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Abstract

Crop yields in smallholder systems are traditionally
assessed using farmer-reported information in surveys,
occasionally by crop cuts for a sub-section of a farmer’s
plot, and rarely using full-plot harvests. Accuracy and cost
vary dramatically across methods. In parallel, satellite data
is improving in terms of spatial, temporal, and spectral
resolution needed to discern performance on smallholder
plots. This study uses data from a survey experiment in
Uganda, and evaluates the accuracy of Sentinel-2 imag-
ery-based, remotely-sensed plot-level maize yields with
respect to ground-based measures relying on farmer self-re-
porting, sub-plot crop cutting (CC), and full-plot crop
cutting (FP). Remotely-sensed yields include two versions
calibrated to FP and CC yields (calibrated), and an alter-
native based on crop model simulations, using no ground

data (uncalibrated). On the ground, self-reported yields
explained less than 1 percent of FP (and CC) yield variabil-
ity, and while the average difference between CC and FP
yields was not significant, CC yields captured one-quarter
of FP yield variability. With satellite data, both calibrated
and uncalibrated yields captured FP yield variability on
pure stand plots similarly well, and both captured half of
FP yield variability on pure stand plots above 0.10 hectare.
The uncalibrated yields were consistently 1 ton per hect-
are higher than FP or CC yields, and the satellite-based
yields were less well correlated with the ground-based
measures on intercropped plots compared with pure stand
ones. Importantly, regressions using CC, FP and remote-
ly-sensed yields as dependent variables all produced very
similar coefficients for yield response to production factors.
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1. Introduction

Improving the productivity of smallholder farmers is widely considered one of the most effective
avenues for reducing poverty and food insecurity, and thus has been a longstanding goal in many
African countries (Byerlee et al., 2007). The evidence concerning (i) agriculture contributing up
to 69 percent of rural household income in Africa (Davis et al., 2017), and (ii) higher rates of
expected poverty reduction associated with agricultural vis-a-vis nonagricultural growth (Dorosh
and Thurlow, 2016) helps sustain the policy focus on achieving this goal at the national level.
Similarly, at the international level, doubling productivity and incomes of smallholders have been
identified as a key target within the Sustainable Development Goal (SDG) #2 of Ending Hunger.

Accurate measures of production and productivity are, therefore, essential to (i) tracking
progress towards the relevant SDG targets; answering fundamental questions on the role of
agriculture in household and individual welfare (Darko et al., 2018); and understanding which
production factors have the most important role in determining productivity. Ongoing debates
about the relationship between (land) productivity and (i) fertilizer use (Harou et al., 2017), (ii)
plot/farm size (Bevis and Barrett, 2017; Desiere and Jolliffe, 2018; Gourlay et al., 2017), or (iii)
soil quality (Berazneva et al., 2018) reflect the substantial knowledge gaps and the need to
improve the accuracy and precision of recommendations for raising productivity in particular
locations.

The most common way to assess outcomes related to economic productivity of smallholder
farmers, including land productivity (e.g. crop yields), is by using information collected through
in-person interviews for household and farm surveys. For example, the household surveys
supported by the World Bank Living Standards Measurement Study — Integrated Surveys on
Agriculture (LSMS-ISA) initiative measure plot areas with handheld GPS units and solicit farmer-
reported information on crop production and input use, among other topics, at the plot level.
This information, together with multi-topic household survey data, have informed a burgeoning
field of development research on Africa over the last decade.

Compared to the body of methodological research that has shown severe systematic biases in
farmer-reported plot area measures (Carletto et al., Forthcoming) and that have underlined the
increasing use of GPS-based plot area measurement in national household surveys, there is a
dearth of evidence on the accuracy of farmer-reported crop production. It is, however, known
that the process of soliciting farmer-reported production information is mediated by
complexities that include (i) the use of non-standard measurement units, (ii) various conditions
and states of crop harvest; (iii) partial/early crop harvests; (iv) potential recall bias, and (v)
tendency to round off numbers, among others (Carletto et al., 2015). Recent research highlighted



the measurement errors in self-reported crop production estimates and their implications for the
inverse scale-productivity relationship (Desiere and Jolliffe, 2018 in Ethiopia; Gourlay et al., 2017
in Uganda).

Less common but also well-established is to measure crop yields by physically harvesting a sub-
section of a farmer’s plot in a so-called crop cut (Fermont and Benson, 2011). Crop cuts provide
a more objective way to measure grain production for a part of the plots, but heterogeneity
within a plot can lead to sensitivities of crop cut yields to the precise location and size of the crop
cut sub-plot vis-a-vis the entire plot (Fermont and Benson, 2011). An alternative is to harvest the
entire plot, which avoids most of the problems of the prior methods, and therefore, is frequently
considered the “gold standard” (Casley and Kumar, 1988; Fermont and Benson, 2011). However,
full plot harvests require a substantial amount of labor and coordination with farmer harvest
schedules, which makes them costly and difficult to scale.

Given the limitations of existing approaches, recent work has explored the ability of satellite data
to track crop yields. Burke and Lobell (2017) (hereafter BL17) showed that 1m resolution data
from Terra Bella’s Skysat sensors were useful for mapping maize yields for farms in western
Kenya. This usefulness was measured both by correlation of satellite-based yield estimates with
traditional ground-based yield measures, as well as by the ability of satellite-based yields to
detect positive yield responses to fertilizer and hybrid seed inputs. This latter aspect was
considered especially important since (i) ground-based yield measures are inevitably imperfect
themselves, and (ii) detecting response to inputs or some other aspect of farm management is a
common motivation for collecting plot-level yield data in the first place.

The primary objectives of this paper are to assess the ability of satellite-based approaches to
measure plot-level maize yields on African smallholder farms and to gauge the sensitivity of
production function estimation to the choice of ground- versus satellite-based maize yield
variant. The analysis uses data from the 2016 round of MAPS: Methodological Experiment on
Measuring Maize Productivity, Soil Fertility and Variety, which was implemented during the first
rainy season of 2016 (June-October) in 45 enumeration areas within a 400 square kilometer area
spanning Iganga and Mayuge districts of Eastern Uganda; the leading maize-producing region of
the country. The analysis extends the work presented in BL17 in at least three substantial ways.

First, the Ugandan maize systems are considerably more subsistence-focused and heterogeneous
than the Kenyan counterparts in BL17, with generally smaller plot sizes, lower input use, and
greater prevalence of under-canopy intercrops such as beans and groundnuts, and frequent
occurrence of over-canopy intercrops such as cassava and bananas. Thus, Uganda represents a



different and, in many ways, more challenging environment in which to test satellite-based crop
yield measurement approaches.

Second, whereas BL17 relied on farmer self-reported data on maize production, this paper uses
objective measures based on survey field team harvests of maize grain for 64 m? subplots within
each plot (“crop cuts”), as well as whole plot harvests for approximately 1 random half of our
sample (“full plot harvests”). Thus, we are able to compare different ground-based measures
with each other, and with the satellite data.

