What a Waste 2.0 Urban Development Series The Urban Development Series discusses the challenge of urbanization and what it will mean for developing countries in the decades ahead. The series aims to delve substantively into a range of core issues related to urban devel- opment that policy makers and practitioners must address. Cities and Climate Change: Responding to an Urgent Agenda Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World East Asia and Pacific Cities: Expanding Opportunities for the Urban Poor East Asia’s Changing Urban Landscape: Measuring a Decade of Spatial Growth The Economics of Uniqueness: Investing in Historic City Cores and Cultural Heritage Assets for Sustainable Development Financing Transit-Oriented Development with Land Values: Adapting Land Value Capture in Developing Countries Regenerating Urban Land: A Practitioner’s Guide to Leveraging Private Investment Transforming Cities with Transit: Transit and Land-Use Integration for Sustainable Urban Development Urban Risk Assessments: Understanding Disaster and Climate Risk in Cities What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 All books in the Urban Development Series are available free at https://openknowledge.worldbank.org/handle/10986/2174. What a Waste 2.0 A Global Snapshot of Solid Waste Management to 2050 Silpa Kaza, Lisa Yao, Perinaz Bhada-Tata, and Frank Van Woerden With Kremena Ionkova, John Morton, Renan Alberto Poveda, Maria Sarraf, Fuad Malkawi, A.S. Harinath, Farouk Banna, Gyongshim An, Haruka Imoto, and Daniel Levine © 2018 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved. 1 2 3 4 21 20 19 18 This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved. Rights and Permissions This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) http://creativecommons.org/licenses/by/3.0/igo. Under the Creative Commons Attribution license, you are free to copy, distribute, transmit, and adapt this work, including for commercial purposes, under the following conditions: Attribution—Please cite the work as follows: Kaza, Silpa, Lisa Yao, Perinaz Bhada-Tata, and Frank Van Woerden. 2018. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development Series. Washington, DC: World Bank. doi:10.1596/978-1-4648 -1329-0. License: Creative Commons Attribution CC BY 3.0 IGO Translations—If you create a translation of this work, please add the following disclaimer along with the attribution: This translation was not created by The World Bank and should not be considered an official World Bank translation. The World Bank shall not be liable for any content or error in this translation. Adaptations—If you create an adaptation of this work, please add the following disclaimer along with the attribution: This is an adaptation of an original work by The World Bank. Views and opinions expressed in the adaptation are the sole responsibility of the author or authors of the adaptation and are not endorsed by The World Bank. Third-party content—The World Bank does not necessarily own each component of the content contained within the work. The World Bank therefore does not warrant that the use of any third-party-owned individual component or part contained in the work will not infringe on the rights of those third parties. The risk of claims resulting from such infringement rests solely with you. If you wish to reuse a component of the work, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright owner. Examples of components can include, but are not limited to, tables, figures, or images. All queries on rights and licenses should be addressed to World Bank Publications, The World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; e-mail: pubrights@worldbank.org. ISBN (paper): 978-1-4648-1329-0 ISBN (electronic): 978-1-4648-1347-4 DOI: 10.1596/978-1-4648-1329-0 Cover photo: © Tinnakorn Jorruang / Shutterstock. Used with permission. Further permission required for reuse. Cover design: Debra Malovany, World Bank. Photo credits: All photos used with permission. Further permission required for reuse. page 3, © Mohamed Abdulraheem / Shutterstock; page 4, © 1000 Words / Shutterstock; page 43, © Farouk Banna / World Bank; page 43, © Paul Morgan / Flickr; page 51, © Almin Zrno; page 57, © Silpa Kaza / World Bank; page 62, © Farouk Banna / World Bank; page 74, © Katherine Davis / World Bank; page 81, © Sarah Farhat / World Bank; page 90, © Silpa Kaza / World Bank; page 123, © Silpa Kaza / World Bank; page 129, © Georgy Kuryatov / Shutterstock; page 150, © Lisa Yao / World Bank; page 150, © Lisa Yao / World Bank; page 154, © Anis Ismail / World Bank; page 157, © Flaviu Pop / World Bank; page 159, © Kevin Serrona / World Bank; page 166, © Katherine Davis / World Bank; page 168, © Lisa Yao / World Bank; page 171, © Ritu Thakur / World Bank; page 171, © Ritu Thakur / World Bank; page 174, © Larina Marina / Shutterstock. Library of Congress Cataloging-in-Publication Data has been requested. Contents Foreword xi Acknowledgments xiii Abbreviations xvii 1 Introduction 1 A Note on Data 9 Notes 13 References 13 2 At a Glance: A Global Picture of Solid Waste Management 17 Key Insights 17 Waste Generation 18 Projected Waste Generation 24 Waste Composition 29 Waste Collection 32 Waste Disposal 34 Special Wastes 36 Notes 37 References 37 3 Regional Snapshots 39 East Asia and Pacific 39 Europe and Central Asia 46 Latin America and the Caribbean 53 v vi What a Waste 2.0 Middle East and North Africa 59 North America 66 South Asia 69 Sub-Saharan Africa 76 References 83 Additional Resources 84 4 Waste Administration and Operations 87 Key Insights 87 Solid Waste Regulations 89 Solid Waste Planning 91 Institutions and Coordination 93 Waste Management Operations 94 References 99 5 Financing and Cost Recovery for Waste Management Systems 101 Key Insights 101 Waste Management Budgets 102 Waste Management Costs 103 Waste Management Financing 105 References 112 6 Waste and Society 115 Key Insights 115 Environment and Climate Change 116 Technology Trends 121 Citizen Engagement 126 Social Impacts of Waste Management and the Informal Sector 129 Notes 133 References 133 Additional Resources 139 7 Case Studies 141 1. A Path to Zero Waste in San Francisco, United States 141 2. Achieving Financial Sustainability in Argentina and Colombia 143 3. Automated Waste Collection in Israel 147 4. Cooperation between National and Local Governments for Municipal Waste Management in Japan 148 5. Central Reforms to Stabilize the Waste Sector and Engage the Private Sector in Senegal 151 6. Decentralized Organic Waste Management by Households in Burkina Faso 152 7. Eco-Lef: A Successful Plastic Recycling System in Tunisia 153 8. Extended Producer Responsibility Schemes in Europe 155 9. Financially Resilient Deposit Refund System: The Case of the Bottle Recycling Program in Palau 158 Contents vii 10. Improving Waste Collection by Partnering with the Informal Sector in Pune, India 161 11. Improving Waste Management through Citizen Communication in Toronto, Canada 163 12. Managing Disaster Waste 165 13. Minimizing Food Loss and Waste in Mexico 167 14. Sustainable Source Separation in Panaji, India 170 15. Musical Garbage Trucks in Taiwan, China 173 16. The Global Tragedy of Marine Litter 174 17. Using Information Management to Reduce Waste in Korea 176 Notes 177 References 177 Additional Resources 180 Appendix A Waste Generation (tonnes per year) and Projections by Country or Economy 185 Appendix B Waste Treatment and Disposal by Country or Economy 231 Boxes 1.1 Data for the Sub-Saharan Africa Region 10 2.1 Waste Generation Projection Methodology 25 2.2 Global Food Loss and Waste 30 3.1 Morocco: Investing in Environmental Sustainability Pays Off 60 3.2 Swachh Bharat Mission (Clean India Mission) 75 5.1 Results-Based Financing in Waste Management 110 5.2 Carbon Finance 111 6.1 Plastic Waste Management 117 6.2 Examples of Information That Can Be Aggregated Using a Waste Management Data System 122 6.3 I Got Garbage 124 6.4 Mr. Trash Wheel 127 6.5 Waste Picker Cooperative Model: Recuperar 130 6.6 Formalization of Waste Pickers in Brazil 131 6.7 Challenges for Waste Pickers 131 6.8 Socially Responsible Plastics Recycling in Mexico 132 Figures 2.1 Waste Generation by Region 19 2.2 Waste Generation by Income Level 21 2.3 Waste Generation and Gross Domestic Product 22 2.4 Waste Generation and Urbanization Rate 23 2.5 Projected Global Waste Generation 25 B2.1.1 Waste Generation: Actual and Model Prediction 26 2.6 Projected Waste Generation by Income Group 27 2.7 Projected Waste Generation by Region 28 viii What a Waste 2.0 2.8 Global Waste Composition 29 2.9 Waste Composition by Income Level 30 2.10 Waste Collection Rates 32 2.11 Urban and Rural Collection Rates by Income Level 33 2.12 Global Waste Treatment and Disposal 34 2.13 Disposal Methods by Income 35 2.14 Global Average Special Waste Generation 36 3.1 Waste Generation Rates: East Asia and Pacific Region 40 3.2 Waste Composition in East Asia and Pacific 41 3.3 Waste Collection Coverage in East Asia and Pacific 42 3.4 Waste Collection Rates for Select Cities in East Asia and Pacific 44 3.5 Number of Cities in East Asia and Pacific Source Separating Recoverable Waste Streams 45 3.6 Waste Disposal and Treatment in East Asia and Pacific 45 3.7 Waste Generation Rates: Europe and Central Asia 47 3.8 Waste Composition in Europe and Central Asia 47 3.9 Waste Collection Coverage in Europe and Central Asia 48 3.10 Waste Collection Rates for Select Cities in Europe and Central Asia 49 3.11 Number of Cities in Europe and Central Asia Source Separating Recoverable Waste Streams 50 3.12 Waste Disposal and Treatment in Europe and Central Asia 51 3.13 Waste Generation Rates: Latin America and the Caribbean Region 54 3.14 Waste Composition in Latin America and the Caribbean 54 3.15 Waste Collection Coverage in Latin America and the Caribbean 55 3.16 Waste Collection Rates for Select Cities in Latin America and the Caribbean 56 3.17 Waste Disposal and Treatment in Latin America and the Caribbean 58 3.18 Waste Generation Rates: Middle East and North Africa Region 60 3.19 Waste Composition in the Middle East and North Africa 61 3.20 Waste Collection Coverage in the Middle East and North Africa 62 3.21 Waste Collection Rates for Select Cities in the Middle East and North Africa 63 3.22 Waste Disposal and Treatment in the Middle East and North Africa 65 3.23 Waste Generation Rates: North American Region 67 3.24 Waste Composition in North America 67 3.25 Waste Disposal and Treatment in North America 68 3.26 Waste Generation Rates: South Asia Region 70 3.27 Waste Composition in South Asia 71 3.28 Waste Collection Coverage in South Asia 71 3.29 Waste Collection Rates for Select Cities in South Asia 72 Contents ix 3.30 Waste Collection Methods in South Asia 73 3.31 Waste Disposal and Treatment in South Asia 75 3.32 Waste Generation Rates: Sub-Saharan Africa Region 78 3.33 Waste Composition in Sub-Saharan Africa 78 3.34 Waste Collection Coverage in Sub-Saharan Africa 79 3.35 Waste Collection Rates for Select Cities in Sub-Saharan Africa 80 3.36 Waste Disposal and Treatment in Sub-Saharan Africa 82 4.1 Waste Management Administration, Operation, and Financing Models 97 5.1 Waste Management Fee Type and Billing Method 108 B6.3.1 Features of I Got Garbage Application 124 7.2.1 Cost Recovery by Generator in Argentina 144 7.2.2 Urban Solid Waste Management Costs (US$) by Stage 144 7.2.3 Urban Solid Waste Management by Spending Category in Argentina 145 7.11.1 Screenshot of Waste Wizard on the City of Toronto Website 163 Maps 1.1 Definition of Income Levels 7 1.2 Definition of Regions 8 2.1 Waste Generation Per Capita 19 Photos 1.1 Plastic Waste at the Thilafushi Waste Disposal Site, Maldives 3 1.2 A Recycler Transports Waste Using a Modified Motorcycle, Bangkok, Thailand 4 3.1 Landfill in China 43 3.2 A Waste and Street Cleaning Worker in Hoi An, Vietnam 43 3.3 Recycling Plant in Bosnia and Herzegovina 51 3.4 Plastic Bottle Collection in Jamaica 57 3.5 One Form of Waste Collection in West Bank 62 3.6 Dumpsite in Sri Lanka 74 3.7 Waste Collectors in Uganda 81 4.1 Plastic Bag Ban in Kenya 90 6.1 Solar-Powered Waste Compaction Bins in the Czech Republic 123 6.2 Informal Recyclers in the Middle East and North Africa Region 129 7.1 Japanese Bins 150 7.2 Japanese Recycling Facility 150 7.3 Eco-Lef Workers Collecting and Weighing Packaging Waste at the Montplaisir Collection Center in Tunis, Tunisia 154 7.4 An Automated Bottle Deposit Machine 157 7.5 Compacting Beverage Containers inside the Plant in Palau 159 7.6 Recovery Efforts after Meethotamulla Dumpsite Collapse from Heavy Rains in Colombo, Sri Lanka 166 x What a Waste 2.0 7.7 Organic Waste Bin in Mexico City, Mexico 168 7.8a and b Sorting Center at Residential Colony in Panaji, India 171 7.8c Decentralized Composting Units in Panaji, India 171 7.9 Spilled Garbage on the Beach 174 Tables 2.1 Ranges of Average National Waste Generation by Region 22 2.2 Industrial and Electronic Waste Generation Rates 36 3.1 Countries with High Recycling and Composting Rates in Europe and Central Asia 52 3.2 Examples of Transfer Station Availability and Transportation Distance in the Middle East and North Africa 64 4.1 Existence of National Waste Management Regulation 89 4.2 Existence of Urban Waste Management Regulation 91 4.3 Existence and Implementation of Urban Master Plan 92 4.4 Oversight of Solid Waste Management in Cities 94 4.5 Examples of Waste Management Operations and Administrative Models 95 5.1 Solid Waste Management as a Percentage of Municipal Budget 102 5.2 Typical Waste Management Costs by Disposal Type 104 5.3 Capital and Operational Expenditures of Incineration and Anaerobic Digestion Systems 105 5.4 Waste Management User Fees by Region 106 5.5 Waste Management User Fees by Income Level 107 7.4.1 Cooperation of National and Local Governments in Japan on Municipal Solid Waste Management 148 7.8.1 Number of European Union Member States Implementing Extended Producer Responsibility Schemes in 2013 155 7.12.1 Typical Phases of Disaster Waste Management 165 Foreword A s you will see in this report, the world is on a trajectory where waste generation will drastically outpace population growth by more than double by 2050. Although we are seeing improvements and innovations in solid waste management globally, it is a complex issue and one that we need to take urgent action on. Solid waste management affects everyone; however, those most affected by the negative impacts of poorly managed waste are largely society’s most vulnerable—losing their lives and homes from landslides of waste dumps, working in unsafe waste-picking conditions, and suffering profound health repercussions. Too often, the environment also pays a high price. In 2016, the world generated 242 million tonnes of plastic waste—12 percent of all municipal solid waste. Plastic waste is choking our oceans, yet our consumption of plastics is only increasing. Cities and countries are rapidly developing without adequate systems in place to manage the changing waste composition of citizens. Meanwhile, an estimated 1.6 billion tonnes of carbon dioxide– equivalent (CO2-equivalent) greenhouse gas emissions were generated from solid waste management in 2016. This is about 5 percent of global emissions. Without improvements in the sector, solid waste–related emissions are anticipated to  increase to 2.6 billion tonnes of CO2- equivalent by 2050. More than 80 countries committed to reduce emissions through the historic Paris  Agreement—improving waste management is one way of contributing to this effort. Solid waste management is a critical—yet often overlooked—piece for planning sustainable, healthy, and inclusive cities and communities for all. However, waste management can be the single highest budget item for xi xii What a Waste 2.0 many local administrations. Municipalities in low-income countries are spending about 20 percent of their budgets on waste management, on average—yet over 90 percent of waste in low-income countries is still openly dumped or burned. As these cities and countries grow rapidly, they desperately need systems to manage their growing waste and mechanisms to pay for the essential services that keep their citizens healthy and their communities clean. We need cities and countries to plan holistically and manage our precious resources better than we have in the past. This report shows what governments around the world have done to manage their solid waste and highlights the latest trends across income levels and geographies. Building on What a Waste: A Global Review of Solid Waste Management from 2012, this report highlights the overwhelming cost of waste management and the need for solutions. Using the rich findings and data from this report, I urge stakeholders to think ahead and to integrate waste management into their paradigm of economic growth and innovation. It is the responsibility of every citizen, government, business, city, and country to create the healthy, inclusive, and livable shared world that we strive for. Ede Ijjasz-Vasquez Senior Director Social, Urban, Rural and Resilience Global Practice The World Bank Acknowledgments W hat a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 was authored by a core team composed of Silpa Kaza, Lisa Yao, Perinaz Bhada-Tata, and Frank Van Woerden. The study was led by Silpa Kaza (Task Team Leader), Frank Van Woerden (Co–Task Team Leader), and Daniel Levine (Co–Task Team Leader). This effort was generously funded by the government of Japan through the World Bank’s Tokyo Development Learning Center (TDLC). Daniel Levine and Haruka Imoto represented the TDLC and provided strategic guidance and administrative support from the project’s design to finalization. The study was prepared by the World Bank’s Social, Urban, Rural and Resilience Global Practice in collaboration with the Environment Global Practice. The team thanks the following individuals for their valuable guidance: Paul Kriss for advising the team from the beginning, Philip Karp for advising the team on the study and dissemination strategy, Stephane Hallegatte for his guidance on the projections methodology, Mersedeh TariVerdi for her robust modeling of waste generation projections, and Catalina Marulanda for advising the team on technical content. Each section of the report was written by the following individuals: • Chapter 1 (Introduction) was written by Silpa Kaza and Frank Van Woerden • Chapter 2 (At a Glance: A Global Picture of Solid Waste Management) was written by Silpa Kaza and Lisa Yao • Chapter 3 (Regional Snapshots) was written by Silpa Kaza and Lisa Yao with inputs from regional focal points • Chapter 4 (Waste Administration and Operations) was written by Lisa Yao with contributions from Frank Van Woerden • Chapter 5 (Financing and Cost Recovery for Waste Management Systems) was written by Lisa Yao with contributions from Frank Van Woerden xiii xiv What a Waste 2.0 • Chapter 6 (Waste and Society) was written by Silpa Kaza, Lisa Yao, and Perinaz Bhada-Tata with contributions from Frank Van Woerden • Chapter 7 (Case Studies) was edited by Lisa Yao and Silpa Kaza and written by Perinaz Bhada-Tata, Thierry Martin, Kevin Serrona, Ritu Thakur, Flaviu Pop, Shiko Hayashi, Gustavo Solorzano, Nadya Selene Alencastro Larios, Renan Alberto Poveda, and Anis Ismail The data collection efforts and case studies were led by World Bank solid waste experts serving as regional focal points along with support from con- sultants collecting and documenting information on solid waste manage- ment data and practices globally. Each regional team was structured as follows: • Latin America and the Caribbean: John Morton and Renan Alberto Poveda served as the regional focal points, with data collection and case study support from Nadya Selene Alencastro Larios, Cauam Cardoso, Bernardo Deregibus, and Gustavo Solorzano. • Sub-Saharan Africa: Gyongshim An and Farouk Mollah Banna served as the regional focal points, with data collection and case study sup- port from Dede Raissa Adomayakpor, Thierry Martin, and Emily Sullivan. • East Asia and Pacific: Frank Van Woerden served as the regional focal point, with data collection and case study support from Kevin Serrona. • South Asia: A.S. Harinath served as the regional focal point, with data collection and case study support from Ritu Thakur. • Middle East and North Africa: Fuad Malkawi and Maria Sarraf served as the regional focal points, with data collection and case study sup- port from Anis Ismail, Omar Ouda, and Ali Abedini. • Europe and Central Asia: Kremena Ionkova served as the regional focal point, with data collection and case study support from Flaviu Pop. • Japan: Haruka Imoto served as the focal point, with data collection and case study support from Shiko Hayashi. • High-income countries: Perinaz Bhada-Tata served as the focal point for remaining high-income countries and provided data col- lection and case study support. Madhumitha Raj assisted in  the collection of data. Perinaz Bhada-Tata oversaw the data management and validation process, and all data and sources were validated by Perinaz Bhada-Tata, Madhumitha Raj, and Henry Shull. James Michelsen was paramount to finalizing the selection of data metrics. Rubaina Anjum provided content on food loss and waste for the report. Mersedeh TariVerdi supported the modeling of the projections and developed the regression model under the guidance of Stephane Hallegatte. The methodology for projections benefited greatly from the technical exper- tise of Paolo Avner and analytical support from Lisa Yao. Acknowledgments xv Tony Fujs and Meera Desai from the World Bank’s Development Economics Group created the database for all waste management data col- lected and designed the interactive website to host the data. The study was prepared under the guidance of Ede Ijjasz-Vasquez, senior director of the Social, Urban, Rural and Resilience Global Practice; Sameh  Wahba, director of Urban and Territorial Development, Disaster Risk Management, and Resilience; Maitreyi Das, practice manager; and Senait Assefa, practice manager. Peer reviewers from numerous organizations provided critical expert comments. The team thanks Stephen Hammer, practice manager of Climate Analytics and Advisory Services; Catalina Marulanda, practice manager of the South Asia Urban Unit; Daniel Hoornweg, author of What a Waste: A Global Review of Solid Waste Management and professor and research chair at the University of Ontario Institute of Technology; Fabien Mainguy, senior project manager at Suez Environnement; James Law, International Solid Waste Association Board member and project director at SCS Engineers; and Makoto Mihara, director of the Environment Bureau in Osaka. The TDLC program is a partnership of Japan and the Tokyo World Bank. TDLC supports and facilitates strategic World Development Bank Group and client country collaboration with select Learning Japanese cities, agencies, and partners for joint research, Center knowledge exchange, capacity building, and other activi- ties that develop opportunities to link Japanese and global expertise with specific project-level engagements in developing countries to maximize development impact. Abbreviations ANGed National Agency for Waste Management AVAC automated vacuum collection BAMX Mexican Food Banking Network BOO build-operate-own BOT build-operate-transfer C&D construction and demolition CDM Clean Development Mechanism CFB circulating fluidized bed CO2 carbon dioxide DBFO design-build-finance-operate DBO design-build-operate DBOT design-build-operate-transfer EAP East Asia and Pacific ECA Europe and Central Asia EPR extended producer responsibility EU European Union FLW food loss and waste GCC Gulf Cooperation Council GDP gross domestic product GHG greenhouse gas GWP global warming potential HIC high-income country IFC International Finance Corporation INR Indian rupees JWMA Japan Waste Management Association kg kilogram LAC Latin America and the Caribbean LDPE low-density polyethylene xvii xviii What a Waste 2.0 LIC low-income country LMIC lower-middle-income country MENA Middle East and North Africa MPIIC Ministry of Public Infrastructures, Industries and Commerce MSW municipal solid waste MWh megawatt hour of energy NA North America OECD Organisation for Economic Co-operation and Development PET polyethylene terephthalate PMC Pune Municipal Corporation PPP public-private partnership PRO producer responsibility organization RBF results-based financing RFID radio-frequency identification chips SAR South Asia SAR special administrative region SAyDS Secretariat of Environment and Sustainable Development SSA Sub-Saharan Africa SWaCH Solid Waste Collection and Handling or, officially, SWaCH Seva Sahakari Sanstha Maryadit, Pune UN United Nations UNFCCC United Nations Framework Convention on Climate Change CHAPTER 1 Introduction S olid waste management is a universal issue affecting every single person in the world. Individuals and governments make decisions about con- sumption and waste management that affect the daily health, productivity, and cleanliness of communities. Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases via breeding of vectors, increasing respiratory problems through airborne particles from burning of waste, harming animals that consume waste unknowingly, and affecting economic development such as through dimin- ished tourism. Unmanaged and improperly managed waste from decades of economic growth requires urgent action at all levels of society. As countries develop from low-income to middle- and high-income levels, their waste management situations also evolve. Growth in prosperity and movement to urban areas are linked to increases in per capita genera- tion of waste. Furthermore, rapid urbanization and population growth cre- ate larger population centers, making the collection of all waste and the procuring of land for treatment and disposal more and more difficult. Urban waste management is expensive. Waste management can be the single highest budget item for many local administrations in low-income countries, where it comprises nearly 20 percent of municipal budgets, on average. In middle-income countries, solid waste management typically accounts for more than 10 percent of municipal budgets, and it accounts for about 4 percent in high-income countries. Budget resources devoted to waste management can be much higher in certain cases. Costly and complex waste operations must compete for funding with other priorities such as clean water and other utilities, education, and health care. Waste management is often administered by local authorities with limited resources and limited capacity for planning, contract 1 2 What a Waste 2.0 management, and operational monitoring. These factors make sustainable waste management a complicated proposition on the path of economic development, and most low- and middle-income countries and their cities struggle to address the challenges. The impacts of poor waste management are dire and fall disproportionally on the poor, who are often unserved or have little influence on the waste being disposed of formally or informally near their homes. Waste management data are critical to creating policy and planning for the local context. Understanding how much waste is generated—especially with rapid urbanization and population growth—as well as the types of waste being generated, allows local governments to select appropriate man- agement methods and plan for future demand. This knowledge allows gov- ernments to design systems with a suitable number of vehicles, establish efficient routes, set targets for diversion of waste, track progress, and adapt as waste generation patterns change. With accurate data, governments can realistically allocate budget and land, assess relevant technologies, and con- sider strategic partners, such as the private sector or nongovernmental orga- nizations, for service provision. This report builds on previous World Bank publications from 2012 and 1999 titled What a Waste: A Global Review of Solid Waste Management (Hoornweg and Bhada-Tata 2012) and What a Waste: Solid Waste Management in Asia (Hoornweg and Thomas 1999). This current edition of What a Waste expands on the type of data collected and includes 217  countries and economies and 367 cities. The data are updated to recent years, and the waste generation data are scaled to a single year to allow for comparison across countries and economies. The projections for waste generation use the most comprehensive database available to date to determine how waste generation dynamically changes based on changes in economic development and population growth. The metrics included in this report expand from solid waste management generation, composition, collection, treatment, and disposal to include information on financing and costs, institutional arrangements and policies, adminis- trative and operational models, citizen engagement, special wastes, and the informal sector. Although the data from the past and current publications are not fully comparable because of methodological differences, there are some clear trends to report since 2012. The change in the composition of waste in low- income countries reflects changes in consumption patterns—the share of organic waste fell from 64 percent to 56 percent. The collection of waste in low-income countries significantly increased from about 22 percent to 39 percent, reflecting the prioritization of adequate waste collection in cities and countries. This progress is complemented by an overall global trend of increased recycling and composting. Finally, waste-to-energy incineration in upper-middle-income countries markedly increased from 0.1 percent to 10 percent, driven by China’s shift to incineration. Introduction 3 What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 targets decision makers, policy makers, and influencers globally, includ- ing local governments, international organizations, academics, researchers, nongovernmental organizations, civil society, and financiers. The aim of this report is to share objective waste management data and trends, as well as good and unique international practices, with the hope of improving waste management globally and enabling the optimal use of limited resources. The world generates 2.01 billion tonnes of municipal solid waste1 annu- ally, with at least 33 percent of that—extremely conservatively—not man- aged in an environmentally safe manner. Worldwide, waste generated per person per day averages 0.74 kilogram but ranges widely, from 0.11 to 4.54 kilograms. Though they only account for 16 percent of the world’s population, high-income countries generate about 34 percent, or 683 million tonnes, of the world’s waste. When looking forward, global waste is expected to grow to 3.40 billion tonnes by 2050. There is generally a positive correlation between waste generation and income level. Daily per capita waste generation in high- income countries is projected to increase by 19 percent by 2050, compared to low- and middle-income countries where it is anticipated to increase by approximately 40 percent or more. Waste generation was generally found to increase at a faster rate for incremental income changes at lower income levels than at high income levels. The total quantity of waste generated in low-income countries is expected to increase by more than three times by 2050. The East Asia and Pacific region is generating most of the world’s Photo 1.1 Plastic Waste at the Thilafushi Waste Disposal Site, Maldives 4 What a Waste 2.0 Photo 1.2 A Recycler Transports Waste Using a Modified Motorcycle, Bangkok, Thailand waste, at 23 percent, and the Middle East and North Africa region is pro- ducing the least in absolute terms, at 6 percent. However, the fastest grow- ing regions are Sub-Saharan Africa, South Asia, and the Middle East and North Africa where, by 2050, total waste generation is expected to nearly triple, double, and double, respectively. In these regions, more than half of waste is currently openly dumped, and the trajectories of waste growth will have  vast implications for the environment, health, and prosperity, thus requiring urgent action. Waste collection is a critical step in managing waste, yet rates vary largely by income levels, with upper-middle- and high-income countries providing nearly universal waste collection. Low-income countries collect about 48 percent of waste in cities, but this proportion drops drastically to 26 percent outside of urban areas. Across regions, Sub-Saharan Africa col- lects about 44 percent of waste while Europe and Central Asia and North America collect at least 90 percent of waste. Waste composition differs across income levels, reflecting varied patterns of consumption. High-income countries generate relatively less food and green waste, at 32 percent of total waste, and generate more dry waste that could be recycled, including plastic, paper, cardboard, metal, and glass, which account for 51 percent of waste. Middle- and low-income countries generate 53 percent and 56 percent food and green waste, respectively, with the frac- tion of organic waste increasing as economic development levels decrease. In low-income countries, materials that could be recycled account for only 16  percent of the waste stream. Across regions, there is not much variety Introduction 5 within waste streams beyond those aligned with income. All regions generate about 50 percent or more organic waste, on average, except for Europe and Central Asia and North America, which generate higher portions of dry waste. It is a frequent misconception that technology is the solution to the prob- lem of unmanaged and increasing waste. Technology is not a panacea and is usually only one factor to consider when managing solid waste. Countries that advance from open dumping and other rudimentary waste manage- ment methods are more likely to succeed when they select locally appropri- ate solutions. Globally, most waste is currently dumped or disposed of in some form of a landfill. Some 37 percent of waste is disposed of in some form of a landfill, 8 percent of which is disposed of in sanitary landfills with landfill gas collection systems. Open dumping accounts for about 33 percent of waste, 19 percent is recovered through recycling and composting, and 11 percent is incinerated for final disposal. Adequate waste disposal or treat- ment, such as controlled landfills or more stringently operated facilities, is almost exclusively the domain of high- and upper-middle-income countries. Lower-income countries generally rely on open dumping; 93 percent of waste is dumped in low-income countries and only 2 percent in high-income countries. Upper-middle-income countries have the highest percentage of waste in landfills, at 54 percent. This rate decreases in high-income countries to 39 percent, with diversion of 35 percent of waste to recycling and com- posting and 22  percent to incineration. Incineration is used primarily in high-capacity, high-income, and land-constrained countries. Based on the volume of waste generated, its composition, and how it is managed, it is estimated that 1.6 billion tonnes of carbon dioxide (CO2) equivalent greenhouse gas emissions were generated from solid waste treat- ment and disposal in 2016, driven primarily by open dumping and disposal in landfills without landfill gas capture systems. This is about 5 percent of global emissions.2 Solid waste–related emissions are anticipated to increase to 2.6  billion tonnes of CO2-equivalent per year by 2050 if no improvements are made in the sector. In most countries, solid waste management operations are typically a local responsibility, and nearly 70 percent of countries have established institutions with responsibility for policy development and regulatory oversight in the waste sector. About two-thirds of countries have created targeted legislation and regulations for solid waste management, though enforcement varies drastically. Direct central government involvement in waste service provision, other than regulatory oversight or fiscal transfers, is uncommon, with about 70 percent of waste services being overseen directly by local public entities. At least half of services, from primary waste collection through treatment and disposal, are operated by public entities and about one-third involve a public- private partnership. However, successful partnerships with the private sector for financing and operations tend to succeed only under certain conditions with appropriate incentive structures and enforcement mechanisms, and therefore they are not always the ideal solution. 