Annex 1:

World Bank Loan Project

Ningxia Desertification Control and Ecological Protection Project

Environmental Protection Guidelines

Ningxia Forestry International Cooperative Project Management Center

Institute of Environmental Planning and Assessment of Nankai University

2011-12
Table of Contents

1. INTRODUCTION .. 1

2. EXPERIENCES AND LESSONS LEARNT FROM PREVIOUS WORLD BANK LOAN FORESTRY PROJECTS IN ENVIRONMENTAL PROTECTION MEASURES 1

3. SITES SELECTION FOR AFFORESTATION ... 5

4. SITE SLASHING AND PREPARATION FOR AFFORESTATION ... 6

5. AFFORESTATION ... 6

6. FOREST TENDING AND MANAGEMENT ... 9

7. INTEGRATED PEST MANAGEMENT .. 10

8. PREVENTION OF FOREST FIRE ... 10

9. CONSTRUCTION AND MAINTENANCE OF FOREST ROADS ... 11

10. MONITORING AND EVALUATION ... 12

11. AFFORESTATION SITE SCREENING PROCEDURES FOR NINGXIA DESERTIFICATION CONTROL AND ECOLOGICAL PROTECTION PROJECT 12
1. Introduction

In line with the laws, regulations and policies of Chinese Government and World Bank on the environment management in forestry construction projects, the Environmental Protection Guidelines (EPG) is hereby made considering the potential negative environmental impacts caused by project construction activities under the "Ningxia Desertification Control and Ecological Protection Project" described in the environmental impact assessment report. The EPG will be executed along with the project implementation to ensure the achievement of the project objectives related to ecological and environmental benefits by maximizing the environmental benefits or minimizing the negative environmental impacts.

In the process of making the EPG, the experiences and lessons learnt from environmental management in the implementation of previous World Bank loan forestry projects, i.e. National Afforestation Project, Forestry Resource Development and Protection Project, Forestry Development in Poor Areas Project, Sustainable Forestry Development Project, Integrated Forestry Development Project, Guangxi Integrated Forestry Development and Conservation Project and Shandong Ecological Afforestation Project, had been seriously taken into consideration. The following legal documents had been seriously taken as important references:

2. Experiences and lessons learnt from previous World Bank loan forestry projects in environmental protection measures

Since the initiation of the World Bank Loan National Afforestation Project in 1990, the EPG has been made and executed by each of the World Bank loan forestry projects in China for the purpose of guiding the project design and operation to reduce or eliminate the adverse impacts on environment caused by project implementation and increase the stability and environmental protection function of the project forest
plantation ecosystems. In making and executing the EPGs in previous World Bank loan forestry projects, both successful experiences and learnt lessons have been accumulated which can be used as advisories for this Project.

2.1. Main Experiences

(1) Respecting the requirements of World Bank safeguard policies as well as Chinese laws and regulations related to environmental protection, highly practical measures of environmental protection had been made into an Environmental Protection Guidelines for guiding the project implementation considering the key links in the project design and operation.

(2) Based on the making and executing the EPGs in above-mentioned World Bank loan forestry projects, the EPGs have been continuously improved and revised from time to time, which has already resulted in a series of scientific and practical environmental requirements and measures to guarantee the environmental protection objective of the World Bank loan forestry projects in the timber forests establishment, bamboo forests establishment/rehabilitation, economic forests and multi-function protection forests establishment as well as the existing forests tending/management etc..

(3) Whether EPG was strictly executed in the design and operation activities was taken as one of the important indicators to evaluate the project implementation quality. The “Environmental Protection Compliance Rate” was used as one of the criteria for quality checking and acceptance of each afforestation sub-compartment, so that the serious execution of EPG was ensured and the good effects of environmental protection were achieved in the project implementation.

(4) The environmental monitoring was continuously conducted during the project implementation phase. The long-term monitoring results showed that basically no negative environmental impacts were caused by the project construction activities, such as soil erosion and soil fertility reduction, etc., as long as the EPG was strictly executed.

(5) Strengthening the institutional capacity by establishing i) a pest forecast team, ii) a pest control team and iii) an environmental supervision team, as well as upgrading a forest pest forecast station in each of the project counties to ensuring the carrying out of the environmental protection methods.