Third, the study uses data from the Copernicus program’s Sentinel-2A satellite, which has coarser
spatial resolution but more spectral bands than the Skysat sensor used in BL17. Furthermore,
whereas Skysat data are currently only available for selected locations, Sentinel-2A and its
recently launched sister satellite Sentinel-2B each capture imagery every 10 days for the entire
land surface of the Earth, with an effective 5-day repeat for the Sentinel-2 duo since June 2017.
These data are quickly made available to the public at no cost. For these reasons, Sentinel-2
represents an attractive option for estimating yields over large regions.?

All plot-level measures of maize yield, including farmer-reported self-reported production per
hectare (SR), sub-plot crop cut production per hectare (CC), full plot crop production per hectare
(FP), and variants of remotely sensed production per hectare (RS), rely on GPS-based plot areas;
are compared to each other using standard statistical approaches; and are used to study the
sensitivity of the associations between maize yield and various production factors measured
through a combination of a household survey and extensive soil sampling.

The paper is organized as follows. Section 2 describes the data. Section 3 presents the
comparisons among ground-based yield measures; between ground- and satellite-based vyield
measures; and the results from the estimations of maize yield regressions for each yield variant
of interest. Section 4 concludes.

2. Data

MAPS: Methodological Experiment on Measuring Maize Productivity, Soil Fertility and Variety is
a two-round household panel survey that was conducted in Eastern Uganda to test the relative
accuracy of subjective approaches to data collection vis-a-vis objective survey methods for maize
yield measurement, soil fertility assessment, and maize variety identification. Both survey rounds
were implemented by the Uganda Bureau of Statistics, with technical and financial assistance

2 BL17 focused on field campaigns in 2014 and 2015, before Sentinel-2 was operational.



provided by an inter-agency partnership that was led by the World Bank Living Standards
Measurement Study (LSMS).

2.1. Sampling Design

In Round I, the MAPS fieldwork was conducted during the first rainy season of 2015, from April
to October 2015, in Eastern Uganda, the top maize-producing region of the country. A sample of
75 enumeration areas (EAs) were selected from the 2014 Population and Household Census
(PHC) EA frame, with probability proportional to EA-level household counts. The sampled EAs
were distributed across 3 strata, namely (1) Sironko district (15 EAs), (2) Serere district (15 EAs),
and (3) a 400 square kilometer remote sensing tasking area spanning Iganga and Mayuge districts
(45 EAs).

In each sampled EA, the original intention had been to select, at random, 6 households from each
of the pure stand and intercropped universes of households of an EA, and ensure an even sample
split by maize cultivation status. Within the remote sensing tasking area of interest, the MAPS |
fieldwork started out with 540 households, of which 249 were pure stand (46 percent) and 291
(54 percent) were intercropped.? In each MAPS household, 1 maize plot, matching the household
cultivation status, was selected at random by the Survey Solutions CAPI application for crop
cutting, soil sampling, and variety identification components.

In MAPS I, the fieldwork was conducted during the first rainy season of 2016, from June to
October 2016. The field teams attempted to track and re-interview 540 households that had been
interviewed in 2015 within the 400 square kilometer remote sensing tasking area. Figure 1
provides an overview of the study region in MAPS II. Overall, 489 of the 540 households were
successfully re-interviewed.* As in MAPS |, 1 maize plot was selected from each household for
crop cutting and variety identification components. Whenever possible, the plot was selected
among those that were matching the household cultivation status in MAPS I. Preference was
given such that the plot would be selected from the same parcel that had contained the plot
selected in Round I. If multiple plots matched the household cultivation status, the CAPI
application selected one plot at random.”

3 The uneven split by cultivation status was due to the low incidence of pure stand households, and the cases in
which pure stand households would switch to intercropping status between the household listing and the first
interview.

434 out of 51 households that we did not interview in MAPS Il were due to the fact that they were not cultivating
maize in the first season of 2016. The remaining 17 households can be broken down as follows: 5 households could
not be tracked or were outside of the tracking area defined as the Iganga and Mayuge districts (5); 4 households had
suffered total crop loss prior to post-planting interview; 7 households had already harvested their maize by the post-
planting interview; and 1 household refused. Gourlay et al. (2017) report that attrition bias is not a concern.

5 Refer to Gourlay et al. (2017) for MAPS Il household tracking and plot selection protocols.



The MAPS | remote sensing findings were reported first by Gourlay et al. (2017). MAPS I
implemented full-plot crop cutting for a random sub-sample of plots, and increased, on each plot,
the area for sub-plot crop cutting (from 4x4m to 8x8m). These decisions were anchored in the
concerns around intra-plot variability of maize yields. Given the enhancements in the scope of
crop cutting data in MAPS Il and the interest in the validation of satellite-based approaches to
yield estimation, we rely solely on the MAPS |l data on 463 households/plots for which sub-plot
crop cutting data are available. The only exception, as explained below, is the plot-level data on
soil fertility, which is sourced from MAPS |. Table 1 provides a breakdown of 463 plots in
accordance with pure stand versus (type of) intercropped cultivation status.

Table 1. Distribution of MAPS Il Plots by Cultivation Status

Intercropped

Purestand - - - )
Maize-Legume | Maize-Cassava | Maize-Legume-Cassava [ Maize-Other

124 119 161 52 7

2.2. Fieldwork

Three visits were made to each household during MAPS II. During the (first) post-planting visit,
the questionnaire modules included those soliciting information on (1) demographic and socio-
economic attributes of household members; (2) household dwelling characteristics and
ownership of durable assets and agricultural implements; and (3) area, cultivation pattern,
management, pre-harvest labor and seed inputs for all maize plots that were cultivated during
the reference rainy season.® Following the completion of the household post-planting interview,
each enumerator visited the maize plot that was selected in accordance with the protocol
detailed in the previous section. At that time, he/she measured the plot area and saved its
boundaries on a Garmin eTrex 30 handheld GPS device, and set up the crop cut sub-plot for later
harvesting and weighing. The crop cut sub-plot location was chosen at random, in accordance
with the protocol that is detailed by Gourlay et al. (2017) and in line with the international best
practices.

During the (second) crop cutting visit, the enumerator harvested the crop cut sub-plots to obtain
objectively measured harvest quantities, as detailed in the subsequent section. Finally, during

6 A parcel is conceptualized as a continuous piece of land under a common tenure system, while a plot is defined as
a continuous piece of land on which a unique crop or a mixture of crops is grown, under a uniform, consistent crop
management system, not split by a path of more than one meter in width, and with boundaries defined in
accordance with the crops grown and the operator. Therefore, a parcel can be made up of one or more plots. This
distinction is key since for the purposes of within-farm analysis of agricultural productivity, the ideal is to capture
within-parcel, plot area measurements linked with plot-level measurement of agricultural production



the (third) post-harvest visit, farmer-reported information on total plot-specific maize
production, non-labor inputs and harvest labor inputs was solicited for all maize plots that were
cultivated during the reference season. The post-harvest visit was scheduled within a 2-month
period following the completion of each household’s harvest.