6 What a Waste 2.0 Financing solid waste management systems is a significant challenge, even more so for ongoing operational costs than for capital investments, and operational costs need to be taken into account upfront. In high-income countries, operating costs for integrated waste management, including col- lection, transport, treatment, and disposal, generally exceed $100 per tonne. Lower-income countries spend less on waste operations in absolute terms, with costs of about $35 per tonne and sometimes higher, but these countries experience much more difficulty in recovering costs. Waste man- agement is labor intensive and costs of transportation alone are in the range of $20–$50 per tonne. Cost recovery for waste services differs drastically across income levels. User fees range from an average of $35 per year in low-income countries to $170 per year in high-income countries, with full or nearly full cost recovery being largely limited to high-income countries. User fee models may be fixed or variable based on the type of user being billed. Typically, local governments cover about 50 percent of investment costs for waste systems, and the remainder comes mainly from national government subsidies and the private sector. The solid waste data presented in this report tell the story of global, regional, and urban trends. The book presents analyses and case studies in the following chapters: • Chapter 2: At a Glance: A Global Picture of Solid Waste Management. Chapter 2 provides an overview of global solid waste management trends related to waste generation, composition, collection, and disposal. • Chapter 3: Regional Snapshots. Chapter 3 provides analyses of waste generation, composition, collection, and disposal across seven regions—East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, the Middle East and North Africa, South Asia, Sub-Saharan Africa, and North America. • Chapter 4: Waste Administration and Operations. Chapter 4 provides planning, administrative, operational, and contractual models for solid waste management. • Chapter 5: Financing and Cost Recovery for Waste Management Systems. Chapter 5 highlights typical financing methods and cost recovery options that are being implemented globally. • Chapter 6: Waste and Society. Chapter 6 provides insights into how climate change, technology trends, citizens, and the informal sector all interact with and affect the solid waste management sector. • Chapter 7: Case Studies. Chapter 7 details good and unique practices of waste management around the world, from cost recovery to coordi- nation between different levels of government. Please refer to maps 1.1 and 1.2 for the definitions of regions and income levels used in this report. Map 1.1 Definition of Income Levels The world by income Low ($1,025 or less) Lower middle ($1,026–$4,035) Upper middle ($4,036–$12,475) Classified according to World Bank estimates of High ($12,476 or more) 2015 GNI per capita No data Greenland (Den.) Faroe Russian Federation Iceland Islands (Den.) Finland Norway Sweden Canada Netherlands Estonia Isle of Man (U.K.) Latvia Russian Denmark Fed. Lithuania Ireland U.K. Germany Poland Belarus Belgium Channel Islands (U.K.) Ukraine Kazakhstan Mongolia Luxembourg France Moldova Switzerland Romania Dem. People’s Uzbekistan Liechtenstein Kyrgyz Rep. of Korea United States Bulgaria Georgia Azer- Spain Monaco Armenia baijan Turkmenistan Rep. Rep. of Japan Portugal Greece Turkey Tajikistan Korea Andorra Gibraltar (U.K.) Malta Syrian China Tunisia Cyprus Arab Afghanistan Bermuda Lebanon Iraq Islamic Rep. Israel Rep. (U.K.) Morocco West Bank and Gaza Jordan of Iran Bhutan Kuwait Nepal Algeria Pakistan Libya Arab Rep. Bahrain The Bahamas Cayman Is. (U.K.) Western of Egypt Saudi Qatar Bangladesh Sahara Arabia United Arab India Myanmar Hong Kong, SAR Cuba Turks and Caicos Is. (U.K.) Emirates Mexico Lao Macao, SAR Haiti Cabo Mauritania Oman P.D.R. N. Mariana Islands (U.S.) Belize Jamaica Verde Mali Niger Thailand Vietnam Guatemala Honduras Senegal Chad Sudan Eritrea Rep. of Guam (U.S.) El Salvador The Gambia Burkina Yemen Cambodia Marshall Djibouti Philippines Nicaragua Guinea- Guinea Faso Federated States Islands Benin Costa Rica Guyana Bissau Sri Brunei of Micronesia R.B. de Suriname Sierra Leone Côte Ghana Nigeria Central South Ethiopia Lanka Darussalam Panama Venezuela d’Ivoire African Sudan Palau French Guiana (Fr.) Liberia Cameroon Republic Somalia Malaysia Colombia Togo Maldives Equatorial Guinea Uganda Kiribati São Tomé and Príncipe Rep. of Kenya Singapore Ecuador Gabon Congo Rwanda Nauru Kiribati Dem. Rep. Burundi of Congo Tanzania Comoros Indonesia Papua Solomon Seychelles New Guinea Islands Tuvalu Peru Brazil Timor-Leste Angola Malawi Samoa Zambia Mayotte Mauritius (Fr.) Caribbean Inset Bolivia Mozambique Europe Inset Fiji American U.S. Virgin British Virgin Namibia Zimbabwe Madagascar Vanuatu Samoa (U.S.) Anguilla (U.K.) Islands (U.S.) Islands (U.K.) Poland Fiji French Dominican Paraguay Botswana La Réunion Germany Saint-Martin (Fr.) Polynesia (Fr.) (Fr.) Ukraine Tonga Puerto Rico Republic (U.S.) Sint Maarten (Neth.) Czech New Saint-Barthélemy (Fr.) Republic Saba (Neth.) Antigua and Barbuda Eswatini Slovak Australia Caledonia Sint Eustatius (Neth.) Republic (Fr.) Saint Kitts and Nevis Montserrat (U.K.) South Lesotho Dominica Guadeloupe (Fr.) Africa Austria Hungary Martinique (Fr.) Aruba (Neth.) Saint Lucia Chile Argentina Uruguay Slovenia Romania Curaçao (Neth.) Saint Vincent & Barbados Croatia Bonaire the Grenadines (Neth.) San Bosnia and Grenada Marino Serbia Herzegovina Trinidad and New Bulgaria Italy R.B. de Venezuela Tobago Zealand Montenegro FYR Introduction Kosovo Macedonia Albania Greece IBRD 42794 | MARCH 2017 Note: GNI = gross national income. 7 8 What a Waste 2.0 Map 1.2 Definition of Regions Classified according to East Asia and Pacific Middle East and North Africa World Bank analytical Europe and Central Asia North America Sub-Saharan Africa grouping Latin America and the Caribbean South Asia No data Greenland (Den.) Faroe Russian Federation Iceland Islands (Den.) Finland Norway Sweden Canada Netherlands Estonia Isle of Man (U.K.) Latvia Russian Denmark Fed. Lithuania U.K. Belarus Ireland Germany Poland Belgium Channel Islands (U.K.) Ukraine Kazakhstan Mongolia Luxembourg Moldova Switzerland Romania Dem. People’s Uzbekistan Liechtenstein Kyrgyz Rep. of Korea United States Bulgaria Georgia Azer- Spain Monaco Armenia baijan Rep. Japan Portugal Greece Turkey Turkmenistan Tajikistan Rep. of Andorra Korea Gibraltar (U.K.) Malta Syrian China Cyprus Arab Afghanistan Bermuda Tunisia Lebanon Iraq Islamic Rep. Israel Rep. (U.K.) Morocco West Bank and Gaza Jordan of Iran Bhutan Kuwait Nepal Algeria Pakistan Libya Arab Rep. Bahrain The Bahamas Cayman Is. (U.K.) Western of Egypt Saudi Qatar Bangladesh Sahara Arabia United Arab India Hong Kong, SAR Cuba Turks and Caicos Is. (U.K.) Emirates Myanmar Mexico Lao Macao, SAR Haiti Cabo Mauritania Oman P.D.R. N. Mariana Islands (U.S.) Belize Jamaica Verde Mali Niger Thailand Vietnam Guatemala Honduras Senegal Chad Sudan Eritrea Rep. of Guam (U.S.) El Salvador The Gambia Burkina Yemen Cambodia Djibouti Philippines Marshall Nicaragua Guinea- Guinea Faso Federated States Islands Benin Costa Rica Guyana Bissau Sri Brunei of Micronesia R.B. de Suriname Côte Ghana Nigeria Central South Ethiopia Lanka Darussalam Panama Venezuela Sierra Leone d’Ivoire African Sudan Palau French Guiana (Fr.) Liberia Cameroon Republic Somalia Colombia Togo Maldives Malaysia Equatorial Guinea Uganda Kiribati São Tomé and Príncipe Rep. of Kenya Singapore Ecuador Gabon Congo Rwanda Nauru Kiribati Dem. Rep.Burundi of Congo Tanzania Indonesia Papua Solomon Comoros Seychelles New Guinea Islands Tuvalu Peru Brazil Timor-Leste Angola Malawi Samoa Zambia Mayotte Mauritius (Fr.) Caribbean Inset Bolivia Mozambique Europe Inset Fiji American U.S. Virgin British Virgin Namibia Zimbabwe Madagascar Vanuatu Samoa (U.S.) Anguilla (U.K.) Islands (U.S.) Islands (U.K.) Poland Botswana Germany Fiji French Dominican Saint-Martin (Fr.) Paraguay La Réunion Ukraine Tonga Polynesia (Fr.) (Fr.) Republic Puerto Rico (U.S.) Sint Maarten (Neth.) Czech New Saint-Barthélemy (Fr.) Republic Saba (Neth.) Antigua and Barbuda Eswatini Slovak Australia Caledonia Sint Eustatius (Neth.) Republic (Fr.) Saint Kitts and Nevis Montserrat (U.K.) South Lesotho Dominica Guadeloupe (Fr.) Africa Austria Hungary Martinique (Fr.) Aruba (Neth.) Saint Lucia Chile Argentina Uruguay Slovenia Romania Curaçao (Neth.) Bonaire Saint Vincent & Barbados Croatia (Neth.) the Grenadines San Bosnia and Grenada Marino Serbia Herzegovina Bulgaria Trinidad and Italy New R.B. de Venezuela Tobago Zealand Montenegro FYR Kosovo Macedonia Albania Greece IBRD 42795 | MARCH 2017 Introduction 9 A Note on Data The What a Waste report compiles solid waste management data from various sources and publications and examines the data to provide mean- ingful trends and analyses for policy makers and researchers. For the purposes of this report, the definition of solid waste encompasses residen- tial, commercial, and institutional waste. Industrial, medical, hazardous, electronic, and construction and demolition waste are reported separately from total national waste generation to the extent possible. Every effort has been undertaken to verify sources and find the most recent informa- tion available. In general, solid waste data should be considered with a degree of cau- tion because of inconsistencies in definitions, data collection methodolo- gies, and availability. The reliability of solid waste data is influenced by several factors, including undefined words or phrases; incomplete or incon- sistent definitions; lack of dates, methodologies, or original sources; incon- sistent or omitted units; and estimates based on assumptions. Where possible, actual values are presented rather than estimations or projections, even if that requires using older data. In addition, when a source only pro- vides a range for a data point, the average of the range is used for this study and is noted as such. Given the variety of methodologies used by sources, these data are not meant to be used for ordinal ranking of countries or cities but rather to provide trends. The data reported are predominantly from 2011–17 although overall data span about two decades. Within a single country or city, data avail- ability may cut across several years. Similarly, the year of origin for a specific indicator may vary across countries or cities. The year cited in the tables refers to the year of the data points. However, when a specific year is not available in the original source, the year of the publication is provided instead. Furthermore, when a year range is reported in the original source, the final year of the range is provided in this report’s data set. At a national level, this What a Waste study focuses on total waste gen- eration rather than aggregated urban or rural waste generation because of data availability. By providing total waste generation, this study enables comparison across countries, income levels, and regions. To enable cross- comparability of data, all national waste generation statistics are adjusted to a common year using the methodology discussed in box 2.1., with origi- nal figures provided in appendix A. However, because urban data are essen- tial for decision making and benchmarking, this study also reports data and trends from 367 cities. To further maximize cross-comparability of data, statistics for waste composition, collection rates, and disposal methods are consistently reported as percentages in this report. Therefore, data reported by weight or population in the original sources have been converted to percentages wherever possible, and modifications are noted in the comments. 10 What a Waste 2.0 An overview of the methods used for several core indicators is as follows: Solid Waste Generation • Data on waste generation at the country level are available for 215 countries and economies. • Sources reported solid waste data in multiple ways, including total waste generation for the country, daily waste generation rates for the country, and per capita waste generation rates for the whole country or urban areas only. • In rare cases in which national waste generation data were not available, total waste generation was estimated. Rural solid waste generation rates were estimated to be half that of an aggregate urban rate or that of one or more representative cities. The estimate of one-half as a rural-urban waste generation ratio is supported by several studies and is a conservative esti- mate that falls below trends observed in available data across regions (Karak, Bhagat, and Bhattacharyya 2012; GIZ and SWEEP-Net, various years). Total waste generation for the whole country was calculated by multiplying waste generation rates by urban and rural populations, using World Bank population data. This methodology mainly applied to 31 countries in the Sub-Saharan Africa region and 8 countries in other regions. The methodology followed for the Sub-Saharan Africa region is explained in box 1.1. Appendix A indicates whether a national waste generation figure was directly reported or was estimated. Box 1.1 Data for the Sub-Saharan Africa Region The Sub-Saharan Africa region generates a significant amount of solid waste, and this amount is expected to increase at a higher rate than for any other region given the high rate of urbanization and population growth in the coming decades (Hoornweg and Freire 2013). Although data availability is increasing significantly, statistics on waste generation, collection, treatment, and disposal in the region are currently relatively limited. The data that are available can follow varied definitions, meth- odologies, and collection methods, and span 23 years from 1993 to 2016. Given the significance of Sub-Saharan Africa for solid waste generation in the future and the rec- ognition of solid waste management as a priority by many national governments, this report provides estimates for waste generation for many African countries for which country-level data are not available. To develop data-driven estimates, city-level data were used to extrapolate waste generation to the country level. Out of 48 countries in the Sub-Saharan Africa region, data were available at the country level for 13, or slightly more than a quarter of the total. For 31 countries (about 65 percent), one or more city waste generation rates, typically including the capital city, were used to estimate waste generation for the whole country. The city waste generation rate was used as a proxy rate for the urban population in the country. Half of the urban waste generation rate was used as an estimate for rural waste generation. For the remaining four countries for which no city-level data were available, an average waste generation rate for Africa was used as a proxy for the total amount generated for the country using national population. Introduction 11 • In this report, all figures shown use national waste generation statis- tics  that are adjusted to a common base year of 2016, for cross- comparability. This analysis was conducted using the World Bank’s World Development Indicators’ gross domestic product (GDP) per capita, PPP data (constant 2011 international $) in conjunction with United Nations population statistics (UN 2017). National waste gen- eration rates for 2016 are estimated using a projection model that is further detailed in box 2.1. All original numbers are provided in appendix A. • Solid waste generation can be estimated or measured at various places, including at the generation source, point of collection, or disposal site, which may affect the amount of waste reported by sources. This report cites the most reliable measurements available. Solid Waste Composition • Waste composition refers to the components of the waste stream as a percentage of the total mass generated. • In a few cases, composition values do not add up to 100 percent or sum to more than 100 percent when data are cited from multiple sources. Data values provided are as reported in the original source. • In summary statistics, food, yard, and green waste are combined into one category as food and green waste. Waste Collection Coverage • Waste collection coverage data are reported according to multiple definitions: amount of waste collected, number of households served, population served, or geographic area covered. This report analyzes the type of collection coverage reported for countries and cities. If  multiple values were reported, the maximum collection rate was used to represent the national or urban collection rate in summary statistics. • Waste collection coverage is reported at the country level as well as for urban and rural areas, where data are available. Waste Treatment and Disposal • Waste treatment and disposal includes recycling, composting, anaero- bic digestion, incineration, landfilling, open dumping, and dumping in marine areas or waterways. Given the variability of types of land- fills used, data were collected for three types of landfills: sanitary landfills with landfill gas collection systems, controlled landfills that are engineered but for which landfill gas collection systems do not exist or are unknown, and uncategorized landfills. In summary statis- tics, all landfills are reported together but detailed data are provided in appendix B. 12 What a Waste 2.0 • In cases where disposal and treatment percentages do not add up to 100 percent or where a portion of waste is uncollected, the remaining amount is categorized as waste “unaccounted for.” The analyses, figures, and tables in this report assume that waste not accounted for by formal disposal methods, such as landfills or recycling, is dumped. Waste that is disposed of in waterways and that is managed in low- and middle-income countries in “other” manners is also assumed to be dumped. Breakdowns are available in appendix B. Municipal Waste Management Financials • Financial data are collected over a range of years, and accounting practices may vary by location. • Financial data were collected in local currencies when possible, con- verted to U.S. dollars based on the annual average exchange rate nor- malized by purchasing power parity, and adjusted to 2011 using the consumer price index to account for potential differences in inflation and to ensure cross-comparability. • Financial information for solid waste systems was the most scarce among all data categories. When the number of observations was lim- ited, data were aggregated at an income level rather than by regions, and only metrics with substantial geographic diversity were used for summary statistics. This edition of What a Waste features the results of the most extensive combined national and urban solid waste management data collection effort to date. The current data collection and verification effort was designed to revise and enhance a previous effort in 2012 by expanding national and urban data collection, increasing the scope of metrics included, and providing support to decision makers by sharing good practices and trends globally. Data for this report were collected through a joint effort by regional experts who consulted local specialists and public agencies, sources in diverse languages, and active waste management facilities. Data were gath- ered from documents published by local and national governments, inter- national organizations, multilateral and bilateral agencies, journals, books, websites, and news agencies. Data collection primarily took place during 2017. Additionally, regional World Bank solid waste experts provided insights beyond the data collected. These assertions are included in the regional snapshots to provide further context for each region but are not attributed to each expert. The report aggregates extensive solid waste statistics at the national, urban, and rural levels. The current edition estimates and projects waste generation to 2030 and 2050, taking both urban and rural areas into account. Beyond the core data metrics already detailed, the report pro- vides information on waste management costs, revenues, and tariffs; Introduction 13 special wastes; regulations; public communication; administrative and operational models; and the informal sector. In addition to national- level data for 217 countries and economies, a large amount of data were collected at the city level, for about one to two cities per country or economy. The most up-to-date data can be accessed through the What a Waste website at www.worldbank.org/what-a-waste. Notes 1. This publication defines municipal solid waste as residential, commer- cial, and institutional waste. Industrial, medical, hazardous, electronic, and construction and demolition waste are reported separately from total national waste generation to the extent possible. 2. Excluding waste-related transportation. References GIZ and SWEEP-Net. 2010. “Country Report on the Solid Waste Management in Syria.” Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ), Tunis. ———. 2014a. “Country Report on Solid Waste Management in Algeria.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. ———. 2014b. “Country Report on the Solid Waste Management in Egypt.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. ———. 2014c. “Country Report on the Solid Waste Management in Jordan.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise 14 What a Waste 2.0 Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. ———. 2014d. “Country Report on the Solid Waste Management in Lebanon.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. ———. 2014e. “Country Report on the Solid Waste Management in Morocco.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. ———. 2014f. “Country Report on the Solid Waste Management in Occupied Palestinian Territories.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP- Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. ———. 2014g. “Country Report on the Solid Waste Management in Tunisia.” German Corporation for International Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH [GIZ]), Bonn; and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung [BMZ]), Tunis. Hoornweg, Daniel, and Perinaz Bhada-Tata. 2012. What a Waste: A Global Review of Solid Waste Management. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/17388. Hoornweg, Daniel, and Mila Freire. 2013. Building Sustainability in an Urbanizing World: A Partnership Report. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/18665. Introduction 15 Hoornweg, Daniel, and Laura Thomas. 1999. What a Waste: Solid Waste Management in Asia. Washington, DC: World Bank. http://documents .worldbank.org/curated/en/694561468770664233/What-a-waste-solid -waste-management-in-Asia. Karak, Tanmoy, R. M. Bhagat, and Pradip Bhattacharyya. 2012. “Municipal Solid Waste Generation, Composition, and Management: The World Scenario.” Critical Reviews in Environmental Science and Technology 42 (15): 1509–630. United Nations. 2017. “UN World Population Prospects, Medium Variant Scenario, 2017 Revision. File Name: Total Population—Both Sexes.” Department of Economic and Social Affairs, Population Division, United Nations, New York. https://esa.un.org/unpd/wpp/Download/Standard /Population/. CHAPTER 2 At a Glance: A Global Picture of Solid Waste Management Key Insights • The world generates 0.74 kilogram of waste per capita per day, yet national waste generation rates fluctuate widely from 0.11 to 4.54 kilograms per capita per day. Waste generation volumes are generally correlated with income levels and urbanization rates. • An estimated 2.01 billion tonnes of municipal solid waste were generated in 2016, and this number is expected to grow to 3.40 billion tonnes by 2050 under a business-as-usual scenario. • The total quantity of waste generated in low-income countries is expected to increase by more than three times by 2050. Currently, the East Asia and Pacific region is generating most of the world’s waste, at 23 percent, and the Middle East and North Africa region is producing the least in absolute terms, at 6 percent. However, waste is growing the fastest in Sub-Saharan Africa, South Asia, and the Middle East North Africa regions, where, by 2050, total waste generated is expected to approximately triple, double, and double, respectively. • Food and green waste comprise more than 50 percent of waste in low- and middle-income countries. In high-income countries the amount of organic waste is comparable in absolute terms but, because of larger amounts of packaging waste and other nonorganic waste, the fraction of organics is about 32 percent. • Recyclables make up a substantial fraction of waste streams, ranging from 16 percent paper, cardboard, plastic, metal, and glass in low-income coun- tries to about 50 percent in high-income countries. As countries rise in income level, the quantity of recyclables in the waste stream increases, with paper increasing most significantly. 