(6) The administration and supervision were strictly conducted on the environmental protection quality. The effective administration methods of “prior training, timely guidance and follow-up checking” and the quality supervision methods of “checks by
work procedures and checks level by level” were adopted in combination with carrying out the environmental monitoring programs to strengthen the environmental quality supervision.

(7) Organizing training on the project management staff and technicians at different levels as well as project entities and farmers to strengthen their environmental protection sense, and let them learn and understand the knowledge and techniques required in the EPG and Pest Management Plan (PMP), so that they can carry out them precisely in the project implementation. The appropriate training methods, such as lectures, study tours, meetings or workshops, field demonstration, onsite teaching and distribution of technical materials, etc. were employed for the successful training, so that the environmental protection professional knowledge or skills of project participants were improved, and the required “Environmental Protection Compliance Rate” of afforestation sub-compartment could be ensured according to project design.

2.2. Environmental management performances of previous World Bank Loan Forestry Projects

(1) The project implementation didn’t result in any negative impacts on local natural forest lands, nature reserves and the habitats of wildlife in project areas.

(2) The improper traditional practices, such as clear cutting for slashing afforestation sites or burning for slashing afforestation sites have been replaced by the new site slashing methods in the project areas, so that the reasonable structures of project plantations co-existed with the rationally retained natural vegetation were formed, which has significantly improved the ecological stability and soil fertility of the project plantations.

(3) The environmental protection measures, such as partial site preparation along contour and “triangle” form planting hole layout, partial tending and understory vegetation maintenance etc, were applied in project afforestation and plantation management to enhance soil and water conservation, soil fertility maintenance and bio-diversity conservation.

(4) The project plantation pattern has been formed into more reasonable structures with multiple-variety and small-scale continuous forests instead of the traditional pattern of mono-superior-variety plantation forest in large scales of continuous forests, so that the risks of land degradation and pest/disease incidence of the forest plantations are reduced.

(5) With the extension of technologies in the Integrated Pest Management(IPM), the pests/diseases of the project plantations were well prevented with lower incidents, and
the pests/diseases occasionally occurred in project forest were timely and effectively controlled by physical and biological measures. In the cases that chemical control became necessary, the chemical pesticides in use were the categories in line with WHO’s requirements.

(6) The results of environmental monitoring at different types of project plantations showed that light soil erosion with erosion modulus <2500t/a·km² might occur at the tree planting year and the followed year over most of the planting sites, The light erosion mainly resulted from the afforestation and tending activities, such as site slashing, site preparation, intercropping and young forest tending. Only at slope sites with overall site preparation or overall site forest tending, the medium or heavy soil erosion with soil modulus >2500t/a·km² might occur.

(7) Project management staff and technicians at different levels as well as project beneficiary farmers have developed well sense of environmental protection in afforestation and plantation forest management, and mastered necessary environmental protection methods and technical measures, which had laid a solid foundation of human resources for extension and application of environmental protection measures in project plantation establishment and management, and reaching the objectives of high "environmental protection compliances rate".

2.3. Main Lessons Learnt

In the process of making and executing the EPGs in previous World Bank loan forestry projects, some lessons were also learnt:

(1) As the environmental protection measures concerning intercropping activities in the newly afforested sites were not mentioned in the EPGs of some previous World Bank loan forestry projects, some heavy soil erosion occurred when intercropping was conducted in the new economic tree plantings with pit or terrace site preparation on the slope site with slope degree >15°.

(2) As project farmers got used to controlling forest pests by using the broad-spectrum chemical pesticides and had slow acceptation of the new pesticides, it still need to make more efforts to give up their bad habits although the farmers were trained on the correct selection and safety use of pesticides for many times during the previous projects..

2.4. Enlightenments for Ningxia Desertification Control and Ecological Protection Project

Based on the experiences and lessons in environmental management learnt from previous World Bank loan forestry projects, the following points should be
emphasized to improve and strengthen environmental management for this project:

(1) The standards for selecting project areas and afforestation sites should be clearly defined. The selection priority should be given to the areas with fragile ecological conditions, and sites in urgent needs of wind-break and sand fixation as well as farmland protection.

(2) The technologies of partial site preparation and tending should be applied strictly, the original vegetation on the afforestation sites should be maintained as much as possible, and the removed weeds should be retained on sites.

