario corresponds to a –2.8 percent CAGR for global energy intensity, which is significantly above the SE4ALL objective. ** GEA estimates that a further $716–910 billion would be needed annually for complementary infrastructure and broader energy sector investments not directly associated with the three objectives. overview 39 Objective 1 Objective 2 Objective 3 Doubling global rate Doubling share Universal access to modern of improvement of of renewable energy energy services energy efficiency in global mix Percentage of Percentage of Renewable energy population with Rate of improvement population with share in total final primary reliance on in energy intensity* electricity access energy consumption non-solid fuels 2010 SE4ALL 2010 SE4ALL 1990–2010 SE4ALL 2010 SE4ALL Sub-Saharan Africa 32 100 19 100 1.1 2.2–2.4 56 60–73 Centrally Planned Asia 98 100 54 100 5.2 3.6–3.9 17 27–31 Central and Eastern Europe 100 100 90 100 3.1 2.6–3.0 8 28–36 Former Soviet Union 100 100 95 100 2.4 3.7–4.3 6 27–48 Latin America and Caribbean 95 100 86 100 0.7 2.6–3.0 25 49–57 Middle East and North Africa 95 100 99 100 -0.9 1.8–2.1 3 13–17 North America 100 100 100 100 1.7 2.4–2.6 8 26–34 Pacific OECD 100 100 100 100 0.7 2.9–3.4 6 30–41 Other Pacific Asia 89 100 57 100 1.2 3.6–4.0 18 30–37 South Asia 74 100 38 100 2.9 2.7–2.9 47 25–32 Western Europe 100 100 100 100 1.1 3.2–3.5 11 27–43 World 83 100 59 100 1.5 3.0–3.2 17 34–41 Table o.7 Global Energy Assessment: Regional projections under SE4ALL scenarios Source: IIASA (2012). Access to electricity for 2010 is from WB Global Electrification Database, 2012. Access to non-solid fuel for 2010 is from WHO Global Household Energy Database, 2012. * Measured in final energy terms and GDP at purchasing power parity Moreover, the global energy models clarify how the three for modern cooking, which would increase reliance on SE4ALL objectives interact with one another and contribute typically fossil-fuel-based and non-solid fuels for cooking, to addressing global concerns, such as climate change. would have a small offsetting effect, reducing the share of The IEA finds that energy efficiency and renewable energy renewable energy in the global mix by some two percent- are mutually reinforcing—neither one on its own is sufficient age points, with a negligible impact on the probability of to contain global warming to 2°C. Furthermore, achieving achieving the 2°C target. universal access to modern energy would lead to a negligi- ble increase—only 0.6 percent—of global carbon dioxide In conclusion, the Global Tracking Framework has con- emissions. The GEA estimates that the probability of limit- structed a robust data platform capable of monitoring ing global warming to 2°C increases to between 66 and 90 global progress toward the SE4ALL objectives on an im- percent when the SE4ALL objectives for renewable energy mediate basis, subject to improvement over time. Looking and energy efficiency are simultaneously met, higher than ahead, the consortium of agencies that has produced this if either objective was met individually (Rogelj and others report recommends a biannual update on the status of the 2013). The achievement of the universal access objective three SE4ALL objectives that will build on this framework. 40 Global tracking framework While the methodology here developed provides an ade- forms of renewable energy, and most particularly the use quate basis for basic global tracking, there are a number of of traditional biomass. These are all required to ensure that significant information improvements that would be desir- high-performing policies are developed that effectively tar- able to implement in the medium term. To effectively mon- get tangible results. Developing the capability of countries itor progress through 2030 incremental investments in en- to develop and respond to such improved indicators is in ergy data systems will be essential over the next five years, itself a significant task. both at the global and national levels. These represent relatively cost-effective high-impact improvements, whose Finally, given the scale of the challenge inherent in meet- implementation would be contingent on the availability of ing the three SE4ALL objectives for energy, it is clear that financial resources. For energy access, the focus will be to a combination of bold policy measures with a supportive go beyond binary measures to a multi-tier framework that regulatory and institutional environment is required to sup- better captures the quantity and quality of electricity sup- port the requisite ramp-up of delivery capacity and finan- plied, as well as the efficiency, safety, and convenience of cial flows to the sector. A detailed analysis of the policy the cookstoves that are used for cooking, including those environment at the country level lies beyond the immediate that make use of biomass. For energy efficiency, the main scope of this Global Tracking Framework, which has fo- concern is to strengthen country capacity to produce more cused on the monitoring of global progress toward out- disaggregated data on sectoral and subsectoral energy comes. Such an analysis, however, would be an important consumption that are fully integrated with associated out- focus for future work in support of the SE4ALL initiative. put measures from the key energy consuming sectors. In the case of renewable energy, the main priority will be to improve the ability to gauge the sustainability of different Recommended targeting of effort over next five years Work to improve energy questionnaires for global networks of household surveys. Pilot country-level surveys to provide more precise and informative multi-tier measures Energy access of access to electricity and clean cooking Develop suitable access measures for heating. Integrate data systems on energy use and associated output measures. Strengthen country capacity to collect data on sectoral (and ideally subsectoral process) intensities. Energy efficiency Improve data on physical activity drivers (traffic volumes, number of households, floor space, etc.). Improve data on energy efficiency targets, policies, and investments. Improve data and definitions for bio-energy and sustainability. Capture renewable energy used in distributed generation. Renewable energy Capture renewable energy used off-grid and in micro-grids. Promote a more harmonized approach to target-setting. Table o.8 Medium-term agenda for the improvement of global energy databases overview 41 References ExxonMobil. 2012. ExxonMobil—The Outlook for Energy: A View to 2040. Irving, Texas: ExxonMobil. Greenpeace International, EREC (European Renewable Energy Council), and GWEC (Global Wind Energy Council). 2012. Energy [R]evolution: A Sustainable World Energy Outlook. Greenpeace International, EREC, and GWEC. Amsterdam. IEA (International Energy Agency). 2012a. IEA World Energy Statistics and Balances. Paris. ———. 2012b. World Energy Outlook. Paris. http://www.worldenergyoutlook.org/publications/weo-2012/. IIASA (International Institute for Applied Systems Analysis). 2012. Global Energy Assessment – Toward a Sustainable Future. Cambridge, England, and Laxenburg, Austria: Cambridge University Press and IIASA. http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/Home-GEA.en.html Ki-moon, Ban. 2011. “Sustainable Energy for All: A Vision Statement.� United Nations Organization, New York. www.sustainableenergyforall.org. Rogelj, Joeri, David L. McCollum, and Keywan Riahi. 