17 18 What a Waste 2.0 • More than one-third of waste in high-income countries is recovered through recycling and composting. • Waste collection rates vary widely by income levels. High- and upper-middle- income countries typically provide universal waste collection. Low-income countries tend to collect about 48 percent of waste in cities, but outside of  urban areas waste collection coverage is about 26 percent. In middle- income countries, rural waste collection coverage varies from 33 percent to 45 percent. • Globally, about 37 percent of waste is disposed of in some type of landfill, 33 percent is openly dumped, 19 percent undergoes materials recovery through recycling and composting, and 11 percent is treated through mod- ern incineration. • Adequate waste disposal or treatment using controlled landfills or more stringently operated facilities is almost exclusively the domain of high- and upper-middle-income countries. Lower-income countries generally rely on open dumping—93 percent of waste is dumped in low-income countries and only 2 percent in high-income countries. • Upper-middle-income countries practice the highest percentage of land- filling, at 54 percent. This rate decreases in high-income countries to 39 percent, where 35 percent of waste is diverted to recycling and com- posting and 22 percent to incineration. Waste Generation W aste generation is a natural product of urbanization, economic devel- opment, and population growth. As nations and cities become more populated and prosperous, offer more products and services to citizens, and participate in global trade and exchange, they face corresponding amounts of waste to manage through treatment and disposal (map 2.1). The 2012 edition of What a Waste: A Global Review of Solid Waste Management estimated global waste production to be 1.3 billion tonnes per year based on available data (Hoornweg and Bhada-Tata 2012). In recent years, waste production has grown at levels consistent with initial projec- tions, and data tracking and reporting have improved substantially. Based on the latest data available, global waste generation in 2016 was estimated to have reached 2.01 billion tonnes. Countries in the East Asia and Pacific and the Europe and Central Asia regions account for 43 percent of the world’s waste by magnitude (figure 2.1, panel a). The Middle East and North Africa and Sub-Saharan Africa regions produce the least amount of waste, together accounting for 15 percent of the world’s waste. East Asia and Pacific generates the most in absolute terms, an estimated 468 million tonnes in 2016, and the Middle East and North Africa region generates the least, at 129 million tonnes (figure 2.1, panel b). At a Glance: A Global Picture of Solid Waste Management 19 Map 2.1 Waste Generation Per Capita IBRD 43910 | SEPTEMBER 2018 0 to 0.49 0.50 to 0.99 1.00 to 1.49 Greater than 1.50 No data Note: kg = kilogram. Figure 2.1 Waste Generation by Region a. Share of waste generated, by region percent 6% 23% 9% 11% 20% 14% 17% Middle East and North Africa North America East Asia and Pacific Sub-Saharan Africa South Asia Latin America and the Caribbean Europe and Central Asia (Figure continues on next page) 20 What a Waste 2.0 Figure 2.1 Waste Generation by Region (continued) b. Amount of waste generated, by region 500 468 450 392 400 Millions of tonnes per year 350 334 289 300 250 231 200 174 150 129 100 50 0 a d a a a si si fic ric fr st an n ic er A Ea Af A lA ci a a ea ic h Pa c m t a th e i b tr an er ib A u or ddl So en d ar m ar rt h an i h C M A C o Sa d ia in e N an b- N at th As e d u L p an S st ro Ea Eu Note: Data adjusted to 2016. Although they only account for 16 percent of the world’s population, high-income countries generate 34 percent, or 683 million tonnes, of the world’s waste (figure 2.2). Low-income countries account for 9 percent of the world’s population but generate only about 5 percent of global waste, or 93 million tonnes. The three countries in the North America region—Bermuda, Canada, and the United States—produce the highest average amount of waste per capita, at 2.21 kilograms per day. All three countries are high-income nations. The three regions with a high proportion of low- and middle-income nations gen- erate the lowest amount of waste per capita: Sub-Saharan Africa averages 0.46 kilogram per day, South Asia 0.52 kilogram per day, and East Asia and Pacific 0.56 kilogram per day. Overall, the estimated global average for 2016 is 0.74 kilogram of waste per capita per day and total generation of solid waste is about 2.01 billion tonnes. Average waste generation across countries varies substantially, from 0.11 kilogram per capita per day to 4.54 kilograms per capita per day (table 2.1). Waste generation has an overall positive relationship with economic development (figure 2.3). For incremental income changes, waste genera- tion is generally shown to increase at a faster rate at lower income levels At a Glance: A Global Picture of Solid Waste Management 21 Figure 2.2 Waste Generation by Income Level a. Share of waste generated, by income level percent 5% 34% 29% 32% Low-income Upper-middle income Lower-middle income High-income b. Amount of waste generated, by income level 800 683 655 Millions of tonnes per year 700 586 600 500 400 300 200 93 100 0 Low-income Lower-middle Upper-middle High-income income income Note: Data adjusted to 2016. than at higher income levels. However, at the lowest income levels, waste generation per capita declines initially with income growth. The slower growth of waste generation at higher income levels could be due to reduced marginal demand for consumption, and therefore reduced waste. Waste generation also increases with urbanization (figure 2.4). High- income countries and economies are more urbanized and they generate more waste per capita and in total. At a regional level, North America, with 22 What a Waste 2.0 Table 2.1 Ranges of Average National Waste Generation by Region kg/capita/day 2016 25th 75th Average Min Percentile Percentile Max Sub-Saharan 0.46 0.11 0.35 0.55 1.57 Africa East Asia and 0.56 0.14 0.45 1.36 3.72 Pacific South Asia 0.52 0.17 0.32 0.54 1.44 Middle East and North 0.81 0.44 0.66 1.40 1.83 Africa Latin America 0.99 0.41 0.76 1.39 4.46 and Caribbean Europe and 1.18 0.27 0.94 1.53 4.45 Central Asia North America 2.21 1.94 2.09 3.39 4.54 Note: kg = kilogram. Figure 2.3 Waste Generation and Gross Domestic Product a. Waste generation versus GDP, by economy 900 Waste generation per capita (kg/person/year) 800 U.S. Denmark Hong Kong SAR, China New Zealand Switzerland 700 Luxembourg Germany 600 Australia 500 Greece Belarus Qatar Sweden Argentina Norway 400 South Africa Japan 300 Greenland 200 100 Sierra Leone 0 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 GDP per capita , PPP (constant 2011 international $) (Figure continues on next page) At a Glance: A Global Picture of Solid Waste Management 23 Figure 2.3 Waste Generation and Gross Domestic Product (continued) b. Waste generation versus GDP, by income group 2.0 Waste generation per capita (kg/capita/day) 1.5 High-income, 683 Lower-middle 1.0 income, 586 Upper-middle income, 655 0.5 Low-income, 93 0 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 GDP per capita, PPP (constant 2011 international $) Note: Data in panel a are from originally reported year. Data in panel b are adjusted to 2016. Size of bubble in panel b denotes total waste generated in millions of tonnes annually. Waste generation per capita per day: Low income = 0.43 kg, lower-middle income = 0.61 kg, upper-middle income = 0.69 kg, high income = 1.57 kg. GDP = gross domestic product; kg = kilogram. Figure 2.4 Waste Generation and Urbanization Rate a. By country or economy 5 Iceland 4 Waste generation (kg/capita/day) Virgin Islands (U.S.) Faeroe Islands Bermuda Puerto Rico Moldova Monaco 3 Mongolia Cayman Islands U.S. 2 Hong Kong SAR, China Switzerland Canada Trinidad and Tobago Barbados St. Kitts and Nevis Ireland UAE Kuwait St. Lucia Antigua and Barbuda Portugal Argentina 1 Solomon Islands Rwanda Mauritius Egypt Colombia Burundi Curaçao Kosovo Turkmenistan Lesotho São Tomé and Príncipe 0 10 20 30 40 50 60 70 80 90 100 Urbanization rate (percent) (Figure continues on next page) 24 What a Waste 2.0 Figure 2.4 Waste Generation and Urbanization Rate (continued) b. By income group 2.0 Waste generation per capita (kg/capita/day) High-income, 683 1.5 1.0 Lower-middle income, 586 0.5 Low-income, 93 Upper-middle income, 655 0 0 10 20 30 40 50 60 70 80 90 100 Urbanization rate (percent) c. By region 3.0 Waste generation per capita (kg/capita/day) North America, 289 2.5 2.0 Middle East and North Africa, 129 1.5 Sub-Saharan Africa, 174 Latin America, 1.0 231 South Asia, 334 Europe and Central 0.5 Asia, 392 East Asia and Pacific, 468 0 0 10 20 30 40 50 60 70 80 90 100 Urbanization rate (percent) Note: Data in panel a are from originally reported year. Data in panels b and c are adjusted to 2016. Size of bubble in panels b and c denotes total waste generation in millions of tonnes annually; kg = kilogram. the highest urbanization rate at 82 percent, generates 2.21 kilograms per capita per day, while Sub-Saharan Africa generates 0.46 kilogram per capita per day at a 38 percent urbanization rate. Projected Waste Generation By 2030, the world is expected to generate 2.59 billion tonnes of waste annually (figure 2.5). By 2050, waste generation across the world is expected to reach 3.40 billion tonnes (see methodology in box 2.1). At a Glance: A Global Picture of Solid Waste Management 25 Figure 2.5 Projected Global Waste Generation 4.0 3.40 3.5 Billions of tonnes 3.0 2.59 2.5 2.01 2.0 1.5 1.0 0.5 0 2016 2030 2050 Box 2.1 Waste Generation Projection Methodology To ensure cross-comparability of waste generation data and to develop projections for global waste generation, available waste generation data were adjusted from a variety of origin years to 2016, 2030, and 2050. Key Assumptions This analysis assumes that waste generation grows primarily based on two factors: • Gross domestic product (GDP) growth: As a country advances economically, its per capita waste generation rates increase. Economic growth is reflected using GDP per capita, with a purchasing power parity adjustment to 2011 to allow for comparison across countries. • Population growth: As a country’s population grows, amounts of total waste generated rise accordingly. Methodology Overview The model uses the World Bank’s World Development Indicator’s GDP per capita, PPP (constant 2011 international $) for the waste per capita regression model, the Organisation for Economic Co-operation and Development (OECD) GDP per capita projections, PPP (constant 2005 international $) for the waste per capita projection estimates, and the United Nations (UN) population growth rates to calculate future waste production: • Relationship between GDP growth and waste generation rates:The observed relationship between GDP growth and waste generation is reflected in figure B2.1.1. A regression model was used to capture the relationship between GDP per capita and waste generation per capita. The model was developed using country-level baseline waste generation data from the data collected and GDP per capita data from the associated year. In the model of best fit, the natural logarithm of GDP per capita is the independent variable and tonnes of waste generation per capita is the dependent variable. • Proxy waste generation rates: The regression model was used to estimate the expected growth in each country’s waste generation rate based on the growth in that country’s GDP per capita. Using the regression model coefficient and intercept, as well as GDP per capita data for the (Box continues on next page) 26 What a Waste 2.0 Box 2.1 Waste Generation Projection Methodology (continued) Figure B2.1.1 Waste Generation: Actual and Model Prediction 900 Waste per capita (kg/person/year) 800 700 600 500 400 300 200 100 0 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 GDP per capita (2011 PPP International $/year) Actual Predicted Note: GDP = gross domestic product. base year and for the projection years, proxy waste generation rates per year were modeled for each country for the base and target years, per equation B2.1.1. Proxy waste generation per capita = 1647.41 – 419.73 ln(GDP per capita) + 29.43 In(GDP per capita)2 (B2.1.1) • Projected waste generation: The change in proxy waste generation rates developed through the model was used as the growth rate for waste generation for that country. This growth rate was applied to the actual baseline waste generation per capita rate from the data collected to adjust actual waste generation rates from the base year to 2016, 2030, and 2035, per equation B2.1.2. If a growth rate could not be calculated for an economy or territory because of a lack of GDP data, a regional average was used. Projected Waste Generation Rate Target Year = (Proxy Waste Generation Rate Target Year / Proxy Waste Generation Rate Base Year ) í Actual Waste Generation Rate Base Year (B2.1.2) • 2016 waste generation: The adjusted per capita waste generation rate for 2016 was multiplied by the historical population level for 2016. If waste generation data were already reported for 2016, the original data were used. • 2030 and 2050 waste generation: The adjusted per capita waste generation rates for 2030 and 2050 were multiplied by the respective projected population levels for the target year. In adjusting and projecting waste generation, urbanization rates and changes in country income classification are not considered. Data Sources • Waste Generation: Best available national waste generation data from current study • Base Year and 2016 Population: World Bank Open Data • 2030 and 2050 Population: UN Population Projections, Medium Variant, 2017 Revision • GDP per Capita, PPP (constant 2011 international $): World Bank’s World Development Indicators • GDP per Capita, PPP (constant 2005 international $): OECD At a Glance: A Global Picture of Solid Waste Management 27 High-income countries are expected to experience the least amount of waste generation growth by 2030, given that they have reached a point of economic development at which materials consumption is less linked to gross domestic product growth (figure 2.6, panel a).1 Low- income countries are positioned for the greatest amount of growth in economic activity as well as population, and waste levels are expected to more than triple by 2050. At a per capita level, trends are similar in that the largest growth in waste generation is expected in low and middle-income countries (figure 2.6, panel b). Figure 2.6 Projected Waste Generation by Income Group a. Total waste generation 1,400 1,233 Millions of tonnes per year 1,200 1,004 1,000 879 827 835 781 800 655 683 586 600 400 283 143 200 93 0 Low-income Lower-middle Upper-middle High-income income income 2016 2030 2050 b. Waste generation per capita 2.0 1.87 1.71 1.58 1.5 Kg/capita/day 0.99 1.0 0.83 0.79 0.63 0.69 0.56 0.53 0.5 0.40 0.43 0 Low-income Lower-middle Upper-middle High-income income income Average 2030 projected 2050 projected Note: kg = kilogram. 28 What a Waste 2.0 Since waste generation is generally expected to increase with economic development and population growth, regions with high proportions of growing low-income and lower-middle-income countries are anticipated to experience the greatest increase in waste production. In particular, the Sub-Saharan Africa and South Asia regions are expected to see waste levels approximately triple and double, respectively, in the next three decades with economic growth and urbanization (figure 2.7). Regions with higher-income countries, such as North America and Europe and Central Asia, are expected to see waste levels rise more gradually. Figure 2.7 Projected Waste Generation by Region a. Total projected waste generation 800 714 700 661 602 Millions of tonnes per year 600 516 490 500 466 468 440 396 392 400 369 342 334 290 289 300 255 269 231 200 177 174 129 100 0 Middle East Sub-Saharan Latin America North South Europe and East Asia and Africa and America Asia Central Asia and North Africa Caribbean Pacific 2016 2030 2050 b. Projected waste generation per capita 3.0 2.50 2.5 2.37 2.21 2.0 Kg/capita/day 1.45 1.5 1.30 1.30 1.06 1.11 1.18 0.90 0.99 1.0 0.79 0.81 0.81 0.63 0.62 0.68 0.50 0.52 0.56 0.5 0.46 0 Sub-Saharan South East Asia Middle East Latin America Europe North Africa Asia and and and and America Pacific North Africa Caribbean Central Asia 2016 average 2030 projected 2050 projected Note: kg = kilogram. At a Glance: A Global Picture of Solid Waste Management 29 Waste Composition Waste composition is the categorization of types of materials in munic- ipal solid waste. Waste composition is generally determined through a standard waste audit, in which samples of garbage are taken from gen- erators or final disposal sites, sorted into predefined categories, and weighed. At an international level, the largest waste category is food and green waste, making up 44 percent of global waste (figure 2.8). Dry recyclables (plastic, paper and cardboard, metal, and glass) amount to another 38 percent of waste. Waste composition varies considerably by income level (figure 2.9). The percentage of organic matter in waste decreases as income levels rise. Consumed goods in higher-income countries include more materials such as paper and plastic than they do in lower-income countries. The granular- ity of data for waste composition, such as detailed accounts of rubber and wood waste, also increases by income level. Global food loss and waste accounts for a significant proportion of food and green waste and is discussed further in box 2.2. Figure 2.8 Global Waste Composition percent 2% 2% 12% 17% 44% 14% 4% 5% Food and green Other Rubber and leather Glass Paper and cardboard Wood Metal Plastic 30 What a Waste 2.0 Figure 2.9 Waste Composition by Income Level percent a. High income b. Upper-middle income 4% 1% 1% 4% 11% 13% 32% 12% 54% 25% 15% 5% 11% 6% 2% 4% c. Lower-middle income d. Low income <1% 1% <1% 6.4% 11% 7% 12.5% 53% 56% 27% 17% 2% 2% 3% 1% Food and green Metal Paper and cardboard Rubber and leather Glass Other Plastic Wood Box 2.2 Global Food Loss and Waste Across global food systems, food loss and waste (FLW) is a widespread issue, posing a chal- lenge to food security, food safety, the economy, and environmental sustainability. No accurate estimates of the extent of FLW are available, but studies indicate that FLW is roughly 30 percent of all food globally (FAO 2015). This amounts to 1.3 billion tonnes per year. FLW represents wast- age of resources, including the land, water, labor, and energy used to produce food. It strongly contributes to climate change because greenhouse gases are emitted during food production and distribution activities, and methane is released during the decay of wasted food. FLW also affects food supply chains by lowering income for food producers, increasing costs for food (Box continues on next page) At a Glance: A Global Picture of Solid Waste Management 31 Box 2.2 Global Food Loss and Waste (continued) consumers, and reducing access to food. Minimizing FLW could lead to substantial food secu- rity and environmental gains. The causes of FLW vary across the world and depend on specific local conditions. Typically, FLW in low-income countries occurs at the production, postharvest handling, storage, and pro- cessing stages and is caused predominantly by managerial and technical limitations. FLW mostly occurs in the distribution and consumption stages in middle- and high-income coun- tries, although it can happen in earlier stages such as when agricultural subsidies lead to over- production of farm crops. These challenges relate to consumer behavior and government policies and regulation. Improving coordination among actors along the different stages of the supply chain could address some of the FLW issues globally. Measures to reduce FLW in low-income countries could involve investment in infrastructure and transportation, including in technology for storage and cooling. Small-scale farmers could also be supported by provision of improved financing and credit to allow them to diversify or scale their production. In high-income countries, consumer education for behavior change is key to decreasing FLW. In addition to decreasing FLW along the supply chain, discarded food could also be managed productively for composting and energy recovery. Regional and international stakeholders are taking action to address FLW. The African Union is working with 14 governments to translate the “Malabo Declaration on Accelerated Agricultural Growth and Transformation for Shared Prosperity and Improved Livelihoods, ” including food loss reduction, into proper national policy and strategies in Africa (African Union Commission 2014). The Deputy-Secretary General of the United Nations called on all partners to adopt a more holistic approach to food security, one that prioritizes FLW, builds new coalitions, scales up current work, and innovates (Helvetas 2018). The Food and Agriculture Organization has been working on devel- oping new metrics and methodologies to measure FLW, and the organization’s SAVE FOOD Initiative works with civil society to address the issue (FAO 2018). The World Food Programme is including food loss as part of some five-year country plans in Africa and launched the Farm to Market Alliance to structure local markets and promote loss reduction technologies among smallholder farmers (World Food Program 2017). The World Bank is tackling the issue through loans, such as in Argentina, and by coordinated food waste management and the establishment of a cross-sectoral strategy (World Bank 2015). Several national and local governments have also taken action. In 2016, the government of Italy approved a law to enhance collaboration among key stakeholders, educate the public, encourage food donations from business through financial incentives, and promote reusable and recyclable packaging (Azzuro, Gaiani, and Vittuari 2016). In 2016, France became the first country in the world to ban supermarkets from throwing away or destroying unsold food, forcing them instead to donate it to charities and food banks (Chrisafis 2016). In 2009, the city of San Francisco in the United States passed an ordinance requiring all residents and tourists to compost food waste (McClellan 2017). The city of Ningbo in China diverts food waste from apartment buildings to an anaerobic digestion facility (Lee et al. 2014). In several cities in Sweden, biogas is produced from food waste to power vehicles and generate heat (Swedish Gas Centre, Swedish Gas Association, and Swedish Biogas Association 2008). In cities like Linköping, Sweden, the majority of public buses have been con- verted to use recovered biogas. The optimal strategy to reduce loss and recover food waste depends greatly on the local context, but the increasing global action reveals the many policy, technology, and educational avenues available. 32 What a Waste 2.0 Waste Collection Waste collection is one of the most common services provided at a munic- ipal level. Several waste collection service models are used across the globe. The most common form of waste collection is door-to-door collection. In this model, trucks or small vehicles—or, where environ- ments are more constrained, handcarts or donkeys—are used to pick up garbage outside of households at a predetermined frequency. In certain localities, communities may dispose of waste in a central container or col- lection point where it is picked up by the municipality and transported to final disposal sites. In other areas with less regular collection, communi- ties may be notified through a bell or other signal that a collection vehicle has arrived in the neighborhood, such as in Taiwan, China (see case study 15 in chapter 7). Waste collection rates in high-income countries and in North America are near 100 percent (figure 2.10).2 In lower-middle-income countries, col- lection rates are about 51 percent, and in low-income countries, about 39  percent. In low-income countries, uncollected waste is often managed independently by households and may be openly dumped, burned, or, less  commonly, composted. Improvement of waste collection services is a  critical step to reduce pollution and thereby to improve human health and, potentially, traffic congestion. Waste collection rates tend to be substantially higher for urban areas than for rural areas, since waste management is typically an urban service. In lower-middle-income countries, waste collection rates are more than twice as high in cities as in rural areas (figure 2.11). Figure 2.10 Waste Collection Rates a. Collection rates by income level High income 96% Upper-middle income 82% Lower-middle income 51% Low income 39% 0 10 20 30 40 50 60 70 80 90 100 Percent (Figure continues on next page) At a Glance: A Global Picture of Solid Waste Management 33 Figure 2.10 Waste Collection Rates (continued) b. Collection rates by region North America 100% Europe and Central 90% Asia Latin America and 84% the Caribbean Middle East and 82% North Africa East Asia and Pacific 71% South Asia 44% Sub-Saharan Africa 44% 0 10 20 30 40 50 60 70 80 90 100 Percent Figure 2.11 Urban and Rural Collection Rates by Income Level 100% High income 98% 85% Upper-middle 45% income 71% Lower-middle 33% income Low income 48% 26% 0 10 20 30 40 50 60 70 80 90 100 Percent Urban Rural 34 What a Waste 2.0 Waste Disposal Around the world, almost 40 percent of waste is disposed of in landfills (figure 2.12).3 About 19 percent undergoes materials recovery through recycling and composting,4 and 11 percent is treated through modern incineration. Although globally 33 percent of waste is still  openly dumped,5 governments are increasingly recognizing the risks and costs of dumpsites and pursuing sustainable waste disposal methods. Waste disposal practices vary significantly by income level and region (figure 2.13). Open dumping is prevalent in lower-income countries, where landfills are not yet available. About 93 percent of waste is burned or dumped in roads, open land, or waterways in low-income countries, whereas only 2 percent of waste is dumped in high-income countries. More  than two-thirds of waste is dumped in the South Asia and Sub- Saharan Africa regions, which will significantly impact future waste growth. As nations prosper economically, waste is managed using more sustain- able methods. Construction and use of landfills is commonly the first step toward sustainable waste management. Whereas only 3 percent of waste is Figure 2.12 Global Waste Treatment and Disposal percent <1% 13.5% 5.5% 11% 4% 33% 25% 7.7% Composting Sanitary landfill (with landfill gas collection) Incineration Open dump Controlled Landfill Other Landfill (unspecified) Recycling At a Glance: A Global Picture of Solid Waste Management 35 Figure 2.13 Disposal Methods by Income a. By income level 2% High-income 39% 6% 29% 22% 2% Upper-middle 30% 54% 4% 10% income Lower-middle income 66% 18% 10% 6% 0.3% 3.7% Low-income 93% 3% 0 20 40 60 80 100 Percent Open dump Anaerobic digestion Landfill Incineration Composting Other advanced methods Recycling b. By region North America 54.3% 33.3% 12% 0.4% South Asia 75% 4% 16% 5% <1% Middle East and North Africa 52.7% 34% 4% 9% Europe and Central Asia 25.6% 25.9% 10.7% 20% 17.8% <1% Sub-Saharan Africa 69% 24% 6.6% <1% Latin America and Caribbean 26.8% 68.5% 4.5% 2% East Asia and Pacific 18% 46% 9% 24% 0 10 20 30 40 50 60 70 80 90 100 Percent Open dump Landfill Composting Recycling Anaerobic digestion Incineration deposited in landfills in low-income countries, about 54 percent of waste is sent to landfills in upper-middle-income countries. Furthermore, wealthier countries tend to put greater focus on materials recovery through recycling and composting. In high-income countries, 29 percent of waste is recycled and 6 percent composted. Incineration is also more common. In high- income countries, 22 percent of waste is incinerated, largely within high- capacity and land-constrained countries and territories such as Japan and the British Virgin Islands. 36 What a Waste 2.0 Special Wastes Municipal solid waste is one of several waste streams that countries and cities manage. Other common waste streams include industrial waste, agricultural waste, construction and demolition waste, hazardous waste, medical waste, and electronic waste, or e-waste (figure 2.14). Some waste streams, such as industrial waste, are generated in much higher quantities than municipal solid waste (table 2.2). For the countries with Figure 2.14 Global Average Special Waste Generation 14 12.73 12 10 Kg/capita/day 8 6 4 3.35 2 1.68 0.32 0.25 0.02 0 Industrial Agricultural Construction Hazardous Medical Electronic waste waste and waste waste waste demolition waste Note: kg = kilogram. Table 2.2 Industrial and Electronic Waste Generation Rates kg/capita/day Industrial waste E-waste generation generation High income 42.62 0.05 Upper-middle income 5.72 0.02 Lower-middle income 0.36 0.01 Low income No data <0.01 Note: kg = kilogram. At a Glance: A Global Picture of Solid Waste Management 37 available industrial waste generation data, the trend shows that globally, indus- trial waste generation is almost 18 times greater than municipal solid waste. Generation of industrial waste rises significantly as income level increases. Global agricultural waste production is more than four and a half times that of municipal solid waste. Agricultural waste is most significant in coun- tries with large farming industries. Agricultural waste is often managed separately from other waste streams since it is largely organic and may serve as a useful input for future agricultural activities. Construction and demolition waste may compete with municipal solid waste for disposal space in landfills. In some countries, such as India, it is common to dispose of both in the same disposal facilities. Hazardous, medical, and e-waste are typically only a fraction of municipal solid waste. If disposed of properly, these wastes are typically treated in specialized facilities, including chemical processing plants, incinerators, and disassembly centers, respectively. The generation of e-waste is associated with economic development, with high-income countries generating five times the volume of e-waste generated by lower- middle-income countries. The increasing amount of e-waste and its potential for environmental pollution and recycling may be an area of consideration for rapidly developing countries. Notes 1. Income levels for countries are held constant to classifications at the time of publication; that is, potential changes in income level category are not considered for total projected waste generation levels. 2. The collection rate for North America is rounded from 99.7 percent. 3. Landfills may be controlled, sanitary, or unspecified. 4. Some countries report waste that is composted under the category “Recycling.” These two disposal methods may be viewed together as materials recovery. 5. Waste that is uncollected, classified as treated by “Other” methods, thrown in waterways, and not accounted for by any disposal method is considered dumped. “Other” typically refers to the open burning of waste. References African Union Commission. 2014. “Malabo Declaration on Accelerated Agricultural Growth and Transformation for Shared Prosperity and Improved Livelihoods.” African Union Commission, Addis Ababa, Ethiopia. http://www.resakss.org/sites/default/files/Malabo%20Declaration %20on%20Agriculture_2014_11%2026-.pdf. Azzuro, Paolo, Silvia Gaiani, and Matteo Vittuari. 2016. “Italy–Country Report on National Food Waste Policy.” Fusions EU, Bologna. http:// www.eu-fusions.org/phocadownload/country-report/FUSIONS%20 IT%20Country%20Report%2030.06.pdf. 38 What a Waste 2.0 Chrisafis, Angelique. 2016. “French Law Forbids Food Waste by Supermarkets.” The Guardian, February 4. https://www.theguardian.com /world/2016/feb/04/french-law-forbids-food-waste-by-supermarkets. FAO (Food and Agriculture Organization). 2015. Global Initiative on Food Loss and Waste Reduction. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i4068e.pdf. ———. 2018. “SAVE FOOD: Global Initiative on Food Loss and Waste Reduction.” Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/save-food/news-and-multimedia/news/news -details/en/c/1105834/. Helvetas. 2018. “Improved Postharvest Management.” https://www .helvetas.org/en/albania/how-you-can-help/follow-us/blog/other-topics /Improved-postharvest-management. Hoornweg, Daniel, and Perinaz Bhada-Tata. 2012. What a Waste: A Global Review of Solid Waste Management. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/17388. Lee, Marcus, Farouk Banna, Renee Ho, Perinaz Bhada-Tata, and Silpa Kaza. 2014. Results-Based Financing for Municipal Solid Waste. Washington, DC: World Bank. McClellan, Jennifer. 2017. “How San Francisco’s Mandatory Composting Laws Turn Food Waste into Profit.” azcentral. https://www.azcentral .com/story/entertainment/dining/food-waste/2017/08/03/san-francisco -mandatory-composting-law-turns-food-waste-money/440879001/. OECD (Organisation for Economic Co-operation and Development). Forthcoming. “Projections of Materials Use to 2060 and Their Economic Drivers.” OECD Publishing, Paris. Swedish Gas Centre, Swedish Gas Association, and Swedish Biogas Association. 2008. Handbook. Stockholm. http://www.greengasgrids.eu / fileadmin/greengas/media/Markets/Sweden/Biogasinfo EngGoda Exempel.pdf. United Nations. 2017. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. Medium Variant Scenario. New York: Department of Economic and Social Affairs, Population Division, United Nations. World Bank. 2015. “Eyes Bigger than Belly: A Habit Which Is Harming Latin America.” World Bank, Washington, DC. http://www.worldbank .org/en/news/feature/2015/11/12/food-waste-habit -harming -latin-america. World Bank Open Data: Population 1960–2016. n.d. https://data.world bank.org/indicator/SP.POP.TOTL. World Food Programme. 