2.3. Key Measurement Domains and Methods

2.3.1. Plot Area Measurement

After walking the perimeter of a given plot with the plot manager to identify the boundaries, the
enumerators re-paced the perimeter and measured the area with a Garmin eTrex 30 handheld
GPS device. The area was recorded on the questionnaire in square meters, and the raw GPS track
outline was stored. The competing yield measures in our study are all anchored in GPS-based plot
area measurement. In MAPS I, the median plot size was 0.11 hectare (ha) (roughly one-quarter
of an acre), with 46 percent below 0.10 ha and 17 percent below 0.05 ha.

2.3.2. Soil Fertility Assessment

Gourlay et al. (2017) provides details on the collection of soil samples at each plot location in
MAPS |. The soil sample collection was not repeated in MAPS Il partly due to budget constraints
and partly due to the MAPS Il preference for the plots that were on the same parcels that had a
plot selected in MAPS I, as explained by Gourlay et al. (2017). In MAPS |, four samples of the
topsoil (0-20cm) were collected at random locations within each plot and were combined into
one composite sample. A single deeper (sub-soil) sample (20-50cm) was collected from the plot
center. All samples were shipped to the World Agroforestry Center (ICRAF) Nairobi office, and
were subject to spectral soil analysis, with 10 percent of the top- and sub-soil samples also
analyzed with conventional wet chemistry testing. The key soil attributes that were measured
include pH, texture analysis (sand, % clay, % silt), cation exchange capacity, electrical conductivity
(EC), and the concentration of organic carbon (OC), total nitrogen (TN), and potassium.

Following Mukherjee and Lal (2014), a composite soil quality index (SQl) was calculated for each
MAPS | plot. Multiple approaches to index construction were employed, including simple additive
and weighted additive approaches, as well as a principal component approach and each were
computed using topsoil (0-20cm) and subsoil (20-50cm) depths. Bivariate analysis of each index
and crop cutting yield estimates (not reported) suggested that the principal component method
using top-soil properties was found to correlate more strongly with yield than other approaches,
and thus, this index is used. Numerous versions of the principal component-based soil quality
index were constructed, using different combinations of soil properties. In this approach,



principal component analysis (PCA) was first conducted and components with eigenvalues
greater than or equal to 1 were retained. Then, the most important variables in each component
were identified, including all variables within 10% of the weight of the most important, if the
correlation with the most important variable was less than or equal to 0.6. When two or more
properties were retained from the same component (where they are weakly correlated and
within 10% of the highest weighted property), each property received the same weight.

The index with the greatest predictive power with respect to crop cut yield was composed of
organic carbon (%), soil electrical conductivity (an indicator of soil salinity), and pH. These variable
values were transformed to a range from 0 to 1, where 1 represents the most optimal value in
the sample (e.g., highest value for OC, intermediate values for pH), and 0 represents the lowest
value in the sample. A composite index was then generated by weighting each variable by the
fraction of total variance explained by its corresponding component. The relative weights for
organic carbon, soil electrical conductivity, and pH are 68.3, 68.3, 31.7, respectively.” Given data
limitations, the constructed index focuses on nutrient storage capacity but ignores the other two
components of soil quality identified by Mukherjee and Lal (2014) related to root development
and water storage.®

Although these soil samples were acquired in MAPS |, they still provide a useful measure of soil
quality to compare with the various yield measures. Importantly, the selected maize plot for most
households (n = 312) was part of the same parcel as in the previous year, so that the soil sample
was from the same part of their farm. Concerning the remaining sample of households that had
a MAPS Il plot selected from a non-MAPS | parcel, the median distance between the MAPS Il and
the MAPS | plot locations was 0.56 kilometers, lending support to likely similarity in soil profiles
of nearby plot locations. More importantly, the regression results using soil quality showed very
little sensitivity to excluding those households where the parcel moved between years.

2.3.3. Ground-Based Maize Yield Measurement

2.3.3.1. Farmer Estimation

Plot managers were asked to report their estimate of maize harvest at the parcel-plot-level
during the post-harvest visit, replicating the design of the Uganda National Panel Survey (UNPS)

7 Organic carbon and soil electrical conductivity were both retained from the first component and, therefore, hold
the same weight.

8 The PCA-based soil quality index was constructed for the full MAPS 1 sample, and therefore, analyzes the
correlation of soil properties and crop cutting yields on a larger sample than MAPS 2.



questionnaire modules.? Each plot manager was allowed to report production in non-standard
measurement units, and was asked to report on both the condition (e.g. green harvested; dry
after additional drying; etc.) and the state (e.g. with cob but without stalk or husk; grain; etc.) of
up to three maize harvests that may have occurred on the plot over a period of time. The
production measurement units, conditions, and states were borrowed directly from the UNPS,
as also provided by Gourlay et al. (2017). The dry grain-equivalent harvest quantities in kilograms
were calculated by using the conversion factor database that has been compiled by the UBOS
during the 2007 Uganda Census of Agriculture (UCA) for each non-standard measurement unit-
condition-state combination and that has been complemented by the data solicited during the
UNPS 2009/10, 2010/11, and 2011/12 waves for the (rare) combinations that were not captured
as part of the UCA exercise.!°

2.3.3.2.  Crop Cutting

Crop cutting has been recognized as the gold standard for yield measurement since the 1950s by
the Food and Agriculture Organization of the United Nations (FAO). Gourlay et al. (2017) review
the potential concerns regarding yield measurement concerning crop cutting and detail the way
in which the MAPS approach to crop cutting and its hands-on supervision overcame them.

In MAPS II, one 8x8 meter sub-plot (divided into four 4x4m quadrants) was laid on each plot. Each
subplot was cordoned off until harvest and was supervised by the EA-specific crop cut monitor
between the post-planting and the crop cutting visits. Each plot manager was asked not to
harvest any crop from the sub-plots until the crop cutting visit, and not to manage the sub-plot
any differently than the rest of the plot. These messages, first communicated by the enumerator,
were intended to be enforced by the local crop cut monitors. The shelled maize harvests tied to
each of the four adjacent 4x4m quadrants were weighed and barcoded separately in the field
and were reweighed at a central location in Kampala under strict supervision following additional
drying. At the time of the final weighing, the moisture content of each sample was captured as
to standardize all crop cut sample weights used for our analyses at 12 percent moisture. The

% It is important to note that the identification of parcels versus plots within parcels was anchored in the precise
definitions that have been referenced above and that have been in effect since the UNPS 2009/10 wave. The
operationalization of these definitions is such that each enumerator, prior to the administration of the post-planting
questionnaire, has a detailed discussion with the holder regarding the organization of his/her farm. This conversation
(1) ensures that the enumerator and the farmer are on the same page regarding what parcels versus plots within
parcels mean, (2) often culminates in sketches of different parcels and plots within parcels that are being cultivated
during that reference season, and (3) establishes how parcels and plots within parcels will be rostered in the
guestionnaire instrument. The established parcels and plots within parcels are then reviewed at each subsequent
visit to the household.

