CAPITAL CONTROLS AND THE REAL EXCHANGE RATE

S. van Wijnbergen

CPD Discussion Paper No. 1985-52
October 1985
Abstract

Capital controls are interventions in intertemporal trade. The effect of the imposition of capital controls on the real exchange rate (an intratemporal relative price), therefore hinges on the interaction of intertemporal and intratemporal trade.

Using an intertemporal, general equilibrium (2 country) model, I demonstrate that international asymmetries in expenditure patterns are the sole determinants of the real exchange rate effects of capital controls. Capital import taxes lower world interest rates but raise home interest rates, of course not a surprising result. As a consequence, the composition of world expenditure changes, although the level has to remain equal to the level of world output. Higher real rates at home and lower real rates abroad imply a shift of home expenditure from today to tomorrow and a shift of foreign aggregate expenditure from the future to today. Therefore, the composition of current world expenditure will change, with less home and more foreign expenditure.

If the pattern of expenditure is the same at home and abroad, this change in composition has no consequence for the (excess) demand for any particular commodity. Therefore, with identical expenditure patterns at home and abroad, imposing capital controls has no effects on the real exchange rate. However when consumers have a preference for domestically produced goods, the shift in composition of world expenditure implies a decline in demand for home goods. In that case, capital controls lower the real exchange rate. Of course in period two the reverse happens.

This result is mitigated when the country imposing capital controls is a large debtor. A large debt implies large income gains for debtor countries due to the depressing effect of capital controls on world interest rates. The implied income transfer from creditor to (controls imposing) debtor will reduce the shift in world expenditure and therefore will mitigate the real exchange rate effects of imposing capital controls.
I. Introduction

Controls on international capital flows are often advocated in response to an appreciation of the real exchange rate. Thus, Dornbusch (1983) and Liviatan (1980) advocate capital controls in the early phase of monetary stabilization programs since restrictive monetary policy will lead to a real appreciation initially if domestic prices are anything less than perfectly flexible (Dornbusch (1976)). Similarly, Bergsten (1982), has called for what amounts to a capital import tax in response to the high real exchange value of the dollar.

Such advocacy implies a belief in the downward effect of capital controls on the real exchange rate, an effect for which theoretical support is as yet rather unconvincing. This is so because where the real exchange rate effects of capital controls have been analyzed, this has been done in the context of partial equilibrium (one country), and essentially static models (see for example Liviatan (1980)). Since capital controls are interventions in intertemporal trade, a framework where the intertemporal allocation of consumption is based on static savings rules is not satisfactory; moreover, I will show in this paper that general equilibrium (2-country) effects are crucial determinants of the real exchange rate effects of capital controls, arguing against a one-country, partial equilibrium approach.

I will present a simple model explicitly set up to analyze the intertemporal and intratemporal aspects of capital controls. The explicit use of an intertemporal framework to analyze capital controls is in line with other recent work on capital controls (Adams and Greenwood (1985), Marion and Svensson (1985b), van Wijnbergen (1985)). These authors either use a partial equilibrium one country approach (Adams and Greenwood (1985)), or employ a
general equilibrium framework but one with only one final commodity in each period (Marion and Svensson (1984), van Wijnbergen (1985)). Either set up rules out a satisfactory analysis of the real exchange rate effects of capital controls.

In contrast, the analysis to be presented below is a full general equilibrium one, an extension that will turn out to be important for the final results obtained: I will show that asymmetries in international expenditure patterns are the sole determinants of the real exchange rate effects of capital controls.

In another departure of much of the literature (but in line with Marion and Svensson (1984) and van Wijnbergen (1985)), I will abstract from monetary aspects and use an entirely "real" model. Capital controls are an intervention in intertemporal trade; the question of how such controls affect the intratemporal terms of trade or real exchange rate therefore hinges on the interaction between intertemporal and intratemporal trade patterns. It is not clear that monetary factors play an important role in these interactions. Whether that is so or not, the real effects of the intertemporal distortions introduced by capital controls are of sufficient interest by themselves to motivate this approach.