2017. “Farm to Market Alliance.” World Food Program, Rome. https://innovation.wfp.org/project/farm-market-alliance. CHAPTER 3 Regional Snapshots East Asia and Pacific Key Insights • The East Asia and Pacific region generated the most waste globally at 468 million tonnes in 2016, an average of 0.56 kilogram per capita per day. • Some 53 percent of waste in East Asia and Pacific is composed of food and green waste, and dry recyclables comprise about one-third of the waste. • Waste collection coverage in East Asia and Pacific is about 77 percent at an urban level, 45 percent at a rural level, and 71 percent overall. • About 46 percent of garbage is disposed of in some form of landfill; 24 percent of waste is incinerated, mainly in high-income countries; and about 9 percent of waste is recycled. • Cities are increasingly developing source-separation and recycling programs for both dry materials and organics. Background and Trends T he East Asia and Pacific region consists of 37 countries and economies on the main Asian continent, Australia, and surrounding island states in the Pacific Ocean. The region was home to a population of 2.27 billion in 2016. Disposal practices vary in East Asia and Pacific. Although open dumping remains a common disposal practice, higher-income countries such as China and the Republic of Korea have achieved high landfilling and recycling rates. Because of increasingly rigorous environmental laws, dis- posal practices are making the transition to sanitary landfills. Island states 39 40 What a Waste 2.0 in the Pacific are especially focused on materials recovery through recycling and composting. From an administrative perspective, waste systems are increasingly becoming privatized in municipalities, and cities are developing structures for accountability and quality. Governing agencies are exploring ways to reduce overlaps in responsibility. Financially, waste systems are heavily subsidized by the government, and countries with unplanned settlements, such as Mongolia, still experience difficulty recovering costs. However, fee-recovery systems are maturing. For example, several countries charge waste management user fees through combined utility bills, and the use of behavior-changing variable fees is famously practiced in Korea, as well as in several other countries, including the Philippines and Thailand. Waste Generation and Composition The East Asia and Pacific region generated 468 million tonnes of waste in 2016, at an average rate of 0.56 kilogram per person per day (figure 3.1). The largest waste generators are typically high-income coun- tries or island states. About 47 percent of waste in the region is generated by the economic hub of China, which is home to 61 percent of the region’s population. However, at 0.43 kilogram, China’s daily per capita waste generation rate is below the regional average, reflecting the lower amounts of waste generated by the country’s significant rural population. Figure 3.1 Waste Generation Rates: East Asia and Pacific Region kg/capita/day 3.72 4.0 3.5 3.0 2.62 2.26 2.5 2.14 1.99 1.69 2.0 1.54 1.54 1.40 1.36 1.30 1.21 1.20 1.5 1.08 1.07 1.00 0.98 0.95 0.94 0.88 0.86 0.80 0.74 0.71 0.68 0.68 1.0 0.63 0.56 0.46 0.45 0.43 0.41 0.39 0.39 0.36 0.33 0.20 0.5 0.15 0.14 0 Si ver ge M ap e g e SA G olia er ca ew , C m ar A ala a na C d l a en a st s Possa lia ly lam N sia al ru Re w Th Pa a pu C ai lau ic d d Ko ia Tu rea lo an Jap lu on am n Is oa an iri s Va hin i In nu a M don atu ne a a al To iji sl a Ch ds M a na a il m a G nes Ca etn ea m am m P a -L R te ew p r t N ip a Fr ei D Au and iw K nd ng ag on or M S e in Is hin si ro si si l I ng pu P ya mo Ti Lao di ia R, n bl ale lan m S a , C ba or D of on F va es th a N R ua M au ch u ra an Vi in A ra i ne ay ic e n o Z h bo i la n u al ve S on A r h gi al sh So ric Re lob Ta ng e ar e N m G un M Ko A or M Pa Br g on H N Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. Regional Snapshots 41 Figure 3.2 Waste Composition in East Asia and Pacific percent <1% 2% 12% 15% 53% 12% 3% 2.6% Food and green Paper and cardboard Glass Plastic Metal Rubber and leather Other Wood Average waste generation in East Asia and Pacific’s urban areas is substantially higher than national averages, at 0.96 kilogram per capita per day. The majority of waste in the East Asia and Pacific region is organic (figure 3.2). Dry recyclables comprise one-third of waste. Many initiatives have emerged to recover usable materials from waste in the East Asia and Pacific region. Waste Collection At a national level, waste collection coverage in East Asia and Pacific aver- ages about 71 percent (figure 3.3). Rates are highest in urban areas, at about 77 percent, and lower in rural communities at 45 percent. High-income countries and economies, such as Singapore; Hong Kong SAR, China; Japan; and Korea collect almost 100 percent of waste (figure 3.4). Where services exist in East Asia and Pacific, the majority of waste is collected on a door-to-door basis (in 18 out of 25 countries studied). The informal sector is active in the region, with up to an estimated 200,000 active waste pickers in Beijing, China, and 16,000 in Ho Chi Minh City, Vietnam (Li 2015; CCAC, n.d.). Waste picker services are formalized in certain cities. For example, as part of the rehabilitation of the Baruni 42 What a Waste 2.0 Figure 3.3 Waste Collection Coverage in East Asia and Pacific Total 71% Waste collection coverage Urban 77% Rural 45% 0 10 20 30 40 50 60 70 80 90 100 Percent Disposal Facility in the capital of Papua New Guinea, waste-picking activi- ties have been regulated. In Port Vila, the capital of Vanuatu, waste pickers must register at the disposal facility to collect waste. Within the East Asia and Pacific cities studied, source separation is com- monly practiced (figure 3.5). The most commonly source-separated materi- als are paper and cardboard, cans and metals, plastics and packaging, and glass. Waste Transportation The distance traveled between city centers and final disposal sites ranges from 6 kilometers in Honiara, Solomon Islands, to 64 kilometers in Seoul, Korea. Waste transportation distances can be higher for cities with dense suburban populations and limited access to land outside urban centers. Waste Disposal In East Asia and Pacific, 46 percent of waste is disposed of in landfills (figure 3.6). Notably, slightly more than one-fifth of waste is incinerated in modern facilities. Incineration is typically practiced by high-income countries and economies with limited land availability, such as Japan (80  percent); Taiwan, China (64 percent); Singapore (37 percent); and Korea (25  percent), but  has also become common practice in China (30 percent). Open dumping is relatively uncommon compared with other Regional Snapshots 43 Photo 3.1 Landfill in China Photo 3.2 A Waste and Street Cleaning Worker in Hoi An, Vietnam 44 What a Waste 2.0 Figure 3.4 Waste Collection Rates for Select Cities in East Asia and Pacific percent coverage Yokohama, Japan 100 Ulaanbaatar, Mongolia 100 Toyama, Japan 100 Suva, Fiji 100 Quezon City, Philippines 100 Osaka, Japan 100 Naha, Japan 100 Kobe, Japan 100 Kitakyushu, Japan 100 Cebu, Philippines 100 Bangkok, Thailand 100 Ho Chi Minh City, Vietnam 97 Upolu (Apia), Samoa 97 Phnom Penh, Cambodia 92 Pohnpei, Micronesia, Fed. Sts. 80 Mandalay, Myanmar 80 Kuala Lumpur, Malaysia 80 Jakarta, Indonesia 80 Funafuti, Tuvalu 80 Majuro, Marshall Islands 66 Port Moresby, Papua New Guinea 63 Port Vila, Vanuatu 60 Honiara, Solomon Islands 60 Vientiane, Lao PDR 48 Wellington, New Zealand 40 Tongatapu, Tonga 40 South Tarawa, Kiribati 38 0 10 20 30 40 50 60 70 80 90 100 Percent Note: Maximum chosen as reported for households, geographic area, or waste. regions, potentially because of the advanced waste practices of highly populous, high-income economies within the region. Many cities practice recycling to some extent. In East Asia and Pacific, 23 out of 28 cities with reported data recycle some amount of waste. Composting is developing as a practice in high-income or densely popu- lated cities such as Wellington, New Zealand; Bangkok, Thailand; and Seoul, Korea. Regional Snapshots 45 Figure 3.5 Number of Cities in East Asia and Pacific Source Separating Recoverable Waste Streams 25 20 20 20 19 19 separating waste streams Number of cities source 17 15 10 10 5 0 Paper and Cans and Plastics and Glass Organics Other cardboard metals packaging Note: Sample is not comprehensive and is based on data availability. Figure 3.6 Waste Disposal and Treatment in East Asia and Pacific percent <1% <1% 2% 9% 24% 18% 46% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill 46 What a Waste 2.0 Europe and Central Asia Key Insights • Europe and Central Asia generated 392 million tonnes of waste in 2016, or 1.18 kilograms per capita per day. • Waste collection rates in the region average 90 percent. The average urban collection rate is 96 percent, and the average rural rate is 55 percent. • About three-quarters of waste in Europe and Central Asia has the potential to be recovered through recycling or organics management. Currently, 31  percent of  waste materials are recovered through recycling and composting. • Incineration is used to process 18 percent of waste across Europe and Central Asia, though the practice has mainly been adopted in Western European countries. • Because of greater economic development and stringent European Union legislation, many of the higher recycling and collection rates in Europe and Central Asia occur in Western Europe. • The focus in Europe and Central Asia is typically on improvement of waste collection systems, construction of central disposal sites, and closure of dumpsites. Background and Trends The Europe and Central Asia region includes 57 countries spanning Greenland in the west to the Russian Federation in the east. The region housed 912 million people in 2016. Waste prevention and recycling are increasing in the region. In European Union member states in Western Europe, targets for waste disposal and recycling are guided by legislation. To fulfill their membership requirements, new European Union member states are focused on increasing rates of waste diversion from landfills and are taking measures to achieve a 100 percent rate of sanitary waste disposal, if not achieved already. Much of the fastest growth in modernization of waste management systems is occurring in Eastern Europe and Central Asia, where governments are largely focused on closing old dumpsites and building centralized facilities for treatment and disposal. Waste Generation and Composition The Europe and Central Asia region generated 392 million tonnes of waste in 2016, or 1.18 kilograms per person each day (figure 3.7). The highest per capita waste generators are found in a few island states with high lev- els of tourism and in the economic hubs in Western Europe. The countries ReGlob gio al 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 na Av l A era Fa ve ge roe Icerage 0.74 1.18 percent Isl land Ch M an 4.45 an M onads 3.67 ne old co l I o 3.61 kg/capita/day LieGre slanva ch enl ds 3.12 ten an 2.98 SwDen stein d 2.60 m 2.58 Isl itzer ark e o lan fM d 2.17 1.98 Lu GeIrela an 1.85 Glass xe rm nd Other Metal mb an 1.83 An our y 1.72 18.6% g 1.72 A dor G Th Mo ibustrr a 1.55 e N nt ra ia e lt 1.54 <1% eth ne ar 1.49 11.5% 21% Sa erl gro 1.48 Food and green n M an a ds 1.44 Gr rino Fraee ce 1.42 Un Fin nce 1.38 ite 1.38 d K land I ing tal 1.38 y 1.6% C dom 1.34 Wood Plastic 1.33 3% Po ypru rtu s Slo g 1.29 8% Lit venal hu ia 1.26 Sw an ia 1.24 1.24 36% Beeden lar 1.23 Sp us 1.22 a 1.20 Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. BuLatvin Ru i Rubber and leather ssi N lga a 1.20 an B orwria Paper and cardboard Fe elg ay 1.17 de iu 1.16 ra m 1.15 T tion Ma Alu rke 1.13 Figure 3.8 Waste Composition in Europe and Central Asia ce C ban y 1.10 Bo do ro ia n 1.10 Figure 3.7 Waste Generation Rates: Europe and Central Asia sn ia ia, atia an Hu FY 1.10 dH n R 1.05 erz Estgary Slo eg oni 1.04 v U o a 0.99 Cz ak krvina ec Re ain h R pu e 0.98 Az epublic 0.93 erb bl 0.91 Ka Po aij ic a 0.88 zak lann 0.82 hs d 0.79 tan RoSerb 0.78 Ky Ta ma ia jik nia 0.72 rgy G is 0.69 z R eo tan 0.62 ep rgia K bu 0.60 A oso lic 0.52 Regional Snapshots Tu Uzbrme vo rkm ek nia 0.49 enistan 0.47 ist an 0.40 0.27 47 48 What a Waste 2.0 generating the least waste are largely in Eastern Europe or Central Asia and typically have a lower gross domestic product per capita. Urban areas generated 1.28 kilograms of waste per capita per day. However, in many countries in the region, per capita waste generation levels hardly differ between urban and rural areas. Waste in the Europe and Central Asia region is mostly organic, as is consistent with global trends (figure 3.8). The region is only exceeded in its generation of solid recyclables, such as paper and plastic, by North America. In urban areas, waste composition is similar to national waste composition, with a slightly lower proportion of organic waste. Waste Collection Nationally, waste collection coverage is relatively high, at 90 percent (figure 3.9). The urban waste collection coverage rate of 96 percent exceeds the rural waste collection rate of 55 percent. In many European cities waste collection has been modernized with comprehensive truck fleets and planned systems (figure 3.10); in rural areas, however, waste collection systems are still in development. In urban areas in Europe and Central Asia, waste collection typically takes place through a mix of door-to-door curbside collection and drop- offs at centralized bins. Figure 3.9 Waste Collection Coverage in Europe and Central Asia Total 90% Waste collection coverage Urban 96% Rural 55% 0 10 20 30 40 50 60 70 80 90 100 Percent Regional Snapshots 49 Figure 3.10 Waste Collection Rates for Select Cities in Europe and Central Asia percent coverage Zagreb, Croatia 100 Vienna, Austria 100 Vanadzor, Armenia 100 Tbilisi, Georgia 100 Stockholm, Sweden 100 Spitak, Armenia 100 Pristina, Kosovo 100 Pavlograd, Ukraine 100 Parma, Italy 100 Paris, France 100 Oslo, Norway 100 Novi Sad, Serbia 100 Minsk, Belarus 100 Milano, Italy 100 Liege, Belgium 100 Korca, Albania 100 Kaunas, Lithuania 100 Guimarães, Portugal 100 Dublin, Ireland 100 Copenhagen, Denmark 100 Cluj-Napoca, Romania 100 Chisinau, Moldova 100 Bucharest, Romania 100 Brussels, Belgium 100 Bristol, United Kingdom 100 Borås, Sweden 100 Bishkek, Kyrgyz Republic 100 Atyrau, Kazakhstan 100 Angers-Loire Metropole, France 100 London, United Kingdom 99 Ljubljana, Slovenia 99 Grodno, Belarus 99 Vilnius, Lithuania 98 Soldanesti, Moldova 98 Sarajevo, Bosnia and Herzegovina 95 Liepaja, Latvia 95 Dushanbe, Tajikistan 95 Skopje, Macedonia, FYR 88 Vlora, Albania 85 Belgrade, Serbia 85 Banja Luka, Bosnia and Herzegovina 82 Podgorica, Montenegro 80 Osh, Kyrgyz Republic 80 Kostanay, Kazakhstan 77 Baku, Azerbaijan 74 Khujand, Tajikistan 32 0 10 20 30 40 50 60 70 80 90 100 Percent Note: Maximum chosen as reported for households, geographic area, or waste. 50 What a Waste 2.0 Figure 3.11 Number of Cities in Europe and Central Asia Source Separating Recoverable Waste Streams 45 42 40 39 separating waste streams 40 Number of cities source 35 31 30 25 23 20 15 15 10 5 0 Paper and Plastics and Glass Cans and Organics Other cardboard packaging metals Out of the 45 cities in the study that reported some type of source separation, the streams of waste that are most commonly source sepa- rated are paper and cardboard, plastics and packaging, and glass (figure 3.11). Waste Transportation In cities in Europe and Central Asia, the distance that waste is trans- ported between main city centers and landfills ranges considerably, from 2 to 51 kilometers. Of 22 cities with reported data, 10 aggregate waste at a central transfer station or collection point before final disposal in landfills. Waste Disposal In Europe and Central Asia, one-quarter of waste is disposed of in some type of landfill (figure 3.12). Incineration, which accounts for 18 percent of waste disposal, is largely practiced in Western European countries with high technological capacity, advanced environmental regulations, and enforcement authority. Several countries have achieved high rates of recy- cling and composting (table 3.1). Regional Snapshots 51 Photo 3.3 Recycling Plant in Bosnia and Herzegovina Figure 3.12 Waste Disposal and Treatment in Europe and Central Asia percent 4.5% 1.3% 10.7% 20% 17.8% 25.6% 20.1% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill 52 What a Waste 2.0 Table 3.1 Countries with High Recycling and Composting Rates in Europe and Central Asia Recycling rate Composting rate (percent) (percent) Faroe Islands 67 Austria 31 Liechtenstein 64 Netherlands 27 Iceland 56 Liechtenstein 23 Isle of Man 50 Switzerland 21 Germany 48 Luxembourg 20 Slovenia 46 Belgium 19 San Marino 45 Denmark 19 Belgium 34 Germany 18 Ireland 33 Italy 18 Sweden 32 France 17 Note: Rates represent percentage of total waste. Regional Snapshots 53 Latin America and the Caribbean Key Insights • The Latin American and the Caribbean region generated 231 million tonnes of waste in 2016, with an average of 0.99 kilogram per capita per day. • Some 52 percent of municipal solid waste is classified as food and green waste. • Waste collection coverage for the region is relatively comprehensive at 84 percent, on average, although average coverage for rural areas is 30 percent. • About 69 percent of waste is disposed of in some form of landfill, and more than 50 percent of waste is disposed of in sanitary landfills with environmen- tal controls. • The region recycles 4.5 percent of waste. • Some countries are pursuing opportunities to recover energy from waste through methods such as landfill gas collection and anaerobic digestion. Background and Trends The Latin America and the Caribbean region consists of 42 countries that include South America and the Caribbean Islands. The region had a popu- lation of 638 million in 2016. Solid waste systems in the region are in the process of modernization, though practices vary based on income level. At an urban level, many cities have initiated source-separation programs, and recycling rates are highest for materials such as aluminum, paper, and plastic. Recycling is common in the region except in the Caribbean islands, where recycling markets are nascent. An increasing amount of waste is being disposed of in sanitary landfills, with or without environmental and social controls, but a significant amount of waste is still dumped, burned, or used as animal feed. The stability of dumpsites is an issue, especially given the frequency of natural disasters in the Caribbean. The Caribbean is also more prone to plastic marine litter washing up onshore and needs to address that challenge as well. Some advanced cities are beginning to convert landfill gas to energy. Other cities are exploring new technologies such as waste-to-energy incineration and anaerobic digestion, with anaerobic digestion receiving particular attention. From a policy perspec- tive, most countries and cities have at least one regulatory mechanism in place to guide waste management activities. Cost recovery varies across the region and includes government subsi- dies, taxes, user fees, and cross-subsidization across income levels. Environmental levies for littering are common, but it is not always clear that the funds are used for solid waste management activities. Waste Generation and Composition The Latin America and the Caribbean region generated 231 million tonnes of waste in 2016, at an average of 0.99 kilogram per person each day (figure 3.13). Many of the highest waste generators are island states with active tourist economies. 54 U G S R l Vi eg oba rg io l Br in na Av 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 iti Is l A er sh la v ag V nd er e 0.74 Ca irg s ( ag ym in US e 0.99 a Isl VI 4.46 kg/capita/day Pun Is and ) St er la s to nd 3.75 .M R s 3.43 ar B A ic What a Waste 2.0 ti a ru o 3.28 St n ( B ha ba Tr . Fr ar m 2.91 in Kit en ba as id ts ch d 1.85 ad a p os an nd ar 1.72 d Ne t) 1.71 T v percent St oba is 1.67 .L g D M uc o 1.47 om in ex ia i 1.21 ic Ar C co an g hi 1.16 e Re nt le 1.15 pu ina b 1.14 A P B lic 1.08 nt an raz ig 13% U amil 1.04 Glass Other Metal ua ru 1.03 15% an J gu a d am ay B 1.01 St ar aic 1.00 3% .V E bu a in Ve cu da ce a 0.90 12% 4% nt Co nez dor 0.89 Food and green an st ue Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. <1% d G a R la 0.88 th e Ni ren ica G ca ad 0.86 re ra a El na g 0.83 Sa di ua lv ne 0.80 <1% Wood 0.79 Plastic ad s Pa Be or 0.77 r a l Co g ize lo ua 0.76 m y 52% bi 0.76 a 0.76 G Per uy u an 0.75 H C a Rubber and leather on u 0.72 Paper and cardboard du ba ra 0.67 H s 0.65 Bo ai C liv ti 0.58 Figure 3.13 Waste Generation Rates: Latin America and the Caribbean Region D ura ia 0.57 G om cao ua in 0.55 Su tem ica rin al 0.50 ama 0.47 e 0.41 Figure 3.14 Waste Composition in Latin America and the Caribbean Regional Snapshots 55 About half of the waste in the Latin America and the Caribbean region is food and green waste (figure 3.14). About one-third of waste is composed of dry recyclables. It is likely that the almost 15 percent of waste that has not been characterized through formal systems is largely organic, given that areas outside the purview of municipal waste systems tend to be rural or  lower in income, and these areas tend to generate more wet or organic waste. Waste Collection Waste collection coverage is quite high for the Latin America and the Caribbean region compared with global trends. At an urban level, about 85 percent of waste is collected (figure 3.15), and most waste collection systems in Latin America and the Caribbean are on a door-to-door basis. In rural communities, waste collection coverage is about 30  percent. Collection coverage varies significantly, with coverage of greater than 95  percent in cities in countries such as Uruguay and Colombia, and as low as 12 percent in Port au Prince, Haiti (figure 3.16). The informal sector is highly active within the region. Cities stud- ied reported varying numbers of active  waste pickers, ranging from 175 in Cusco, Peru, to 20,000 in São Paolo, Brazil (Lizana 2012; CCAC, n.d.). Some large Latin  American cities average almost 4,000 active waste pickers collecting recyclable materials. Figure 3.15 Waste Collection Coverage in Latin America and the Caribbean Total 84% Waste collection coverage Urban 85% Rural 30% 0 10 20 30 40 50 60 70 80 90 100 Percent 56 What a Waste 2.0 Figure 3.16 Waste Collection Rates for Select Cities in Latin America and the Caribbean percent coverage São Paulo, Brazil 100 San José, Costa Rica 100 Rio de Janeiro, Brazil 100 Montevideo, Uruguay 100 Havana, Cuba 100 Guadalajara, Mexico 100 Caracas, Venezuela, RB 100 Bogotá, Colombia 100 Alajuela, Costa Rica 100 Cali, Colombia 99 Medellín, Colombia 99 Mexico City, Mexico 99 Distrito Federal, Brasilia, Brazil 98 Ciudada Autónoma de Buenos Aires (CABA), Argentina 98 Santiago de Chile, Chile 98 San Miguelito, Panama 98 Tegucigalpa, Honduras 97 Quito, Ecuador 96 Córdoba, Argentina 94 Monterrey, Mexico 93 Asunción, Paraguay 92 La Paz, Bolivia 90 Ciudad del Este, Paraguay 90 Santo Domingo, Dominican Republic 85 Guatemala City, Guatemala 85 Panama City, Panama 84 Managua, Nicaragua 82 Colón, Panama 75 Belize City, Belize 66 Rosario, Argentina 66 San Salvador, El Salvador 65 San Lorenzo, Paraguay 64 San Pedro Sula, Honduras 59 San Pedro, Belize 58 Puerto Cabezas, Nicaragua 24 Jutiapa, Guatemala 13 Port au Prince, Haiti 12 0 10 20 30 40 50 60 70 80 90 100 Percent Note: Maximum chosen as reported for households, geographic area, or waste. Waste Transportation The main transportation mode for waste in Latin America and the Caribbean is trucks. Of the 21 cities reporting waste transportation prac- tices, 16 aggregate waste at a transfer station or other site before final disposal, and most cities have transfer stations in operation, ranging from Regional Snapshots 57 1 in Cusco, Peru, to 12 in Mexico City, Mexico. Aggregation stations may be intended either to transfer waste to larger trucks or to increase effi- ciency of materials recovery. These stations may be formal or informal recycling centers where waste pickers sort materials for recycling. After waste is collected, the distance traveled between city centers and final dis- posal sites ranges from 4 to 62 kilometers. Waste Disposal More than two-thirds of waste in the Latin America and the Caribbean region is disposed of in some type of landfill (figure 3.17), although some of these may be well-run dumps. More than half of waste is disposed of in sanitary landfills with some environmental controls, reflecting a general regional focus on sustainable disposal methods. Open dumping accounts for about 27 percent of waste disposal and treatment. Recycling and com- posting systems are emerging across the region, although the extent of implementation varies by country. Many cities are focused on recovering waste; for example, cities such as Montevideo, Uruguay, and Bogotá and Medellín, Colombia, recycle more than 15 percent of waste. In addition, cities such as Mexico City, Mexico, and Rosario, Argentina, compost more than 10 percent of waste. Landfill gas collection has emerged as the main mechanism of recovering energy from waste in Latin America and the Caribbean. Photo 3.4 Plastic Bottle Collection in Jamaica 58 What a Waste 2.0 Figure 3.17 Waste Disposal and Treatment in Latin America and the Caribbean percent <1% 1.5% 15% 14.7 52% 26.8% 4.5% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill Regional Snapshots 59 Middle East and North Africa Key Insights • The Middle East and North Africa region generated 129 million tonnes of waste in 2016, the lowest total of any region, primarily because of its lower population, at an average of 0.81 kilogram per capita daily. However, the region will double waste generation by 2050. • Some 53 percent of all waste is disposed of in open dumps although coun- tries are seeking alternative methods to dispose of waste, especially in the Gulf Cooperation Council (GCC). Recycling and composting are widespread at a pilot scale. • In GCC countries, waste collection rates are nearly 100 percent, and these countries are exploring ways to recover value from waste through waste-to- energy projects. • Political instability in certain countries has hindered the development of for- mal waste systems in many areas. However, citizen engagement initiatives are strong and governments are increasingly pursuing reforms, integration of the private sector, and improved fee recovery. • Legal and institutional reform has become a common focus for many nations, such as Jordan, Morocco, and the GCC countries. Background and Trends The Middle East and North Africa region consists of 21 countries spanning Morocco in the west to the Islamic Republic of Iran in the east. The region was home to a population of 437 million people in 2016. Waste genera- tion and management practices in the region vary widely. Countries such as Bahrain, the United Arab Emirates, and Kuwait generate more than 1.5  kilograms of waste per person per day, while countries such as  Morocco, Djibouti, and the Republic of Yemen generate less than 0.6 kilogram per person per day. Although political fragility has affected the delivery of services and progress of the solid waste sector in several areas, many governments are making efforts to address waste challenges through legal, technical, and institutional reforms. Strong citizen engagement initiatives and financial investments are underway, such as in Morocco (box 3.1), and several countries are working to integrate the private sector into ser- vice delivery and to increase fee recovery. Many high-income countries in the GCC are finding sustainable ways to dispose of waste, including through waste-to-energy projects, and several waste infrastructure projects are being tendered or are under construction in the region. Most GCC countries are also developing new regulations and institu- tional structures. 60 What a Waste 2.0 Box 3.1 Morocco: Investing in Environmental Sustainability Pays Off A marginal endeavor only a decade ago, environmental sustainability is now a national priority in Morocco, as evidenced by the recently adopted National Strategy for Sustainable Development. Government efforts over the past decades toward greener growth are yielding tangible results. Between 2008  and 2014, the government invested about 2.8 billion dirhams, or US$0.3   billion, to improve municipal waste management through the Program National de Déchets Ménagers, cutting corresponding environ- mental costs by an estimated 4.2 billion dirhams or US$0.4 billion over the same period. Source: Calculation by M. Sarraf based on Croitoru and Sarraf (2017). Note: Exchange rate of 9.5 dirhams per US$1 as of June 2018. Waste Generation and Composition Waste generation in the Middle East and North Africa region is relatively modest compared with global trends, primarily due to a lower population. The region generated 129 million tonnes of waste in 2016, at an average of 0.81 kilogram per person per day (figure 3.18). However, the waste generation rate in cities is significantly higher, at an average of 1.38 kilograms per person per day. Many of the largest waste generators are high-income countries, mainly those in the GCC. Figure 3.18 Waste Generation Rates: Middle East and North Africa Region kg/capita/day 1.83 1.78 2.0 1.73 1.60 1.55 1.8 1.40 1.6 1.27 1.19 1.4 1.05 1.03 0.98 1.2 0.93 0.84 0.81 0.81 0.74 1.0 0.67 0.66 0.60 0.57 0.55 0.8 0.48 0.44 0.6 0.4 0.2 0.0 jib . pu . A ge Em lta ra ic a a p. ic i A ait Ba e Pa non ra an Is n an a Le raq Jo ia Sa Ku s A e en o D Rep Re ep el ar ti te i bi g by in ai cc bl n sla nis er Re ou a al ra b Ma w ra rd m at ira R ra hr st I Ye ro r Li lg ba on ve ve Q O u le , b o T A m gi l A M ud m A b Re ba t, ra ria , I yp lo A Sy ran G Eg d te I ni U Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. Regional Snapshots 61 Figure 3.19 Waste Composition in the Middle East and North Africa percent 2% 1% 12% 13% 58% 8% 3% 3% Food and green Other Rubber and leather Glass Paper and cardboard Wood Metal Plastic Food and green waste, at 58 percent, is the predominant type of waste in the Middle East and North Africa (figure 3.19). About one-third of waste is composed of dry recyclables, and the rising recycling activity in the region reflects an increasing willingness to capture the value of these materials. A major focus in the region is on reducing food waste and addressing organic waste management. Waste Collection Waste collection coverage is relatively comprehensive for the Middle East and North Africa region. Coverage is highest in urban areas, with an aver- age of 90 percent of waste being collected (figure 3.20). Many cities reported 100 percent collection coverage (figure 3.21). Rural coverage is relatively high for most countries, with an average of 74 percent of waste being collected, though there is significant variation between countries. In Qatar, 100 percent of rural waste is collected. However, in Tunisia and the Arab Republic of Egypt, 5 percent and 15 percent of rural waste is col- lected, respectively. The informal sector is active across the Middle East and North Africa region. For example, an estimated 96,000 informal waste pickers are active in Cairo and account for 10 percent of the waste collected in the city (IFC 2014). 62 What a Waste 2.0 Photo 3.5 One Form of Waste Collection in West Bank Figure 3.20 Waste Collection Coverage in the Middle East and North Africa Total 82% Waste collection coverage Urban 90% Rural 74% 0 10 20 30 40 50 60 70 80 90 100 Percent Regional Snapshots 63 Figure 3.21 Waste Collection Rates for Select Cities in the Middle East and North Africa percent coverage Tripoli, Libya 100 Tehran, Iran, Islamic Rep. 100 Saida, Lebanon 100 Kuwait City, Kuwait 100 Jeddah, Saudi Arabia 100 Dubai, United Arab Emirates 100 Doha, Qatar 100 Beirut, Lebanon 100 Amman, Jordan 100 Algiers, Algeria 100 Abu Dhabi, United Arab Emirates 100 Sousse, Tunisia 99 Sanaá, Yemen, Rep. 95 Baghdad, Iraq 94 Rabat, Morocco 90 Cairo, Egypt, Arab Rep. 77 Tunis, Tunisia 61 Tangier, Morocco 31 0 10 20 30 40 50 60 70 80 90 100 Percent Note: Maximum chosen as reported for households, geographic area, or waste. Where waste collection exists in urban areas, the predominant method is door-to-door pickup by trucks. Source separation is not common within the region. Waste Transportation The distance traveled between city centers and final disposal sites ranges significantly, from 3 to 40 kilometers (table 3.2). It is common to aggre- gate waste at a transfer station or another site before final disposal, and many cities have transfer stations in operation. However, many cities stud- ied stated that the number of transfer stations in operation fell short of the optimal number for the urban waste management system. Waste Disposal Waste disposal practices vary widely in the Middle East and North Africa region. Open dumping is prevalent, at 53 percent of total waste manage- ment (figure 3.22). For example, about 940 dumps exist in Lebanon for  municipal waste, as well as construction and demolition waste (Republic of Lebanon Ministry of Environment and UNDP 2017). Furthermore, in high-income countries, most landfills are not engineered landfills and effectively operate as dumps. 