10 Refer to Gourlay et al. (2017) for more information regarding the conversion factors used in expressing farmer-
reported production information in kilogram-equivalent terms.



MAPS Il sub-plot crop cutting based plot-level maize production estimates are computed by
multiplying the crop cut sub-plot production across the 64m? area covered by the 8x8m subplot
by the ratio of the entire GPS-based plot area in m?to 64m?2,

Furthermore, half of the target household population within each of the pure stand and
intercropped domain in each EA was selected at random prior to the start of the MAPS II
fieldwork for a full-plot crop cut. This rare approach to crop production measurement entailed
the harvesting of the entire plot area, shelling the resulting harvest, weighing it in the field, and
capturing its moisture level. This operation was conducted by the enumerators with help from
the EA-specific crop cut monitor and the crop cut assistant(s) recruited from within the
households. On the MAPS Il plots selected for full-plot harvest, the harvest of the designated
8x8m subplot was weighed separately from the full-plot harvest to allow for comparative yield
analysis. The full-plot harvests were only weighed in the EAs as their transport to and additional
drying and reweighing at a central location was deemed logistically infeasible. Moisture readings
taken from the maize grain harvested from the full plot harvests were used to standardize the
production quantity to 12 percent moisture. A total of 211 plots had full-plot harvests. Gourlay
et al. (2017) detail the approach to full plot harvests. Although farmers were not told the final
weight of their harvest, it is likely that the process of harvesting and bagging the maize improved
their self-report production values compared to plots without full plot harvests. Therefore, the
analyses that use self-reported maize production per hectare rely only on 252 plots without a full
plot harvest.

2.3.4. Satellite-Based Maize Yield Measurement

Images from the Sentinel-2A Multispectral Instrument, processed to top-of-atmosphere
reflectance (Level -1C) were accessed within the Google Earth Engine platform. Clouds and
shadows were masked from the images using a random forest classifier trained on points visually
selected from images throughout the region. Five vegetation indices (VIs) were then calculated
for each pixel using the equations shown in Table 2. The average value of all bands and VIs within
each plot polygon were then extracted for image date for further analysis. In addition, for
comparison with the Sentinel-2A images, an image acquired by Terra Bella’s Skysat sensor on
May 29, 2016 was accessed. Skysat measures radiance in blue, green, red, and near-infrared
channels at 1m resolution. As with the Sentinel-2 data, clouds and shadows were masked using
a random forest classifier trained on several images in the region, including those used in BL17.

10
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Figure 1. Study region in Eastern Uganda. Three images show Sentinel-2 images and dates used
in the study. Yellow polygons indicate outlines of plots where surveys/crop cuts were performed.

Table 2. Spectral Vegetation indices (VIs) Used

Name

Equation

Equation using Sentinel-2 bands

Reference

NDVI

(Normalized Difference Vegetation Index)

(Rnir — Rrep) / (Rnir + Rrep)

(B8 —B4) / (B8 +B4)

(Rouseetal., 1973)

GCVI
(Green Chlorophyll Vegetation Index)

(Rnir / Rereen) — 1

(B8/B3) -1

(Gitelson et al., 2003)

MTCI
(MERIS Terrestrial Chlorophyll Index)

(Rnir —R705) / (R705 — Rrep)

(B8-B5) / (B5 — B4)

(Dash and Curran, 2004)

NDVI705
(Red-Edge NDVI 705)

(Rnir —R70s) / (Rnir + R7os)

(B8 —B5) / (B8 + B5)

(Vifia and Gitelson, 2005)

NDVI740
(Red-Edge NDVI 740)

(Rnir —R740) / (Rnir + R7a0)

(B8 — B6) / (B8 + B6)

(Vifia and Gitelson, 2005)

11



2.3.5. Methods

Ground-based SR and FP yields were derived by dividing the reported or measured mass of maize
production by the area corresponding to the GPS-based plot area, or 64 m?, in the case of the
8x8m crop cut sub-plot. Satellite-based yields were derived in two ways, following BL17.

First, “calibrated” remote sensing yields (RS_cal) were from a regression model of FP yields on
MERIS Terrestrial Chlorophyll Index (MTCI) values on May 30 and June 19, 2016, using only pure
stand maize plots that were at least 0.1 ha in size. The calibration focused on the pure stand plots
since ground-based objective yield estimates were not available for non-maize crops on
intercropped plots. The restriction in terms of plot area was driven by smaller plots having bigger
problems with geolocation accuracies and mixed pixels in Sentinel-2. Since FP vyields are
expensive to obtain and cannot be considered as part of large-scale operations, an alternative
version of the calibrated remote sensing yield was obtained (RS_cal_cc), which used CC, rather
than FP, yields to calibrate the model.

The second satellite-based approach was to estimate “uncalibrated” yields (RS_scym) by using
the scalable crop yield mapper approach (Lobell et al., 2015). In this approach, a crop model and
local daily weather data were used to simulate crop growth and yield for various realistic
combinations of on-farm management, such as sow date, seeding density, and fertilizer rate. The
simulated values of total canopy nitrogen on the dates with available images were then
translated into MTCI using published relationships (Schlemmer et al., 2013). As in the calibrated
approach, the yields are then regressed on MTCI, except in the case of SCYM the regression uses
simulated yield and MTCI rather than actual values. In this way, SCYM avoids reliance on any
ground data for calibration, which is why it is referred to as an “uncalibrated” approach.

Both types of satellite-based yield estimates were tested in two complementary ways. First, the
yields were compared directly with the ground-based estimates across both pure stand and
intercropped plots. However, given that ground-based estimates are subject to (different types
of) measurement error and neglect a potentially substantial amount of production from non-
maize crops, the direct comparisons between the two yield measures is not a straightforward
test of the satellite-based yields. That is, some of the discrepancy will also be due to errors in the
ground-based estimates, or discrepancies in the types of outputs that are measured. As a second
form of evaluation, we performed regressions of yield on different production factors for both
ground-based and satellite-based yields and compared the resulting coefficients. Specifically, we
regressed vyields on key plot characteristics, including log of plot area, log of distance to
household (km), presence of cover crops, log of seed planted (kg), use of inorganic fertilizer, log
of household labor days and hired labor days, number of hired laborers, soil quality index (SQl),
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and household attributes, including wealth index, agricultural asset index, dependency ratio,
household size, head of household age, gender, and years of education, and whether the
manager was the survey respondent. For regressions including intercropped plots, two additional
variables were included: a binary variable indicating the presence of an intercrop, and a variable
indicating the log of the intercrop seed rate (i.e. the ratio of quantity of seed planted to quantity
of seed that the farmer estimates would have been planted if plot was pure stand).