The organization of the rest of the paper is as follows. In Section II, I present a simple two goods, two country, two period model based on full optimization and perfect foresight. Section III analyzes the welfare and real exchange rate effects of capital controls in that framework. Section IV offers some conclusions.
II. The Model Structure

Since I want to discuss the impact of capital controls on the real exchange rate (defined here as the relative price of "our goods" in terms of "their goods") I need at least a two commodity structure; furthermore, to assess the impact on the intertemporal terms of trade (one over one plus the real interest rate), one needs at least two periods. In this section I present the least complex general equilibrium model that satisfies these two criteria, a two period, two commodities, two country model.

I simplify further by assuming complete specialization in each country. Also, since production patterns would not change unless relative prices change, I/ the direction of relative price change can without loss of generality be analyzed in a pure exchange economy (Jones (1970)). I will therefore assume output to be exogenous in each country; and set at level X and x at home in period one and two respectively, and at level X* and x* abroad. Capital letters are used for first period variables, and lower case letters for second period variables. Finally P is the relative price of home goods in terms of foreign goods in period one, and p the corresponding relative price in period two. I will refer to P and p as the real exchange rate in period one and two respectively.

I summarize consumer behavior by the use of an expenditure function E (E* for foreigners) yielding the minimum discounted value of expenditure necessary to yield welfare level U (U*) given the relative price structure:

I/ This is not correct in the presence of Keynesian unemployment due to relative price rigidities. However there is no point in discussing relative price effects in such a framework, so Keynesian unemployment is ignored.
\[E = E (\Pi(P,1), \delta\pi(p,1), U) \]
(1)

and

\[E^* = E^* (\Pi^*(P,1), \delta^*\pi^*(p,1), U^*) \]

\(\Pi \) and \(\pi \) are aggregate within-period price indices and can be interpreted as unit expenditure functions. The price indices \(\Pi \) and \(\pi \) are a function of within period relative prices only because we assume \(U \) to be Weakly Identically Homothetically Separable (WIHS) (see Razin and Svensson (1983) and van Wijnbergen (1984)). Note that \(\Pi \) and \(\Pi^* \) may be different, since preferences are not necessarily identical in each country. \(\delta^* \) is the foreign discount factor, one over one plus the real rate of interest:

\[\delta^* = \frac{1}{(1 + r^*)} \]

\(r^* \) corresponds to the own rate of interest on foreign goods.

Capital controls may drive a wedge between domestic and foreign discount factors \(\delta \) and \(\delta^* \) (or, equivalently, between \(r \) and \(r^* \)). I will focus on price intervention (a capital import tax) rather than explicit quantity controls; this involves no loss of generality, since within the present context for any given quantity control a capital import tax rate can be chosen with exactly the same economic effect (Adams and Greenwood (1985)). I provide a qualification to this equivalence result for the case of asymmetric expenditure patterns at home and abroad at the end of the next section. Also, as is well known from the literature on intervention in static commodity trade, equivalence between quota and tariffs may break down in the
presence of uncertainty (Newbery and Stiglitz (1981)) or non-competitive market structure (Bhagwati (1965), Krishna (1985)).

An analytically convenient way of parameterizing price intervention in intertemporal trade (which is what capital controls come down to) starts by defining

\[b = \delta^* - \delta \]

\[= \frac{(r-r^*)}{(1+r^*)} / (1+r) \]

b equals the discounted value of tax payments per unit repaid to foreigners (this approach of modeling capital controls follows Marion and Svensson (1984) and van Wijnbergen (1985)).