(3) The afforestation activities should be carried out in rain season as the first choice to avoid or mitigate wind erosion and water erosion.

In addition, to make sure achieving the project objectives of environmental management, the other successful experiences and measures learnt from previous World Bank loan forestry projects will be imported into this project such as conducting trainings at different levels, using "Environmental Protection Compliance Rate" for checking and acceptance of sub-compartments and carrying out environmental monitoring, etc.

3. Sites Selection for Afforestation

(1) Sites for afforestation should be selected in the areas of geo-ecological importance, fragile in ecological conditions or with severe ecological problems.

(2) The afforestation sites should be selected in the areas with climate and soil conditions adaptable to the target species and varieties for the project.

(3) The afforestation sites can never be selected in the areas with valuable historical or cultural resources, all kinds of natural reserves, as well as natural habitats for valuable and rare wildlife. The afforestation sites also cannot be selected in the areas within 2000 m from the boundary of buffer zone of the natural or cultural heritage reserves, within 100 m from the boundary of designated ecological public welfare forest, within 50 m from the bank of main rivers, or within 20 m from the bank of branch rivers.

(4) The afforestation sites cannot be selected in the areas of the existing forests with canopy density over 0.2.

(5) The afforestation sites selection should be in priority sequences as: bare land/sandland suitable for afforestation, bare saline/alkaline land suitable for afforestation, crop land to be converted into forest land, degraded forest land and shrub land. For the afforestation sites selection to establish windbreak forests the first choice should be the bare land along roads and irrigation canal/drainage
channels with serious harm of strong wind or dry-hot wind, the second choice can be the bare saline/alkaline lands or beaches of rivers.

4. Site Slashing and Preparation for Afforestation

(1) It is forbidden to do the site slashing by burning. The original vegetation should be maintained as much as possible.

(2) The removed bushes and grasses from the site slashing should be placed between the tree rows or planting holes for natural decomposition.

(3) In the process of site preparation, the native trees and shrubs should be maintained as much as possible for their protection, rehabilitation and regeneration of natural communities.

(4) The appropriate site preparation methods, such as pit, strip or overall digging, should be used according to site conditions. For instance, the small-pit digging or no site preparation for establishing artificial grass sand-barrier in square with shrubs to maintain natural vegetation as much as possible, the large-pit digging for establishing tree forests, the strip site preparation for establishing shrub forests, and the overall site preparation for establishing eco-economic tree plantations. For farmland protection forests, the natural vegetation should be maintained along tree rows in width of 2m between afforestation row and farmland when site preparation is conducted. For shrub forests, the natural herb vegetation should be maintained in width of 4m as interval of every 2 strips from 10 m each when strip site preparation is conducted.

(5) In the reclamation region of saline and alkaline land in Yinchuan Plain, platform site preparation method can be used by making a belt platform with 30-70 m wide with platform edge parts higher than the central part in favor of conserving rainwater. The drainage system should be also made in the platforms.

5. Afforestation

5.1 Selection of afforestation types

(1) The suitable management measures and afforestation types should be selected according to different site conditions (See table 1.).
Table 1. Combinations between Site Conditions and Afforestation Types for "Ningxia Desertification Control and Ecological Protection Project"