2013. “The UN’s ‘Sustainable Energy for All Initiative’ Is Compatible with a Warming Limit of 2°C.� Perspective DOI 10.1038/NCLIMATE1806, Nature Climate Change, February 24. 42 Global tracking framework data annex energy access energy efficiency RENEwable energy DATA ANNEX: ENERGY access Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year SA Afghanistan 35 37 41 29 81 NRVA 2007/08 <5 9 15 5 66 Other2007 DEV Albania 100 100 100 100 100 DHS 2008 36 50 61 49 89 DHS2008 NA Algeria 94 98 99 98 100 COMELEC 2007 86 > 95 > 95 > 95 > 95 MICS2006 Oceania American Samoa 49 53 56 43 57 Estimate DEV Andorra 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption SSA Angola 28 31 35 6 55 DHS 2011 <5 16 45 11 84 DHS2006 LAC Antigua and Barbuda 81 85 88 74 100 Estimate 86 > 95 > 95 > 95 > 95 Other2007 LAC Argentina 81 85 88 74 89 Estimate 83 94 > 95 > 95 > 95 Other2001 CCA Armenia 94 98 100 100 100 DHS 2005 15 50 81 51 > 95 NatSur2008 LAC Aruba 81 85 88 74 100 Estimate DEV Australia 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Austria 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption CCA Azerbaijan 93 96 100 99 100 DHS 2006 48 72 93 81 > 95 DHS2006 LAC Bahamas 81 85 88 74 91 Estimate > 95 > 95 > 95 > 95 > 95 Estimate WA Bahrain 87 91 94 90 95 Estimate > 95 > 95 > 95 > 95 > 95 Estimate SA Bangladesh 22 32 55 43 88 HIES 2010 9 11 9 5 37 DHS2007 LAC Barbados 81 85 88 74 100 Estimate > 95 > 95 > 95 > 95 > 95 NatCen2000 DEV Belarus 100 100 100 100 100 HBS 2009 81 92 > 95 94 > 95 MICS2005 DEV Belgium 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption LAC Belize 81 85 88 74 100 Estimate 71 81 88 82 > 95 NatCen2010 SSA Benin 22 25 28 9 52 DHS 2006 <5 6 9 5 14 DHS2006 DEV Bermuda 100 100 100 100 100 Assumption SA Bhutan 66 68 72 50 100 DHS 2007 22 42 60 45 > 95 MICS2010 LAC Bolivia, Plurinational State of 74 77 80 55 93 DHS 2008 55 64 71 27 94 DHS2008 DEV Bosnia and Herzegovina 94 99 100 98 100 HBS 2007 42 50 55 31 83 MICS2005 SSA Botswana 37 40 43 43 43 BAIS III 2008 35 50 63 38 90 NatSur2007 LAC Brazil 92 97 99 94 100 NatCen2009 81 89 94 64 > 95 WHS2003 SEA Brunei Darussalam 66 69 73 64 75 Estimate > 95 > 95 > 95 > 95 > 95 Estimate DEV Bulgaria 100 100 100 100 100 HIS 2007 77 87 93 Estimate 42 Global tracking framework Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year SSA Burkina Faso 6 7 13 1 47 DHS 2010 <5 <5 8 5 23 NatSur2007 SSA Burundi 0 4 5 1 41 DHS 2010 <5 <5 <5 <5 5 MICS2005 SEA Cambodia 19 17 31 19 81 DHS 2010 <5 6 11 5 45 DHS2010 SSA Cameroon 29 46 49 14 82 NatCen2006 6 17 25 5 41 MICS2005 DEV Canada 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption SSA Cape Verde 58 59 67 44 81 DHS 2005 51 61 68 33 90 NatSur2007 LAC Cayman Islands 81 85 88 74 88 Estimate SSA Central African Republic 3 6 9 5 16 Estimate <5 <5 <5 <5 5 MICS2006 SSA Chad 0 2 4 0 15 DHS 2004 <5 <5 12 6 27 Other2005 DEV Channel Islands 100 100 100 100 100 Assumption LAC Chile 95 98 100 98 100 ENEMDU 2010 76 86 94 53 > 95 N atCen2002 EA China 94 98 100 98 100 Electric Company 36 47 54 19 70 NatCen2005 2010 EA China, Hong Kong SAR 100 100 100 100 100 Estimate EA China, Macau SAR 86 90 93 90 93 Estimate LAC Colombia 90 93 97 91 99 NatCen2010 74 81 86 49 > 95 DHS2010 SSA Comoros 42 45 48 37 77 Estimate 11 21 29 15 58 Other2004 SSA Congo 24 21 37 9 53 DHS 2009 <5 14 23 5 33 DHS2009 SSA Congo, Dem. Rep. of the 6 7 15 3 39 DHS 2007 <5 <5 7 5 14 DHS2007 LAC Costa Rica 93 95 99 98 100 ENCOVI 2010 77 87 94 86 > 95 NatSur2009 SSA Cote d'Ivoire 37 51 59 37 80 DHS 2005 13 19 22 5 35 MICS2005 DEV Croatia 100 100 100 100 100 Assumption 73 84 92 82 > 95 WHS2003 LAC Cuba 94 97 100 93 100 Estimate 93 94 91 77 94 Other2008 LAC Curacao 81 85 88 74 88 Estimate DEV Cyprus 96 100 100 100 100 Assumption > 95 > 95 > 95 Assumption DEV Czech Republic 100 100 100 100 100 HBS 2009 82 94 > 95 > 95 > 95 WHS2003 DEV Denmark 100 100 100 100 100 Assumption > 95 > 95 > 95 Assumption SSA Djibouti 43 46 50 10 61 PRSP 2004 84 87 87 21 90 NatSur2006 LAC Dominica 85 88 91 100 87 Estimate 58 80 > 95 > 95 > 95 NatCen2001 ANNEX: energy access 43 Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year LAC Dominican Republic 78 92 98 94 100 NatCen2010 63 80 93 85 > 95 DHS2007 SEA East Timor 32 34 38 24 74 DHS 2010 <5 8 8 <5 21 DHS2009 LAC Ecuador 90 93 97 93 100 NatCen2010 73 87 > 95 87 > 95 NatCen2006 NA Egypt 96 98 100 99 100 DHS 2008 93 > 95 > 95 > 95 > 95 DHS2005 LAC El Salvador 77 88 92 82 97 INE 2010 50 65 78 49 93 NatSur2007 SSA Equatorial Guinea 22 26 29 14 52 Estimate 18 21 23 Estimate SSA Eritrea 23 32 33 9 79 Estimate 14 28 40 15 73 DHS2002 DEV Estonia 100 100 100 100 100 Assumption 72 82 89 69 > 95 WHS2003 SSA Ethiopia 10 13 23 5 85 DHS 2011 7 6 <5 <5 27 DHS2005 DEV Faeroe Islands 100 100 100 100 100 Assumption Oceania Fiji 49 53 56 43 68 Estimate 45 56 63 Other1996 DEV Finland 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV France 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption Oceania French Polynesia 49 53 56 43 68 Estimate SSA Gabon 73 74 82 35 89 CWIQ 2005 50 64 74 25 86 Other2006 SSA Gambia 18 34 31 23 37 Estimate <5 <5 9 5 12 MICS2005 CCA Georgia 97 100 100 100 100 HBS 2009 45 51 54 15 88 MICS2005 DEV Germany 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption SSA Ghana 31 45 61 38 82 DHS 2008 <5 9 16 5 28 DHS2008 DEV Greece 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Greenland 100 100 100 100 100 Assumption LAC Grenada 81 85 88 74 100 Estimate 69 89 100 100 100 NatCen2001 Oceania Guam 49 53 56 43 57 Estimate LAC Guatemala 76 79 82 68 96 NatCen2006 36 41 43 18 73 WHS2003 SSA Guinea 14 16 20 3 53 DHS 2005 <5 <5 <5 <5 <5 DHS2005 SSA Guinea-Bissau 51 54 57 19 100 Estimate <5 <5 <5 <5 <5 MICS2006 LAC Guyana 72 75 78 72 91 DHS 2009 74 85 93 91 > 95 DHS2009 LAC Haiti 31 31 34 12 54 DHS 2006 <5 6 9 5 16 DHS2005 LAC Honduras 75 77 81 64 97 NatCen2010 32 42 49 14 81 DHS2005 44 Global tracking framework Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year DEV Hungary 100 100 100 100 100 HBS 2007 > 95 > 95 > 95 > 95 > 95 Assumption DEV Iceland 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption SA India 51 62 75 67 93 NSSO 2009 13 29 42 14 77 NatSur2006 SEA Indonesia 67 88 94 89 99 DHS12 2010 33 41 45 23 80 DHS2007 SA Iran, Islamic Republic of 94 98 98 95 100 Ministry of Energy 88 > 95 > 95 > 95 > 95 Natcen2006 2006 WA Iraq 92 94 98 94 100 IAU Iraq / UN 89 > 95 > 95 91 > 95 MICS2005 Factsheet 2011 DEV Ireland 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Isle of Man 100 100 100 100 100 Assumption DEV Israel 96 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Italy 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption LAC Jamaica 70 87 92 84 99 Ministry of Energy, 62 77 89 NatCen2001 2008; DEV Japan 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption WA Jordan 95 100 99 99 100 DHS 2009 88 > 95 > 95 > 95 > 95 DHS2009 CCA Kazakhstan 94 97 100 98 100 HBS 2008 71 83 91 77 > 95 MICS2005 SSA Kenya 11 15 23 8 71 DHS 2008 18 20 20 5 61 DHS2010 Oceania Kiribati 49 53 56 43 73 Estimate 34 45 54 Estimate EA Korea, Dem. People’s Rep. of 20 22 26 10 37 Fund for Peace <5 7 9 5 11 NatCen2008 2008; IEA est EA Korea, Republic of 86 90 93 90 94 Estimate 80 > 95 > 95 > 95 > 95 Other1998 DEV Kosovo 100 100 100 100 100 HBS 2009 WA Kuwait 87 91 94 90 94 Estimate > 95 > 95 > 95 > 95 > 95 Estimate CCA Kyrgyzstan 97 100 100 100 100 HBS 2008 49 59 66 47 90 MICS2005 SEA Lao People’s Dem. Rep. 52 46 66 52 94 LECS4 2008 <5 5 <5 <5 11 NatSur2007 DEV Latvia 