The tax revenue will then equal \(b \cdot \text{nca} \), with nca the non-interest current account surplus of the home country in period two (cf. Marion and Svensson (1984)). We assume that these tax revenues are rebated to consumers in random fashion (in particular not proportional to the amount borrowed), which leads to a home country budget constraint:

\[\Pi X + \delta px + b\text{nca} = E (\Pi (P,1), \delta \pi(p,1), U) \]

(3a)

Similarly, the intertemporal budget constraint for foreigners equals

\[X^* + \delta^* x^* = E^* (\Pi^*(P,1), \delta^* \pi^*(p,1), U^*) \]

(3b)

There are three relative prices in the model: the real exchange rate today \(P \), the real exchange rate tomorrow \(p \), and the intertemporal terms of trade \(\delta \). These are jointly determined by three commodity market clearing
equations. The market clearing equation for the fourth good is redundant via Walras' law (the four goods are home goods today and tomorrow, and foreign goods today and tomorrow).

Consider first equilibrium in the home goods market today:1/:

\[X = E_p^+ L_p^* \] \hspace{1cm} (4)

\(E_p \) is the domestic (Hicksian) demand function for period one home goods, using properties of the expenditure function (See Dixit and Norman (1980)). Similarly \(E_p^* \) is foreign demand for first period home goods.

For given \(\delta \), substituting out \(U \) and \(U^* \) using the budget constraints (2), this equilibrium condition can be represented as an upward sloping curve in \(P-p \) space (locus GM1 in figure 1):

\[\frac{\partial P}{\partial \delta} \bigg|_{GM1} = -\frac{E_{pp}}{E_{pp}} > 0 \] \hspace{1cm} (5)

\(E_{ij} \) are elements of the world substitution matrix 2/ with \(i \) and \(j \) indicating period numbers. Specific expressions are given in the appendix.

The reason for the positive slope of GM1 is simple: an increase in \(p \) will lead to substitution away from future home goods. Since the WIHS utility structure rules out complementarity, some extra demand will fall on current home goods. To get back in equilibrium, the price of today's home good will need to go up.

1/ Subscripts indicated partial derivatives: \(E_p = \frac{\partial E}{\partial p} \) etc.

2/ Plus terms reflecting income effects.
A change in the discount factor δ (and δ^*, for given b) will disturb period one home goods market equilibrium:

$$\frac{2P}{3\delta} G_{MI} = - \frac{\sum P\pi}{\sum P\pi}$$

(6)

An increase in δ means a decrease in the price of current goods in terms of future goods and a corresponding increase in demand for current home goods. To restore equilibrium in the home goods market, P will need to increase, hence the positive sign of (6). 1/

Second period home goods equilibrium implies:

$$x = E_p + E^*_p$$

(5)

(5) also corresponds to an upward sloping schedule in P-p space (locus GM2): a higher P leads to substitution away from current home goods, which, since there is no complimentarity, leads to excess demand for future home goods. To restore equilibrium in the period two home goods market, p needs to go up.

Dominance of own substitution effects over cross-substitution effects guarantees that GM2 is steeper than GM1. An increase in the discount factor δ (and δ^*, forgiven b) will shift expenditure towards today via pure substitution effects. This shift away from future expenditure will lead to downward pressure on the period two real exchange rate to restore home goods market equilibrium in that period:

1/ Unless highly asymmetric income effects, with net debtors saving much more, proportionally, than net creditors, reverse this shift. This I will assume not to be the case.
The final equilibrium equation is the market clearing condition for current foreign goods. The fourth and last goods market clearing condition, for second period foreign goods, is redundant via Walras' law. Some simple manipulation shows that first period foreign goods market equilibrium, when combined with current home goods market equilibrium, is equivalent to an equilibrium condition requiring a zero net intertemporal trade condition for the world as a whole in period one:

\[PX - \Sigma^* \Pi + X^* - \Sigma^* \Pi^* = 0 \] \hspace{1cm} (9)

or

\[\text{NCA} + \text{NCA}^* = 0 \]
NCA (nca) is the first (second) period home country non-interest current account. NCA* and nca* are the corresponding foreign variables. (9) represents a negative locus in $p - \delta^*$ space (locus NCA in figure 1): a higher relative price of period two home goods (an anticipated future appreciation) increases the consumption discount factor $\delta_c = \frac{(\delta^* - b)\pi}{\Pi}$ (lowers the consumption rate of interest) and so leads to a shift towards current expenditure. To restore equilibrium, the relative price of all future goods in terms of current goods needs to fall or δ^* declines. Formally:

$$\frac{\partial \delta^*}{\partial p} \bigg|_{NCA, P^F = P} = -\frac{\Sigma_{H^F}}{\Sigma_{H^P}}$$ \hspace{1cm} (10)$$

The slope would once again be reversed if income effects are very asymmetric, with debtors saving much more on the margin than creditors.