<table>
<thead>
<tr>
<th>Zones</th>
<th>Site Types</th>
<th>Landform</th>
<th>Soil Types</th>
<th>Ground Water level (m)</th>
<th>Natural Vegetation</th>
<th>Management Measures and Suitable Afforestation Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone of desertification land in Ningxia</td>
<td>Arid moving and semi-fixed sand dunes</td>
<td>Moving and semi-fixed sand dunes</td>
<td>Moving sand, aeolian sandy soil</td>
<td>Lowland among sand dunes, ground water level ≥ 3m</td>
<td>Agriophyllum squarrosum, Artemisia desterorum</td>
<td>To establish shrub forests mixed with grass sand-barrier, or shrub forests, with supplementary irrigation</td>
</tr>
<tr>
<td>Arid flat sandland</td>
<td>Relatively flat</td>
<td>sierozem, aeolian sandy soil</td>
<td>Ground water level ≥3m</td>
<td>Artemisia desterorum, Cynanchum komarovii, Glycyrrhiza uralensis, Nitraria tangutorum</td>
<td>To establish shrub forests, with supplementary irrigation and shelter-belt forests with water-saving irrigation</td>
<td></td>
</tr>
<tr>
<td>Semi-arid flat sandland and fixed sand dunes</td>
<td>Relatively flat land with fixed sand dunes</td>
<td>sierozem, light sierozem</td>
<td>Ground water level ≥2m</td>
<td>Artemisia desterorum, Ammopiptanthus mongolicus, Nitraria tangutorum, Oxytropis aciphylla</td>
<td>fence closure for natural regeneration of shrubs and grasses</td>
<td></td>
</tr>
<tr>
<td>Zone of salinized land west to Yellow River in Yinchuan Plain</td>
<td>Irrigation area or beaches of Yellow River reaches</td>
<td>Lowland</td>
<td>meadow soil, saline soil</td>
<td>Ground water level ≤1m</td>
<td>Agropyron cristatum, Artemisia halodendron, Stipa capillata</td>
<td>To establish embankment forests and farmland protection forests.</td>
</tr>
<tr>
<td>Sandland over alluvial fan</td>
<td>Declining from west to east, with eroded gullies</td>
<td>light sierozem</td>
<td>Ground water level ≥3m</td>
<td>Achnatherum splendens, Salsola arbuscula, Caragana arborescens</td>
<td>To establish wind-breaking and sand-fixing forests, and eco-economic forests with water-saving irrigation</td>
<td></td>
</tr>
</tbody>
</table>
5.2. Species Selection

Suitable species should be selected for different afforestation types. The species with low transpiration potential should be selected in priority. In order to conserve the bio-diversity, the native species should be selected and used in priority. The superior provenance, families or clones of native tree species should be adopted for afforestation to strengthen the resistant capacity to pests/diseases and reduce the risk of pests/diseases incidence. The exotic species can be selected and used only when they have been proved with growth character and pests/diseases resistant capacity better than the native species. If the new native species are found with good adaptive capacity to afforestation site by future research, they should also be selected and used as the project species. For establishing economic forests, the superior species and varieties with not only good performance but also drought resistant capacity should be selected and used. Generally speaking, for establishing shrub forests, Caragana, Hedysarum scoparium, Astragalus mongolicum, Atraphaxis frutescens, Calligonum mongolicunl, Amorpha fruticosa, Tamarix chinensis, ect. are proposed to be used; for establishing high forest, Robinia pseudoacacia, Ailanthus altissima, Elaeagnus angustifolia, Populus bolleana, Fraxinus chinensis, etc. are proposed to be used; for establishing eco-economic forest, the jujube varieties with drought resistance and adaptability to barrens are proposed to be used.

5.3. Selection of Afforestation techniques

(1) The suitable afforestation techniques, such as direct sawing of seeds, planting of bare-rooted seedlings or planting of container seedlings should be selected according to local conditions.

(2) The afforestation activities should be carried out in rain season as the first choice to mitigate wind erosion and water erosion.

5.4. Enrichment for Existing Forests

(1) In the closures region with communities of A. mongolicus and Populus euphratica, the main enrichment planting species should be these 2 species for increasing their population size quickly to meet the basic requirements for their intraspecific genetics propagation. Meanwhile, some pioneering species such as H. scoparium and A. mongolicum can be planted for accelerating the improvement of soil conditions and recovery of the habitats required by populations of A. mongolicus and P. Euphratica, so that the objectives of conserving endangered species will be achieved.

(2) In the closures region with communities of A. mongolicus and P. euphratica, some species emerged in post succession of Artemisia ordosica communities, such as C.
microphylla and A. frigida etc., should be planted, for developing stable communities’ structure to protect the ecological environment.

6. Forest Tending and Management

6.1. Weeding and loosening soil

(1) It is forbidden to use herbicides for weeding. The partial tending methods that is weeding and loosening the soil around trees or shrubs against planting hole, should be adopted for young forests, and the natural vegetation should be retained as much as possible. The weed residues should be used as mulching materials in the forests. It is prohibited to collect or remove the forest litters on the ground as they can improve the capacity of soil in conserving water and fertility.

(2) For the planted forests or shrubs in strips, the tractor-ploughing method can be employed for loosening soil and weeding between the strips in summer, which can simultaneously achieve the benefits of soil loosening, water conservation and turning down the ground herbs as green manure, as well as preventing wind erosion since only light wind comes in summer.