3. Results

3.1. Comparison of Ground-Based Yield Measures

The distributions of yields from the three ground-based approaches are displayed in Figure 2a
and summarized in Table 3. Both objective, harvest-based approaches show very similar
distributions, with a mean CC yield of 728 kilograms per hectare (KGs/Ha) and a mean FP yield of
676 KGs/Ha. These differences were not statistically significant (p > 0.2). In contrast, the farmer
self-reported (SR) yields contained many more high yielding values, including 11 (out of 252 total)
plots with SR yield greater than 5,000 KGs/Ha. The highest SR yields tended to occur on very small
plots, with 8 of these 11 were on plots smaller than 0.05 ha. The average SR yield of 1,826 KGs/Ha
was significantly higher, and indeed more than double, that for CC and FP yields.

Given that SR, CC, and FP yields are competing ground-based measures, a useful question is how
well correlated they are across different plots. Correlation between CC and FP yields was
significant (p<0.01) but only 0.51 overall (Fig. 2c). If one views full-plot crop cutting as the “gold
standard” of ground-based measures, this indicates that 8x8m crop cuts capture only roughly
one-quarter of the variability in actual plot yields. These discrepancies reflect the substantial
intra-plot heterogeneity of yields in these systems. The 64 m? area of the crop cuts, despite
requiring a costly and ambitious effort, are roughly just 6 percent of the median plot size (0.11
ha or 1100 m?) or 4 percent of the average plot size. The effect of this heterogeneity appears to
be greater in intercropped plots, as the correlation between CC and FP yields is higher on pure
stand maize plots (r = 0.70).

The more subjective SR yields show almost no correspondence (r = 0.04) with the crop cutting-
based measures (Fig. 2b). Because correlations may be heavily influenced by a few large values
of SR yields, Figure 2b reports correlations that are based on the exclusion of plots with SR yields
above 5,000 KGs/Ha. Despite the increase in the correlation coefficient to 0.28, there is still less
than 10 percent of the variation in CC yields that is captured by SR yields.
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Table 3. Summary Statistics for Ground-Based Maize Yield Measures

All Purestand Intercropped

Yields (Kg/HA) Mean Median Mean Median Mean Median
Self-Reported (SR) 1826 784 1878 1039 1805 685
Sub-Plot Crop Cutting (CC) 728 595 827 725 692 571

Full Plot Crop Cutting (FP) 676 511 842 740 623 472

Different Means? | Different Distributions? | Different Means? | Different Distributions? | Different Means? | Different Distributions?

SR VS. CC kkk )k sk kk k kkk k% kkk

CCvs. FP -- -- -- -- -- --

Notes: ***/**/* denote statistical significance at the 1/5/10 percent level, respectively, -- denotes significance at less than 10%. The mean differences are
assessed based on the t-test, while distributional differences are assessed based on the Kolmogorov-Smirnov test.
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Figure 2. (a) Yield distributions for ground-based measures. Vertical bars at bottom
indicate the mean yield for each measurement approach. (b) Scatter plot of SR and
CCyields for all plots, and, separately, for plots above 0.05ha in size (black points).
(c) Scatter plot of FP and CC yields.
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3.2. Comparison of Ground- and Satellite-Based Yield Measures on Pure Stand Plots

We begin the evaluation of satellite VIs by presenting simple bivariate relationships between Vis
on single dates and the objective ground-based yield measures (Fig. 3). For brevity, correlations
with the subjective SR yields are not presented in this section, but they are generally lower than
those for the objective yield measures.

Four important features are evident in Figure 3: (1) Correlations were generally higher between
ViIs and FP yields than between Vs and CC yields, which is consistent with the notion that full-
plot crop cutting provides a better measure of plot-level productivity. (2) Correlations tended to
improve when excluding the smallest plot sizes, consistent with the results in BL17. A likely
explanation for this is the increased importance of georeferencing errors and mixed pixels on the
smallest of plots. For example, a 0.05 ha plot covers an area of just five 10x10m Sentinel-2 pixels,
and most of these pixels are likely to span the edge of the plot and contain some contribution
from neighboring plots. (3) The MTCI consistently outperformed the other VIs on both image
dates. The MTCI was designed to be sensitive to canopy chlorophyll concentration (Dash and
Curran, 2004), which is likely a good proxy for yield in the low nutrient setting of Uganda. Perhaps
more importantly, MTCI is much less sensitive to atmospheric conditions than other Vls such as
NDVI or GCVI (Curran and Dash, 2005), because it uses the difference in reflectance between two
nearby bands that will be similarly affected by atmospheric scattering. In both images, significant
amounts of haze are evident above many of the plot sites in both the raw reflectance and NDVI
or GCVI images. However, the MTCI images exhibit much lower sensitivity to haze (Fig. Al). (4)
Finally, Figure 3 indicates that a substantial fraction of FP yield variability is captured by Vs on
both dates, with MTCI capturing 37 percent of yield variability on plots at least 0.10 ha on May
30, and 49 percent on June 19. These values are similar to the amount of FP yield variability
captured by CC yields on these plots (R = 47 percent).

Satellite-based yields were estimated for all plots which did not contain clouds on either May 30
or June 19 (397 out of 463 total plots). The “calibrated” satellite yield estimates, obtained from
aregression of FP yields vs. MTCIl on May 30 and June 19, captured slightly more than half of yield
variability for the pure stand plots above 0.10 ha (R? = 0.55, Fig. 4a). For comparison, calibration
using CC rather than FP yields resulted in roughly half the amount of variability captured by
satellite (R? = 0.26, Fig. 4b). Interestingly, though, the coefficients of the two regressions were
very similar, with the model calibrated to CC yields having a slightly lower range of predicted
yields. As a result, this model did nearly as well predicting FP yields (R? = 0.54) as the model
calibrated to FP yields.
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This important finding suggests that although CC vyields are noisier measures of plot-level
productivity compared to FP yields, this noise is mostly random and does not significantly bias
the estimated coefficients in a model to predict yields from satellite data. Thus, one can expect
models calibrated using CC yields (which are much more feasible and common than FP yields) to
have lower R? but similar out of sample accuracy for predicting true plot productivity as models
calibrated with FP yields.
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Figure 3. Adjusted R? of regressions of yields vs. VI, by VI type, date and type of ground-based yield measure. Top
panels show results for May 30 image, bottom panels for June 19 image. Left panels show results for crop cuts,
and right panels for full plot harvests. Models were run for successive subsets of data by excluding plots below
indicated plot size. Numbers at bottom of plot indicate the sample size for each plot area threshold.