III. Capital Controls, Interest Rates and the Real Exchange Rate

Imposing a capital import tax ($db > 0$) is equivalent to subsidizing current production (taxing investment) and taxing current consumption in the country imposing the tax. Since we work in an exchange economy, we can focus on the intertemporal allocation of consumption.

An increase in b, by taxing current consumption in the home country, leads to a shift from current to future consumption at home and so disturbs world current account equilibrium. By shifting home consumption to the future, global excess savings would develop at given interest rates. To restore global equilibrium, world interest rates will therefore fall (the discount factor δ^* rises):
$\frac{\partial \delta^*}{\partial b} \bigg|_{P,P} NCA = \frac{E^E \Pi^\pi}{\Pi^\pi} + \frac{E^E \Pi^\pi \Pi^\pi \Pi^\pi + (C_{IE} \Pi - C^* \Pi^*) nca}{(11)} > 0$

$C_{PE} C^*_PE$ is the domestic (foreign) marginal propensity to spend on current home goods out of wealth:

$$\frac{E_{PU}}{E_{PE}}, \frac{C^*_PE}{E_{PU}}, \frac{C^*_PE}{E_{U}}$$

Similar marginal propensities can be defined for other goods or for aggregate expenditure in a given period. For example for first period expenditure E_{PU} etc.

(11) represents an outward shift in figure 2. The sign of (11) could potentially be reversed if income effects are large and negative, particularly if:

$$(C_{IE} \Pi - C^*_IE \Pi^*) nca < -(E^E \Pi^\pi + E^E \Pi^\pi \Pi^\pi) < 0.$$

However capital controls are typically imposed in countries with current account deficits, which, through the intertemporal budget constraint implies $nca > 0$:

$$NCA < 0, NCA + \delta^* nca = 0 + nca > 0$$

Also, at least in the present context without investment and with constant endowments over time, $NCA < 0$ implies $C_{IE} \Pi > C^*_IE \Pi^*$. We can therefore ignore such reversals and assume that the denominator of (11) is positive.
Of course tax inclusive interest rates go up rather than down, or, in terms of discount factors, \(\delta = \delta^* - \beta \) falls:

\[
\frac{3\delta}{3\beta} = \frac{3\delta^*}{3\beta} - 1 = \frac{-E^*_\Pi^\Pi + E^*_\Pi^\Pi \pi^* + (C_I^\Pi - C^*_I^\Pi)nca}{E^*_\Pi^\Pi + E^*_\Pi^\Pi \pi^* + (C_I^\Pi - C^*_I^\Pi)nca} < 0
\]

(11) also explains the welfare consequences of a capital import tax given intratemporal relative prices. Net creditors will lose, because of lower world interest rates, and net debtors gain, for the same reason:

\[
E^* \frac{dU}{db} \bigg|_{p,p} = nca \cdot \frac{d\delta^*}{db}
\]

(13) shows the analogy with tariffs on intratemporal trade. A country can gain from taxing intertemporal trade to the extent that it is large enough to influence, through such interventions, the intertemporal terms of trade (world interest rates).

The consequences for the real exchange rate are more complicated. Commodity markets in each period are subject to two conflicting impulses after imposition of a capital import tax. Consider the market for home goods in period one.

The first impulse is a direct consequence of the effect of capital import taxes on the Consumption Discount Factor (CDF; one over one plus the Consumption Rate of Interest) for given world prices.