100 100 100 100 100 Assumption 77 87 95 78 > 95 WHS2003 WA Lebanon 93 95 100 99 100 Other 92 > 95 > 95 > 95 > 95 Other1996 SSA Lesotho 6 5 17 7 43 DHS 2009 37 39 39 20 94 DHS2009 SSA Liberia 0 1 4 1 7 DHS 2011 <5 <5 <5 <5 5 DHS2009 ANNEX: energy access 45 Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year NA Libya 97 100 100 99 100 Estimate 89 > 95 > 95 > 95 > 95 Estimate DEV Liechtenstein 100 100 100 100 100 Assumption DEV Lithuania 100 100 100 100 100 HBS 2008 77 87 93 Assumption DEV Luxembourg 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Macedonia, Former Yugoslav Rep. of 93 95 99 98 100 HBS 2006 52 61 67 48 78 MICS2005 SSA Madagascar 9 11 14 9 25 DHS 2011 <5 <5 <5 <5 5 NatCen2009 SSA Malawi 3 5 9 4 37 DHS 2010 <5 <5 <5 <5 11 DHS2010 SEA Malaysia 93 96 99 98 100 HIS/BA 2009 78 92 > 95 > 95 > 95 WHS2003 SA Maldives 94 96 100 100 100 DHS 2009 36 65 92 91 > 95 DHS2009 SSA Mali 12 17 17 3 42 DHS 2006 <5 <5 <5 <5 5 DHS2006 DEV Malta 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption Oceania Marshall Islands 49 53 56 43 61 Estimate 80 76 68 8 92 Other2007 SSA Mauritania 12 15 18 2 42 EPCV 2005 20 32 42 21 66 MICS2007 SSA Mauritius 97 99 100 100 100 Estimate 81 93 > 95 > 95 > 95 NatSur2004 LAC Mexico 95 98 99 98 100 NatCen2010 75 82 86 61 > 95 NatCen2010 Oceania Micronesia, Federated States of 49 53 56 43 100 Estimate 45 53 59 NatCen2005 DEV Moldova, Republic of 92 95 99 98 99 DHS 2005 72 82 89 79 > 95 DHS2005 DEV Monaco 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption EA Mongolia 80 83 86 67 100 LSMS 2005 19 25 28 5 43 MICS2005 DEV Montenegro 100 100 100 100 100 Assumption 56 65 72 46 85 MICS2005 NA Morocco 49 71 99 97 100 DHS 2003 81 91 > 95 87 > 95 DHS2004 SSA Mozambique 6 7 15 2 45 DHS 2009 <5 <5 5 5 10 MICS2008 SEA Myanmar 43 47 49 28 92 IHLCA 2010 <5 <5 8 5 17 Other2004 SSA Namibia 26 37 44 15 92 DHS 2006 26 37 45 14 83 DHS2006 SA Nepal 70 73 76 72 100 DHS 2011 26 23 18 10 67 DHS2006 DEV Netherlands 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption Oceania New Caledonia 49 53 56 43 64 Estimate DEV New Zealand 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption LAC Nicaragua 72 73 74 43 96 ENAHO 3 2005 23 36 46 9 71 NatSur2006 46 Global tracking framework Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year SSA Niger 6 7 9 2 46 DHS 2006 <5 <5 <5 <5 6 DHS2006 SSA Nigeria 42 45 48 35 62 DHS 2010 26 28 26 10 54 DHS2008 DEV Norway 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption WA Oman 87 91 94 90 96 Estimate > 95 > 95 > 95 > 95 > 95 Estimate SA Pakistan 60 80 91 88 98 PSLM 2010-11 12 26 36 11 71 NatSur2006 Oceania Palau 49 53 56 43 58 Estimate 90 > 95 > 95 Other1997 LAC Panama 81 85 88 74 93 Estimate 75 80 82 73 > 95 LSMS2008 Oceania Papua New Guinea 8 11 15 8 63 LSMS 2006 5 17 27 11 72 LSMS1996 LAC Paraguay 90 92 97 94 99 NatCen2010 46 50 51 20 68 NatSur2009 LAC Peru 69 72 85 60 93 NatCen2010 38 52 64 25 92 NatSur2010 SEA Philippines 65 71 83 73 94 DHS 2008 40 47 50 34 76 DHS2008 DEV Poland 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Portugal 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption LAC Puerto Rico 81 85 88 74 88 Estimate WA Qatar 87 91 94 90 94 Estimate 92 > 95 > 95 > 95 > 95 NatCen2010 DEV Romania 100 100 100 100 100 HBS 2009 65 75 83 63 > 95 Other2002 DEV Russian Federation 100 100 100 100 100 HBS 2009 91 > 95 > 95 92 > 95 MICS2005 SSA Rwanda 2 6 11 4 40 EICV 3 2011 <5 <5 <5 <5 5 NatSur2007 LAC Saint Lucia 81 85 88 74 100 Estimate 63 86 100 100 100 Estimate Oceania Samoa 80 89 100 90 100 Estimate 30 40 47 25 73 DHS2009 DEV San Marino 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption SSA Sao Tome and Principe 50 53 57 44 65 DHS 2008 9 20 29 15 42 DHS2008 WA Saudi Arabia 87 91 94 90 95 Estimate > 95 > 95 > 95 > 95 > 95 Estimate SSA Senegal 26 37 57 27 97 DHS 2011 19 35 49 17 86 NatSur2008 DEV Serbia 100 100 100 100 100 Estimate 49 60 68 41 89 MICS2005 SSA Seychelles 22 26 29 14 42 Estimate 80 93 > 95 > 95 > 95 Other2002 SSA Sierra Leone 6 9 12 1 29 DHS 2008 7 5 <5 <5 5 DHS2008 SEA Singapore 66 69 73 64 73 Estimate > 95 > 95 > 95 > 95 > 95 Estimate DEV Slovak Republic 100 100 100 100 100 Assumption 81 93 > 95 > 95 > 95 WHS2003 ANNEX: energy access 47 Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year DEV Slovenia 100 100 100 100 100 Assumption 76 88 > 95 > 95 > 95 WHS2003 Oceania Solomon Islands 13 16 19 10 57 Estimate 10 12 10 5 43 NatSur2007 SSA Somalia 22 26 29 14 54 Estimate <5 <5 <5 <5 5 MICS2005 SSA South Africa 65 66 83 64 94 GHS 2011 61 75 85 63 94 NatSur2010 SSA South Sudan 0 0 2 1 5 NatCen2010 DEV Spain 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 WHS2003 SA Sri Lanka 78 81 85 83 96 HIES 2009 11 20 25 15 66 NatSur2009 LAC St. Kitts and Nevis 81 85 88 74 100 Estimate 73 81 86 Estimate LAC St. Martin (French part) 81 85 88 74 100 Estimate LAC St. Vincent and the Grenadines 67 70 73 29 100 Estimate 31 65 > 95 > 95 > 95 NatSur2007 SSA Sudan 23 25 29 15 57 Other HH 2010 <5 7 21 13 24 NatCen2008 LAC Suriname 97 100 100 100 100 Estimate 70 81 88 MiCS2006 SSA Swaziland 29 32 35 22 85 DHS 2006 22 35 45 25 87 DHS2006 DEV Sweden 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption DEV Switzerland 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption WA Syrian Arab Republic 85 87 93 78 100 Other HH 2010 84 > 95 > 95 > 95 > 95 MICS2005 CCA Tajikistan 95 99 100 99 100 LSMS 2003 14 41 66 53 94 MICS2005 SSA Tanzania, United Republic of 7 9 15 4 46 DHS 2010 <5 <5 6 5 16 DHS2010 SEA Thailand 93 96 100 97 100 Household Energy 37 57 74 57 90 MICS2005 Consumption Survey 2010 SSA Togo 10 17 28 6 64 QUIBB 2006 <5 <5 6 5 7 NatSur2006 Oceania Tonga 80 86 92 80 100 Estimate 28 44 57 53 92 NatCen2006 LAC Trinidad and Tobago 93 95 99 98 100 Other HH 2009 81 93 > 95 > 95 > 95 MICS2006 NA Tunisia 93 95 100 99 100 COMELEC 2007 82 94 > 95 > 95 > 95 MICS2006 WA Turkey 100 100 100 100 100 HBS 2009 79 90 > 95 > 95 > 95 Other1999 CCA Turkmenistan 95 100 100 100 100 HBS 2009 86 > 95 > 95 > 95 > 95 DHS2000 LAC Turks and Caicos Islands 81 85 88 74 89 Estimate Oceania Tuvalu 35 37 41 29 53 Estimate 33 58 81 Other2002 48 Global tracking framework Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year SSA Uganda 7 9 15 5 67 DHS 2011 <5 <5 <5 <5 11 DHS2009 DEV Ukraine 93 96 100 100 100 DHS 2007 79 90 > 95 89 > 95 DHS2007 WA United Arab Emirates 87 91 94 90 95 Estimate 86 > 95 > 95 > 95 > 95 WHS2003 DEV United Kingdom of Great Britain 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption and Northern Ireland DEV United States of America 100 100 100 100 100 Assumption > 95 > 95 > 95 > 95 > 95 Assumption LAC Uruguay 92 96 99 93 100 SEDLAC 2009 89 > 95 > 95 87 > 95 NatSur2006 CCA Uzbekistan 97 100 100 100 100 Estimate 69 80 89 80 > 95 MICS2005 Oceania Vanuatu 18 19 24 15 50 Estimate 17 18 16 6 49 MICS2007 LAC Venezuela, Bolivarian Rep. of 99 100 100 100 100 SEDLAC 2010 85 > 95 > 95 > 95 > 95 NatCen2001 SEA Vietnam 88 89 96 95 99 LSMS 2006 <5 24 44 29 78 NatCen2009 LAC Virgin Islands (U.S.) 81 85 88 74 89 Estimate WA West Bank and Gaza 87 91 94 90 96 Estimate WA Yemen 38 41 45 31 75 Estimate 52 61 67 49 > 95 MICS2006 SSA Zambia 13 17 19 3 43 DHS 2007 5 13 17 5 39 DHS2007 SSA Zimbabwe 28 34 37 13 75 DHS 2011 32 34 34 6 84 DHS2006 Aggregated by income level Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year High income: non-OECD 88 90 92 89 93 71 74 81 77 86 High income: OECD 99 100 100 100 100 99 100 100 99 100 Low income 20 24 32 19 64 7 9 9 6 25 Lower middle income 58 