64 What a Waste 2.0 Table 3.2 Examples of Transfer Station Availability and Transportation Distance in the Middle East and North Africa Number of Number of Distance from city transfer stations transfer stations center to final Population City in operation needed disposal site (km) (1000s) Tangier, Morocco 0 2 20 1,100 Sanaá, Yemen, Rep. 1 5 17 2,331 Rabat, Morocco 1 No data 20 650 Beirut, Lebanon 2 2 9 650 Sfax, Tunisia 2 4 40 300 Amman, Jordan 3 No data 24 2,400 Abu Dhabi, United 6 No data No data 1,145 Arab Emirates Tunis, Tunisia 8 10 15 700 Baghdad, Iraq 9 No data No data 7,000 Tehran, Iran, Islamic 11 11 39 8,432 Rep. Ramallah, West Bank No data 2 No data   and Gaza Damascus, Syrian Arab No data 11 No data 2,566 Republic Saida, Lebanon No data No data 3 150 Beni Mellal, Morocco No data No data 4.5 192 Jeddah, Saudi Arabia No data No data 40 4,076 However, landfill usage is rapidly increasing. For example, the percent- age of municipal solid waste collected and disposed of in sanitary landfills in Morocco has increased from 10 percent in 2008 to 32 percent in 2012 and to 53 percent in 2016, and once five new sanitary landfills that are currently under construction are complete, the rate is expected to reach 80 percent (Sarraf 2018, personal communication, May 30, 2018). Many countries in the GCC, such as Qatar, have integrated higher recycling and waste-to-energy rates into national plans and have begun construction (Qatar General Secretariat for Development and Planning 2011). Several high-income GCC countries are pursuing waste-to-energy solutions and are planning properly designed waste management facilities, including inciner- ators and sanitary landfills. Recycling and composting systems are increasing in prevalence. Of the 21 countries studied, 16 have reported some amount of recycling activities. The share of waste recovered is typically low, about 1–8 percent, but ranges up to 25 percent. Out of 21 countries, 9 have reported some level of com- posting activity. Regional Snapshots 65 Figure 3.22 Waste Disposal and Treatment in the Middle East and North Africa percent 4% <1% 11% 14% 9% 9% 52.7% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill 66 What a Waste 2.0 North America Key Insights • The North American region generates the highest average amount of waste, at 2.21 kilograms per capita per day; total waste generated was 289 million tonnes annually in 2016. • Waste collection coverage in North America is nearly universal, at 99.7 percent, with the gap in collection coverage occurring in Bermuda. • More than 55 percent of waste is composed of recyclables including paper, cardboard, plastic, metal, and glass. • At 54 percent, more than half of waste in North America is disposed of at sani- tary landfills and one-third of waste is recycled. Background and Trends North America is the smallest region, consisting of three countries: Bermuda, Canada, and the United States. The region was home to a popu- lation of 359 million in 2016. The United States is the largest of the three, with a population of 322 million, and Bermuda is the smallest with 62,000 people. All three countries in North America are high-income nations, and as such, waste management and disposal practices tend to be advanced relative to global trends. Waste management systems generally operate in an environmentally sound manner, have high capacity, serve nearly all citi- zens, and enjoy more consistent financial stability and fee collection than systems in lower-income countries. Given more advanced information management systems, data availabil- ity and accuracy are relatively strong in North America. Waste Generation and Composition Though home to less than 5 percent of the global population in 2016, North America generated 14 percent of the world’s waste, at 289 million tonnes with a daily rate of 2. 21 kilograms per capita (figure 3.23). The high waste generation rate reflects the high-income status of these coun- tries and related economic activity. Waste generation rates in North American cities vary, with cities such as Seattle in the United States gener- ating up to 3.13 kilograms per capita per day and others such as Ottawa, Canada, generating only 0.95 kilogram per capita per day (Seattle Public Utilities 2016; City of Ottawa 2018). As an island state with high tourist activity, Bermuda is the highest waste generator per capita in North America. Canada generates the least amount of waste, though it is not far behind the United States on a per capita basis. The composition of waste in North America is diverse. Unlike other regions, food and green waste accounts for less than 30 percent of the total waste stream (figure 3.24). More than 55 percent of waste is dry recyclables. Paper and cardboard comprise 28 percent of total waste, and plastic 12 percent. Regional Snapshots 67 Figure 3.23 Waste Generation Rates: North American Region kg/capita/day 5.0 4.54 4.5 4.0 3.5 3.0 2.5 2.21 2.24 1.94 2.0 1.5 1.0 0.74 0.5 0 Global Regional Bermuda USA Canada Average Average Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. Figure 3.24 Waste Composition in North America percent 5.6% 9% 28% 12% 4.5% 9.3% 28% 3.6% Food and green Paper and cardboard Glass Plastic Metal Rubber and leather Other Wood Waste Collection Some 99.7 percent of waste in North America is collected, with a gap only in Bermuda. Waste is typically collected at the curb beside residential or commercial establishments. Rural areas have access to formal collection systems, which are typically either door-to-door services or central drop-off 68 What a Waste 2.0 points managed by municipalities or private entities. Local laws in many cities mandate that waste collection be provided to households, or that larger residential buildings or commercial institutions contract with private operators for waste collection. Collection is typically done with trucks and, depending on the location of the treatment or disposal facility, waste is often shifted to larger trucks at transfer stations or sorting facilities to more effectively transport the large quantities of waste over long distances. Waste Disposal Over half of waste in North America is disposed of in sanitary landfills (figure 3.25). One-third of waste is recycled, about 12 percent is inciner- ated in incinerators with energy recovery, and less than 1 percent is composted. In North America, landfills are highly regulated and waste is disposed of in an environmentally sound manner. U.S. landfills are regu- lated by the national Environmental Protection Agency, and municipal solid waste landfills must be designed with environmental controls and report on certain performance measures, such as methane generation, as well as the quality of the air, water, and soil. As an island nation, Bermuda faces unique land constraints. In 1994, a central waste-to-energy incinerator was constructed. The facility reduces waste volume by 90 percent and currently 67 percent of the country’s waste is incinerated (Government of Bermuda n.d.). Figure 3.25 Waste Disposal and Treatment in North America percent 0.4% 12.0% 54.3% 33.3% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill Regional Snapshots 69 South Asia Key Insights • The South Asia region generated 334 million tonnes of waste in 2016, at an average of 0.52  kilogram per capita daily, including both urban and rural waste. Total waste generation is expected to double in the region by 2050. • About 57 percent of waste in South Asia is characterized as food and green waste. • About 44 percent of waste is collected in South Asia, mainly through door-to- door systems. • About three-fourths of waste is currently openly dumped in South Asia, although improvements to collection systems and construction of sanitary final disposal sites are underway. Background and Trends The South Asia region has only eight countries but a large population. The three population hubs of India, Pakistan, and Bangladesh together have a population of 1.68 billion people; Afghanistan, Nepal, and Sri Lanka are home to nearly 85 million people; and the smaller states of Bhutan and Maldives have about 1.2 million people. The countries in South Asia are diverse not only in population, but also in economic development and geography. Almost all cities in the South Asia region practice some open dumping, but cities are increasingly developing sanitary landfills and pursuing recycling. Most cities hire private contractors or nongovernmental organi- zations to collect waste from neighborhoods and institutions and pay col- lectors based on the amount of waste transported to disposal sites. Although rules and regulations have been developed at national and state levels, these criteria are still being translated into practice and accountability structures at the city level. Implementation of policies is challenging because of a lack of enforce- ment mechanisms. In addition to improving legal enforcement, strengthen- ing the technical and institutional capacity of administrators at all levels of solid waste management systems, from municipal staff to the regulators and operators, is a common priority. Waste Generation and Composition The South Asia region generated 334 million tonnes of waste in 2016, at an average of 0.52 kilogram per person each day (figure 3.26). Rural waste generation is significantly lower than urban waste generation and reduces the average amount generated in the region. The islands of 70 What a Waste 2.0 Maldives generate the most amount of waste per capita. In cities in South Asia, waste generation rates vary widely, with cities such as Kabul, Afghanistan, generating about 1.5 kilograms per capita per day, and cities such as Butwal, Nepal, generating only about 0.2 kilogram per capita per day (Asian Development Bank 2013; World Bank 2016). Most waste in the South Asia region is organic (figure 3.27). A large proportion of waste is not classified, though it is assumed that most of this waste is inert. Waste cleaned from drains and silt is often mixed into the solid waste disposed of by municipalities. Construction and demolition waste is also often included in the data reported for South Asia though it will gradually be managed separately as a result of new rules in India established in 2016 (Ministry of Environment, Forest and Climate Change 2016). Waste Collection Excluding Maldives, Sri Lanka, and Afghanistan, where data were not available, urban waste collection coverage in South Asia is about 77 percent (figure 3.28), although coverage varies considerably by country and city (figure 3.29). Rural areas have lower collection coverage rates of about 40 percent. Figure 3.26 Waste Generation Rates: South Asia Region kg/capita/day 1.6 1.44 1.4 1.2 1.0 0.8 0.74 0.57 0.6 0.52 0.52 0.44 0.43 0.4 0.34 0.28 0.17 0.2 0 ge e s a an n an a h al ve ag di k ta s ep an de ra ut st In is di r ki N ve ve Bh iL n la al Pa ha ng lA A M Sr fg al Ba ba A on lo gi G Re Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. Regional Snapshots 71 Figure 3.27 Waste Composition in South Asia percent 2% 1% 8% 10% 57% 15% 3% 4% Food and green Paper and cardboard Glass Plastic Metal Rubber and leather Other Wood Figure 3.28 Waste Collection Coverage in South Asia Total 51% Urban 77% Rural 40% 0 10 20 30 40 50 60 70 80 90 100 Percent 72 What a Waste 2.0 Figure 3.29 Waste Collection Rates for Select Cities in South Asia percent coverage Warangal, India 100 Vishakhapatnam, India 100 Vijaywada, India 100 Tadipatri, India 100 Pimpri-Chinchwad, India 100 Nashik, India 100 Leh, India 100 Kochi, India 100 Indore, India 100 Imphal, India 100 Greater Mumbai, India 100 Ghaziabad, India 100 Bhubaneswar, India 100 Addu, Maldives 100 Moratuwa, Sri Lanka 100 Rajkot, India 99 Navi Mumbai, India 98 Ahmedabad, India 98 Tenali, India 97 Surat, India 97 Pune, India 97 Lucknow, India 97 Jaipur, India 97 Nagpur, India 96 Dehiwala Mt. Lavinia Municipal Council, Sri Lanka 96 Coimbatore, India 96 Thimphu, Bhutan 95 Phuentsholing, Bhutan 95 Mazar-E-Sharif, Afghanistan 95 Kandahar, Afghanistan 95 Jalalabad, Afghanistan 95 Herat, Afghanistan 95 Kurunegala, Sri Lanka 93 Colombo, Sri Lanka 93 Rudrapur, India 92 Kanpur, India 91 Tirunelveli, India 90 Shimla, India 90 Chennai, India 90 Greater Hyderabad, India 89 Mysore, India 88 Bhopal, India 88 Kathmandu, Nepal 87 Bhaktapur, Nepal 87 Dhanbad, India 86 Biratnagar, Nepal 86 Kozhikode, India 85 Guwahati, India 85 Bengaluru, India 85 Cuttack, India 84 Dhankuta, Nepal 81 Jaffna, Sri Lanka 81 Jodhpur, India 79 Delhi, India 77 Kabul, Afghanistan 75 Itanagar, India 75 Rajshahi, Bangladesh 72 Lalitpur, Nepal 71 Gwalior, India 71 Dharan, Nepal 69 Lahore, Pakistan 68 Trincomalee, Sri Lanka 66 Patna, India 65 Kota, India 65 Allahabad, India 65 Butwal, Nepal 63 Srinagar, India 60 Patuakhali, Bangladesh 60 Karachi, Pakistan 60 Amritsar, India 48 Dhaka, Bangladesh 45 Pokhara, Nepal 43 Chittagong, Bangladesh 42 Birgunj, Nepal 39 Rangpur, Bangladesh 32 Ludhiana, India 29 Bharatpur, Nepal 25 Sialkot, Pakistan 25 0 10 20 30 40 50 60 70 80 90 100 Percent Note: Maximum chosen as reported for households, geographic area, or waste. Regional Snapshots 73 Figure 3.30 Waste Collection Methods in South Asia 70 62 60 50 Number of cities 40 30 20 11 10 2 0 Door-to-door Centralized drop-off Combination of point door-to-door pick-up and designated drop-off points Waste collection services, where they exist in cities, typically occur door-to-door (figure 3.30). In certain cities, such as Butwal, Nepal, and Kota, India, residents dispose of waste at a primary collection point, from which aggregated waste is transported to the final disposal site. This practice is extremely common, and designated primary collection sites or open plots of land often eventually become unofficial sites for dumping. In Navi Mumbai, India, a waste collector notifies residents to bring waste to the collection vehicle (India, Ministry of Urban Development 2016). Informal waste collection and materials recovery activities are pro- lific in South Asia. Most cities studied reported between 150 and 1,100 active waste pickers. The large cities of Dhaka, Bangladesh, and Delhi, India, reported 120,000 and 90,000 active waste pickers, respectively. Unorganized waste pickers are commonly seen working at either informal or formal transfer stations. At landfills, waste pick- ers are typically organized or are part of a cooperative (Enayetullah and Hashmi 2006). Waste Transportation On average, waste is transported about 15.5 kilometers between city cen- ters and final disposal sites in the South Asia region. Primary collection occurs in various ways, and the main forms of transportation are three- wheeled push carts, tractors, and bicycle rickshaws. Out of 53 cities, 38 reported aggregating waste at transfer stations or secondary collection 74 What a Waste 2.0 points before transporting it to final sites. Transfer stations may be desig- nated sites with minimal infrastructure or constructed with technologies for automated sorting. Many aggregation centers are simply temporary storage sites and mostly facilitate manual handling of waste. Waste Disposal Open dumping is common in South Asia (figure 3.31), and most existing landfills lack leachate collection and treatment, landfill gas collection, and sometimes even liners. However, the remediation of dumpsites and con- struction of formal landfills are actively taking place, and official and well-functioning facilities tend to be privately operated. For example, Maldives is mitigating dumping of waste by improving waste collection systems and constructing sustainable disposal sites that can serve multiple islands (World Bank 2017a). Four out of the eight countries recycle between 1 and 13 percent of waste, and seven out of the eight countries have begun composting programs to manage organic waste. Waste-to- energy incineration potential has gained interest, but substantial results have not yet been proven. Initiatives to improve waste disposal began in India in 2014, and interest in other South Asian countries is growing. Many cities are establishing central authorities to increase capacity to plan and operate the waste man- agement sector. The focus is on developing waste disposal strategies that include locally tailored and cohesive approaches. Depending on the locality, cities are navigating varied constraints related to land, capacity, availability of local operators, financing, and alignment of waste technology and waste composition, and more than one solution is needed. Waste management is Photo 3.6 Dumpsite in Sri Lanka Regional Snapshots 75 increasingly recognized as not only a social, health, and environmental issue, but an economic one, in which waste recovered and land used wisely can generate financial savings. Indian cities can access funds, mainly from the Swachh Bharat Mission (box 3.2), to improve waste management programs. Figure 3.31 Waste Disposal and Treatment in South Asia percent 5% 16% 4% 75% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill Box 3.2 Swachh Bharat Mission (Clean India Mission) The Swachh Bharat Mission is a national initiative in India to clean up cities, towns, and rural areas. Interventions range from cleaning roads and infrastruc- ture to improving solid waste management and household sanitation practices. The government of India and involved stakeholders have supported actions in more than 4,000 cities, towns, and rural areas to date. Swachh Bharat is antici- pated to fund more than $9.5 billion in investments and is providing incentives for jurisdictions to compete by publicly monitoring performance across cities. Source: Swachh Bharat website (http://www.swachhbharaturban.in). 76 What a Waste 2.0 Sub-Saharan Africa Key Insights • The Sub-Saharan Africa region generated 174 million tonnes of waste in 2016, at a rate of 0.46 kilogram per capita per day. It is the fastest growing region, with waste expected to nearly triple by 2050. • Waste in Sub-Saharan Africa is primarily organic, with 40 percent of it being food and green waste. • Overall waste collection rates are about 44 percent, although the rate is much higher in urban areas than in rural areas, where waste collection services are minimal. • About 69 percent of waste is openly dumped, although use of landfills and recycling systems is becoming more prevalent. • The region is experiencing substantial growth and modernization, with a large focus on building sustainable final disposal sites, improving collection coverage, closing dumpsites, and providing environmental education for the public. • Institutional setups for operations and maintenance and the regulatory framework are generally not clearly defined. National governments are increasingly delivering traditional municipal waste management services. Background and Trends The Sub-Saharan Africa region consists of 48 countries and was home to 1.03 billion people in 2016. It is one of the fastest growing regions of the world; more than half of the world’s population growth is anticipated to occur in Sub-Saharan Africa by 2050 (United Nations 2017). With waste generation expected to more than quadruple by 2050, it is alarming that waste is predominantly openly dumped. Waste management systems are slowly improving as cities are more frequently prioritizing the construc- tion of landfills, closure of dumps, and formalization of collection systems to improve the environmental and health impacts of waste. Regional Snapshots 77 Countries and cities are also increasingly focusing on solid waste man- agement and environmental education to reduce waste generation and improve sorting and collection systems. Efforts are also being made to improve recycling systems to divert waste from dumps and final disposal sites and to increase employment for informal waste collection workers. Population growth in Sub-Saharan Africa, amid high poverty rates, makes waste service fee collection and financing of the overall system key challenges for the region. Because governments have limited resources, waste often becomes a lower priority sector. However, governments are taking action to improve the financing of solid waste systems and are increasingly trying to find innovative tools and resources to address this issue. For example, in Senegal fiscal reform is aiming to designate funds for solid waste services. Experience has shown that a lack of clarity institutionally or politically can impede the role of local governments in delivering solid waste man- agement services and hinder partnerships with the private sector. National governments are now more commonly undertaking traditional municipal roles in delivery of solid waste management services. This pattern goes against the general global trend of decentralization and has led to mixed results. Data collection systems for solid waste management are nascent in Sub- Saharan Africa and face significant gaps. However, data are increasingly being collected by municipal agencies, nonprofits, private operators, con- sulting firms, and other local organizations and cooperatives. Though not all data are published online, public data availability is anticipated to improve substantially in the near future. Waste Generation and Composition The Sub-Saharan Africa region generated 174 million tonnes of waste  in 2016, or 0.46 kilogram per person each day (figure 3.32). The region’s per capita generation rate is the lowest globally. The larg- est waste generators are typically middle-income countries or those with significant tourist populations. Waste generation in urban areas, at 0.74 kilogram per person each day, is higher than the regional aver- age, a situation that could be linked to higher income and tourism activity. More than 40 percent of the waste in the Sub-Saharan Africa region is organic (figure 3.33) and 30 percent of waste is typically inert waste such as sand and fine particles. Typical consumption patterns in the region are changing and moving toward more packaged products and electronics. An increase in imports is also leading to larger amounts of packaging. 78 G Re lob gi al on A 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 al ver SeAve age yc ra g 0.74 So R hel e 0.46 ut wa les Ce h nd 1.57 nt M A kg/capita/day ra lA au frica 1.01 fri Ca Bu ritiua 0.98 ca bo ru s 0.95 n n What a Waste 2.0 Co Re Ve di r 0.77 So te dpubde ut ’Iv lic 0.71 h oi 0.66 Su re d 0.64 N an 0.64 De G ige m U ab r 0.57 g o percent oc ra N an n 0.56 tic Ta am da Re nz ibi 0.55 pu a 0.55 b G ania h 0.54 Glass Re lic Za an o pu f N m a 0.51 bl the ig bia ic C er 0.51 o o ia Eq Gu f Congo 0.51 ua in A ng 0.50 to ea ng o ria -B o 0.48 Food and green l G iss la 0.46 u a 30% So ineu 0.45 10% Es ma a 0.45 Sewat lia 0.45 ne ini Er gal 0.45 Other Metal 0.44 Note: Data adjusted to 2016 as described in box 2.1; kg = kilogram. Ca Li itre 8.6% m be a 0.43 er ria oo 0.43 M <1% Sã a G Togn 0.42 o 5% da am o To ga bi 0.42 m Bu s a 0.41 Plastic é rk Ke car an in n 0.41 3% d a ya M Prí Fas 0.39 au nc o 0.39 Figure 3.32 Waste Generation Rates: Sub-Saharan Africa Region rit ipe a 43% Be nia 0.37 n 0.36 C Si o M in er m al 0.35 ra or i 0.34 Le os 0.32 Paper and cardboard Bo C one h 0.31 Figure 3.33 Waste Composition in Sub-Saharan Africa M Zimtsw ad oz b an 0.31 am ab a 0.31 bi we G que 0.31 u 0.25 M ine Wood al a 0.21 Su aw Et d i 0.21 hi an Le op 0.20 so ia 0.18 th o 0.11 Regional Snapshots 79 Waste Collection Less than half of the waste generated in Africa is collected formally (figure  3.34). Collection coverage is much more comprehensive in urban areas than in rural areas, where collection is often nonexistent. Because of moderate formal collection rates, open dumping and burning are com- monly pursued to eliminate remaining household waste. Often, waste that is formally collected is still disposed of at central dumpsites. The informal sector is active in many African cities and is largely responsible for recycling. Waste collection systems are typically more developed in cities, and many cities in Sub-Saharan Africa have collection rates of more than 50 percent (figure 3.35). Many cities use a dual system in which waste is first collected door to door and later from a centralized point at which collected waste is aggregated. Among cities with available data, 88 percent reported that waste collection typically occurs on a door-to-door basis. Other neighbor- hoods, including unplanned neighborhoods, have designated areas or dumpsters in which residents can deposit their waste. However, littering is a major issue in most cities. Despite having bins or dumpsters, it is common to see waste disposed of haphazardly. Almost every country in the region is at a very early stage in source separation. Efforts are often led by the private sector and nongovernmental organizations in the main capital cities at both household and commercial levels to improve the purity of waste streams and cost recovery. It is typical to see higher waste collection rates in formal settlements and high-income areas, where it is easier to collect waste as a result of road development and greater density of housing. Most waste collection systems Figure 3.34 Waste Collection Coverage in Sub-Saharan Africa Waste collection coverage Total 44% Urban 43% Rural 9% 0 10 20 30 40 50 Percent 80 What a Waste 2.0 Figure 3.35 Waste Collection Rates for Select Cities in Sub-Saharan Africa percent coverage Harare, Zimbabwe 100 Gweru, Zimbabwe 99 Windhoek, Namibia 93 Antananarivo, Madagascar 89 Accra, Ghana 83 Maputo, Mozambique 82 Conakry, Guinea 76 Lome, Togo 70 Addis Ababa, Ethiopia 70 Dire Dawa, Ethiopia 69 Johannesburg, South Africa 69 Kampala, Uganda 65 Moshi, Tanzania 61 Niamey, Niger 60 Moroni, Comoros 60 Douala, Cameroon 60 Libreville, Gabon 57 Bamako, Mali 57 Nairobi, Kenya 50 Cotonou, Benin 50 Chinhoyi, Zimbabwe 50 Dar es Salaam, Tanzania 49 Abidjan, Côte d’Ivoire 48 Ouagadougou, Burkina Faso 47 Lusaka, Zambia 45 Freetown, Sierra Leone 45 Eldoret, Kenya 45 Yaounde, Cameroon 43 Kigali, Rwanda 42 Bujumbura, Burundi 41 Ibadan, Nigeria 40 Rufisque, Senegal 36 Banjul, Gambia, The 35 Mbare, Zimbabwe 30 Lilongwe, Malawi 30 Blantyre, Malawi 30 Nyagatare, Rwanda 29 Sikasso, Mali 25 Porto Novo, Benin 25 Monrovia, Liberia 20 Nouakchott, Mauritania 15 Lagos, Nigeria 10 0 10 20 30 40 50 60 70 80 90 100 Percent Note: Maximum chosen as reported for households, geographic area, or waste. Regional Snapshots 81 Photo 3.7 Waste Collectors in Uganda are organized around high-income communities. Informal settlements and low-income areas often receive poor or no collection services because of social stigma, potential inaccessibility, violence and crime, and difficulties in fee collection. Waste Transportation Waste collection in the Sub-Saharan Africa region often occurs in two steps, with handcarts, tricycles, and donkeys commonly used to collect waste from households and for transportation to an aggregation site. From the aggregation site, small vehicles and trucks are used to bring waste to the final disposal site. However, some areas do not have a dual system and the waste is either dumped on empty land or in a canal, taken to a transfer station, or transported directly to the final disposal site. For formal urban waste disposal systems, the distance traveled from  city center to final disposal sites can range from about 10 to 40 kilometers. Waste Disposal Currently, 69 percent of waste in the Sub-Saharan Africa region is openly dumped, and often burned (figure 3.36). Some 24 percent of waste is disposed of in some form of a landfill and about 7 percent of waste is recycled or recovered. As waste systems modernize, the amount of land- filling and recycling is anticipated to rise. More sanitary landfills are being built in the region; however, the number of new disposal facilities is not meeting the need given the growing quantities of waste. Because of 82 What a Waste 2.0 Figure 3.36 Waste Disposal and Treatment in Sub-Saharan Africa percent 1% <1% 6.6% 11% 12% 69% Anaerobic Digestion Landfill (Unspecified) Composting Open Dump Controlled Landfill Recycling Incineration Sanitary Landfill an increase in dumpsite failures affecting surrounding communities, the manner in which dumpsites are being operated is being improved and many are being closed completely. Cities are aware of recycling potential but recycling initiatives are most common in touristic cities. Key challenges in the Sub-Saharan Africa region include overuse of facili- ties and continued disposal even after design capacity has been exceeded, citizen resistance to placement of waste facilities near their homes, land scarcity, and high urbanization and sprawl. Often, sufficient land is not available to service basic city functions, and governments are facing diffi- culty in coordinating services and investment at the intermunicipal level to save resources. Waste Financing Capital financing for necessary infrastructure investments alone is not a sufficient solution for Sub-Saharan Africa’s solid waste sector. Many cities struggle with planning for long-term sustainability and with the financing of operational costs. In certain cases, cities have used donor funding to construct well-designed sanitary landfills that ultimately function as dump- sites because of lack of operational funding (World Bank 2017b). In some cities, national and local governments are able to finance portions of the waste system, although general government funding and waste fee col- lection are typically not sufficient for waste operations. Partnerships  with Regional Snapshots 83 the  private sector have been challenging for the region. Although interna- tional companies are interested in larger public-private partnership opportu- nities, there have been few successes. Financial, institutional, and political complications can make it difficult to attract international companies for  waste activities. Municipalities are looking for ways to expand local capacity. References Asian Development Bank. 2013. “Solid Waste Management in Nepal: Current Status and Policy Recommendations.” Asian Development Bank, Manila. CCAC (Climate and Clean Air Coalition). n.d. Municipal Solid Waste Initiative, Solid Waste Management City Profile, São Paulo, Brazil; page 4. City of Ottawa. 2018. “Solid Waste—Data and Reports.” Ottawa, Ontario. https://ottawa.ca/en/residents/garbage-and-recycling/solid-waste-data -and-reports#facts-and-overview. Croitoru, L., and M. Sarraf. 2017. “Le Cout de la Dégradation de l’Environnement au Maroc.” Environment and Natural Resources Global Practice Discussion Paper No. 5, World Bank, Washington, DC. Enayetullah, I., and Q. S. I. Hashmi. 2006. “Community Based Solid Waste Management through Public-Private-Community Partnerships: Experience of Waste Concern in Bangladesh.” Paper presented at the 3R Asia Conference, Tokyo, Japan, October 30–November 1. Government of Bermuda. n.d. “Tynes Bay Waste Treatment.” Ministry of Works and Engineering. http://rossgo.com/Tynes%20Bay/Incinerator.html. IFC (International Finance Corporation). 2014. Handshake: Waste PPPs. https://www.ifc.org/wps/wcm/connect/81efc00042bd63e5b01ebc0dc33 b630b/Handshake12_WastePPPs.pdf?MOD=AJPERES. India, Ministry of Urban Development. 