The CDF measures the price of aggregate consumption in period two in terms of aggregate consumption in period one:
and is lowered directly by an increase in \(b \). This shifts home consumption from today to tomorrow, thus lowering home demand for home goods in period one. Such a shift puts downward pressure on the period one real exchange rate \(P \):

\[
\frac{\partial P}{\partial b}
\bigg|_{GM1} = \frac{E_{P\pi}}{P_P} + \frac{E_{P\pi}^*}{P_{P}^*} + \frac{(C_{IE}^* - C_{IE}^*)E_{IE}^*}{P_{IE}^*} < 0
\]

(14) corresponds to shift "A" in Figure 2.
The second impulse is caused by the change in world interest rates triggered by the higher capital import tax. Lower world interest rates shift both home and foreign consumption from the future towards today through substitution effects, some of which fall on first period home goods. This will put upward pressure on the real exchange rate:

\[
\frac{\partial P}{\partial \delta^*} \bigg|_{\text{GM1}} \frac{\partial P}{\partial b} \bigg|_{\text{NCA}} = \begin{vmatrix} \frac{\partial \delta^*}{\partial \text{GM1}} \\ \frac{\partial \delta^*}{\partial \text{NCA}} \end{vmatrix} = \begin{vmatrix} \frac{-\Sigma_P}{\Sigma_{PP}} \cdot \frac{\partial \delta^*}{\partial b} \\ \frac{-\Sigma_{P\Pi}}{\Sigma_{PP}} \cdot \frac{\partial \Pi_{\Pi}}{\partial b} \end{vmatrix} \text{NCA}
\]

\[
(+) \quad (+)
\]

\[
= \frac{-\Sigma_P}{\Sigma_{PP}} \cdot \frac{\Sigma_{P\Pi}}{\Sigma_{\Pi\Pi}}
\]

\(\Sigma_{PP}, \Sigma_{P\Pi}\) etc. are elements of the world substitution matrix; precise expressions are in the appendix. (15) corresponds to shift "B" in figure 2.

The net effect, and therefore the impact of the imposition of the capital import tax on the real exchange rate, depends on whether the direct effect (14) outweighs the indirect effect (15). The sign of the net effect is straightforward and intuitive; the rather forbidding expression for it can be simplified a great deal:

\[
\frac{\partial P}{\partial b} \bigg|_{\text{GM1}} + \frac{\partial P}{\partial \delta^*} \bigg|_{\text{GM1}} \frac{\partial \delta^*}{\partial b} \bigg|_{\text{NCA}} = \begin{vmatrix} \frac{\partial P}{\partial \delta^*} \bigg|_{\text{GM1}} \\ \frac{\partial P}{\partial \delta^*} \bigg|_{\text{NCA}} \end{vmatrix} = \begin{vmatrix} \frac{\Sigma_{P\Pi}}{\Sigma_{PP}} - \frac{\Sigma_P}{\Sigma_{PP}} \cdot \frac{\Sigma_{P\Pi}}{\Sigma_{\Pi\Pi}} \\ \frac{1}{\Sigma_{\Pi\Pi}} \cdot \frac{\Sigma_{P\Pi}}{\Sigma_{PP}} \cdot \frac{\Sigma_{P\Pi}}{\Sigma_{\Pi\Pi}} \end{vmatrix}
\]

\[
(-) \quad (+) \quad (A) \quad \frac{\Pi^*}{\Pi_P} \quad \frac{\Pi^*}{\Pi_P}
\]

\[
= \frac{\partial P}{\partial b} \bigg|_{\text{GM1}} \cdot \{ 1 - \frac{\Sigma_{P\Pi}}{\Sigma_{\Pi\Pi}} \cdot \frac{\Pi}{\Pi_P} \}
\]

\[
= \frac{\partial P}{\partial b} \bigg|_{\text{GM1}} \cdot \frac{1}{\Sigma_{\Pi\Pi}} \cdot \{ \Sigma_{P\Pi} \cdot \delta^* \cdot (1 - \frac{\Pi}{\Pi_P} \cdot \frac{\Pi^*}{\Pi_P}) \}
\]

\[
(-) \quad (+) \quad (-) \quad \frac{\Pi^*}{\Pi_P} \quad \frac{\Pi^*}{\Pi_P}
\]

\[
- C^*_{\text{LE}} \cdot nca \cdot (1 - \frac{\Pi}{\Pi_P} \cdot \frac{\Pi^*}{\Pi_P})
\]