6.2. Fertilizers Application

(1) The application of chemical fertilizers in over quantity may cause the negative impacts on ecological environment of soil, water and air. For the soil, the over application of chemical fertilizers may resulted in soil fertility degradation with soil acidification or soil hardening; for the water, the over application of chemical fertilizers for long time may resulted in nitrate pollution to the groundwater and eutrophication to the surface water bodies; for the air, the over application of chemical fertilizers for long time may resulted in the air pollution with releasing of ammonia and nitrogen oxides. Therefore, the chemical fertilizers should be applied according to the ecological conditions of soils in different project areas. The chemical fertilizers should be applied as little quantity as possible to avoid or mitigate the negative impacts on the environment.

(2) It is encouraged to use organic manure and green manure for fertilization or conduct intercrop with nitrogen fixation plants, such as leguminous plants to reduce the dependence of soil on inorganic fertilizers and improve the soil structure, soil fertility and biological activities in the soil.

(3) When chemical fertilizers is necessary, the fertilization schemes should be made according to the latest research results on fertilization or soil and plant flag analysis. The timing, frequency, quantity and measures of fertilizer application should be strictly according to the fertilizers features and its application guidance. The fertilizers
should be applied by pit or ditch application methods but never surface broadcasting application method. For the slop sites, the fertilizers should be applied at the upper part from tree and covered by soil to prevent loss of fertilizers and pollution to surface water.

6.3. Irrigation

(1) Since the project areas are short of water resources, and one of the major negative impacts of the project implementation on environment is water consumption, the drip irrigation technologies are required for designing and conducting the supplementary irrigation to save water resource. The latest advanced water-saving irrigation equipments should be employed for the scientific irrigation systems to avoid the problems of non-uniform irrigation in farmland appeared in some project areas.

(2) In addition to drip irrigation, manual-watering planting holes of trees will be adopted in dry seasons in some project areas. In this case, the water-saving methods, such as retaining rainwater by tanks, covering plastic-film around planting holes of trees and application of water retention agents, are encouraged. The flood irrigation is forbidden to save water resource.

(3) For the afforestation at saline lands or alkaline lands, the flat irrigation is required with surface water, by means of shallowly watering earth with quick turn of each watering block. It is necessary to level the afforestation land and make the smaller blocks for flood irrigation, so that the water can be evenly distributed and soil secondary salinization can be avoided. It is necessary to conduct anti-seepage treatment to irrigation canals to prevent going down of water and rising of groundwater level. The appropriate irrigation measures should be applied as most as you can to control the soil salinization in the irrigated land.

7. Integrated Pest Management

The PMP for Ningxia Desertification Control and Ecological Protection Project has been made, and will be strictly executed in the project implementation.

8. Prevention of Forest Fire

(1) The prevention of forest fire in the project must be integrated into the existing system of forest fire management at all administrative levels. Each of the project management agencies must set up the fire management organization and make the detailed plan on fire prevention, public education, patrolling, legal enforcement and emergent fire response.

(2) In afforestation design, the forest protection and fire prevention should be
considered. The fire control lines must be designed and built to divide every continuous forests in acreage of more than 100 ha into several patches in acreage no more than 35 ha. The fire control lines should be 10-20 m wide, and the rivers and the native fire resistant vegetation should be served as good fire control lines.

(3) Each of the afforestation entities must make the forest protection and fire prevention plan, as well as the regulation on forest fire prevention for local villages. The responsibility of fire prevention must be clearly defined to each afforestation area and the enough number of forest rangers should be arranged on the basis of scale of each area. The project of afforestation entities should report regularly to the project management office and the related fire management organizations about their fire prevention activities.

(4) The forest protection and fire break teams should be established and equipped with necessary facilities. In addition, the duty-based award and punishment system should be set up for the administration of fire prevention and control. The lookout tower for fire events and guide sheds should be set up in the afforestation area with equipment of modern communication facilities.

(5) In the critical season of fire prevention, it is forbidden to use fire in or around forests, the fire source must be strictly under control and particularly the slashing burning or burning forest litters in or around forests are also forbidden.

9. Construction and Maintenance of Access Tracks

The construction of the project forest roads should be combined as much as possible with the building of countryside roads, the forest fire control lines and forest compartments boundaries in order to reduce the scale of broken earth and soil erosion.