2016. Swachh Bharat Mission (Collected from Swachh Surveskshan, 2017). Ministry of Housing and Urban Affairs. Government of India. Li, Judy. 2015. “Ways Forward from China’s Urban Waste Problem.” The Nature of Cities website. https://www.thenatureofcities.com/2015/02/01 /ways-forward-from-chinas-urban-waste-problem/. Lizana, Juan. 2012. “Plan de Inclusión Social para Segregadores en las Provincias de Cusco, Calca y Urubamba.” Programa de Desarrollo Regional PRODER Cusco. Cuadro Nº 19: Número de segregadores por distrito del Cusco con un 25% de segregación en fuente. Ministry of Environment, Forest and Climate Change. 2016. “Construction and Demolition Waste Management Rules.” New Delhi. http://www .moef.gov.in/sites/default/files/C%20&D%20rules%202016.pdf. 84 What a Waste 2.0 Qatar General Secretariat for Development Planning. 2011. Qatar National Development Strategy 2011–2016: Towards Qatar National Vision 2030. Doha: Qatar General Secretariat for Development Planning. https://www.mdps.gov.qa/en/knowledge/HomePagePublications/Qatar _NDS_reprint_complete_lowres_16May.pdf. Republic of Lebanon Ministry of Environment and UNDP. 2017. “Updated Master Plan for the Closure and Rehabilitation of Uncontrolled Dumpsites throughout the Country of Lebanon.” Ministry of Environment, Beirut, and United Nations Development Programme, New York. Seattle Public Utilities. 2016. “2015 Recycling Rate Report.” Seattle, WA. UN (United Nations). 2017. World Population Prospects: The 2017 Revision. New York: UN. https://www.un.org/development/desa/publications/world -population-prospects-the-2017-revision.html. World Bank. 2016. “Rapid Assessment of Kabul Municipality’s Solid Waste Management System.” Report No. ACS19236, World Bank, Washington, DC. World Bank. 2017a. “Maldives Clean Environment Project: Combined Project Information Documents / Integrated Safeguards Datasheet (PID/ ISDS).” World Bank, Washington, DC. http://documents.worldbank.org /curated/en/455971491655712283/pdf/ITM00194-P160739-04-08 -2017-1491655709183.pdf. World Bank. 2017b. “Senegal Municipal Solid Waste Project. Project Information Document/Integrated Safeguards Data Sheet (PID/ISDS).” World Bank, Washington, DC. http://documents.worldbank.org/curated /en/581531500995135875/pdf/ITM00184-P161477-07 -25-2017 -1500995132357.pdf. Additional Resources Europe Environment Agency. 2016. “Municipal Waste Management across European Countries.” Copenhagen. https://www.eea.europa.eu/themes / waste/municipal-waste/municipal-waste-management -across -european-countries. King, Neil. 2017. “The Rise of Waste-to-Energy in the GCC.” Gulf Business website. http://gulfbusiness.com/rise-waste-energy-gcc/. Mohee, Romeela, and Thokozani Simelane. 2015. Future Directions of Municipal Solid Waste Management in Africa. Pretoria: Africa Institute of South Africa. Office of the Auditor-General of Papua New Guinea. 2010. “The Effectiveness of Solid Waste Management in Papua New Guinea.” Performance Audit Report No. 01/2010. Waigani, Papua New Guinea. Regional Environmental Center and Umweltbundesamt GmbH. 2018. “Waste Management Legislation.” In Handbook on the Implementation Regional Snapshots 85 of EC Environmental Legislation. Szentendre, Hungary: Regional Environmental Center; Dessau-Roßlau, Germany: Umweltbundesamt. http://ec.europa.eu/environment/archives/enlarg/handbook/waste.pdf. Secretariat of the Pacific Regional Environment Programme. Waste character- ization report 2014. https://www.sprep.org/j-prism/reports-a-materials.  United States Environmental Protection Agency. 2018. Municipal Solid Waste Landfills: National Emission Standards for Hazardous Air Pollutants (NESHAP). https://www.epa.gov/stationary-sources-air-pollution/municipal -solid-waste-landfills-national-emission-standards. World Bank Open Data: Population 1960–2016. n.d. https://data.world bank.org/indicator/SP.POP.TOTL. CHAPTER 4 Waste Administration and Operations Key Insights • In most countries, solid waste management is a local responsibility, by default or through decentralization policies. Direct central government involvement in waste services, other than regulatory oversight or subsi- dies, is rare. • About 70 percent of waste services are overseen directly by local public entities, with the remainder administered through other levels of govern- ment, intermunicipal arrangements, mixed public-private entities, or pri- vate companies. • About half of services are operated by public entities. About one-third of services, from collection to treatment and disposal of waste, are operated through mixed public-private partnerships. • The private sector is typically engaged through management or conces- sion contracts for collection, treatment, and disposal, and contracts gener- ally last fewer than 10 years. • Intermunicipal government cooperation is in place in a minority of cities, and typically occurs through the use of shared assets for waste transfer, disposal, and city cleaning. • About two-thirds of countries have created targeted legislation and regulations for solid waste management, though enforcement may vary. • Almost 70 percent of countries have established institutions with respon- sibilities for policy development and regulatory oversight in the waste sector. • Systematic public reporting on waste policies and waste data is  largely limited to high-income countries and some middle-income countries. 87 88 What a Waste 2.0 W aste management is an essential urban service that requires planning, management, and coordination across all levels of government and stakeholders. Solid waste management services typically include waste col- lection from households and commercial establishments and haulage to a collection point or transfer station, transportation from a collection point or transfer station to a final treatment or disposal site, treatment and dis- posal of waste, and street cleaning and drainage management. Countries and cities around the world are pursuing a range of administrative and operational models to offer some or all of these services. In high-income countries, national governments develop laws and regulations that establish guidelines, national performance targets, and operational and environmental standards. In rare cases national govern- ments may operate solid waste services, but solid waste management is typically a local service. Local governments, such as cities, prefectures, and states, are often responsible for creating more specific local regulations, collecting and disposing of waste, and deciding how physical and financial resources should be allocated and how costs can be recovered. Local agen- cies are also responsible for identifying private sector partners that may build or operate services, siting new landfills or other waste facilities, and monitoring service coverage, citizen feedback, and pollution from facilities. It is at the local level that innovative waste programs are typically devel- oped, such as the introduction of bins of different colors for household source separation or local composting programs. Adequate waste services are more difficult to achieve in low- and middle- income countries, where challenges are as much a result of poor planning and service operation as a lack of funding for investments. Daily waste management is expensive; requires institutional skills for planning, opera- tional management, and oversight; and, where funding is limited, waste management competes with other development priorities. Developing waste management capacity and mobilizing resources requires strong polit- ical support. Typical challenges that have repeatedly been identified in World Bank studies include the following: • Shortage of financial resources, particularly to operate waste collec- tion, transport, and disposal systems, caused by lack of revenues from households and other waste generators or lack of budget and funding in local governments. • Complexity of designing and managing decentralized, locally based waste collection, transport, and disposal systems while maximizing coverage and minimizing environmental impacts. • Lack of land and resistance from local populations to development of waste facilities. • Limited institutional capacity for planning, monitoring, and enforcement. • Ambiguity around organizational structure and responsibility, and coordination both within the same level of government and between national, regional, and local governments. Waste Administration and Operations 89 This chapter presents findings at both national and local government levels regarding regulations, institutions, and practical approaches to meet these operational challenges. Solid Waste Regulations A foundational aspect of sustainable waste management is proper plan- ning and oversight from central authorities. While waste management is typically a locally operated service, both national and local governments play a role in defining the regulatory framework within which solid waste management services can be developed, and this can affect private sector engagement. National governments are typically responsible for establish- ing environmental standards for waste management and for creating rules for fair and transparent procurement of services from the private sector. National laws encourage local governments to adhere to common social and environmental standards. Local governments also establish rules and regulations that guide households and institutions on the proper manage- ment and disposal of waste. Typically, the entity that regulates waste man- agement is separate from the entity that operates services to promote accountability. National Waste Regulation In this study, 86 percent of countries and economies reported the existence of an official national law or guidelines that govern solid waste manage- ment. Table 4.1 summarizes the number of countries with established national laws or other guiding frameworks for solid waste management, which may be a specific piece of solid waste regulation or broader envi- ronmental and urban laws that address solid waste management. Table 4.1 Existence of National Waste Management Regulation Share of Number of Number of countries with countries with countries defined solid defined solid without waste waste defined solid Number of management Total management waste countries laws or Income number of laws or regulations or with no guidelines group countries guidelines guidelines information (percent) High income 78 75 2 1 96% Upper-middle 56 47 4 5 84% income Lower-middle 53 47 1 5 89% income Low income 30 18 1 11 60% All 217 187 8 22 86% 90 What a Waste 2.0 Low-income countries are most likely to lack specific laws on waste management; in general, solid waste management systems are more nascent in these countries. Waste management in lower-income countries is also often primarily addressed by municipalities or even communities. The number of countries that have specific solid waste management laws increases significantly in middle-income countries. Some 88 percent of middle-income countries have guiding solid waste management laws or frameworks. The vast majority of countries without data on waste legisla- tion are in Sub-Saharan Africa, where laws are still being developed. Solid waste management laws range from broad environmental rules to targeted interventions. For example, Peru’s General Law on Solid Waste Management (Ley General de Residuos Sólidos, 27314) addresses all aspects of solid waste management, from generation to final disposal. Many countries have formed specific laws that address specific waste streams, and often, legislation for municipal waste is separate from that for hazardous or medical waste. Enforcement of laws is a common challenge. Enforcement requires adequate staffing, implementation of fees or other penalties, and cultural alignment with  legislative goals. In Malaysia, the National Solid Waste Management Policy was created to standardize and improve waste manage- ment across the country (Wee et al. 2017). However, deployment efforts were challenged by limited financing, low staff technical capacity, and ambiguity in the policy’s guidelines. In Rwanda, a national plastic bag ban was strictly enforced using border patrol guards to prevent illegal imports and multiple penalties for offenders, including fines, jail time, and public shaming (de Freytas-Tamura 2017). Photo 4.1 Plastic Bag Ban in Kenya Waste Administration and Operations 91 Local Waste Regulation Because responsibility for executing solid waste management systems typically falls on local governments, local rules and regulations are com- monplace. Local regulations cover specific aspects of waste manage- ment, including source separation, household and commercial fees, disposal sites, bans on plastic or other materials, and the institutions and agencies that are responsible for implementing waste operations and initiatives. This study reveals that most cities have some solid waste management rules and regulations (table 4.2). Out of the cities studied, 223 reported the presence of official solid waste management policies. Only 18 reported a lack of policies, and data were not available for 127 cities. Solid Waste Planning Solid waste strategies and plans at both the national and local levels allow agencies to comprehensively understand the current situation, identify future goals, and outline a detailed plan of action to advance the solid waste management sector. Planning allows all stakeholders—including different government agencies, citizens, associations, and the private sector—to be coordinated and allows investments to be made in an efficient and targeted manner. National Strategies In more advanced cases of waste governance, national governments may develop a five- to ten-year national strategy that details the current waste situation in the country and sets targets for the sector about recycling, financial sustainability, citizen awareness, promotion of a green economy, Table 4.2 Existence of Urban Waste Management Regulation Number of cities with Number of cities Number of cities defined solid waste without defined solid without management rules waste management available Region and regulations rules and regulations information East Asia and Pacific 32 0 8 Europe and Central Asia 51 6 34 Latin America and the 20 5 14 Caribbean Middle East and 19 0 10 North Africa North America 6 0 0 South Asia 74 6 3 Sub-Saharan Africa 21 1 58 All 223 18 127 92 What a Waste 2.0 reduction of greenhouse gases, and rehabilitation of contaminated sites. Sometimes the national strategy contains legally binding legislation or other guidelines for individuals and institutions. National governments may provide financing or technical expertise, such as by sharing costs or evaluating plans for the construction of new disposal sites, to help locali- ties achieve national goals. The Kenya National Environmental Management Authority published Kenya’s National Solid Waste Management Strategy in 2014 in response to citizen complaints of poor waste management, outlining collective action mechanisms to systematically improve waste management (NEMA 2014; Akinyi 2016). Another example, in Mozambique, is a national strategy for integrated waste management that details the current waste management situation and outlines a 12-year framework for action to address the most pressing solid waste management challenges. The strategy provides guid- ance on topics from landfill construction to organization of waste pickers and outlines the roles of all stakeholders, including central governments, municipalities, businesses, waste pickers, residents, and nongovernmental organizations (Tas and Belon 2014). National strategies often define met- rics, such as recycling rates, to track progress over time. Local Master Plans Because waste management is a local service, it is much more common for cities to develop a solid waste management–focused master plan than for countries to create a national strategy. Master plans formalize the locality’s goals for solid waste management and plans for implementation. Solid waste master plans are comprehensive, outlining planned investments in infrastructure, citizen engagement strategies, environmental criteria and safeguards, and all aspects of waste collection, transport, and disposal. Cities typically implement master plans at a more mature stage in the solid waste management sector. In this study, 130 cities reported the existence of a master plan, but plans are being implemented in only 87 of them (table 4.3). Table 4.3 Existence and Implementation of Urban Master Plan Number of cities with Number of cities where integrated solid waste a master plan is being management plan implemented Yes 130 87 No 58 30 Unknown 180 251 Waste Administration and Operations 93 In South Africa, the National Environmental Management: Waste Act of 2008 mandated all municipalities create an Integrated Waste Management Plan (City of Johannesburg 2011). The city of Johannesburg responded by creating a plan that details current waste generation and characteristics, disposal practices, key roles and responsibilities, and instruments for imple- mentation, including funding sources. The plan also details goals and targets for waste minimization and recovery, information systems, pollu- tion control, governance, and budgets. Institutions and Coordination Both national and local governments may establish departments dedi- cated to solid waste management, though formalized solid waste manage- ment institutions are more common at the local level. Centralizing solid waste management under a single entity can help ensure that planning processes are coordinated, resources are used efficiently, redundancy in function is avoided across departments, and all gaps in service are mini- mized and addressed comprehensively. Central agencies can also assume responsibility for enforcing solid waste policies and regulations. At a macro level, 148 out of 217 countries and economies have national agencies dedicated to enforcing solid waste laws and regulations. Data were not available in 53 countries, and 16 countries do not have such an agency. Furthermore, 19 countries reported the existence of a dedicated solid waste management agency, authority, or department. However, more commonly, solid waste management falls under the purview of an institution with broader responsibilities, such as a ministry of environment, planning, or local government. At a local level, departments dedicated to solid waste management are much more common (table 4.4). A department dedicated to solid waste management was reported by 216 cities; 21 cities lacked a dedicated depart- ment; and data were not available for 131 cities. In addition, 107 cities reported having dedicated government units that combat common solid waste management issues, such as illegal dumping and littering. Coordination is required to ensure consistency between different levels of government. Many governments also struggle with overlaps in responsi- bilities across agencies or gaps in responsibilities, since activities related to solid waste management often cut across multiple departments. As a solu- tion in Pakistan, a new Sindh Solid Waste Management Board was estab- lished to coordinate waste management decisions across agencies and municipalities (SSWMB 2017). Furthermore, a successful model of inter- jurisdictional coordination is detailed in case study 4 in chapter 7, high- lighting a Japanese experience. 94 What a Waste 2.0 Table 4.4 Oversight of Solid Waste Management in Cities Number of cities with a Number of cities with a unit department dedicated enforcing solid waste to solid waste management issues such management as dumping and littering Region Yes No Unknown Yes No Unknown East Asia 38 0 2 21 0 19 Europe and 51 9 31 23 7 61 Central Asia Latin America and the 20 3 16 0 0 39 Caribbean Middle East and North 17 1 11 9 1 19 Africa North America 6 0 0 0 0 6 South Asia 66 6 11 51 8 24 Sub-Saharan 18 2 60 3 2 75 Africa All 216 21 131 107 18 243 Waste Management Operations Waste management services are delivered in a variety of ways across the world (table 4.5). Waste management is most commonly managed by municipalities in a decentralized manner. Solid waste management pro- grams are typically designed in response to local conditions such as financ- ing availability, local norms, spatial layout of communities, and the ability of citizens to pay for services. Where local conditions allow, solid waste services can be managed on an intermunicipal scale. Intermunicipal coop- eration is common in European Union countries such as France, Italy, and the Netherlands (Kolsut 2016), where coordination has led to economies of scale, cost savings through fewer investments and a wider span of financ- ing  sources, reduced staffing needs, and exchange of technical skills. Intermunicipal coordination is most effective when operational objectives and guidelines are similar across entities, such as in European Union states sharing stringent membership requirements and legislative frameworks. Tokyo, Japan, provides an example of intermunicipal coordination, where prefecture governments build final disposal sites shared by multiple munici- palities. Coordination can be difficult between municipalities that have dif- ferent environmental and waste management priorities, are geographically separated, or that manage waste across several disparate departments. It is less common for national governments to operate solid waste management services. Mixing regulatory and operational responsibilities Waste Administration and Operations 95 Table 4.5 Examples of Waste Management Operations and Administrative Models Country Region Administrative model Operational model Communities organize waste collectors with user fees, city Highly decentralized, East Asia organizes waste Indonesia responsibility of and Pacific transport and disposal the municipality from local budget, private operators are typically not involved. Decentralized waste Private operator collection and collects user fees and East Asia disposal operated Cambodia provides waste and Pacific through long-term collection and concession to disposal service. private sector Highly centralized Waste services are Europe and Azerbaijan national planning organized by regional Central Asia and oversight administrations. can lead to conflicts in accountability, and local governments are able to offer more efficient services and informed plans since they are directly connected to the demographic that they serve. However, national opera- tion has taken place in limited cases. For example, in Azerbaijan, national administration of waste services has enabled streamlined reform, sys- tem  modernization, and standardization of services across different regions. The country formed its national strategy in 2006, closed about 80 percent of its informal dumpsites, and expanded collection services from covering 60 percent of the population to covering more than 75  percent (Van  Woerden 2016). Similarly, waste services in smaller countries, such as Jamaica and Malaysia, are centrally managed, though efforts are being made to separate responsibilities across different depart- ments and to engage the private sector in service delivery (JSIF, n.d. Manaf, Samah, and Zukki 2009). Slightly more than 30 percent of waste management services, from primary collection to treatment and disposal, are provided through pub- lic-private partnerships, even though such partnerships can be complex to structure and implement. Private operators can bring efficiency and financial security to waste management systems under the right condi- tions. Often, the private sector is engaged to help public entities improve operations and mitigate the common challenge of unequal collection access across economic cohorts. For example, in Lahore, Pakistan, a pri- vate company not only increased waste collection coverage from 51 per- cent to 88 percent but also enhanced waste monitoring through vehicle 96 What a Waste 2.0 tracking, which improved the way that limited financial and physical resources were strategically used and allocated (Ashraf, Hameed, and Chaudhary 2016). When private entities are involved, governments must consider the terri- tory that the entity has control over. For example, cities have pursued var- ied models for waste collection. In the city of San Francisco in the United States, a single operator has a designated monopoly to provide waste col- lection services to the whole city, which encourages the company’s partici- pation in and ability to test new models and promotes consistency of services (Stevens 2011). In Singapore, however, the city is zoned so that different operators serve unique geographic sections, thus promoting more widespread participation and competition (Singapore National Environment Agency n.d.). Governments must balance competition against crowding of streets and revenue opportunities for private operators. Finally, some cities have commercial entities that directly contract with the hauler of their choice; however, this method can lead to other concerns, such as vehicle congestion. In addition to general solid waste laws, 54 percent of countries studied have official laws guiding public entities in engagement with the private sector. For 21 percent of countries, such regulation is absent, and data were not available for 25 percent of countries. Effective public-private partner- ship laws provide institutional and financial security to private operators and increase the viability of engaging the private sector in solid waste man- agement operations. Cities use a variety of administrative and contracting models across the  waste management value chain (figure 4.1). Almost all services are administered and operated by public entities, with 50–70 percent of cit- ies  reporting public administration at a municipal level and more than 40 percent reporting public operation from collection to disposal to treatment. Intermunicipal cooperation typically occurs for services involv- ing shared assets, such as transfer stations or disposal sites, as well as for city cleaning, which may achieve economies of scale across shared spaces. The majority of cities with data reported that most waste services are oper- ated publicly, but a small fraction, about 15 percent, are operated “directly,” which means that a service is provided by independent small-scale organi- zations directly to households. Where private entities are engaged, management, concession, and other public-private partnership contracts are most commonly used. Most contracts last less than 10 years, which provides flexibility to the public entity. For waste disposal, which typically entails the operation of a fixed asset such as a landfill, about 35 percent of contracts last 10 years or longer. Waste Administration and Operations 97 Figure 4.1 Waste Management Administration, Operation, and Financing Models Administrative model Operator Contractual arrangement Entity or entities overseeing Entity or entities providing Arrangement for provision the administration of the solid waste management of solid waste management system service services Decentralized Direct Municipal service Intermunicipal Decentralized Concession Municipal Intermunicipal Franchise Key Mixed public-private Municipal Lease Other Mixed public-private Management Other Other PPP (construction, DBOT, DBO, DBFO, BOT, BOO) 6% 6% 2% 12% 7% 11% 16% 7% Primary 21% collection 32% 1% 48% 65% 34% 31% 8% 6% 2% 10% 3% 3% Secondary 17% 6% 17% 30% collection 33% 0% 67% 35% 70% 4% 4% 9% 12% 6% 16% Transfer station or 31% intermediate 35% 47% 31% collection point 48% 4% 31% 19% 4% 15% 9% 13% 1% Disposal and 19% 7% 27% treatment 21% 47% 56% 31% 29% 8% 18% 5% 0% 7% 2% 5% 9% 11% 1% 17% City cleaning 21% 5% 20% 78% 44% 74% (Figure continues on next page) 98 What a Waste 2.0 Figure 4.1 Waste Management Administration, Operation, and Financing Models (continued) Contract length Investment financing agent Typical length of contracts Main entity or entities financing with operators infrastructure investments Less than 5 Years National government 5–10 years Local government Key 10–20 years Private sector 20 years or more Other 3% 15% 6% Primary 35% 12% 25% collection 55% 48% 9% 13% 13% Secondary 30% 16% 21% collection 48% 50% 7% 10% 10% Transfer station or 20% intermediate 24% collection point 73% 57% 10% Disposal and 24% 26% 22% 26% treatment 12% 38% 41% 4% 4% 10% 10% 20% City cleaning 42% 50% 59% Note: Decentralized = local jurisdictions; intermunicipal = two or more municipalities in coordination; municipal = single municipality; mixed public-private = public and private entities; other = private, nongovernmental or other entity, or no formal administration system. Direct = organization directly contracting with waste generator; decentralized = local jurisdictions; intermunicipal = two or more municipalities coordinate; municipal = single municipality; mixed public- private = public and private entities; other = private, nongovernmental or other entity, or none. Municipal service = municipality provides services; concession = government grants private firm assets or opportunity to provide services in exchange for rights to profit; franchise = government contracts exclusively with private firm for long-term service provision in specific areas; lease = private operator pays municipality for use of public assets; management = government hires private operator to operate a waste facility; construction = contract for construction of facilities; BOO = build-operate-own; BOT = build-operate-transfer; DBFO = design-build-finance-operate; DBO = design-build-operate; DBOT = design-build-operate-transfer; PPP = public-private partnership. Waste Administration and Operations 99 References Akinyi, Lucy. 2016. “NEMA Launches Solid Waste Management Strategy.”  Citizen Digital, September 15. https://citizentv.co.ke/news /nema-launches-solid-waste-management-strategy-141364/. Ashraf, Usman, Isbah Hameed, and Muhammad Nawaz Chaudhary. 2016. “Solid Waste Management Practices under Public and Private Sector in Lahore, Pakistan.” Bulletin of Environment Studies 1 (4): 98–105. http:// www.mnpublishers.com/journals/bes/archives/issue/vol-1-no-4/article /solid-waste-management-practices-under-public-and-private-sector-in-l ahore-pakistan. City of Johannesburg. 2011.  “City of Johannesburg Integrated Waste Management Plan.” Johannesburg, South Africa. http://www.pikitup.co .za/wp-content/uploads/2015/10/City-of-Joburg-Integrated-Waste -Management-Plan-2011.pdf. de Freytas-Tamura, Kimiko. 2017. “Public Shaming and Even Prison for Plastic Bag Use in Rwanda.” New York Times, October 28. https://www .nytimes.com/2017/10/28/world/africa/rwanda-plastic-bags-banned .html. JSIF (Jamaica Social Investment Fund). n.d. “National Solid Waste Management.” http://www.jsif.org/content/national-solid-waste -management. Kolsut, Bartłomiej. 2016. “Inter-Municipal Cooperation in Waste Management: The Case of Poland.” Quaestiones Geographicae 35(2): 91–104. Ley General de Residuos Sólidos. http://www.upch.edu.pe/faest/images / stories/upcyd/sgc-sae/normas-sae/Ley_27314_Ley_General_de _Residuos_Solidos.pdf. Manaf, L.A., M.A. Samah, and N.I. Zukki. 2009. “Municipal Solid Waste Management in Malaysia: Practices and Challenges.” Waste Management 29 (110): 2902–6. https://www.ncbi.nlm.nih.gov/pubmed/19540745. NEMA (National Environment Management Authority, Kenya). 2014. The National Solid Waste Management Strategy. Nairobi: NEMA. https:// www.nema.go.ke/images/Docs/Media%20centre/Publication /National%20Solid%20Waste%20Management%20Strategy%20.pdf. Singapore National Environment Agency. n.d. “Waste Management: Overview.” http://www.nea.gov.sg/energy-waste/waste-management. SSWMB (Sindh Solid Waste Management Board). 2017. “Hands Together for Clean & Healthy Sindh.” SSWMB, Sindh, Pakistan. http://www . urckarachi.org/downloads/SSWMB%20Forum%20by%20 A.D.Sanjnani%2019%20April%202017.compressed.pdf. Stevens, Elizabeth. 2011. “Picking Up the City’s Garbage Is a Sweet Deal, and a Monopoly.” New York Times, June 9. https://www.nytimes.com /2011/06/10/us/10bcstevens.html. 100 What a Waste 2.0 Tas, Adriaan, and Antoine Belon. 