68 77 69 91 25 37 46 21 75 Upper middle income 93 96 98 96 99 53 64 71 36 85 ANNEX: energy access 49 Aggregated by region Access to Electricity (% of population ) Access to Non-Solid Fuel (% of population) Total Rural URban Total Rural Urban Latest available Latest available Region Country 1990 2000 2010 2010 2010 1990 2000 2010 2010 2010 Source/year Source/year CCA Caucasus and Central Asia 95 99 100 99 100 58 73 85 74 98 DEV Developed Countries 100 100 100 100 100 95 98 99 96 100 EA Eastern Asia 93 96 98 97 98 37 48 55 35 76 LAC Latin America and Caribbean 88 92 95 84 98 73 81 86 57 94 NA Northern Africa 85 92 99 99 100 88 96 100 99 100 Oceania Oceania 21 23 25 14 65 14 24 31 21 73 SA Southern Asia 52 63 75 67 94 16 30 40 23 78 SEA Southeastern Asia 71 81 88 80 97 29 40 48 27 77 SSA Sub-Saharan Africa 23 26 32 14 63 14 17 19 6 42 WA Western Asia 89 89 91 78 97 83 90 95 86 99 WORLD 76 79 83 70 95 47 54 59 35 84 Note: The source field gives either (a) the name and date of the household survey from which the figure is taken; or (b) indicates that the figure is an estimate based on the statistical model described in Annex 2 of Chapter 2; or (c) is based on the assumption of universal access in countries classified by the United Nations as developed. Note: Developed countries (DEV) are considered to have access rates of 100 percent. CCA = Caucasus and Central Asia; EA = Eastern Asia; LAC = Latin America and Caribbean; NA = Northern Africa; SA = Southern Asia; SEA = South-Eastern Asia; SSA = Sub-Saharan Africa; WA = Western Asia; BAIS=Botswana AIDS Impact Survey III; COMELEC= Maghreb association of the electricity sector; CWIQ= Core Welfare Indicators Questionnaire Survey; DHS = Demographic and Health Survey; EICV=Integrated Household Living Conditions Survey in Rwanda; EPCV=permanent living conditions; GHS=General household survey; HBS = Household Budget Survey; IES = Integrated Expenditure Survey; HIES=Household income and expenditure surveys; HIS = Integrated House- hold Survey; HIS/BA= Household Income and Basic Amenities Survey Report; LECS=Lao Expenditure and Consumption Survey; LSMS = Living Standard Measurement Survey; MICS=Multiple Indicators Cluster Survey; NRVA=National Risk and Vulnerability Assessment; NSSO=National Sample Survey Organization; QUIBB=Questionnaire des Indicateurs de Base du Bienetre; WHS=World Health Survey. 50 Global tracking framework DATA ANNEX: ENERGY efficiency Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Afghanistan UN/WDI –15.81 3.12 –6.83 11.8 2.9 8.93** –2.04 — — 2,993 Albania IEA/WDI –5.28 –3.49 –4.39 8.7 3.5 -2.88* –3.84 84.0 94.2 1,227 Algeria IEA/WDI 0.30 0.34 0.32 5.9 6.3 — 1.10 57.4 67.0 –909 Angola IEA/WDI 1.68 –4.41 –1.41 7.7 5.8 -0.29 –1.23 77.0 79.9 184 Antigua and Barbuda UN/WDI –1.49 3.44 0.94 2.8 3.4 — –2.83 — — 6 Argentina IEA/WDI –1.63 –2.19 –1.91 7.9 5.4 -1.83 –1.43 65.3 72.0 11,171 Armenia IEA/WDI –9.13 –5.49 –7.33 30.9 6.8 -11.22 –7.97 84.0 73.1 3,756 Aruba UN/WDI — — — — — — — — — — Australia IEA/WDI –1.07 –1.56 –1.32 8.9 6.8 -1.27 –1.73 65.6 60.4 13,162 Austria IEA/WDI –1.25 0.16 –0.55 5.3 4.8 -0.36 –0.40 79.4 81.7 1,774 Azerbaijan IEA/WDI –2.93 –12.70 –7.95 32.2 6.1 -8.47* –8.22 61.2 57.6 10,415 Bahamas UN/WDI –2.75 3.78 0.46 3.4 3.7 — 8.38 — — 66 Bahrain IEA/WDI –2.38 –0.64 –1.51 20.6 15.2 — –1.51 54.5 54.6 1,535 Bangladesh IEA/WDI –0.89 –0.54 –0.71 6.8 5.9 -1.36 –1.48 86.2 73.8 1,558 Barbados UN/WDI –1.10 2.36 0.61 3.6 4.1 0.59 –3.36 — — 11 Belarus IEA/WDI –4.80 –5.80 –5.30 29.1 9.8 -4.63 –5.55 75.7 71.9 17,682 Belgium IEA/WDI –0.28 –0.98 –0.63 8.1 7.1 -0.84 –0.48 66.4 68.5 2,489 Belize UN/WDI 0.49 –6.34 –2.98 9.7 5.3 — –3.17 — — 78 Benin IEA/WDI –2.87 2.22 –0.36 13.0 12.1 — –0.28 86.4 87.8 282 Bermuda UN/WDI — — — — — — — — — — Bhutan UN/WDI –2.66 –5.83 –4.26 38.3 16.0 — 0.04 — — 528 Bolivia, Plurinational State of IEA/WDI –0.11 3.00 1.43 5.3 7.1 — 1.19 82.6 78.7 –371 Bosnia and Herzegovina IEA/WDI –22.25 –0.12 –11.87 119.7 9.6 -0.80** –13.37 69.7 49.6 37,653 Botswana IEA/WDI –1.79 –1.90 –1.84 5.5 3.8 -2.13 –1.14 71.4 82.4 426 Brazil IEA/WDI 0.39 –0.06 0.17 5.5 5.7 0.42 0.15 79.5 79.3 –4,973 British Virgin Islands UN/WDI — — — — — — — — — — Brunei Darussalam IEA/WDI 1.10 1.67 1.38 5.8 7.6 — 6.29 19.9 51.3 –257 Bulgaria IEA/WDI –2.99 –4.35 –3.67 18.2 8.6 -3.81 –4.55 61.0 50.8 7,280 ANNEX: energy efficiency 51 Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Burkina Faso UN/WDI –5.54 0.47 –2.58 21.2 12.6 -3.35* –3.01 — — 1,738 Burundi UN/WDI 2.15 2.30 2.23 21.4 33.3 — 8.81 — — –652 Cambodia IEA/WDI –2.97 –3.75 –3.43 13.7 7.6 — –4.20 0.0 84.8 –2,635 Cameroon IEA/WDI 1.01 –2.07 –0.54 8.2 7.4 -2.30** –1.30 95.4 81.9 –189 Canada IEA/WDI –1.00 –1.82 –1.41 11.7 8.8 -1.15 –1.31 76.3 77.8 23,448 Cape Verde UN/WDI 1.62 0.16 0.88 3.7 4.4 — –0.56 — — –16 Cayman Islands UN/WDI — — — — — — — — — — Central African Republic UN/WDI –4.09 –0.11 –2.12 18.3 11.9 — –3.57 — — 218 Chad UN/WDI 0.89 –5.70 –2.46 12.9 7.9 — 5.90 — — 488 Chile IEA/WDI –0.34 –1.73 –1.04 6.4 5.2 -1.10 –1.18 79.2 77.0 2,391 China IEA/WDI –7.07 –2.18 –4.65 30.5 11.8 -6.48 –5.64 76.0 61.6 1,319,738 China, Hong Kong SAR IEA/WDI 0.52 –3.59 –1.56 2.7 2.0 — –1.54 60.1 60.3 773 China, Macao SAR UN/WDI 2.83 –8.56 –3.04 1.8 1.0 — –4.13 — — 71 Colombia IEA/WDI –1.97 –1.76 –1.86 5.0 3.4 -2.50 –2.43 78.1 69.5 5,746 Comoros UN/WDI 2.45 2.50 2.47 2.9 4.7 — 7.69 — — –9 Congo IEA/WDI –0.92 1.38 0.22 3.8 4.0 — –0.04 77.8 73.9 16 Congo, Dem. Rep. of the IEA/WDI 9.66 –1.26 4.06 21.5 47.6 — 4.38 89.8 95.6 –7,220 Cook Islands UN/WDI — — — — — — — — — — Costa Rica IEA/WDI –1.31 0.29 –0.51 4.4 4.0 -1.55 –1.41 89.2 74.5 254 Cote d'Ivoire IEA/WDI 2.18 2.47 2.32 7.6 12.0 1.90 1.33 66.6 54.8 –1,645 Croatia IEA/WDI 0.10 –1.68 –0.80 5.9 5.0 -0.32 –0.23 72.1 80.7 138 Cuba IEA/WDI — — — — — — — 79.7 56.7 — Cyprus IEA/WDI 0.43 –1.44 –0.51 5.4 4.9 0.01 –0.04 64.2 70.5 –5 Czech Republic IEA/WDI –2.30 –2.57 –2.44 12.2 7.4 -3.05 –3.02 69.2 61.3 10,499 Denmark IEA/WDI –1.84 –0.24 –1.04 5.6 4.5 -0.83 –0.92 75.9 77.7 1,919 Djibouti UN/WDI 2.81 –0.26 1.26 5.2 6.7 — 4.03 — — –42 Dominica UN/WDI 3.96 –0.02 1.95 1.8 2.6 — –0.18 — — –8 Dominican Republic IEA/WDI 0.55 –4.40 –1.96 6.2 4.2 -5.53** –1.80 65.8 68.0 462 52 Global tracking framework Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Ecuador IEA/WDI 1.10 –0.40 0.35 4.5 4.9 -0.29 –0.18 87.5 78.8 –591 Egypt IEA/WDI –1.89 1.16 –0.38 7.4 6.8 -0.33* –0.61 70.8 67.6 1,860 El Salvador IEA/WDI 0.24 –1.31 –0.54 5.3 4.7 -3.27 –1.97 82.1 61.3 –8 Equatorial Guinea UN/WDI –11.08 6.53 –2.67 11.0 6.4 — –11.87 — — 808 Eritrea IEA/WDI –7.26 –1.45 –4.08 25.6 12.1 — –4.30 0.0 69.2 –640 Estonia IEA/WDI –14.62 –1.77 –8.42 60.8 10.5 -9.26 –9.10 60.6 52.3 15,850 Ethiopia IEA/WDI –0.45 –2.25 –1.36 23.6 18.0 -2.68 –1.39 95.1 94.3 1,668 Falkland Islands (Malvinas) UN/WDI — — — — — — — — — — Fiji UN/WDI –1.04 –3.67 –2.36 7.9 4.9 — –1.13 — — 52 Finland IEA/WDI –0.76 –0.55 –0.66 10.3 9.0 -1.04 –0.99 78.4 73.3 1,178 France IEA/WDI –0.77 –0.70 –0.73 6.6 5.7 -0.74 –0.87 63.9 62.1 13,508 French Guiana UN/WDI — — — — — — — — — — French Polynesia UN/WDI — — — — — — — — — — Gabon IEA/WDI 0.49 1.54 1.02 3.6 4.4 -0.13* 1.17 85.4 88.0 –136 Gambia UN/WDI 0.65 –0.03 0.31 6.5 7.0 — 0.80 — — –8 Georgia IEA/WDI –4.73 –5.08 –4.91 17.6 6.4 -4.82 –4.20 72.3 83.9 1,552 Germany IEA/WDI –2.32 –1.20 –1.76 7.2 5.0 -1.81 –1.71 68.6 69.3 69,126 Ghana IEA/WDI –0.41 –3.74 –2.09 16.5 10.8 -3.17 –2.18 81.7 80.2 1,003 Gibraltar IEA/WDI — — — — — — — 78.1 83.8 — Greece IEA/WDI 0.02 –1.90 –0.94 5.1 4.2 — –0.73 67.6 70.5 1,431 Grenada UN/WDI 1.68 2.20 1.94 2.5 3.6 -0.29** –1.48 — — –12 Guadeloupe UN/WDI — — — — — — — — — — Guatemala IEA/WDI 0.65 0.46 0.55 6.2 6.9 -0.33 0.05 91.4 82.7 –94 Guinea UN/WDI –1.74 –4.20 –2.98 40.6 22.2 — –3.31 — — 1,645 Guinea-Bissau UN/WDI –0.68 1.37 0.34 8.6 9.2 — 1.73 — — 1 Guyana UN/WDI –1.18 –2.10 –1.64 22.7 16.3 0.49 –2.45 — — 137 Haiti IEA/WDI 2.94 1.21 2.07 6.4 9.7 — 2.77 79.1 90.6 –556 Honduras IEA/WDI –0.95 0.25 –0.35 7.7 7.2 — –1.22 98.1 82.2 106 ANNEX: energy efficiency 53 Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Hungary IEA/WDI –1.64 –1.67 –1.65 8.8 6.3 -1.85 –1.74 71.8 70.6 3,906 Iceland IEA/WDI 1.44 3.41 2.42 13.4 21.6 0.57 0.58 78.6 54.7 –450 India IEA/WDI –1.72 –2.98 –2.35 12.5 7.8 -4.09 –3.25 79.5 66.0 114,220 Indonesia IEA/WDI 0.40 –2.15 –0.88 11.2 9.3 -1.73 –1.24 80.9 75.3 9,891 Iran, Islamic Rep. of IEA/WDI 2.10 0.96 1.53 8.5 11.6 1.63 1.30 78.9 75.4 –22,350 Iraq IEA/WDI –10.76 4.80 –3.29 30.2 15.5 — –4.81 75.7 55.2 23,829 Ireland IEA/WDI –1.16 –1.87 –1.52 5.1 3.7 -0.93 –1.25 74.0 78.1 2,155 Israel IEA/WDI –1.60 –0.14 –0.88 5.8 4.8 — –0.57 60.7 64.6 1,963 Italy IEA/WDI –0.01 –0.45 –0.23 4.6 4.4 -0.14 –0.37 78.4 76.2 1,220 Jamaica IEA/WDI 1.42 –3.05 –0.84 8.0 6.8 -0.62 –0.97 70.3 68.5 –90 Japan IEA/WDI 0.55 –1.17 –0.31 5.6 5.3 -0.45 –0.54 68.3 65.3 –2,328 Jordan IEA/WDI –1.04 –2.16 –1.60 13.1 9.5 -2.27 –2.13 71.1 64.0 714 Kazakhstan IEA/WDI –3.51 –0.52 –2.02 26.5 17.6 -3.26* –3.63 81.2 58.3 12,434 Kenya IEA/WDI 0.66 –0.48 0.09 13.4 13.6 -0.82 –0.23 70.2 65.8 –424 Kiribati UN/WDI 1.54 3.49 2.51 2.2 3.6 — 12.22 — — –1 Korea, Dem. People’s Rep. of IEA/WDI — — — — — — — 82.3 86.6 — Korea, Republic of IEA/WDI 1.14 –1.22 –0.05 8.0 7.9 -1.36 –0.55 69.7 63.0 –5,171 Kuwait IEA/WDI 5.46 0.57 2.99 6.2 11.2 — 2.56 43.4 39.9 –5,800 Kyrgyzstan IEA/WDI –7.04 –1.97 –4.54 28.3 11.2 — –4.69 92.2 89.4 2,131 Lao People’s Dem. Rep. UN/WDI –3.20 –5.12 –4.16 13.4 5.7 -4.95 –5.83 — — 814 Latvia IEA/WDI –4.56 –1.85 –3.21 12.3 6.4 -2.87 –2.45 81.6 95.4 1,853 Lebanon IEA/WDI 2.78 –2.26 0.23 4.8 5.1 — 0.46 58.2 61.0 –598 Lesotho UN/WDI 1.28 –2.59 –0.67 12.2 10.6 — –3.58 — — 10 Liberia UN/WDI 0.42 –2.40 –1.00 73.1 59.8 — 0.97 — — –125 Libya IEA/WDI 3.10 –2.82 0.09 7.7 7.9 — 0.92 48.5 57.1 –2,712 Lithuania IEA/WDI –4.73 –4.46 –4.60 14.6 5.7 -4.75 –3.69 64.8 78.2 3,839 Luxembourg IEA/WDI –5.04 –0.28 –2.69 8.8 5.1 -1.86 –2.13 82.1 92.0 1,533 Macedonia, Former Yugoslav Rep. of IEA/WDI 1.66 –1.62 0.01 6.4 6.4 0.65 0.16 60.9 62.9 –361 54 Global tracking framework Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Madagascar UN/WDI 2.31 0.55 1.43 10.3 13.7 — 0.54 — — –721 Malawi UN/WDI –2.03 –2.43 –2.23 16.8 10.7 — –2.96 — — 536 Malaysia IEA/WDI 0.96 –0.18 0.39 7.5 8.1 -1.12* –0.02 64.7 59.6 –4,062 Maldives UN/WDI 8.17 4.64 6.39 2.7 9.3 — 5.53 — — –132 Mali UN/WDI –1.25 –3.41 –2.34 10.6 6.6 — –3.48 — — 445 Malta IEA/WDI –5.30 0.64 –2.38 6.0 3.7 — –1.82 38.4 43.0 262 Martinique UN/WDI — — — — — — — — — — Mauritania UN/WDI –7.19 –0.35 –3.83 20.3 9.3 -1.99* –1.77 — — 839 Mauritius UN/WDI –0.37 –0.79 –0.58 7.3 6.5 -2.40 –1.95 — — 81 Mexico IEA/WDI –1.70 0.30 –0.71 6.1 5.3 -0.58 –1.08 68.7 63.7 13,954 Moldova, Republic of IEA/WDI –3.33 –4.52 –3.92 24.4 11.0 -4.13 –3.72 67.4 70.4 893 Mongolia IEA/WDI –3.46 –3.10 –3.28 26.8 13.7 -5.21 –4.34 87.0 69.7 1,020 Montenegro IEA/WDI n.a –1.30 –1.30 5.7 5.4 — –4.18 0.0 53.8 –193 Montserrat UN/WDI — — — — — — — — — — Morocco IEA/WDI 1.56 –0.04 0.76 4.3 5.0 0.92 1.01 71.9 75.6 –1,076 Mozambique IEA/WDI –3.33 –3.88 –3.61 46.3 22.2 -3.51 –3.59 80.3 80.6 3,587 Myanmar IEA/WDI — — — — — -5.60* — 88.0 92.1 — Namibia IEA/WDI 1.08 0.40 0.74 4.3 5.0 -0.67* 0.55 98.3 94.5 –116 Nepal IEA/WDI –1.49 –1.52 –1.50 17.9 13.2 -2.49 –1.52 99.5 99.1 1,315 Netherlands IEA/WDI –2.01 –0.06 –1.04 7.0 5.7 -1.07 –0.85 74.8 77.6 10,284 Netherlands Antilles IEA/WDI — — — — — — — 42.9 48.4 — New Caledonia UN/WDI — — — — — — — — — — New Zealand IEA/WDI –0.05 –1.65 –0.85 8.3 7.0 -1.18 –1.34 77.4 70.2 1,236 Nicaragua IEA/WDI –0.71 –1.44 –1.08 11.3 9.1 -1.21 –1.27 73.8 71.0 139 Niger UN/WDI 1.57 –8.58 –3.64 16.6 7.9 0.21** –3.65 — — 394 Nigeria IEA/WDI –0.24 –3.92 –2.10 21.4 14.0 — –1.92 89.1 92.4 11,078 Norway IEA/WDI –1.46 0.69 –0.39 6.4 5.9 -1.08 –1.53 83.0 65.9 3,339 Oman IEA/WDI 2.01 4.53 3.26 6.4 12.3 — 2.53 44.5 38.6 –2,035 ANNEX: energy efficiency 55 Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Pakistan IEA/WDI 0.11 –1.62 –0.76 9.9 8.5 -1.09 –0.90 84.8 82.6 2,196 Palau UN/WDI 2.14 4.98 3.55 5.9 11.8 — 4.58 — — –16 Panama IEA/WDI 0.54 –2.31 –0.90 4.3 3.6 -2.52** –1.05 82.5 80.0 88 Papua New Guinea UN/WDI –2.17 –2.66 –2.42 11.4 7.0 -2.01 –4.02 — — 585 Paraguay IEA/WDI 0.49 –1.72 –0.62 7.6 6.7 — –0.91 95.3 89.9 0 Peru IEA/WDI –1.61 –0.89 –1.25 4.2 3.3 -1.76 –1.92 87.9 76.8 2,749 Philippines IEA/WDI 0.50 –4.40 –1.98 7.6 5.1 -2.98 –2.77 69.2 58.8 3,660 Poland IEA/WDI –5.04 –2.49 –3.77 13.8 6.4 -3.17 –3.09 59.6 68.7 46,298 Portugal IEA/WDI 0.96 –1.10 –0.07 4.3 4.3 0.57 –0.02 79.7 80.5 –1,178 Puerto Rico UN/WDI — — — — — — — — — — Qatar IEA/WDI 3.79 –0.99 1.37 7.9 10.3 — 1.25 54.1 52.8 –3,106 Reunion UN/WDI — — — — — — — — — — Romania IEA/WDI –3.63 –4.46 –4.05 14.3 6.3 -4.04 –4.18 69.3 67.5 17,593 Russian Federation IEA/WDI 0.46 –3.39 –1.49 19.7 14.6 -2.12 –2.04 71.1 63.5 34,769 Rwanda UN/WDI 4.50 –6.04 –0.91 10.3 8.6 — –1.18 — — –364 Saint Kitts and Nevis UN/WDI –1.66 5.82 2.01 3.5 5.1 — –1.34 — — –9 Saint Lucia UN/WDI 4.31 1.14 2.71 2.3 3.9 — –3.61 — — –29 Saint Pierre and Miquelon UN/WDI — — — — — — — — — — Saint Vincent and the Grenadines UN/WDI 3.09 0.40 1.74 2.0 2.9 — –2.84 — — –12 Samoa UN/WDI –0.85 –1.70 –1.27 5.7 4.4 — 15.76 — — 9 Sao Tome and Principe UN/WDI –9.71 –1.96 –5.92 55.2 16.3 — –4.78 — — 120 Saudi Arabia IEA/WDI 2.63 1.90 2.27 8.0 12.6 1.93 2.45 60.1 62.2 –27,204 Senegal IEA/WDI 0.48 –0.54 –0.03 6.6 6.6 0.05 0.16 64.1 66.6 –9 Serbia IEA/WDI 2.17 –1.98 0.07 9.2 9.3 -0.15 –0.03 62.7 61.4 –2,344 Seychelles UN/WDI 12.83 1.44 6.99 2.3 9.0 — 10.06 — — –139 Sierra Leone UN/WDI 6.72 –5.61 0.37 24.8 26.7 — 0.03 — — –1,071 Singapore IEA/WDI –2.02 0.13 –0.95 6.3 5.2 -1.49 1.61 43.5 72.4 1,790 Slovakia IEA/WDI –2.01 –4.51 –3.27 13.3 6.8 -3.72 –3.95 73.9 64.1 5,047 56 Global tracking framework Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Slovenia IEA/WDI –0.62 –1.48 –1.05 7.3 5.9 -2.05* –0.57 64.7 71.3 365 Solomon Islands UN/WDI –1.82 –2.65 –2.24 4.7 3.0 — –3.46 — — 24 Somalia UN/WDI — — — — — — — — — — South Africa IEA/WDI 0.03 –1.19 –0.58 13.6 12.1 -1.43 –1.69 56.1 44.9 229 Spain IEA/WDI 0.27 –1.57 –0.65 4.9 4.3 0.01 –0.23 67.3 73.3 1,031 Sri Lanka IEA/WDI –0.96 –3.28 –2.13 6.7 4.3 -3.02* –2.43 96.1 90.4 1,529 Sudan IEA/WDI –3.28 –4.12 –3.70 16.3 7.7 -2.26 –3.00 57.1 66.1 5,749 Suriname UN/WDI 0.44 –2.74 –1.17 13.3 10.5 4.54 0.64 — — 14 Swaziland UN/WDI 7.43 –1.09 3.08 8.7 15.9 -4.12 1.75 — — –442 Sweden IEA/WDI –1.97 –1.33 –1.65 9.4 6.7 -1.78 –1.61 68.0 68.7 6,984 Switzerland IEA/WDI –0.78 –1.18 –0.98 4.5 3.7 -0.71 –0.75 76.7 80.3 1,413 Syrian Arab Republic IEA/WDI –0.86 –1.57 –1.21 12.0 9.4 -1.71 –1.94 72.7 62.7 2,033 Tajikistan IEA/WDI 0.61 –7.04 –3.29 14.2 7.2 -3.14 –3.35 88.2 87.1 250 Thailand IEA/WDI 1.09 0.62 0.85 7.8 9.3 0.08 1.08 68.8 72.0 –6,918 Timor-Leste UN/WDI n.a –6.29 –6.29 7.9 4.7 — –5.08 — — –61 Togo IEA/WDI 3.02 0.33 1.66 15.0 20.8 — 1.26 67.0 61.9 –414 Tonga UN/WDI 2.35 2.55 2.45 3.6 5.9 — 1.32 — — –11 Trinidad and Tobago IEA/WDI 2.70 1.46 2.08 19.1 28.8 — 3.00 62.0 74.2 –2,185 Tunisia