The “uncalibrated” estimates, obtained from a regression of simulated yields versus simulated

MTCI on these same dates, resulted in a nearly identical R? to models calibrated with FP yields
(R = 0.54, Fig. 4c). The uncalibrated estimates did exhibit significant bias, with a tendency to

overestimate yields by roughly 1 ton/ha, because none of the simulated yields were quite as low
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as the lowest of the observed FP yields. Nonetheless, the high correlation between uncalibrated
estimates and true FP yields indicates that ground calibration is not a prerequisite for capturing
a large fraction of spatial yield variability with satellite data.
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Figure 4. Comparison of (a) full plot yields vs. predictions from a remote sensing model calibrated to full plot
yields, (b) crop cut yields vs. predictions from a remote sensing model calibrated to crop cut yields, and (c) full
plot yields vs. “uncalibrated” remote sensing yield estimates, which are based on calibration to crop model
simulations. All panels show results for pure stand maize plots at least 0.1 ha in size, which are the subset of
plots used to calibrate the models in (a) and (b).

The superior performance of MTCl is noteworthy, especially given that several of the most recent
satellite sensors, which possess higher spatial resolution than Sentinel-2, lack the red edge bands
needed to calculate MTCI. In this study, we fortuitously had access to a relatively cloud-free
image acquired by Terra Bella’s Skysat sensor on May 29, one day before a Sentinel-2 image.
Skysat was used in BL17, and in the context of smallholder mapping has the particularly attractive
feature of 1m spatial resolution. Particularly for the small plot sizes in Uganda, we anticipated
that the 1m resolution would offer substantial benefits compared to the 10m resolution of
Sentinel-2’s main bands, and the 20m resolution of Sentinel-2’s red edge bands. Surprisingly, we
found that Sentinel-2 and Skysat performed very similarly when using GCVI for both, even though
many plots contained only a few Sentinel-2 pixels (Fig. A2). The large boost in performance when
using MTCI with Sentinel-2 therefore more than outweighed any loss in accuracy from using
coarser resolution. This result may be specific to the particular atmospheric conditions, time of
growing season, and characteristics of the study site, and therefore we caution against
overweighting the benefits of spectral versus spatial resolution. Nonetheless, it is an informative
comparison made possible by having two images so close in time over a study site with large
amounts of quality ground-based data.

3.3. Comparison of Ground- and Satellite-Based Yield Measures on All Maize Plots
Of interest in agricultural regions such as Uganda, where maize is typically intercropped with
other species, is how well satellite measures can capture the performance of mixed-crop plots.

Of course, ground-based yield measures are also beset by challenges from intercropping

17



(Carletto et al.,, 2015). Common practices include only measuring yields in pure stand plots,
reporting yields separately for pure stand and intercropped plots, or correcting vyields in
intercropped plots based on either subjective or objective measures of the relative density of
crops.

In our study, the ground-based measures of yield (SR, CC, and FP) in intercropped plots were
obtained only for maize. We therefore compared the satellite-based yield measures to FP for
different types of plots, grouped based on the presence and type of intercropping (Fig. 5). The
performance on plots intercropped with legumes (beans or groundnuts) was significantly lower
than on pure stand plots, with roughly 20 percent of yield variability captured for plots at least
0.10 ha in size (Fig. 5a). Maize yield estimates were even worse on plots intercropped with
cassava (Fig. 5b) or both legumes and cassava (Fig. 5c), with less than 10 percent of the maize
yield variability captured by the satellite estimates. The relatively better performance for legume
intercrops presumably reflects the fact that both beans and groundnuts grow close to the ground,
below the maize crop, whereas cassava intercrops often include very mature cassava plants that
exceed the maize crop in height.

The worse performance for satellite- based maize yields on intercropped compared to pure stand
plots makes sense, since non-maize crops can be a large contributor to the light reflected from
the canopy and measured by satellite sensors, especially in the case of intercrops such as cassava
that overhang maize plants. However, in these situations it is doubtful that the yield of maize is
the best measure of land productivity. In the absence of other ground-based measures of
productivity, we turn instead to assessing the sensitivity of the relationships between yield and
factors of production to the choice of the ground- versus satellite-based yield variant.

(a) Legume intercrop (b) Cassava intercrop (c) Both Legume and Cassava
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Figure 5. Comparison of calibrated remote sensing yields vs. full plot harvests for different types of intercropped
plots: (a) maize intercropped with only legumes (beans, groundnuts), (b) maize intercropped with only cassava, (c)
maize intercropped with both legumes and cassava. Red text shows sample size and correlation for all plots, while
black points and text indicate values and corresponding sample size and correlation for only plots >.1 ha. All panels
show remote sensing yields based on calibration to FP yields in purestand maize plots at least 0.1 ha in size (model
shown in Fig. 4a).
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3.4. Assessment of Inter-Relationships between Maize Yields and Factors of Production

Pure stand plot-level maize yield regressions resulted in similar coefficients for models using CC,
FP and satellite-based yields (Table Al). The coefficients for three factors of production of
interest — plot area, soil quality index, and incidence of inorganic fertilizer use — are visualized in
Figure 6a. As also noted by Gourlay et al. (2017), the regression using SR yields resulted in a much
stronger negative coefficient for plot area than the objective ground-based measures, indicating
that the conventional wisdom of an inverse-relationship between farm size and productivity may
be an artifact of measurement error. While the relationship between soil quality and any one of
CC, FP and satellite-based yields was positive and statistically significant at least at the 5 percent
level, the coefficient associated with soil quality failed to be statistically significant in the
regression using SR yields. In line with the results of the CC and FP vyield regressions, the
relationship between fertilizer use and any one of the calibrated or uncalibrated satellite-based
yields was positive and statistically significant at the 1 percent level.

The regressions for all plots, including both pure stand and intercropped plots, show qualitatively
similar coefficients, as depicted Figure 6b and Table A2. The satellite-based regressions still find
a significant positive effect of soil quality, whereas the coefficients on fertilizer remain positive
but become statistically insignificant. A likely explanation for this result is that cassava biomass,
which influences the satellite-based yield estimates on intercropped plots, is similar to maize in
its responsiveness to soil quality, but less responsive to inorganic fertilizer. In comparison to
regressions using FP yields, those using either CC or satellite-based yields generally had smaller
confidence intervals for coefficient values, which reflects the fact that full plot harvests were only
performed on 211 plots, whereas sub-plot crop cutting was done for all 463 and satellite
estimates were available on 397.
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Figure 6. Summary of regression coefficients for three relevant factors using six different models
corresponding to six yield measures. Error bars show +/- two standard deviations of the mean estimate.
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4. Discussion and Conclusions

Despite the importance of agriculture for rural livelihoods, poverty alleviation, and food security
across the developing world, household and farm surveys collecting micro data on agriculture
exhibit substantial cross-country heterogeneity in terms of access policies, use of international
best practice survey methods and dissemination standards, and data quality (Carletto et al.,
2015). Given the rapid advances in the availability of 10-meter or sub-10-meter spatial resolution
satellite imagery, the demand is increasing for understanding how these advances can be
leveraged to measure and understand agricultural outcomes with greater accuracy and higher
spatial resolution.