2014. A Comprehensive Review of the Municipal Solid Waste Sector in Mozambique. Nairobi: Carbon Africa. http://www.associacao-mocambicana-reciclagem.org/wp-content /uploads/2017/08/2014-08-05-A-Comprehensive-Review-of-the-Waste -Sector-in-Mozambique-FINAL.pdf. Van Woerden, Frank. 2016. “VPU Team Awards for ECA: Azerbaijan Integrated Solid Waste Management Project.” Washington, DC, World Bank. Wee, Seow Ta, Muhamad Azahar Abas, Sulzakimin Mohamed, Goh Kai Chen, and Rozlin Zainal. 2017. “Good Governance in National Solid Waste Management Policy (NSWMP) Implementation: A Case Study of Malaysia.” AIP Conference Proceedings 1891. https://aip.scitation.org /doi/pdf/10.1063/1.5005461. CHAPTER 5 Financing and Cost Recovery for Waste Management Systems Key Insights • Basic solid waste management systems covering collection, transport, and sanitary disposal in low-income countries cost $35 per tonne at a minimum and often much more. • Solid waste management is a large expenditure item for cities and typically comprises nearly 20 percent of municipal budgets in low-income countries, more than 10 percent in middle-income countries, and 4 percent in high-income countries. Budgets can be much higher in certain cases. • Systems that include more advanced approaches for waste treatment and recycling cost more, from $50 to $100 per tonne or more. The choice of waste management methodology and tech- nology depends highly on the local context and capacity for investments and ongoing management. • User fees range from an average of $35 per year in low-income countries to $170 per year in high-income countries. Full cost recovery from user fees is largely limited to high-income countries. Almost all low-income countries, and a limited number of high-income countries, such as the Republic of Korea and Japan, subsidize domestic waste management from national or local budgets. • Although public-private partnerships could potentially reduce the burden on local government budgets, they could result in compromises in service quality when not structured and managed properly. • Local governments provide about 50 percent of investments for waste services, and the remain- der is typically provided through national government subsidies and the private sector. • When political support for increasing user fees for households to cost recovery levels is lim- ited, cross-subsidizing from payments by waste generators (for  example, the commercial sector) can help reduce the burden on local government budgets. Commercial fees range from about $150 per year in low-income countries to $300 in high-income countries. • Volume-based waste fees have been successful in countries like Austria, Korea, and the Netherlands but are still uncommon because they require coordinated planning and strong enforcement. Households and commercial institutions in low-income countries are typically charged a flat fee that is collected on a door-to-door basis. 101 102 What a Waste 2.0 B ecause solid waste management is commonly a locally managed ser- vice, operations and financing often fall under the purview of local governments. In low- and middle-income countries, waste management financing is often limited, and funding must be balanced with the pro- vision of other essential services, such as health care, education, and housing. Given the potential major impact of the financial sustainability of waste systems on the overall health of the city, designing an efficient system with clear paths for financing is essential. Furthermore, a well- functioning system can create a positive feedback loop in which citizens gain trust and satisfaction with services and are more willing to pay. With a growing global economy and a global population that is anticipated to increase from 7.6 billion today to 9.8 billion in 2050, the importance of financial efficiency in solid waste management has never been greater (United Nations 2017). Waste Management Budgets Waste management is an expensive service and requires substantial investments in physical infrastructure and long-term operations. Solid waste management services are also essential to the physical and eco- nomic health of society and are often a priority budget item for cities. For cities in low-income countries, solid waste management expenditures, on average, comprise 19 percent of municipal budgets (table 5.1). As countries grow economically, more funding is allocated to other public services. Despite the substantial share of solid waste management expenditures in municipal budgets, low- and middle-income countries often face budget shortfalls for waste services and thus reduction of costs and recovery of fees is often integral to the development of the sector. Table 5.1 Solid Waste Management as a Percentage of Municipal Budget Average percentage of municipal Income group expenditures on solid waste management High income 4% Middle income 11% Low income 19% Note: The absolute average of municipal expenditures on solid waste management was used. Only one city per country is represented in this analysis to prevent skewing, for a total of 46 countries. The capital city was selected if data were available, otherwise the next largest city was used. When data from multiple cities were available, budget ratios were found to be similar across cities within a single country. Financing and Cost Recovery for Waste Management Systems 103 Waste Management Costs Municipalities providing waste management services generally experience two broad categories of expenditures: (1) capital expenditures, which are typically associated with infrastructure investments; and (2) operational expenditures, often associated with service provision and equipment maintenance. Planning around these two types of expenditures generally differs. The largest one-off waste management expenditure for municipalities is typically for infrastructure investment. Construction of sanitary disposal sites and purchase of collection and disposal equipment and bins is a prerequisite to offering consistent services to residents. The cost of construction and main- tenance of disposal facilities may influence the city’s choice of final disposal strategies. For example, landfill construction can cost a municipality roughly US$10 million to serve a population of 1 million people; the cost of a com- posting facility can range from a few million dollars for basic (windrow) com- posting facilities to about US$10 million for highly mechanized outfits; an incinerator with heat and energy recovery cost about $600/annual tonne for capital costs (defined as the total capital cost for the lifetime of the plant divided by the total annual capacity) for recent plants in Mexico, Poland, Singapore, and the United States (Kaza and Bhada-Tata 2018). Transfer stations can be very basic with a cost of about US$500,000, but when recy- cling and sorting functions are included, investment increases by several times. The technology that is most feasible depends not only on financial stability, but also on the technical capacity and local environment of the city. Cities offering collection services must also purchase vehicles. In middle- and high-income countries, large new trucks cost about US$250,000 each, while low-income countries often use more localized systems that minimize investment costs, such as buggies, handcarts, and donkeys (Lee  2009). Cities must balance the fact that newer vehicles are more fuel efficient and require fewer parts and less maintenance, but have high initial investment costs. Along with capital costs, cities must also factor in the cost of feasibil- ity studies and environmental and social assessments that take place ahead of construction projections. The largest financial challenge for cities is usually the coverage of opera- tional expenditures for labor, fuel, and the servicing of equipment. For example, for the city of Istanbul, Turkey, labor costs account for 58 percent of operational costs for the public collection system, and fuel accounts for another 31 percent (Dogan and Suleyman 2003). Tipping fees may be a source of revenue or expenditure depending on whether a local government is paying a private disposal facility or private haulers and residents are pay- ing to use a municipally operated site. Governments that operate waste management systems must also factor in costs of repairs, depreciation of vehicles and other assets, operational costs for landfill operation such as a daily cover, and utilities and overhead costs. For example, in Bahir Dar, Ethiopia, equipment was assumed to depreciate at a rate of 20 percent a 104 What a Waste 2.0 year (Lohri, Camenzind, and Zurbrügg 2014). In Seattle in the United States, overhead costs comprised 22 percent of the total waste management operating budget (DSM Environmental Services 2012). Operating costs are almost always substantially higher than capital costs for investments and are often the most challenging to sustain. Even when capital costs are accounted for (often funded separately, for example, with national government subsidies), operational expenditures can easily account for 70 percent or more of total required budgets. Across collection and disposal operations, waste collection typically accounts for 60–70 percent of total costs. However, disposal costs have risen with more advanced sort- ing and materials recovery choices. For many cities, the long-term environ- mental benefit of operational expenditures, including the availability of raw materials and preservation of land value, outweighs the higher initial costs. See table 5.2 for a summary of typical waste management expenditures across major categories. Disposal costs vary greatly. In some countries, waste disposal is informal and therefore not officially accounted for. In high-income countries, disposal costs are better accounted for and are typically between US$50 and US$100 per tonne. Recycling costs for high-income countries are often comparable to the cost of landfilling. Recycling is sometimes made cheaper when landfills are taxed or when limited capacity is available and market prices for landfill- ing increase. Construction and operation of anaerobic digestion and incinera- tion systems require a large budget (table 5.3) and high management and technical capacity, and the technologies are rarely used for municipal waste in low- and middle-income countries. The cost of open dumping is difficult to quantify because of a lack of data on construction and tipping fees. However, dumping incurs substan- tial costs in lost land value and increases the risk of high disaster-related Table 5.2 Typical Waste Management Costs by Disposal Type US$/tonne Lower- Upper- Low- middle- middle- High- income income income income countries countries countries countries Collection and 20–50 30–75 50–100 90–200 transfer Controlled landfill 10–20 15–40 20–65 40–100 to sanitary landfill Open dumping 2–8 3–10 — — Recycling 0–25 5–30 5–50 30–80 Composting 5–30 10–40 20–75 35–90 Source: World Bank Solid Waste Community of Practice and Climate and Clean Air Coalition. Note: — = not available. Financing and Cost Recovery for Waste Management Systems 105 Table 5.3 Capital and Operational Expenditures of Incineration and Anaerobic Digestion Systems US$/tonne Incineration Anaerobic Digestion Capital Capital Expendituresa Operational Expenditures Operational (US$/annual Expenditures (US$/annual Expenditures tonne) (US$/tonne)b,c tonne) (US$/tonne) Europe $600–1,000 $25–30 $345–600 $31–57 United $600–830 $44–55 $220–660 $22–55 States China $190–400 $12–22 $325 $25 Source: Kaza and Bhada-Tata 2018. Note: MWh = megawatt hour of energy. a. In Europe and the United States, predominantly mass-burn/moving grate technology is used for waste incinerators with energy recovery (waste-to-energy incineration). In China, many incinerators use circulating fluidized bed (CFB) technology, which reflects the lower end of investment cost, although moving grate incinerators are also becoming more common. b. Operating costs without accounting for revenues range between $100-200/tonne. The figures presented in the table are typical operating costs (net gate fees) taking into account revenues for electricity and heat sales and other revenues. In Europe, also including subsidies to energy from waste in some countries, these revenues are typically about $100/tonne, hence the resulting operating costs. In the United States, feed-in tariffs for electricity are typically lower, below $50/MWh. c. Mixed waste in the United States and Europe is relatively low in organics and water content and hence high in calorific value. As a consequence, operating costs for waste with high organics often seen in lower-income countries could substantially increase operating costs due to lower revenues. costs depending on the proximity and density of the local population to the  disposal site. Dumpsite closures can also result in significant costs. In addition to the costs of land, disasters, and dump closures, poor waste management using dumping or uncontrolled burning results in environ- mental costs from air and water pollution and damage to human health. These economic costs can often be significant in the long run. Waste Management Financing Financing waste management systems is often one of the greatest concerns for municipalities. Cost recovery is essential to avoid reliance on subsidies from own-source revenues or from national or external sources. Waste management investment costs and operational costs are typically financed differently. Given the high costs associated with infrastructure and  equipment investments, capital expenditures are typically supported by subsidies or donations from the national government or international donors, or through partnerships with private companies. About half of investments in waste services globally are made by local governments, with 20 percent subsidized by national governments, and 10–25 percent from the private sector, depending on the service provided. 106 What a Waste 2.0 In a public-private partnership in Siam Reap, Cambodia, most waste collec- tion and some waste disposal is contracted to private operators without public budget support (Denney 2016). The private operators directly collect user fees for their services to cover expenses. Operational expenditures typically require a solid cost-recovery system for long-term sustainability. The starting point for many municipalities is a standard user fee, which is charged to users for services delivered. User fees may be fixed or variable to encourage reduced waste generation or to pro- vide affordability for lower-income residents. The most effective user fees match the ability and willingness of users to pay. For example, in a single city, poor neighborhoods may be charged no fees while more wealthy neighborhoods or those serviced by the private sector or a nongovernmen- tal organization pay regular fees. In Yunnan, China, for instance, house- holds in urban areas pay US$1.5 per month for waste services, whereas services are offered to rural areas at no cost (Zhao and Ren 2017). User fees may be billed through an independent waste service bill or in combination with other utility and property taxes to increase fee recovery. In addition to user fees, cities may recover costs by selling recycled materials and compost, generating energy from waste, establishing a financial deposit system on recyclables such as water bottles, taxing consumer goods such as plastic bags and batteries, and levying licensing fees from operators of transfer stations and final disposal sites. Table 5.4 presents averages across regions, showing that household fees vary greatly. User fees in the Europe and Central Asia region were found to be the highest and those in Sub-Saharan Africa were the lowest. Fees also vary greatly by income level, with residents in high-income countries paying substantially higher fees for services than paid by residents in lower-income countries. For low-income countries, fees are usually a flat amount per household. Volume-based fees are common in higher-income countries. Joint billing with property or utility taxes is practiced for middle- and high-income countries. Joint billing requires significant coordination and therefore maturity of waste management systems, but leads to higher Table 5.4 Waste Management User Fees by Region Average user fee in selected cities Region (US$/year, as reported in data) East Asia and Pacific 46 Europe and Central Asia 83 Latin America and the Caribbean 80 Middle East and North Africa 55 South Asia 34 10–40 (based on World Bank Sub-Saharan Africa estimates) Financing and Cost Recovery for Waste Management Systems 107 Table 5.5 Waste Management User Fees by Income Level Average fees, US$ per year Income group Household Commercial High income $168 $314 Upper-middle income $52 $235 Lower-middle income $47 $173 Low income $37 $155 Note: All currency amounts are in US$. cost recovery amounts. In lower-middle-income countries and low-income countries, fees are more often collected door to door. Fees charged to commercial institutions often vary by tonnage produced; fees are highest in high-income countries, where annual commercial fees average US$314 (table 5.5). For some high- and middle-income countries, fees are flat for each business, which is simpler to administer and collect. Low-income countries tend to charge fees for waste services less often, and data availability is scarce. Figure 5.1 shows distributions of fee types and billing methods across countries by income categories. In most countries, the cost of integral waste services (collection, trans- port, treatment, and disposal) cannot be fully recovered from user fees and requires subsidies through government transfers or external budget support. According to the What a Waste 2.0 study, local governments that receive transfers or subsidies for solid waste programs typically receive between US$4 and US$10 per capita per year. The average of sub- sidies or transfers from central governments is US$8 per capita per year. The agency providing funding may be the national government or a regional government. For example, in Sarajevo, Bosnia and Herzegovina, the cantonal government provided almost US$4.5 million for intermunici- pal communal services such as street cleaning (KJKP 2016). In Yangon, Myanmar, the regional government funds city waste services, including salaries, uniforms, and the purchase and maintenance of equipment, which amounted to US$8.2 million in 2014 (CCAC, n.d.). In Majuro, Marshall Islands, the city government receives an annual operating subsidy of $325,000 from the national government (ADB 2014). A partnership with the private sector is commonly pursued as a mecha- nism for achieving efficiency, technical expertise, and financial investment in waste management systems. In Istanbul, Turkey, waste collection was found to be 38 percent more cost efficient when operated by a private oper- ator rather than a public operator (Dogan and Suleyman 2003). Private corporations may participate at all steps in a waste management value chain, including construction and operation of disposal sites and transfer 108 What a Waste 2.0 Figure 5.1 Waste Management Fee Type and Billing Method a. Commercial fee type 100 90 80 26% 33% 70 50% Percent 60 62% 50 39% 33% 40 30 50% 20 30% 22% 33% 10 13% 6% 2% 0 Low income Lower-middle Upper-middle High income income income Income group Flat fee per business Business size or type Fee per volume of waste Other b. Household fee type 100 90 27% 80 50% 70 60% 61% 60 Percent 50 47% 9% 40 4% 30 15% 20% 23% 3% 20 13% 10 2% 18% 20% 4% 2% 5% 6% 13% 0 Low income Lower-middle Upper-middle High income income income Income group Flat fee per household Property location Fee per volume of waste Variable based on cost Fee per income level Other Property value (Figure continues on next page) Financing and Cost Recovery for Waste Management Systems 109 Figure 5.1 Waste Management Fee Type and Billing Method (continued) c. Household billing method 100 90 13% 80 29% 34% 70 44% Percent 60 80% 50 43% 40 45% 30 20 38% 14% 10 5% 20% 13% 14% 0 6% Low income Lower-middle Upper-middle High income income income Income group Joint property tax billing Door-to-door fee collection Direct solid waste billing Joint utility billing Delivery of payment to central location Other stations, waste collection from homes and businesses, street cleaning, and citizen education on waste reduction and source separation. Private part- ners recover costs through their service provision. Therefore, successful municipalities ensure that private corporations are either paid directly by the locality or are provided with stable opportunities to earn revenues from tipping fees, user fees, or the sale of recycled materials. Environments that are typically conducive to private sector partnerships include simple and transparent procurement processes, minimal political and currency risk, and strong legal systems that enforce payments and encourage user compli- ance with waste management rules and regulations, such as those about littering and source separation. The lower the risks, the more likely it is for a private corporation to participate in the waste management system. A unique form of private sector participation is the extended producer responsibility (EPR) system. In an EPR system, the cost for the final recy- cling or disposal of materials is borne by the producer of the good. Producers may pay the municipality directly for the cost of collection and disposal or develop a system for citizens to return the product. In either case, producers will often price the cost of disposal into the product so that consumers ulti- mately bear the disposal cost. Therefore, both producers and consumers are financially and logistically responsible for their resource usage. EPR systems ultimately reduce government costs, divert waste from disposal facilities to save space, and encourage environmentally friendly consumption (Product Stewardship Institute 2014). 110 What a Waste 2.0 Solid waste management systems in low- and middle-income countries that are in early development or undergoing expansion often pursue external financing, especially for capital expenditures. Where waste man- agement initiatives are aligned with national objectives, local governments may obtain financing from national transfers. Local waste management projects may also be financed through loans and grants from develop- ment  agencies or regional banks that also commonly provide technical project support. Some financiers are testing a model in which payments are tied to proven outcomes. This model of results-based financing is detailed in box 5.1. Box 5.1 Results-Based Financing in Waste Management An increasingly common strategy for promoting the efficient use of limited funds and for creating sustained behavior change is results-based financing (RBF). In this financing structure, payment for solid waste services depends on the deliv- ery of predetermined results (Lee et al. 2014). By tying financing to outcomes, RBF encourages stakeholders to operate efficiently and change their behavior. RBF from governments or external institutions can be tailored to achieve several objectives and help waste management stakeholders do the following: • Increase fee collection, such as by matching a portion of the fees collected by the managing institution • Promote source separation, waste reduction, and recycling, such as by providing a stipend to neighborhoods that sort and separate an adequate quantity of clean recyclables • Strengthen waste collection and transportation, such as by paying waste collectors upon successful and timely delivery of waste to the final dis- posal site • Design efficient infrastructure projects, such as by making loans or grants for a new landfill project contingent on successful construction of various phases • Defray risk for investors and increase investments, such as by delaying payments until proof of service success or completion of infrastructure In Nepal, the World Bank supported a project to help bridge the gap between the costs of delivering improved waste management services and the revenues gained from user fees. For this project, payments were made based on the achievement of benchmarks such as the number of households receiving daily waste collection services, the cleanliness of public areas, and the feedback of households. These interventions greatly improved service quality. Furthermore, the RBF approach helped municipalities to gain financial stability by sustainably increasing user fees and improving the recovery of user fees by providing subsi- dies in proportion to the amount of fees collected by cities. Another example is a World Bank-supported project in the West Bank, where results-based financing was used to combine the financing of the service to the poor while leveraging private sector engagement in managing and operating the sanitary landfill, transfer stations, and transportation of waste. Financing and Cost Recovery for Waste Management Systems 111 Finally, carbon financing is a strategy that has been used in limited cases by waste management projects that reduce greenhouse gas emissions, such as the installation of landfill gas capture infrastructure or composting of organic waste (box 5.2). The appropriate sources of financing depend heavily on the local con- text, and a mix of strategies is often used to sustainably implement a solid waste management project. Box 5.2 Carbon Finance Carbon finance provides payments to projects that reduce greenhouse gas emissions by allowing entities that can reduce emissions at a low cost to receive payments from entities whose costs of reducing emissions are high. The entity that buys emissions reduction credits can claim credit for reducing greenhouse gas emissions, although it did not implement the project itself. Purchasing emissions credits can help countries achieve national climate goals, such as a Nationally Determined Contribution created as part of the international Paris Climate Agreement, and allow private entities to adhere to national climate laws or offset emissions from business activities (Müller 2017; World Bank 2015). Solid waste projects that avoid greenhouse gas emissions include the cap- ture of methane gas at a landfill or the composting of organic waste, as com- pared to the higher release of methane from decomposing waste at a dump or landfill. Waste projects that reduce emissions can sell certified emissions reduc- tions on a public or private emissions trading system. The European Union, countries such as New Zealand and Switzerland, and states and provinces such as California, United States, and Ontario, Canada, have established emissions trading systems (UNDP 2017). For example, several landfill gas capture projects in Brazil were partially financed by selling emissions reductions through the World Bank’s Carbon Partnership Facility (World Bank 2014, 2018). A historical framework that motivated carbon trading was the Kyoto Protocol, established at the United Nations Framework Convention on Climate Change (UNFCCC) in 2005, through which industrial countries committed to emissions reduction targets (UNEP n.d.). Through the UNFCCC’s Clean Development Mechanism (CDM), wealthy countries could invest in carbon- reducing projects in low- and middle-income countries to meet their Kyoto commitments (Appasamy and Nelliyat 2007). Through the CDM, several waste projects, such as composting plants in Bangladesh and Uganda, were imple- mented (Waste Concern 2014; AENOR 2009). However, since the commitments to the Kyoto Protocol expired in 2012, carbon trading for waste projects has greatly waned. Today, carbon financing for solid waste management faces mixed results and depends heavily on regulatory frameworks regarding emis- sions and air quality to establish an active marketplace with high prices. A more recent form of carbon finance is the Pilot Auction Facility for Methane  and Climate Change Mitigation, which is an innovative mechanism that encourages private sector investments in projects that reduce emissions. 112 What a Waste 2.0 References ADB (Asian Development Bank). 2014. “Solid Waste Management in the Pacific: The Marshall Islands Country Snapshot.” ADB Publications Stock No. ARM146608-2. Asian Development Bank, Manila. https:// www.adb.org/sites/default/files/publication/42669/solid-waste-management -marshall-islands.pdf. AENOR (Spanish Association for Standardization and Certification). 2009. “Validation of the Program of Activities: Uganda Municipal Waste Compost Programme.” https://cdm.unfccc.int/ProgrammeOfActivities /poa_db/JL4B8R2DKF90NE6YXCVOQ3MWSGT5UA/V7Q8JRD1 BKHUZ9S4L2O MIG5NFP6XY0/ReviewInitialComments/GLDO BAGRHOJT4IVWRZCTN8UV6KSJT4. Appasamy, Paul P., and Prakash Nelliyat. 2007. “Financing Solid Waste Management: Issues and Options.” Proceedings of the International Conference on Sustainable Solid Waste Management, 5–7 September 2007, Chennai, India, 537–42. https://www.researchgate.net/publication /237613599_Financing_Solid_Waste_Management_Issues_and_Options. CCAC (Climate and Clean Air Coalition). n.d. “Solid Waste Management City Profile: Yangon, Myanmar.” Accessed April 11, 2017. http://www .waste.ccacoalition.org/sites/default/files/files/yangon_city_profile_final _draft.pdf.  Denney, Lisa. 2016. “Reforming Solid Waste Management in Phnom Penh.” Asia Foundation, San Francisco, CA; and Overseas Development Institute, London. https://asiafoundation.org/wp-content/uploads/2016/06 / Working-Politically-and-Flexibly-to-Reform-Solid-Waste-Management -in-Phnom-Penh.pdf. Dogan, Karadag, and Sakar Suleyman. 2003. “Cost and Financing of Municipal Solid Waste Collection Services in Istanbul.” Waste Management and Research 21 (5): 480–85. http://journals.sagepub.com /doi/abs/10.1177/0734242X0302100511. DSM Environmental Services. 2012. “Solid Waste Management and Municipal Finance.” Presentation prepared for Connecticut Governor’s Recycling Working Group, July 24. http://www.ct.gov/deep/lib/deep /waste_management_and_disposal/solid_waste/transforming_matls _mgmt/gov_recycling_work_group/appendix_d.pdf. Kaza, Silpa, and Perinaz Bhada-Tata. 2018. “Decision Maker’s Guides for Solid Waste Management Technologies.”World Bank Urban Development Series, World Bank, Washington, DC. KJKP ‘RAD’ d.o.o. Sarajevo. 2016. “Financial Operations Report for Cantonal Public Utility ‘Rad’ in Sarajevo for the period of January– December 2015” [“Izvještaj o Finansijskom Poslovanju KJKP ‘RAD’ d.o.o. Sarajevo za Period I–XII 2015. Godine”]. KJKP ‘RAD’ d.o.o. Sarajevo. Sarajevo, February. Financing and Cost Recovery for Waste Management Systems 113 Lee, Jennifer. 2009. “Sanitation Dept. Unveils Hybrid Garbage Trucks.” New York Times, August 25. https://cityroom.blogs.nytimes.com/2009 /08/25/sanitation-dept-unveils-hybrid-garbage-trucks/. Lee, Marcus, Farouk Banna, Renee Ho, Perinaz Bhada-Tata, and Silpa Kaza. 2014. Results-Based Financing for Municipal Solid Waste. Washington, DC: World Bank. Lohri, C., E. J. Camenzind, and C. Zurbrügg. 2014. “Financial Sustainability in Municipal Solid Waste Management—Costs and Revenues in Bahir Dar, Ethiopia. Waste Management 34 (2): 542–52. https://www.science direct.com/science/article/pii/S0956053X1300500X. Müller, N. 2017. “CER Demand, CDM Outlook and Article 6 of the Paris Agreement.” CDM Training Workshop for DNAs and Stakeholders in Pakistan, Islamabad, Pakistan, August 21–22. https://unfccc.int/files/na /application/pdf/04_current_cer_demand_cdm_and_art__6_of_the_pa _nm.pdf. Product Stewardship Initiative. 2014. “Electronics EPR: A Case Study of State Programs in the United States.” Product Stewardship Initiative, Boston, MA. https://www.oecd.org/environment/waste/United%20States%20 (PSI%20-%20Cassel).pdf. UNDP (United Nations Development Programme). 2017. “Carbon Markets.” United Nations Development Programme, New York, NY. http://www.undp.org/content/sdfinance/en/home/solutions/carbon -markets.html. UNEP (United Nations Environment Programme). n.d. “Clean Development Mechanism.” UNEP Collaborating Centre on Energy and Environment, Risø National Laboratory, Roskilde, Denmark. https://unfccc.int/files /cooperation_and_support/capacity_building/application/pdf/unepcd mintro.pdf. United Nations. 