(B)
The first result is immediately obvious after inspection of (16): if

\[\frac{\Pi^P}{\Pi} - \frac{\Pi^*}{\Pi^*} + \frac{dP}{db} = 0 \]

(17)

This condition is readily interpreted after use of standard properties of the expenditure function. Since \(\Pi \) and \(\Pi^* \) are unit expenditure functions, \(\frac{\Pi^P}{\Pi} \) is the share of current expenditure by home country residents falling on home goods. Similarly, \(\frac{\Pi^*}{\Pi^*} \) is the share of current expenditure by foreigners that falls on home country goods. (17) therefore states that if expenditure patterns are the same across countries, if foreigners spend the same proportion of total expenditure on home country goods as home country residents themselves, then a capital import tax has no effect at all on the real exchange rate.

Consider, for the analysis under asymmetric expenditure patterns, the benchmark case of negligible income effects (term \(B \) in (16)) first. Then (16) can immediately be simplified to yield

\[\frac{\Pi^P}{\Pi} > \frac{\Pi^*}{\Pi^*} - \frac{dP}{db} \leq 0 \]

(18)

Capital import taxes lead to a real depreciation in the country imposing them if \(\frac{\Pi^P}{\Pi} > \frac{\Pi^*}{\Pi^*} \), if home country residents spend more on home country goods than foreigners, as a proportion of their total expenditure.

The similarity with the Metzler condition for an undereffected transfer (Metzler (1942)) is of course no coincidence. Capital import taxes at home will switch aggregate home expenditure towards the future. This disturbs global current account equilibrium. Lower world real interest rates then become unavoidable, to provide an offsetting shift of foreign and
domestic expenditure from the future to today until global current account equilibrium is restored and world expenditure again equals world output. We are left, then, with the same level of first period world expenditure, but a changed composition, with less domestic but more foreign expenditure. This explains why capital import taxes have no effect on the real exchange rate when expenditure patterns at home and abroad are the same. What matters for the relative price of home goods is total demand for them, not whether buyers live at home or abroad, and under symmetric expenditure patterns, a shift in the composition of total expenditure (more by foreigners and less by domestic residents) will not affect total demand for any given commodity.

Empirically, it is more likely that home residents consume relatively more home goods than foreigners do; this is certainly the case in the presence of non-traded goods, which, by definition, are only consumed by home country residents. If this is indeed the case, if $\frac{H_p}{H} > \frac{H^*}{H^*}$, imposition of capital import taxes will lead to a decline in world demand for first period home goods and therefore to a real depreciation of the exchange rate.

Of course in period two, the reverse change takes place, with less foreign and more domestic expenditure. When, therefore, after the imposition of a capital import tax expenditure pattern asymmetries are such that a capital import tax causes a real depreciation today, it will cause a real appreciation tomorrow (period two). The proof of this proposition closely follows the analysis of first period real exchange rate effects of a capital import tax that was just presented, and is therefore not given here.

The discussion so far used the simplifying assumption of negligible income effects after imposition of the tax. This will be the case if nca is small, for example. That may be an unrealistic assumption; capital controls
are often imposed during periods of payment imbalances, in particular of current account deficits. Incorporating such initial deficits is straightforward. Expression (16) shows first of all that the first proposition, that capital import taxes have no effects on the real exchange rate when expenditure patterns are identical across countries, is independent of the current account starting position. This should not be surprising, since a non-zero current account starting position only matters for the income effects caused by the changes in world interest rates that an imposition of a capital import tax leads to. Such income effects are pure transfers in that creditors' gains equal debtors' losses; under symmetric expenditure patterns such a redistribution of course has no effect on relative prices.