IEA/WDI –0.70 –1.57 –1.14 5.6 4.5 -1.41 –1.11 73.6 74.1 744 Turkey IEA/WDI 0.13 –0.60 –0.23 5.0 4.8 -0.68 –0.38 76.0 73.8 2,360 Turkmenistan IEA/WDI 0.64 –8.35 –3.96 53.5 23.8 -4.52 –4.93 70.2 57.3 5,128 Turks and Caicos Islands UN/WDI — — — — — — — — — — Uganda UN/WDI –3.64 –4.11 –3.87 40.1 18.2 -5.55** –4.00 — — 6,622 Ukraine IEA/WDI 2.04 –4.34 –1.20 25.2 19.8 -0.94 –1.47 59.6 56.5 –3,410 United Arab Emirates IEA/WDI 0.53 1.89 1.21 6.4 8.2 — 0.77 79.3 72.7 –3,685 United Kingdom of Great Britain IEA/WDI –2.06 –2.59 –2.32 6.7 4.2 -1.99 –2.24 66.9 68.1 47,052 and Northern Ireland United Republic of Tanzania IEA/WDI 0.19 –2.64 –1.24 19.2 14.9 — –1.40 89.8 86.8 837 ANNEX: energy efficiency 57 Decom- Rate of final Rate of primary Level of primary energy Final to Cumulative Data position Country energy intensity energy intensity, intensity primary energy sourcea analysis, improvement, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 United States of America IEA/WDI –1.65 –1.78 –1.71 10.1 7.1 -1.67 –1.70 67.5 67.7 368,527 Uruguay IEA/WDI –0.17 0.07 –0.05 4.2 4.1 0.21 –0.01 85.8 86.6 78 Uzbekistan IEA/WDI 1.11 –7.85 –3.47 47.3 23.3 -3.91 –3.76 75.4 71.0 3,859 Vanuatu UN/WDI 2.27 –0.51 0.87 2.3 2.7 — 7.96 — — –2 Venezuela, Bolivarian Rep. of IEA/WDI 0.53 –0.04 0.25 9.7 10.2 0.78* –0.12 63.2 58.7 –799 Viet Nam IEA/WDI –2.52 0.22 –1.16 12.5 9.9 -2.39 –1.61 89.9 81.9 7,495 Western Sahara UN/WDI — — — — — — — — — — Yemen IEA/WDI 0.84 –0.05 0.39 4.9 5.3 0.47* 0.41 72.1 72.2 –470 Zambia IEA/WDI 0.79 –2.80 –1.02 23.0 18.8 -1.67 –1.18 79.5 76.9 5 Zimbabwe IEA/WDI — — — — — — — 85.7 87.8 — Decom- Rate of final Rate of primary energy Level of primary energy Final to Cumulative Data position Aggregated by region intensity improvement, energy intensity, intensity primary energy source analysis, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 Northern America IEA/WDI –1.59 –1.78 –1.68 10.2 7.3 –1.62 –1.66 68.4 68.7 391,975 Europe IEA/WDI –1.41 –1.10 –1.25 6.5 5.0 –1.12 –1.21 69.6 70.2 223,096 Eastern Europe IEA/WDI –1.26 –3.34 –2.30 18.7 11.8 –2.65 –2.65 68.2 63.4 140,558 Caucasian and Central Asia IEA/WDI –0.84 –5.59 –3.24 30.3 15.7 –3.55 –4.15 76.3 63.2 39,526 Western Asia IEA/WDI 0.55 1.00 0.77 7.1 8.3 0.41 0.42 67.1 62.6 –10,469 Eastern Asia IEA/WDI –1.84 –0.35 –1.10 11.8 9.5 –2.11 –1.89 73.2 62.3 1,314,102 South Eastern Asia IEA/WDI 0.17 –1.16 –0.50 9.1 8.2 –1.48 –0.66 74.2 71.8 9,718 Southern Asia IEA/WDI –0.86 –2.11 –1.49 11.1 8.2 –2.71 –2.16 80.3 70.1 101,857 Oceania IEA/WDI –0.95 –1.60 –1.27 8.8 6.8 –1.33 –1.73 68.5 62.4 15,038 Latin America and Caribbean IEA/WDI –0.52 –0.38 –0.45 6.1 5.6 –0.44 –0.56 73.6 72.1 27,714 Northern Africa IEA/WDI –0.18 0.07 –0.06 6.4 6.4 –0.46 0.20 64.0 67.4 –2,093 Sub-Saharan Africa IEA/WDI 0.03 –2.19 –1.08 15.5 12.4 –1.36 –1.18 76.8 75.4 24,624 World IEA/WDI –1.61 –0.99 –1.30 10.0 7.7 –1.63 –1.53 71.7 68.0 2,275,646 58 Global tracking framework Decom- Rate of final Rate of primary energy Level of primary energy Final to Cumulative Data position Aggregated by region intensity improvement, energy intensity, intensity primary energy source analysis, CAGR (%) (MJ/$2005 PPP) improvement, energy ratio savings (PJ) CAGR (%) CAGR (%) 1990–2000 2000–2010 1990–2010 1990 2010 1990–2010 1990–2010 1990 2010 1990–2010 High income IEA/WDI –1.03 –1.25 –1.14 7.9 6.3 –0.61 –1.18 68.4 67.8 608,778 Upper middle income IEA/WDI –2.59 –1.13 –1.86 14.1 9.7 –2.62 –2.47 72.5 64.1 1,462,534 Lower middle income IEA/WDI –1.92 –2.70 –2.31 14.0 8.8 –3.15 –2.62 75.0 70.3 191,629 Low income IEA/WDI –0.79 –1.97 –1.38 16.2 12.2 –2.50 –1.40 89.0 88.6 12,706 Source: IEA World Energy Statistics and Balance (2012); UN Energy Statistics (2012); World Development Indicators (2012). a. The IEA World Energy Statistics and Balances provides country level data for 138 countries that account for more than 99 percent of global energy consumption. The rest of the countries are lumped together in three regional groups and reported in an aggregated manner. To increase the country-level coverage, UN Energy Statistics are used for the 68 countries not reported separately by the IEA. However, a number of differences between the two data sources —namely, the application of different methodologies to estimate the use of primary solid biofuels (biomass) and the fact that the UN data were available only through 2009, at the latest—called for an adjustment of the UN data to allow for a fair comparison of energy intensity levels among countries. For some countries for which energy data were available but GDP data were not, no energy intensity figure is shown. (Energy intensity is a derivative of both energy consumption and GDP.) First available data were used for some countries for which 1990 were not available: Cambodia (1995), Eritrea (1992), Montenegro (2005), and Timor-Leste (2002). GDP data were estimated to fill gaps in time series for the following countries: Afghanistan, Barbados, Bosnia and Herzegovina, Djibouti, Estonia, Haiti, Iraq, Iran (Islamic Republic of), Ireland, Kuwait, Libya, Maldives, Palau, Qatar, and Sao Tome and Principe. * Country has less than 20 years of historical data available. Caution should be used when comparing CAGRs of decomposition analysis and energy intensity for country. ** Country has less than 10 years of historical data available. Caution should be used when comparing CAGRs of decomposition analysis and energy intensity for country. ANNEX: energy efficiency 59 DATA ANNEX: renewable ENERGY Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Afghanistan UN 42.4 56.5 19.3 12.2 — 7.0 — — — — — 76.5 87.2 72 Albania IEA 24.9 41.0 37.9 9.7 1.4 26.4 — — 0.4 — — 90.1 100.0 77 Algeria IEA 0.2 0.6 0.3 0.3 0.0 0.0 — — — — — 2.5 0.4 1,044 Angola IEA 72.3 75.5 54.9 51.3 1.3 2.4 — — — — — 43.1 67.3 451 Antigua and Barbuda UN — — — — — — — — — — — — — 4 Argentina IEA 8.9 11.0 9.0 0.6 2.0 5.3 1.1 0.0 — — — 27.8 28.6 2,052 Armenia IEA 1.9 6.2 9.0 — 0.1 8.9 — 0.0 — — — 33.5 39.5 74 Aruba UN 0.8 0.1 0.1 0.1 — — — — — — — 11.3 — 6 Australia IEA 8.0 8.4 7.3 — 4.6 1.3 0.4 0.5 0.4 — 0.1 18.7 8.9 2,940 Austria IEA 25.2 26.5 30.6 — 15.1 11.5 2.0 0.6 0.7 0.1 0.6 72.9 66.4 1,083 Azerbaijan IEA 0.3 1.6 3.1 — — 3.1 — 0.0 — — — 15.5 18.4 263 Bahamas UN — — 0.9 — 0.9 — — — — — — — — 29 Bahrain IEA — — — — — — — — — — — 0.0 — 221 Bangladesh IEA 72.0 59.5 42.0 41.4 0.0 0.6 — — — — — 4.0 3.9 883 Barbados UN 18.9 13.6 9.8 0.7 9.1 — — — — — — — — 13 Belarus IEA 0.8 4.9 7.0 2.9 3.9 0.0 0.2 0.0 — — 0.0 0.3 0.4 719 Belgium IEA 1.3 1.5 5.3 — 3.2 0.1 1.2 0.3 0.2 0.0 0.4 16.9 6.9 1,425 Belize UN 37.0 24.1 35.6 — 20.1 15.5 — — — — — 48.9 92.3 9 Benin IEA 93.7 70.3 51.5 42.9 8.7 — — — — — — 1.6 0.7 134 Bermuda UN — — — — — — — — — — — — — 9 Bhutan UN 96.5 95.2 91.7 81.3 0.4 10.0 — — — — — 98.9 100.0 54 Bolivia, Plurinational State of IEA 37.4 29.1 31.7 13.1 15.8 2.9 — — 0.0 — — 30.1 34.0 240 Bosnia and Herzegovina IEA 7.3 19.4 19.9 5.9 0.1 13.9 — — — — — 49.2 46.9 126 Botswana IEA 47.1 35.7 26.4 26.4 0.0 — — — 0.0 — — — — 77 Brazil IEA 49.8 42.8 47.0 4.0 20.3 15.2 7.3 0.1 0.2 — — 78.7 84.8 8,108 British Virgin Islands UN 100.0 1.6 1.1 1.1 — — — — — — — — — 1 Brunei Darussalam IEA 0.7 — — — — — — — — — — — — 70 Bulgaria IEA 1.9 8.3 14.4 8.3 2.0 3.0 0.2 0.4 0.1 0.4 0.0 26.7 12.6 360 60 Global tracking framework Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Burkina Faso UN 92.4 86.5 85.3 84.1 0.8 0.4 — — — — — 12.7 18.9 125 Burundi UN 82.6 93.2 96.8 95.7 0.4 0.7 — — — — — 98.1 98.4 84 Cambodia IEA 