Although there is a concerted push to showcase the value of geospatial applications for
monitoring and evaluation efforts in the agriculture sector, and for tracking the progress towards
the Sustainable Development Goals, multi-disciplinary research efforts aimed at assessing the
accuracy and feasibility of the proposed applications, particularly in smallholder production
systems, are scant. If validated, satellite-based remote sensing, combined with georeferenced
household and farm survey data that could serve as “ground truth”, could dramatically enhance
not only our ability to fill the data gaps, but also our understanding of the linkages between
development and human welfare.

Taking advantage of a unique range of ground-based plot-level maize yield measures based on
farmer-reporting, sub-plot crop cutting and full-plot harvests that were collected as part of a
methodological survey experiment that was conducted in Eastern Uganda, our study showcases
the accuracy and empirical utility of satellite-based approaches to plot-level maize yield
estimation in smallholder production systems with a median plot size of approximately one-tenth
of a hectare.

The satellite-based yield estimates include those that are (a) anchored in a calibration model that
relates maize yields from full-plot harvests to MTCI values on multiple dates on a subset of pure
stand maize plots that were at least 0.1 ha in size; (b) based on the same calibration model that
uses sub-plot crop cut, as opposed to full-plot, yield; and (c) based solely on crop model
simulations, without reliance on any ground-based yield measure. While (a) and (b) are identified
as “calibrated” variants of remotely-sensed maize vyields, (c) is framed as the “uncalibrated”
counterpart.

Overall, the accuracy of the satellite-based maize yield estimates is very encouraging. Having over
200 full plot harvests, which is very rare because of their cost, is a unique situation with which to

test satellite estimates, and we find that both calibrated and uncalibrated approaches capture
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roughly half of the variance in full plot harvests when restricting the analysis to where both
ground and satellite approaches are measuring the same output (pure stand plots) and where
the satellite pixels corresponding to the plot are less likely to be contaminated by neighboring
plots (plots > 0.10 hectare). The uncalibrated approach exhibits, however, a strong tendency to
overestimate yields, but adequately captures spatial variation in yield. In fact, the satellite-based
estimates explained roughly the same amount of variance in full plot harvests as sub-plot crop
cuts performed within the plots.

Perhaps more convincingly, satellite-based estimates are able to faithfully reproduce the effects
of key production factors such as soil quality and fertilizer use, even when including plots of all
sizes and those that are intercropped. The significance levels of the coefficients informed by the
satellite-based measures are often even higher than those underlined by the full plot harvests.
This finding again emphasizes two important points. First is that any measure of yield is prone to
errors, and thus an imperfect correlation with full plot harvests reflects errors in ground-based
estimates as well as those in satellite-based estimates. Second, even if satellite-based measures
are less accurate than full plot harvests, the greater sample size can compensate for any loss in
accuracy.

Also noteworthy is the fact that satellite-based models calibrated to CC yields perform similarly
to those calibrated to FP yields, in terms of both agreement with FP yields and estimation of yield
response to soil quality and fertilizer. These results indicate that although CC yields are imperfect
approximations of actual yields, the errors do not substantially bias remote sensing calibrations.
Thus, sub-plot crop cutting appears to be a suitable replacement for full-plot harvests when the
latter are not possible. Of course, crop model simulations can also be used as a replacement for
any ground-based measures, if the potential bias in estimated yields is recognized and
acceptable. The possibility of combining simulations with a small number of ground samples for
providing improved accuracy at a minimal cost could be explored in the future.

Finally, even though our study placed emphasis on measuring plot-level yields, many
applications, such as forecasting regional food supply or assessing local conditions for insurance
payouts, will care more about accuracy at aggregate scales. What is expected to become
increasingly more useful and insightful will be the ability to integrate georeferenced micro survey
data on agriculture, such as the LSMS-ISA, with the expanding, publicly-available high-resolution
satellite imagery. Such ability, combined with advances in remote sensing methods as well as
mobile technology and handheld sensors for cost-effective, objective ground data capture, has
the potential to create an unparalleled scope for research on entire landscapes of agricultural
plots. Collectively, these measurement tools will allow more rapid feedback on the effectiveness
of different efforts to raise productivity, which in turn can enable more effective food policy.
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Table Al. Regression Coefficients for Pure Stand Plots Using Different Yield Measures

APPENDIX

Dependent Variable/Maize Yield Type

Self-report Crop-cut Full plot RS_cal_fp RS_cal,cc RS_scym
(1) (2) (3) (4) (5) (6)

Log Plot Area (GPS, ha) 194”7 (0.42) -0.08(0.07) -0.23(0.14) -0.137 (0.06) -0.09  (0.04) -0.11" (0.05)
Log Plot Distance from Dwelling (GPS, km) 0.10 (0.33) -0.04 (0.06) -0.19(0.12) -0.07 (0.05) -0.04 (0.04) -0.05(0.04)
Cover Crops Present Prior to Planting t -0.35(0.99) 0.01 (0.20) 0.26 (0.48) -0.04 (0.15) -0.03 (0.11) -0.04 (0.13)
Log Maize Seed Planting Rate (Kg/Ha) 1197 (0.48) 0.09(0.08) 0.18(0.14) 0.2 (0.06) 0.9 (0.05) 0.10 (0.05)
Inorganic Fertilizer Application t 0.56(1.14) 035 (0.17) 098 (0.28) 0.35 (0.13) 028 (0.09) 0.33" (0.11)
Log Household Labor Days 056 (0.30) 0.05(0.06) -0.01(0.10) 0.04 (0.04) 0.05 (0.03) 0.05 (0.03)
Log Hired Labor Days 0.27(0.42)  -0.01(0.06) -0.03(0.10) -0.11" (0.05) -0.08" (0.03) -0.09" (0.04)
No Hired Labor t 0.13 (0.96) -0.24 (0.16) 0.09 (0.26) -0.07 (0.12) -0.04 (0.09) -0.05 (0.10)
Soil Quality Index 136(264) 1.117(045) 1847 (0.82) 1.317 (035) 097 (0.25) 1.14" (0.30)
Wealth Index 0.46 (0.39) 0.09 (0.07) -0.05 (0.12) -0.08 (0.05) -0.05 (0.04) -0.06 (0.04)
Agricultural Asset Index 0.43 (0.32) -0.01 (0.06) 0.09(0.10) 0.07" (0.04) 0.05 (0.03) 0.06 (0.03)
Dependency Ratio -0.16 (0.35) 0.01 (0.06) 0.01 (0.10) -0.02 (0.05) -0.02 (0.03) -0.02 (0.04)
Household Size -0.04(0.11) 0.01(0.02) 0.02(0.04) 0.01(0.02) 0.002(0.01) 0.003 (0.01)
Manager = Respondentt 0.07 (0.83) 0.03 (0.16) -0.05(0.38) 0.04 (0.13) 0.06 (0.09) 0.07 (0.11)
Received Crop-Production Related Extension Servicest -0.08 (0.69) -0.16(0.12) 0.26(0.19) 0.09 (0.09) 0.08 (0.06) 0.09 (0.08)
Femalet -0.20(0.73)  -0.09(0.13) -0.04(0.25) -0.217(0.10) -0.15" (0.07) -0.18" (0.09)
Age (Years) -0.03 (0.02) -0.004 (0.004) 0.003 (0.01) -0.0003 (0.003) -0.001 (0.002) -0.001 (0.003)
Years of Education -0.09 (0.07) -0.01(0.01) 0.03(0.02) -0.001(0.01) -0.003(0.01) -0.003 (0.01)
Constant -4.35(3.25)  -0.12(0.60) -201°(1.08) -0.56(0.46) -0.13(0.33) 0.95 (0.39)
Observations 73 124 51 105 105 105
R? 0.4 0.19 0.47 0.36 0.37 0.37
Adjusted R? 0.19 0.05 0.17 0.23 0.24 0.24
Residual Std. Error 2.25 (df=54) 0.54 (df =105) 0.55 (df=32) 0.37 (df=86) 0.26 (df=86) 0.31 (df =86)
F Statistic 1.96 133 155 269 278" 278"