The main environmental protection measures in access tracks construction are as follows:

(1) The design of the road course should be reasonable. The building materials must be reasonable selected and arranged. The road construction should be combined with controlling pollution and beautification of environment to reduce the negative impact of construction engineering on the environment;

(2) The destruction of natural vegetation should be minimized;

(3) The low-noise equipments should be employed for the construction operation, and the appropriate construction period and measures should be selected reasonably;

(4) The fine or dusty residue materials should be covered during their transportation, and the dropped residues should be cleaned timely,
The regular maintenance should be conducted for the built access tracks, including maintenance of road surface.

10. Monitoring and Evaluation

In order to ensure the EPG will be executed correctly and precisely in the project implementation, it is necessary to carry out the monitoring on the performance and result of the EPG execution so that the timely evaluation and adjustment can be made.

10.1. Monitoring and Evaluation Agencies

The provincial Project Management Office (PMO) is responsible for making sure that all designs and operations of project activities are in line with the principles, standards and quantitative indexes stipulated by the EPG. For the project operational design, the provincial PMO will evaluate whether the EPG is strictly followed in designs by means of regular supervision or random checking. Once the operational designs are approved, the county PMO will carry out regular supervision and on-site checking to evaluate whether the project operation activities are conducted according to the approved operational design and strictly following all requirements stipulated by the EPG. In the period of project implementation, the provincial PMO will make regular and random checking to make sure of the quality of monitoring and evaluation on EPG execution.

10.2. Monitoring and Evaluation Methods

The “Environmental Protection Compliance Rate”, i.e. the proportion of numbers of the afforestation sub-compartments with satisfied environmental protection measures upon the total afforestation sub-compartments, will be taken as one of the most important criteria in the afforestation quality checking and acceptance. In order to keep the consistency and continuity of the monitoring and evaluation on the “Environmental Protection Compliance Rate” in the project period, the united and standardized indicators and statements should be used for reporting to describe the compliance status of all environmental protection measure for each afforestation sub-compartments.

11. Afforestation Site Screening Procedures for Ningxia Desertification Control and Ecological Protection Project

Step 1 Status of the Afforestation Sites to be selected

(1) Are there protected physical or cultural resources in the afforestation sites to be selected, or the distance between the site and the resource location is less than that forbidden by the local authority? Yes□ No□
(2) Are the afforestation sites to be selected partly or totally located in the areas within 2000 m from boundary of buffer zone of the natural or cultural heritage reserves? Yes□ No□

(3) Are the afforestation sites to be selected the existing open forest lands with canopy density over 0.2? Yes□ No□

(4) Are the afforestation sites to be selected located in the areas within 100 m from the boundary of designated ecological public welfare forest, within 50 m from the bank of main rivers, or within 20 m from the bank of branch rivers? Yes□ No□

If the answer to any of the above questions is “yes”, the sites are prohibited to be used as the afforestation sites and other sides should be considered.

If the answer to all of the above questions is “no”, then go to step 2.

Step 2 Do the afforestation sites to be selected belong to any of the following category of types?

Category 1 – bare land/sandland or degraded grassland; Yes□ No□

Category 2 – the crop land has been converted into forest land in the past or recently; Yes□ No□

Category 3 – the degraded forest land or shrub land with canopy density less than 0.2; Yes□ No□

Category 4 – the bare land along roads and irrigation canal/drainage channels with serious harm of strong wind or dry-hot wind, or semi-desertification land; Yes□ No□

Category 5 – other lands, such as natural habitats with potential value including natural forests with canopy density less than 0.2, the natural grasslands in high altitude, wetlands etc. Yes□ No□

If the site type belongs to category 1, 2, 3 or 4 (belongs to category 1, 2 or 3 in the farming area), the screening procedure is finished and the sites can be used for afforestation.

If the site type belongs to Category 5, then go to Step 3.

Step 3: Is the site type universal ecologically in this area? (For example, would the afforestation sites to be selected occupy less than 5% of the total area of such ecotype land?).

If the answer is yes, the sites can be used for afforestation, but the afforestation
area cannot exceed 5% of total area of such type. The photographs on the selected sites should be taken before project action and documented together with the afforestation sub-compartment records on the site type, vegetation etc.

If the answer is no, the site cannot be used for afforestation and other sides should be considered.