82.5 81.1 73.3 57.6 15.6 0.1 — — 0.0 — — 5.2 4.9 178 Cameroon IEA 81.6 84.5 78.6 66.7 6.7 5.2 — — — — — 72.2 73.2 243 Canada IEA 20.6 20.5 19.9 — 5.3 13.5 0.6 0.4 0.0 — 0.1 58.9 60.9 7,266 Cape Verde UN — 1.7 1.5 1.0 — — — 0.5 — — — 3.1 1.7 3 Cayman Islands UN — — — — — — — — — — — — — 4 Central African Republic UN 93.9 86.0 81.0 47.1 31.2 2.6 — — — — — 56.8 99.9 17 Chad UN 95.1 97.9 92.3 91.1 1.2 — — — — — — — — 82 Chile IEA 34.0 31.4 27.0 — 19.4 7.4 — 0.1 — — — 38.0 40.2 954 China IEA 32.3 27.7 18.8 13.5 0.0 3.6 0.1 0.2 0.6 0.3 0.5 25.1 17.5 59,740 China, Hong Kong SAR IEA 1.1 0.6 0.7 0.7 0.0 — — 0.0 — — — 0.0 0.0 338 China, Macao SAR UN 0.7 0.2 0.2 — 0.2 — — — — — — — — 17 Colombia IEA 38.3 28.0 28.6 8.2 6.6 13.7 0.1 0.0 — — — 67.1 72.1 894 Comoros UN 1.0 1.0 1.3 — — 1.3 — — — — — 16.7 11.6 1 Congo IEA 66.7 72.7 50.6 47.5 0.0 3.1 — — — — — 80.4 76.9 45 Congo, Dem. Rep. of the IEA 92.0 97.2 96.2 74.1 19.7 2.4 — — — — — 98.6 99.6 950 Cook Islands UN — — — — — — — — — — — 1.1 — 0 Costa Rica IEA 55.7 32.7 41.9 9.0 13.1 16.3 — 0.8 — 2.6 — 67.6 93.3 144 Cote d'Ivoire IEA 80.2 64.7 75.4 65.7 7.8 1.9 — — — — — 49.4 28.8 218 Croatia IEA 13.5 17.5 19.4 0.1 5.9 12.9 0.0 0.2 0.1 0.1 0.1 47.0 60.7 263 Cuba IEA 44.3 35.7 16.3 0.8 11.5 0.1 3.9 — 0.0 — — 1.3 3.2 252 Cyprus IEA 0.5 3.1 6.4 0.5 0.9 — 0.9 0.1 3.7 0.0 0.2 5.8 1.3 69 Czech Republic IEA 2.7 4.9 9.5 — 7.0 0.7 1.0 0.1 0.2 — 0.6 10.4 6.9 1,019 Denmark IEA 7.3 10.9 21.4 — 14.4 0.0 0.2 3.8 0.1 0.0 2.9 37.0 32.1 615 Djibouti UN — — — — — — — — — — — — — 5 Dominica UN 23.6 11.3 9.1 4.2 — 4.9 — — — — — 80.4 25.0 1 Dominican Republic IEA 34.3 22.3 25.9 16.1 7.5 2.4 — — — — — 9.4 11.4 237 ANNEX: renewable energy 61 Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Ecuador IEA 23.2 19.6 12.4 4.0 1.8 6.6 — 0.0 — — — 44.7 51.6 372 Egypt IEA 8.6 8.2 6.1 1.8 1.9 2.2 — 0.3 — — — 12.4 9.9 1,792 El Salvador IEA 67.1 50.9 34.8 16.0 8.7 5.9 — — — 4.3 — 47.4 65.1 107 Equatorial Guinea UN 82.0 53.2 15.4 15.2 — 0.2 — — — — — 2.6 7.0 10 Eritrea IEA 88.3 71.2 77.2 73.8 3.3 — — — 0.0 — — 1.3 0.6 21 Estonia IEA 3.3 19.9 25.1 — 24.5 0.0 — 0.4 — — 0.1 6.6 8.1 120 Ethiopia IEA 95.6 94.3 94.5 92.7 0.7 1.0 — — — 0.0 — 90.1 99.4 1,310 Falkland Islands (Malvinas) UN — — — — — — — — — — — 10.0 — 1 Fiji UN 16.4 13.0 15.5 2.6 — 12.8 — — — — — 51.0 57.4 12 Finland IEA 24.6 31.7 33.5 — 27.6 4.6 0.6 0.1 0.0 — 0.6 31.5 30.1 1,051 France IEA 10.4 9.3 12.3 — 6.7 2.8 1.6 0.4 0.1 0.1 0.6 21.5 13.8 6,314 French Guiana UN 12.5 8.0 34.4 7.9 2.1 24.3 — — — — — 90.1 90.1 9 French Polynesia UN 100.0 9.2 8.6 0.5 — 8.1 — — — — — 25.3 28.7 9 Gabon IEA 78.3 74.5 63.0 48.4 11.8 2.8 — — — — — 41.0 44.2 78 Gambia UN 58.9 50.3 41.0 41.0 — — — — — — — — — 10 Georgia IEA 12.8 47.3 39.9 12.6 1.9 23.5 — — — 1.9 0.0 62.8 92.5 103 Germany IEA 2.1 3.8 10.8 — 4.6 0.7 1.8 1.4 0.6 0.2 1.4 36.3 16.7 8,504 Ghana IEA 80.6 74.7 66.5 44.1 15.7 6.7 — — — — — 59.4 83.6 311 Gibraltar IEA — — — — — — — — — — — — — 5 Greece IEA 7.8 7.5 11.1 — 4.7 3.2 0.7 1.2 1.1 0.1 0.1 26.7 18.3 769 Grenada UN 6.4 7.0 8.8 8.1 0.7 — — — — — — 1.4 — 3 Guadeloupe UN 7.8 0.6 5.5 0.5 — 1.0 — 3.7 0.3 — — 11.0 15.0 18 Guatemala IEA 75.0 62.7 67.0 59.7 4.1 3.0 — — — 0.2 — 43.5 66.9 354 Guinea UN 92.6 89.6 88.9 87.3 0.5 1.1 — — — — — 31.6 52.4 114 Guinea-Bissau UN 70.8 50.1 37.4 7.1 30.3 — — — — — — — — 6 Guyana UN 28.1 41.5 46.7 26.6 20.1 — — — — — — 4.0 — 31 Haiti IEA 81.1 76.0 70.5 60.2 10.0 0.3 — — — — — 20.7 30.2 87 Honduras IEA 70.1 55.1 49.8 41.7 3.0 5.1 — — — — — 36.3 46.1 157 62 Global tracking framework Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Hungary IEA 3.9 5.2 9.1 — 6.7 0.1 1.1 0.3 0.0 0.6 0.3 9.8 8.1 674 Iceland IEA 62.2 66.1 76.7 — — 38.5 — — — 38.2 0.0 95.3 100.0 108 India IEA 57.5 52.6 42.4 31.7 8.5 1.7 0.0 0.3 0.1 — — 27.0 14.2 17,569 Indonesia IEA 58.7 44.7 37.4 31.6 4.4 0.9 0.0 — — 0.5 — 17.8 16.0 6,177 Iran, Islamic Republic of IEA 1.3 0.4 0.7 0.0 0.2 0.5 — 0.0 — — 0.0 13.8 4.2 5,983 Iraq IEA 1.6 0.3 1.6 — 0.1 1.5 — — — — — 24.9 9.5 855 Ireland IEA 2.3 2.0 5.2 — 1.7 0.4 0.8 2.0 0.1 — 0.3 20.2 13.1 460 Israel IEA 5.8 6.0 8.5 — 0.1 0.0 0.0 0.0 8.4 — 0.0 1.9 0.2 562 Italy IEA 3.8 5.1 10.0 — 3.2 3.7 1.5 0.7 0.2 0.5 0.3 24.7 25.8 5,033 Jamaica IEA 7.6 11.5 12.1 8.4 3.0 0.5 — 0.2 — — — 5.2 6.4 86 Japan IEA 4.4 3.9 4.2 — 1.3 2.2 — 0.1 0.2 0.1 0.1 10.6 10.1 11,915 Jordan IEA 2.8 2.1 3.0 0.1 0.0 0.1 — 0.0 2.8 — 0.0 0.6 0.5 188 Kazakhstan IEA 1.4 2.5 1.2 0.1 0.0 1.1 — — — — — 11.8 9.7 1,816 Kenya IEA 77.7 81.8 77.1 74.2 0.2 1.9 — 0.0 — 0.8 — 58.1 69.5 529 Kiribati UN 39.5 30.9 1.1 1.1 — — — — — — — — — 1 Korea, Dem. People’s Rep. of IEA 7.7 9.8 12.0 — 6.6 5.4 — — — — — 52.6 61.9 672 Korea, Republic of IEA 1.6 0.7 1.3 — 0.2 0.2 0.3 0.1 0.1 0.0 0.4 3.4 1.2 4,982 Kuwait IEA 0.2 — — — — — — — — — — — — 513 Kyrgyzstan IEA 7.9 37.3 22.5 — 0.1 22.3 — — — — — 79.9 91.0 106 Lao People’s Dem. Rep. UN 96.7 91.3 90.1 80.6 — 9.0 — — 0.5 — — 97.4 92.3 66 Latvia IEA 17.6 35.8 35.3 17.7 9.7 6.9 0.6 0.1 — — 0.2 72.8 54.9 173 Lebanon IEA 11.5 5.0 5.0 2.6 0.2 1.8 — — 0.4 — — 12.1 5.3 161 Lesotho UN — 100.0 100.0 — — 100.0 — — — — — 100.0 100.0 1 Liberia UN 95.4 90.5 92.5 92.5 — — — — — — — — — 74 Libya IEA 3.1 2.1 2.1 2.1 0.0 — — — — — — — — 347 Lithuania IEA 3.1 17.6 22.6 12.7 6.2 1.7 1.0 0.7 — 0.0 0.2 8.2 19.2 189 Luxembourg IEA 1.7 6.8 3.7 — 1.2 0.5 1.1 0.2 0.1 — 0.5 7.8 8.3 162 Macedonia, Former Yugoslav Rep. of IEA 2.4 19.4 23.0 10.1 1.0 11.0 0.3 — — 0.6 — 35.9 33.5 75 ANNEX: renewable energy 63 Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Madagascar UN 86.4 78.5 82.8 53.5 27.6 1.8 — — 0.0 — — 34.4 58.2 114 Malawi UN 86.1 76.9 81.3 38.5 36.4 6.4 — — — — — 99.7 85.5 59 Malaysia IEA 14.0 8.6 6.2 4.6 0.3 1.3 0.0 — — — 0.0 8.3 6.2 1,557 Maldives UN — — — — — — — — — — — 0.1 — 2 Mali UN 91.6 88.9 88.3 85.4 1.4 1.5 — — — — — 51.6 55.2 62 Malta IEA — — 0.3 — — — — — 0.3 — — 0.3 — 15 Martinique UN 2.3 1.6 1.6 0.2 0.8 — — 0.0 0.6 — — 0.3 2.8 23 Mauritania UN 40.9 42.6 35.1 35.1 — — — — — — — 36.9 — 33 Mauritius UN 51.9 14.6 6.9 0.5 5.4 1.1 — 0.0 — — — 24.3 4.8 33 Mexico IEA 14.3 12.5 10.0 — 7.0 2.3 — 0.1 0.1 0.4 0.0 21.6 17.6 4,408 Moldova, Republic of IEA 0.8 4.6 4.3 — 4.0 0.3 — — — — — 11.6 2.2 75 Mongolia IEA 1.8 4.9 3.7 2.6 1.1 — — — — — — 0.1 — 96 Montenegro IEA n.a. n.a. 48.9 5.6 0.4 42.9 — — — — — 75.8 66.0 18 Montserrat UN — — — — — — — — — — — — — 1 Morocco IEA 8.5 6.7 7.2 3.4 0.6 2.7 — 0.5 — — — 23.7 18.5 500 Mozambique IEA 93.1 92.5 89.6 71.2 7.8 10.7 — — — — — 89.7 99.9 344 Myanmar IEA 90.9 80.2 84.9 79.5 2.6 2.8 — — — — — 46.7 67.7 535 Namibia IEA 38.9 38.2 30.2 13.8 0.0 16.4 — — 0.0 — — 63.4 84.9 63 Nepal IEA 95.1 88.3 88.3 84.3 1.0 2.3 — — — — 0.6 92.1 99.9 424 Netherlands IEA 1.2 1.5 3.6 — 1.5 0.0 0.5 0.6 0.1 0.0 0.8 14.5 9.5 2,064 Netherlands Antilles IEA — — — — — — — — — — — 9.4 — 29 New Caledonia UN 40.2 15.9 8.0 0.2 0.0 7.0 — 0.7 — — — 23.2 23.1 19 New Zealand IEA 29.2 28.9 31.5 — 8.8 15.7 0.0 1.0 0.1 5.6 0.2 68.3 73.4 497 Nicaragua IEA 70.4 62.4 53.8 44.4 6.9 1.3 — 0.4 — 0.8 — 31.6 37.0 92 Niger UN 86.8 93.9 73.7 71.0 2.8 — — — 0.0 — — — 0.0 39 Nigeria IEA 88.4 86.9 88.8 79.6 8.8 0.4 — — — — — 32.9 24.4 4,373 Norway IEA 59.3 60.3 56.9 — 6.2 49.2 0.6 0.4 — — 0.5 93.6 95.8 796 Oman IEA — — — — — — — — — — — — — 265 64 Global tracking framework Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Pakistan IEA 57.5 51.1 46.0 37.9 4.7 3.4 — — — — — 29.6 33.7 2,777 Palau UN — — 6.8 — — 6.8 — — — — — n.a. 11.8 1 Panama IEA 43.7 34.4 24.1 11.3 2.9 10.0 — — — — — 47.4 57.0 126 Papua New Guinea UN 70.4 