If expenditure patterns are not symmetric, in particular in the empirically plausible case where home consumers have a preference for home goods and foreigners for foreign goods \((\Pi_p/\Pi > \Pi_p^*/\Pi^*) \), exchange rate effects of a capital import tax will be mitigated if there is a large initial (non-interest) current account deficit \((NCA = -\delta \cdot nca < 0) \):

\[
\frac{\Pi_p}{\Pi} > \frac{\Pi_p^*}{\Pi^*} + \frac{dP}{db}\bigg|_{nca=0} < \frac{dP}{db}\bigg|_{nca>0} < 0
\]

(19) follows directly from (16). A large first period CA deficit implies large income gains for the debtor country due to the depressing effect of imposing capital controls on world interest rates. The implied income transfer from creditor to (controls imposing) debtor will reduce the shift in world expenditure and therefore will mitigate the real exchange rate effects of imposing capital controls.

Before concluding, a final remark: Within the model structure used, quantity controls on capital flows can be mimicked by price interventions of
the type analyzed in this paper. However, care should be taken to establish who (home or foreign residents) captures the rents created by quantity controls on intertemporal trade. This is because, as I have shown in this paper, the changes in the composition of world expenditure triggered by the imposition of capital controls are the ultimate determinants of the real exchange rate effects of these controls. Different ways of distributing the rents created by quantity controls could therefore, in predictable manner, lead to different real exchange rate effects.

IV. Concluding Comments

Capital controls are interventions in intertemporal trade. The effect of the imposition of capital controls on the real exchange rate (an intratemporal relative price), therefore hinges on the interaction of intertemporal and intratemporal trade. Models used to analyse such exchange rate effects of capital controls should therefore, in contrast to the existing literature on these real exchange rate effects, explicitly incorporate intertemporal considerations. That is the purpose of this paper.

For a full intertemporal, general equilibrium (2 country) model, I demonstrate that international asymmetries in expenditure patterns are the sole determinants of the real exchange rate effects of capital controls. Capital import taxes are shown to cause lower world interest rates but raise home interest rates, of course not a surprising result. As a consequence, the composition of world expenditure changes, although the level has to remain equal to the level of world output. Higher real rates at home and lower real rates abroad imply a shift of home expenditure from today to tomorrow and a shift of foreign aggregate expenditure from the future to today. Therefore,
the composition of current world expenditure has shifted, with less home and more foreign expenditure.

If however the pattern of expenditure is the same at home and abroad, this change in composition has no consequence for the (excess) demand for any particular commodity. Therefore, with identical expenditure patterns at home and abroad, imposing capital controls has no effects on the real exchange rate.

If however consumers have a preference for domestically produced goods (the standard Metzler condition for an undereffectd transfer) the shift in composition of world expenditure from expenditure by domestic to expenditure by foreign consumers, implies a decline in demand for home goods. In that case, capital controls lower the real exchange rate. Of course in period two the reverse happens.

This result is mitigated when the country imposing capital controls is a large debtor (runs a large first period current account deficit, in our framework). A large first period CA deficit implies large income gains for debtor countries due to the depressing effect of imposing capital controls on world interest rates. The implied income transfer from creditor to (controls imposing) debtor will reduce the shift in world expenditure and therefore will mitigate the real exchange rate effects of imposing capital controls.
Appendix: Expressions for Σ_{ij}

$$\Sigma_{PP} = E_{PP} + E^*_{PP} + (C_{1E} - C^*_{1E})E^*_{P}$$

$$\Sigma_{P\pi} = E_{P\pi} + E^*_{P\pi} + (C_{1E} - C^*_{1E})nca$$

$$\Sigma_{\Pi\pi} = E_{\Pi\pi} + E^*_{\Pi\pi} + (C_{1E} - C^*_{1E})nca$$

and so on.
References