(df=18;54) (df=18;105) (df=18;32) (df=18;86) (df=18;86) (df=18;86)

Notes: T denotes a dummy variable. ***/**/* denote statistical significance at the 1/5/10 percent level, respectively. Standard errors in parentheses.
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Table A2. Regression Coefficients for All (Pure Stand + Intercropped) Plots Using Different Yield Measures

Dependent Variable/Maize Yield Type

Self-report Crop-cut Full plot RS_cal_fp RS_cal,cc RS_scym
(1) (2) (3) (4) (5) (6)
Log Plot Area (GPS, ha) -33777(0.47) 0.02(004) .032"7(0.07) -0.06"(0.03) -0.04 (0.02) -0.05 (0.03)
Log Plot Distance from Dwelling (GPS, km) 0.21(0.36) -0.02 (0.03) -0.06 (0.05) -0.04" (0.02) -0.03 (0.02) -0.03" (0.02)
Cover Crops Present Prior to Planting t 0.18(0.85)  0.05(0.07) 0.01 (0.14) 0.03 (0.06) 0.01 (0.04) 0.01 (0.05)
Log Maize Seed Planting Rate (Kg/Ha) 17477 (0.46) 0.03(0.03) 0.17 (0.06) 0.04(0.03) 0.03 (0.02) 0.03 (0.03)
Inorganic Fertilizer Application * 0.70(1.30) 02477 (0.09) 0.34 (0.15) 0.10(0.08) 0.06 (0.06) 0.07 (0.07)
Log Household Labor Days 097" (0.43) 0.01 (0.03) 0.10 (0.06) -0.04 (0.03) -0.02 (0.02) -0.03 (0.02)
Log Hired Labor Days -0.32(0.52) -0.001(0.03) 0.03(0.06) -0.04(0.03) -0.03(0.02) -0.03(0.03)
No Hired Labor t 2397(122) -0.09(0.08)  -0.06(0.13)  -0.05(0.07)  -0.03(0.05)  -0.04 (0.06)
Soil Quality Index -0.03(2.84) 09477(0.19) 0.697(0.34) 076 (0.16) 058 (0.12) 068 (0.14)
Wealth Index 0.13(0.37)  0.04(0.03) -0.06(0.06) -0.02(0.02) -0.01(0.02) -0.02(0.02)
Agricultural Asset Index -0.16 (0.37)  0.04(0.03) 0.07 (0.05) 0.01(0.02)  0.002(0.02) 0.002(0.02)
Dependency Ratio -0.21(0.37)  0.02(0.03) 0.01(0.04) -0.002 (0.02) -0.003(0.02) -0.004 (0.02)
Household Size -0.10(0.12)  -0.02"(0.01) 0.005(0.02)  0.01(0.01) 0.01 (0.01) 0.01 (0.01)
Manager = Respondentt 0.48(0.82)  -0.04(0.07)  0.13(0.14) .0.137(0.06) -0.09" (0.04) -0.11"(0.05)
Received Crop-Production Related Extension Servicest -0.01 (0.72) -0.06 (0.05) 0.02 (0.10) -0.04 (0.05) -0.03 (0.03) -0.03 (0.04)
Femalet 043(0.80) -0.08(0.06) -0.04(0.11) -0.09°(0.05) -0.07 (0.04) -0.08 (0.04)
Age (Years) 0.01(0.02) 0.0001(0.002) 0.01" (0.003) 0.003" (0.001) 0.002" (0.001) 0.003" (0.001)
Years of Education 0.01(0.08)  -0.002(0.01) 0.02"(0.01) 0.003(0.005) 0.003(0.003) 0.003 (0.004)
Purestand * -0.21(0.78)  0.10°(0.06) 0.297 (0.11)  0.03(0.05) 0.01 (0.04) 0.01 (0.04)
Log Intercropping Seeding Rate (=100 for Pure stand Plots) 0.07 (0.69) 0.07 (0.05) 0.02 (0.08) -0.05 (0.04) -0.04 (0.03) -0.05 (0.04)
Constant -9.65  (4.57) -0.05(0.32) -1.94"7(0.59) 0.48 (0.28) 0.66 (0.21) 1.89  (0.24)
Observations 252 463 211 397 397 397
R? 0.21 0.14 0.21 0.13 0.13 0.13
Adjusted R’ 0.14 0.1 0.13 0.09 0.08 0.08
Residual Std. Error 4.96 (df =231) 0.49 (df =442) 0.59 (df =190) 0.39 (df =376) 0.29 (df =376) 0.34 (df =376)
3.077 355 257 287 2737 2737

F Statistic
(df =20;231) (df=20;442) (df=20;190) (df=20;376) (df=20;376) (df=20;376)

Notes: T denotes a dummy variable. ***/**/* denote statistical significance at the 1/5/10 percent level, respectively. Standard errors in parentheses.
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Figure Al. The effects of haze on a subsection of the (a) raw red-green-blue reflectance
image from June 19, 2016, and the corresponding values of (b) NDVI (c) GCVI and (d) MTCI.
For (b)-(d) darker green indicates higher values, and yellow indicates lower values (each VI
has a different scale). Areas masked as cloud or cloud shadows are not shown. Both NDVI
and GCVI show clear patterns associated with haze, whereas MTCI is less affected.
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Figure A2. Correlation of different yield measures with VI from Skysat
on May 29 or Sentinel-2 on May 30, 2016.
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