66.4 66.7 56.9 6.6 3.3 — — — — — 38.9 27.3 89 Paraguay IEA 78.5 70.4 64.1 23.1 25.9 13.8 1.2 — — — — 99.9 100.0 179 Peru IEA 39.4 32.2 30.2 17.7 1.5 10.4 0.6 0.0 0.0 — — 39.9 57.9 610 Philippines IEA 51.0 34.9 28.8 15.1 7.5 2.3 0.9 0.0 0.0 3.0 — 33.1 26.3 988 Poland IEA 2.5 6.9 9.5 — 7.5 0.3 1.4 0.2 0.0 0.0 0.1 6.5 6.9 2,718 Portugal IEA 27.1 20.0 27.9 — 13.5 7.5 1.9 4.3 0.4 0.2 0.2 45.5 52.8 722 Puerto Rico UN 1.8 0.7 0.7 — — 0.7 — — — — — 2.8 0.7 67 Qatar IEA — — — — — — — — — — — — — 397 Reunion UN 38.9 16.5 17.6 1.1 10.8 5.1 — 0.7 — — — 38.7 40.0 41 Romania IEA 3.4 16.5 24.0 16.2 1.9 5.3 0.5 0.1 0.0 0.1 0.0 30.9 33.1 914 Russian Federation IEA 3.8 3.5 3.3 0.3 0.4 2.6 — 0.0 — 0.0 — 20.5 16.1 16,133 Rwanda UN 84.4 89.4 87.9 86.8 0.5 0.6 — — 0.0 — — 47.6 40.0 51 Saint Kitts and Nevis UN 67.4 23.3 — — — — — — — — — — — 2 Saint Lucia UN — — — — — — — — — — — — — 3 Saint Pierre and Miquelon UN — — 1.7 — — — — 1.7 — — — 2.3 3.5 0 Saint Vincent and the Grenadines UN 18.0 10.6 7.9 3.1 — 4.8 — — — — — 14.9 17.1 2 Samoa UN 100.0 49.6 44.5 32.5 3.1 8.9 — — — — — — 45.1 2 Sao Tome and Principe UN 62.2 35.7 35.4 33.5 — 1.9 — — — — — 42.9 35.7 2 Saudi Arabia IEA 0.0 0.0 0.0 0.0 0.0 — — — — — — — — 3,005 Senegal IEA 55.6 47.7 42.5 41.5 0.2 0.8 — — 0.0 — — 0.3 10.4 91 Serbia IEA 15.5 23.5 20.3 11.0 0.7 8.6 — — — 0.1 — 26.6 31.8 367 Seychelles UN — — — — — — — — — — — — — 8 Sierra Leone UN 95.6 90.6 71.2 52.2 18.9 0.1 — — — — — 52.9 31.8 58 Singapore IEA 0.2 0.3 0.4 — — — — — — — 0.4 0.2 1.3 532 Slovakia IEA 2.2 3.7 10.9 — 5.2 3.8 1.6 0.0 0.0 0.0 0.2 23.0 21.6 433 ANNEX: renewable energy 65 Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Slovenia IEA 12.4 15.9 18.8 — 11.2 5.8 0.9 — 0.1 0.5 0.3 35.5 29.2 207 Solomon Islands UN 68.4 87.0 75.3 75.3 — — — — — — — — — 4 Somalia UN 100.0 96.3 94.8 67.0 27.8 — — — — — — — — 89 South Africa IEA 16.6 18.2 18.7 15.1 3.2 0.3 — 0.0 0.1 — — 2.0 1.0 2,405 Spain IEA 10.5 8.0 14.8 — 4.7 3.6 1.7 3.8 0.8 0.0 0.2 38.8 32.5 3,628 Sri Lanka IEA 78.1 64.2 62.0 36.9 20.4 4.7 — 0.0 0.0 — — 52.0 52.5 370 Sudan IEA 73.3 81.6 66.6 43.3 20.8 2.5 — — — — — 69.3 49.0 437 Suriname UN 36.0 17.1 18.3 6.4 0.6 11.2 — — — — — 46.1 53.9 25 Swaziland UN 84.3 46.8 35.7 24.6 6.4 4.7 — — — — — 40.3 47.3 35 Sweden IEA 34.1 40.9 47.4 — 27.3 15.4 1.7 0.8 0.0 — 2.1 62.1 55.3 1,368 Switzerland IEA 16.9 18.5 21.2 — 4.4 13.7 0.0 0.0 0.2 1.3 1.6 68.9 56.7 858 Syrian Arab Republic IEA 2.4 1.9 1.4 — 0.0 1.3 — — — — — 10.8 5.6 505 Tajikistan IEA 29.6 62.4 57.3 — — 57.3 — — — — — 91.2 96.6 84 Tanzania, United Republic of IEA 94.8 94.3 90.7 70.6 19.0 1.1 — — — — — 66.8 58.0 729 Thailand IEA 33.6 22.0 22.8 10.2 10.9 0.7 1.0 — 0.0 0.0 0.0 8.9 5.6 2,780 Timor-Leste UN n.a. n.a. 43.1 43.1 — — — — — — — — — 3 Togo IEA 78.7 77.1 76.1 64.3 9.2 2.6 — — — — — 78.8 76.2 69 Tonga UN — 0.4 2.0 2.0 — — — — — — — — — 2 Trinidad and Tobago IEA 1.2 0.5 0.2 0.2 0.0 — — — — — — 0.3 — 232 Tunisia IEA 14.5 14.2 14.6 13.9 0.4 0.1 — 0.1 — — — 3.2 1.2 291 Turkey IEA 24.6 17.3 14.2 — 6.3 5.1 0.0 0.3 0.4 2.0 0.0 35.1 26.4 2,948 Turkmenistan IEA 0.3 0.0 0.0 — — 0.0 — — — — — 0.0 0.0 511 Turks and Caicos Islands UN — — — — — — — — — — — — — 1 Uganda UN 96.1 94.6 88.8 85.5 2.6 0.7 — — — — — 68.5 58.6 390 Ukraine IEA 0.7 1.3 2.9 1.4 0.4 1.2 — 0.0 — — — 10.1 7.2 2,856 United Arab Emirates IEA — 0.1 0.1 — 0.1 — — — — — — 0.0 — 1,799 United Kingdom of Great Britain IEA 0.7 1.0 3.2 — 0.9 0.2 0.9 0.6 0.1 0.0 0.6 10.0 6.8 5,435 and Northern Ireland 66 Global tracking framework Total final Data Share (%) of RE share (%) in energy Country Share (%) in TFEC in 2010 source RE in TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass United States of America IEA 4.2 5.4 7.6 — 3.2 1.4 1.9 0.5 0.1 0.1 0.3 12.9 10.1 57,173 Uruguay IEA 44.8 38.8 52.3 8.3 26.3 17.7 — 0.1 — — — 60.2 89.0 148 Uzbekistan IEA 1.3 1.2 2.6 — 0.0 2.6 — — — — — 14.9 21.0 1,226 Vanuatu UN 100.0 68.9 41.6 39.7 — 1.1 — 0.8 — — — 10.7 19.0 2 Venezuela, Bolivarian Rep. of IEA 11.8 14.1 12.5 1.1 1.0 10.5 — — — — — 61.5 64.9 1,853 Viet Nam IEA 76.1 58.0 34.8 24.5 5.6 4.7 — — — — — 36.4 29.1 1,924 Western Sahara UN — — — — — — — — — — — — — 2 Yemen IEA 2.1 1.2 1.0 — 1.0 — — — — — — — — 211 Zambia IEA 82.9 89.9 90.7 68.0 12.0 10.8 — — — — — 99.6 99.7 260 Zimbabwe IEA 64.1 70.2 80.8 69.2 5.2 6.4 — — — — — 33.4 50.2 352 Total final Aggregated by Data Share (%) of RE in RE share (%) in energy Share (%) in TFEC in 2010 region source TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass Northern America IEA 6.0 7.1 9.0 — 3.4 2.8 1.7 0.5 0.1 0.1 0.3 18.2 16.3 64,439 Europe IEA 8.1 9.4 14.1 0.3 6.0 4.1 1.3 1.1 0.3 0.3 0.8 33.6 26.0 42,078 Eastern Europe IEA 3.0 4.2 5.4 1.1 1.8 2.1 0.3 0.0 0.0 0.0 0.0 17.5 13.8 25,902 Caucasian and Central Asia IEA 3.1 5.2 4.4 0.4 0.1 3.9 — 0.0 — 0.0 0.0 28.6 28.2 4,184 Western Asia IEA 8.2 5.8 4.3 0.0 1.6 1.5 0.0 0.1 0.6 0.5 0.0 11.4 7.4 11,697 Eastern Asia IEA 22.2 19.1 15.3 10.4 0.3 3.2 0.1 0.2 0.5 0.2 0.4 20.8 14.8 77,743 South Eastern Asia IEA 52.2 37.9 31.1 23.4 5.5 1.5 0.3 0.0 0.0 0.4 0.0 15.9 14.1 14,741 Southern Asia IEA 50.9 43.4 34.8 26.7 6.1 1.6 0.0 0.2 0.0 — 0.0 24.4 14.0 28,007 Oceania IEA 15.0 15.6 15.1 4.3 4.8 4.0 0.3 0.5 0.3 0.7 0.1 24.2 22.2 3,867 Latin America and Caribbean IEA 32.3 28.2 29.0 5.1 11.5 9.3 2.9 0.1 0.1 0.1 0.0 52.5 56.5 22,000 Northern Africa IEA 6.5 6.2 5.0 2.5 1.0 1.4 — 0.2 — — — 9.6 7.2 3,974 Sub-Saharan Africa IEA 72.5 74.6 75.4 65.3 8.5 1.6 — 0.0 0.0 0.0 — 26.0 22.7 16,368 World IEA 16.6 17.4 18.0 9.6 3.7 3.1 0.8 0.3 0.2 0.2 0.3 23.9 19.4 329,834 ANNEX: renewable energy 67 Total final Aggregated by Data Share (%) of RE in RE share (%) in energy Share (%) in TFEC in 2010 income level source TFEC 2010 of: consumption (PJ) in 2010 Tradi- Modern Liquid Geo- Electricity Electricity 1990 2000 2010 tional Hydro Wind Solar Other biomass biofuels thermal capacity generation biomass High income IEA 6.2 7.0 9.3 0.0 3.9 2.8 1.3 0.6 0.2 0.2 0.4 20.7 16.6 138,623 Upper middle income IEA 18.8 19.6 16.7 8.4 2.6 4.1 0.6 0.1 0.3 0.2 0.2 27.0 22.1 120,299 Lower middle income IEA 45.1 47.6 43.2 34.2 6.7 2.0 0.0 0.1 0.0 0.1 0.0 26.5 20.7 48,666 Low income IEA 61.9 73.7 74.2 63.9 6.7 3.4 — 0.0 0.0 0.1 0.0 56.3 59.1 7,410 Sources: IEA World Energy Statistics and Balances (2012), UN Energy Statistics. Note: Owing to unavailability of data for 1990, the first available data were used for the following countries: Cambodia (1995), Eritrea (1992), Kosovo (2000), Montenegro (2005), and Namibia (1991). The latest available UN data are for 2009. World is greater than the sum of countries because world includes marine and aviation bunkers. — = data not available. 68 Global tracking framework The report’s framework for data collection and analysis will enable us to monitor progress on the SE4ALL objectives from now to 2030. It is methodologically sound and credible. It produces findings that are conclusive and actionable. In many respects, what you measure determines what you get. That is why it is critical to get measurement right and to collect the right data, which is what this report has done. It has charted a map for our achievement of sustainable energy for all and a way to track progress. Let the journey begin! —Kandeh Yumkella Secretary General’s Special Representative for Sustainable Energy for All The SE4ALL Global Tracking Framework full report, overview paper, executive summary and associated datasets can be downloaded from the following website: www.worldbank.org/se4all COORDINATORS For sustainable energy.