2017. “World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100.” United Nations, New York. https:// www.un.org/development/desa/en/news/population/world-population -prospects-2017.html. Waste Concern. 2014. “22,783 CERs (Carbon Credits) Issued by UNFCCC for Recycling of Organic Waste in Dhaka, Bangladesh.” Waste Concern, Bhaka, Bangladesh. http://wasteconcern.org/22783-cers-carbon-credits -issued-by-unfccc-for-recycling-of-organic-waste-in-dhaka-bangladesh/. World Bank. 2015. “Private Sector—An Integral Part of Climate Action Post-Paris.” World Bank, Washington, DC. http://www.worldbank.org / en/news/feature/2015/12/30/private-sector-an-integral -part-of -climate-action-post-paris. ———. 2014. “World Bank Carbon Funds and Facilities.” World Bank, Washington, DC. http://www.worldbank.org/en/topic/climatechange /brief/world-bank-carbon-funds-facilities. 114 What a Waste 2.0 ———. 2018. “Brazil—Integrated Solid Waste Management and Carbon Finance Project.” Independent Evaluation Group, Project Performance Assessment Report 123798,World Bank,Washington, DC. http://documents .worldbank.org/curated/en/395271521557013485/pdf/123798-PPAR -P106702-P124663-P164310-PUBLIC.pdf. Zhao, Zhen, and Xin Ren. 2017. “Yunnan Municipal Solid Waste Management and Implementation.” Presented at World Bank Solid Waste Management Technical Deep Dive. Tokyo, Japan, March 21–24. CHAPTER 6 Waste and Society Key Insights • Uncollected waste and poorly disposed of waste significantly affect public health and the environment, with the long-term economic impact of envi- ronmental recovery often resulting in multiple times the costs of develop- ing and operating simple, adequate waste management systems. • Waste management contributes nearly 5 percent of global greenhouse gas emissions, mainly driven by food waste and improper management of waste. Even basic system improvements can reduce these emissions by 25 percent and more. • Of the cities with available data, 29 reported having completed an environ- mental assessment in the past five years while 73 cities reported no recent formal environmental assessment. • Waste management systems should take into account potential extreme weather such as heavy storms that may cause the collapse of formal or informal waste facilities or damage urban infrastructure. • High-income countries are attempting to divert waste from landfills and incinerators and increase adoption of recycling and waste reduction. • More than 15 million people globally earn a living informally in the waste sector (Medina 2010). Waste pickers—often women, children, the elderly, the unemployed, and/or migrants—are a vulnerable demographic. • The number of female waste pickers can often exceed the number of male waste pickers. In Vientiane, Lao PDR, and Cusco, Peru, 50 percent and 80  percent of waste pickers are female, respectively (Arenas Lizana 2012; Keohanam 2017). • Of the cities with available data, 24 reported having completed a social assessment in the past five years while 73 cities reported no recent formal social assessment. 115 116 What a Waste 2.0 W aste management has broad societal impacts. The way that waste is managed affects the health of the environment, the livelihood and well-being of vulnerable populations, and the relationships between gov- ernments and citizens. Solid waste management influences how a society lives on a daily basis, and its strengths and failures can have a magnified impact during crisis situations. Although limited data were collected for this report regarding environment and climate change, citizen engagement, and the informal sector, the report discusses these key topics, in addition to tech- nology trends, to highlight several critical aspects that a well-functioning waste management system should consider. Environment and Climate Change Solid waste management is inextricably linked to environmental outcomes and their subsequent economic consequences. At the local and regional levels, inadequate waste collection, improper disposal, and inappropriate siting of facilities can have negative impacts on environmental and public health. At a global scale, solid waste contributes to climate change and is one of the largest sources of pollution in oceans. In low- and many middle-income countries, inadequate waste collec- tion and uncontrolled dumping or burning of solid waste are still an unfortunate reality, polluting the air, water, and soil. When waste is burned, the resulting toxins and particulate matter in the air can cause respiratory and neurological diseases, among others (Thompson 2014). Piles of waste produce toxic liquid runoff called leachate, which can drain into rivers, groundwater, and soil. Organic waste entering water- ways reduces the amount of oxygen available and promotes the growth of harmful organisms (Bhada-Tata and Hoornweg 2016). Marine pollu- tion is also increasing as a result of mismanaged solid waste on land, poor disposal practices by sea vessels, and runoff from sewage and polluted streams. Universal plastic usage is also leading to increasing nonbiodegradable waste litter in natural environments. (Please refer to case study 16 in chapter 7 for more information on marine litter and box 6.1 for information on plastic waste.) A study focused on Southeast Asia estimated the economic cost of uncollected household waste that is burned, dumped, or discharged to waterways to be US$375/tonne (McKinsey 2016). For the same region, the World Bank estimated the integrated waste management costs for basic systems meeting good international hygienic standards to be US$50–US$100/tonne. An environmental assessment can help governments understand the costs of solid waste management and its impacts on the environment as well as potential downstream issues. Of the cities studied with available data, 29 reported having completed an environmental assessment in the past five years, while 73 cities reported that no formal environmental assessment had been conducted in the past five years. Waste and Society 117 Box 6.1 Plastic Waste Management In 2016, the world generated 242 million tonnes of plastic waste—12 percent of all municipal solid waste. This waste primarily originated from three regions—57 million tonnes from East Asia and the Pacific, 45 million tonnes from Europe and Central Asia, and 35 million tonnes from North America. The visibility of plastic waste is increasing because of its accumulation in recent decades and its negative impact on the surrounding environment and human health. Unlike organic waste, plastic can take hundreds to thousands of years to decompose in nature (New Hampshire Department of Environmental Services n.d.). Plastic waste is causing floods by clogging drains, causing respiratory issues when burned, shortening animal lifespans when consumed, and contaminating water bodies when dumped into canals and oceans (Baconguis 2018). In oceans, plastic is accumulating in swirling gyres that are miles wide (National Geographic n.d.). Under ultraviolet light from the sun, plastic is degrading into “microplastics” that are almost impossible to recover and that are disrupting food chains and degrading natural habitats (United States NOAA n.d.). The Ellen MacArthur Foundation (2016) anticipates that, by weight, there will be more plastic in the oceans than fish by 2050 if nothing is done. Plastic waste mainly enters the environment when it is poorly managed, such as through open dumping, open burning, and disposal in waterways. Unfortunately, with more than one-fourth of waste dumped openly and many formal disposal sites managed improperly, plastic litter is increasing. Even when plastic waste is collected, many countries lack capacity to process the waste. In 2017, Europe exported one-sixth of its plastic waste, largely to Asia (The Economist 2018). There are many ways to curb plastic waste—by producing less, consuming less, and better man- aging the waste that already exists to prevent contamination or leakage.Taking these actions requires engagement from numerous stakeholders in society, including citizens, governments, community organizations, businesses, and manufacturers. Policy solutions, increased awareness, and improved design and disposal processes, among others, can minimize the impact of plastic waste on society. Policy : Before pursuing dedicated plastics management solutions, governments must first focus on holistic management of waste. Cities need consistent collection services, safe and envi- ronmentally sound disposal, and consistent enforcement of policy before targeted interventions for plastic can be fully effective. Without strong basic waste management systems, plastic is likely to continue to be dumped when uncollected, citizens and businesses are less likely to comply with restrictions on materials for consumption or manufacturing, and cost recovery for waste systems will continue to be a struggle. With adequate primary waste management services in place, many cities have succeeded in focused interventions. For example, San Francisco, United States, imple- mented a plastic bag ban that led to a 72 percent decrease in plastic litter on local beaches from 2010 to 2017 (Mercury News 2018). In Rwanda and Kenya, plastic bag bans have been implemented effectively with financial and other legal penalties (de Freytas-Tamura 2017). In 2018, the European Union launched a strategy called Plastic Waste that aims to make all plastic packaging recyclable by 2030 and to ensure that waste generated on ships is returned to land (EU 2018b). However, innova- tive policies concerning plastic will not solve the issue of plastic mismanagement without proper institutions, systems, and incentives. Society : Management of plastic waste often starts at the household and individual levels, and strategies to educate and motivate citizens can dramatically change behavior. In Jamaica, community members that serve as Environmental Wardens sensitize their neighbors about local cleanliness and safe and environmentally friendly disposal of waste. Environmental Wardens are community (Box continues on next page) 118 What a Waste 2.0 Box 6.1 Plastic Waste Management (continued) members employed by the Jamaican National Solid Waste Management Authority through a World Bank–supported project (Monteiro and Kaza 2016). Their role is to spread awareness about waste management and to keep communities clean and healthy. The communities and schools that are part of the project collect plastic bottles in large volumes, through competitions, and remove plastic litter from shared spaces and drains. They sell the collected plastic bottles to recyclers. Industries : Plastic waste can be reduced or put to productive use at both a local and a global scale. Industries can alter manufacturing processes to reduce the amount of material needed, use recycled materials as inputs, or design new materials that can be degraded or more easily recycled. At a local level, recovered plastic can be used as inputs to make cement blocks, roads, and house- hold goods such as baskets and mats (Growth Revolution Magazine 2009). These outlets for pro- ductive use can, in turn, drive increased collection and recovery of plastic waste. With about half of the plastic ever manufactured having been produced in the past 15 years, the collaboration of industry in reducing production and improving recycling is increasing in importance (National Geographic 2018). Climate Change Mitigation One of the major ways that solid waste contributes to climate change is its generation of greenhouse gas (GHG) emissions. The 1.6 billion tonnes  of carbon dioxide–equivalent (CO2-equivalent) emissions esti- mated for 2016 are anticipated to increase to 2.6 billion tonnes by 2050. Emissions from solid waste treatment and disposal, primarily driven by disposal in open dumps and landfills without landfill gas collection sys- tems, were calculated using the CURB tool,1 and they account for about 5 percent2 of total global GHG emissions (World Bank 2018a; Hausfather 2017). GHG emissions result from inadequate waste collection, uncon- trolled dumping, and burning of waste. Waste releases methane gas when disposed of in an oxygen-limited environment such as a dump or a landfill and releases pollutants and particulate matter during ineffi- cient transportation and burning. Methane, generated from decompos- ing organic waste, is the solid waste sector’s largest contributor to GHG emissions. It is many times more potent than CO2.3 Efforts to formalize the management of waste can significantly reduce GHG emissions. For example, a study by Zero Waste Europe concluded that the European Union could eliminate as much as 200 million tonnes of GHG emissions per year by 2030 with improved waste management practices (Ballinger and Hogg 2015). Progress has been made in recent years. According to a United Nations Framework Convention on Climate Change report, from 1990 to 2015 the waste sector experienced the largest relative decrease in GHG emissions, at 20 percent, compared with other sectors (UNFCCC 2017). The emissions decrease is in part attributed to the growing effort of many cities to under- take mitigation activities in solid waste management. The Carbon Disclosure Waste and Society 119 Project shows that nearly 50 cities across the world have adopted mitigation measures in their climate plans (Carbon Disclosure Project 2013; IPCC 2007a). Looking ahead, more than 80 countries have identified solid waste management as an intervention area in their Nationally Determined Contributions, which are global commitments made by each country to mitigate and adapt to climate change under the historic United Nations Framework Convention on Climate Change agreement (Kampala Waste Management 2017). Emissions can be mitigated through improved waste collection, waste reduction, reuse of products, recycling, organics waste management, and capture of GHGs for flaring or energy recovery. Reducing collection fleet lag times, improving routing efficiency such as through the use of geo- graphic information systems, selecting cleaner fuels, and using fuel-efficient vehicles are potential approaches to reducing transportation emissions (Seto et al. 2014). Composting and anaerobic digestion are organic waste treatment options that prevent the generation of methane or its release into the atmosphere. Where landfills are used, the associated methane gas can be captured and flared, converted to power, used to heat buildings, or utilized to serve as fuel for vehicles. Waste-to-energy incinerators, which are rela- tively more complex and expensive, can reduce GHG emissions while gen- erating electricity or thermal energy when operated effectively and to environmentally sound standards. A World Bank study in Indonesia shows that even basic improvements, such as increasing waste collection rates to 85 percent from 65 percent and introducing controlled landfilling for waste disposal, reduces GHG emissions by 21 percent (World Bank 2018b). These GHG reductions from the waste sector are an important element of Indonesia’s committed Nationally Determined Contributions to the Paris Climate Agreement (Government of Indonesia 2016). Climate Change Resilience In the long term, the global community should consider solid waste resil- ience in addition to mitigation. As climate patterns change, waste man- agement systems must prepare for extreme weather patterns that may cause waste to clog drainage systems during floods, landfills and dumps to collapse under heavy rains, or damage to urban infrastructure that may dramatically increase waste volumes. Cities should aim to ensure that their collection, transportation, and disposal systems can function regardless of the shock they face and should site the facilities to be resilient. Climate change resilience at the local level may include the following planning and policy actions: • Careful site selection for waste disposal based on topography and geology, natural resources, sociocultural factors, natural disaster patterns, and economy and safety (Al-Jarrah and Abu-Qdais 2006). For instance, a risk assessment can be done in flood-prone cities to 120 What a Waste 2.0 determine the location, design, construction, operation, and decom- missioning of waste facilities (Winne et al. 2012). • Sufficient waste management capacity to meet projections of the city’s current and anticipated growth. • Emergency disposal sites and stakeholders for disposal of excessive amounts of waste to ensure systems function in times of disaster. • Identification of vulnerabilities in existing infrastructure to prevent failure of facilities, and necessary investments in maintenance and upgrades. • Formal education, community awareness efforts, and government incentives to promote responsible waste disposal and reduction to pre- vent litter that may clog drains or affect surrounding areas. Circular Economy Efforts to move toward a circular economy are gaining momentum, particularly in Europe. The circular economy model aims to use waste streams as a source of secondary resources and to recover waste for reuse and recycling. This approach is expected to achieve efficient eco- nomic growth while minimizing environmental impacts (Halkos and Petrou 2016). In a circular economy, products are designed and optimized for a cycle of disassembly and reuse. The intention is to extend the lifespan of consum- ables and to minimize the environmental impact of final disposal. For chal- lenging products, such as computers that are subject to rapid technological advancement and other durables containing metals and plastics that do not easily degrade, better disposal solutions and reuse could be part of the design process from the start. In December 2015, the European Commission adopted a European Union Action Plan for a circular economy (EU 2015). In 2018 the European Union adopted a set of measures that support the implementation of the Action Plan and the European Union’s vision of a circular economy (EU 2018a). These measures do the following: • Set a goal to make all plastic packaging recyclable by 2030 and describe a holistic strategy to improve the economics and quality of plastics recycling • Present ways to integrate legislation on waste, consumer products, and chemicals • Outline 10 key indicators for monitoring progress in moving toward a circular economy across production, consumption, waste manage- ment, and investments • Describe actions for more circular consumption of 27 of the most common materials used in the economy Outside of Europe, the concept of a circular economy is slowly being embraced by national and local governments, and sometimes drives the development of goals and investments. Waste and Society 121 Technology Trends As technology changes the way people live, communicate, and transact, it also affects the way waste is managed around the world. Governments and companies that manage waste integrate technologies at all steps of the value chain to reduce costs, increase materials for energy recovery, and connect with citizens. Despite the ability of technological solutions to improve the way resources are used and recycled, technology selection differs by context. Communities vary by geography, technical capacity, waste composition, and income level and often the best solution is neither the newest nor the most advanced technologically. Whereas a mobile app may be the simplest way to inform citizens on service changes in an affluent city, technologies such as radio advertisements may be optimal in neighborhoods with high illiteracy rates. The following section reviews several of the simple and advanced technologies that have emerged to improve waste management around the world. Data Management Data are increasingly serving as the basis for decision making in waste management. From information on the layout and characteristics of local neighborhoods and the activity of collection trucks to data on recovery of waste fees, accurate information allows governments and operators to design and run more efficient operations and save money. Formal information systems are increasing in cities but are not universal. From the data collected for this report, 29 percent of countries reported the existence of an information system. At an urban level, 49 cities reported an established information system, 89 did not have one, and 231 countries lacked data on information systems. As their capacity has increased, many agencies have developed or improved central information systems to improve planning and to transpar- ently monitor performance. For example, in Quito, Ecuador, La Empresa Metropolitana de Aseo (the Metropolitan Cleaning Company) has devel- oped a central data management system that tracks collection routes, gener- ates reports on service performance metrics, and allows citizens to report infractions of waste regulations (Sagasti Rhor 2016). In Japan, a central data system connects waste facilities around the country to a central national waste information system (Kajihara 2017). Measurements of tox- ins and emissions are reported in real time to the central database. Any problems in equipment operations trigger automatic reports to the plant operator so that emergencies can be addressed immediately. Other typical uses of information systems are detailed in box 6.2. When it comes to data, solutions need not be complex. Simple data tools such as the Excel-based Data Collection Tool for Urban Solid Waste Management, developed by the World Bank and the Climate and Clean Air Coalition, can guide cities and planners in understanding the local waste situation quantitatively and comprehensively (World Bank 2013). 122 What a Waste 2.0 Box 6.2 Examples of Information That Can Be Aggregated Using a Waste Management Data System • Real-time locations and routes of collection vehicles • Weight of waste disposed of at different locations • Emissions of landfills or waste-to-energy facilities • Records of user payments • History of waste collection at households • Video streams of activities of waste equipment • Radio and email communications with staff • Registration of waste pickers • Feedback from citizens • Inventory of facilities and equipment Waste Reduction and Manufacturing Technology has been commonly used to support reduction of the amount of waste generated globally and to change manufacturing processes to reduce waste or to increase recyclability. In the Republic of Korea, radio- frequency identification (RFID) chips are often used to motivate citizens to reduce the waste that they generate. These small radio chips are embedded in personal cards that citizens use to open dumpsters and log the weight of the waste that they dispose of. Citizens are billed by the weight registered on the chip and are motivated to reduce the waste that they produce as a  result. Korea’s RFID-focused approach and overarching information management system are detailed in case study 17 in chapter 7. Technologies used in manufacturing aim to enable the reuse of materials or decrease the use of virgin materials. Packaging innovations such as bio- degradable forks and bags reduce plastic waste and sometimes allow users to compost these materials. However, new materials require appropriate management, and poorly managed biodegradable packaging can lead to increased GHG emissions when landfilled or dumped and can fail to degrade fully in the wrong conditions (Vaughan 2016). Software is avail- able that allows manufacturers to take waste into consideration in the product design process and to choose materials that have the least impact on the environment (Building Ecology n.d.). Some companies have devel- oped processes that use waste materials as inputs for other products, such as using plastic and textiles to create new garments. Finally, new platforms are emerging that create a marketplace for used goods, thus reducing the need to manufacture new products (Sustainable Brands 2017). Waste Collection Waste collection and associated transportation is often the costliest step in waste management, and technology is extensively available to increase effi- ciency. Starting with the use of a geographic information system, a city can optimize routing and minimize improper use of trucks (Longhi et al. 2012). Waste and Society 123 Photo 6.1 Solar-Powered Waste Compaction Bins in the Czech Republic Sensors can optimize routes and reduce unnecessary pickups. Dumpster sensors can signal how full a dumpster is so that pickups can be made accordingly. Solar-powered compactor bins use solar power to compact waste to one-sixth of its original volume and can alert the municipality or waste collector when a sensor detects that the bin is reaching capacity. In locations with sufficient infrastructure, relevant geographical condi- tions, and ample financing, alternative approaches are being used for waste collection. Automation for waste collection vehicles ranges from the lifting of bins placed in the back of the truck to mechanical side arms that automatically pick up standardized bins directly from households. Even more automated collection solutions are being tested. In a limited number of areas with restricted transportation access or that are extremely dense, a more unusual approach could be pneumatic waste collection. In Roosevelt Island, New York City, United States, in an attempt to establish a car-free island, pneumatic waste collection was set up underground so that residents in high-rise buildings could place waste in a chute in their buildings that would be sucked into a tube, via a vacuum, to a central point for treatment and disposal (Chaban 2015). Although a pneumonic system could be a healthier and less congested alternative to truck-based collection systems, hurdles to adopting pneumonic systems could include cost and the inability to install needed infrastructure given a city’s existing layout and substructure. Mobile applications are also being implemented to assist in urban waste collection systems. Mobile applications are being used to inform citizens of collection schedules, source-separation guidelines, and fees. I Got Garbage is an example of a mobile application in India that is used by households to request waste collection services (box 6.3). 124 What a Waste 2.0 Box 6.3 I Got Garbage I Got Garbage is an organization operating in Indian cities that uses an online platform to match waste pickers with households and businesses seeking waste services. The organization has successfully created and equipped waste social enterprises with the necessary skills for impact at scale. I Got Garbage supports more than 10,000 waste pickers and offers waste services from waste collection to local organics management and value-added recycling. Figure B6.3.1 Features of I Got Garbage Application I GOT GARBAGE TECH STACK Supervisor app Waste collector app Waste audit app Nano-store app Warehouse app Volunteer app Vendor registration I Got Garbage Stock audit app app Debris tracking app Family survey app Recycler app Waste Treatment and Disposal Technology is being used in a variety of ways to improve waste treatment and disposal. However, the range of optimal technologies varies greatly by income level and local characteristics. More detailed information and guidance regarding solid waste management treatment and disposal tech- nologies can be found in the World Bank’s Decision Maker’s Guides for Solid Waste Management Technologies (Kaza and Bhada-Tata 2018). Low-Income Countries Although open dumping and burning are common in low-income coun- tries, there is a growing trend toward improving recycling and disposing of waste in controlled or sanitary landfills. Recycling is typically done by the informal sector in an unorganized fashion. Small-scale or even house- hold biogas systems are also increasing in prevalence. Waste and Society 125 Middle-Income Countries Landfills are the most common final disposal method in middle-income countries and are generally anticipated to continue being so. Improvements in recycling and in organics management are increasing. For recycling, sorting plants that involve manual or some form of automated sorting are becoming more common. Primarily because of problems with the availability of land, large metro- politan cities in middle-income countries are looking at ways to avoid the development of large sanitary landfill sites, often far away from the city center, and to develop waste-to-energy incineration schemes instead. High land prices and often-elevated levels of electricity feed-in tariffs can be an important push for these investments. However, high costs, usually significantly above current cost levels, and the high organic composition of the waste, meaning that it is low in calorific value, also could present challenges to implementation. However, it is expected that modern waste incinerators could be built in some middle-income countries in the coming years. In China, quick development of incineration capabilities has already occurred, and the practice has become increasingly common in larger cities in Eastern China (Li et al. 2016). High-Income Countries Sanitary landfills and incinerators are prominent in high-income countries. High-income countries experience greater recovery and reintegration of materials from recycling and organics and use of byproducts such as refuse-derived fuel or other energy from waste than lower-income countries. Waste-derived energy is used for a range of purposes, such as in industry or to power waste facilities or buses. Automated landfill monitor- ing has increased, with some sites even using drones to assess the capacity of cells (Lucero et al. 2015). High-income countries are making a substantial effort to recover materials from the source, with an emphasis on recycling and productive use of organic waste. Automation in recycling centers ranges from a conveyor belt to use of optical lasers and magnetic forces to separate waste (Peak 2013). Citizen par- ticipation for source separation of waste is common for smaller communities of less than 50,000 inhabitants, and mechanical sorting is commonly used for large cities. Greater attention is also being placed on management of food and green waste, sometimes through windrow composting, in-vessel com- posting, anaerobic digestion, and waste-to-liquid technologies. These tech- nologies allow organic waste to be used effectively through capture of biogas and creation of a soil amendment or liquid fertilizer. These advances are complemented by improvements to distributed waste management, which emphasizes household interventions such as source separation. Some solutions are less well-known or are still being piloted. A bioreac- tor landfill is a type of sanitary landfill that involves recirculation of leach- ate to more quickly degrade organic waste than in natural situations, increase landfill gas generation in a concentrated period, and reduce final leachate treatment, under certain conditions (Di Addario and Ruggeri 126 What a Waste 2.0 2016). Nonlandfill solutions that have been available for some time but have not been applied at large scale with municipal solid waste include advanced thermal technologies such as pyrolysis, gasification, and plasma arc technologies (Rajasekhar et al. 2015). These thermal processes break down waste with high temperatures in a zero- or low-oxygen environ- ment with one of the main outputs being a synthetic gas. When these processes are applied to municipal solid waste, commercial and technical viability has shown mixed results, with multiple failed attempts. A number of countries, particularly Japan, Korea, and some countries in Western Europe, have almost completely moved away from landfill- ing, and aim to reduce incineration and maximize waste reduction and recycling. With recycling reaching 50 percent and more in a few Western European countries, trading of household waste across countries for incineration is increasing. Citizen Engagement The success of sustained solid waste management is critically linked with public engagement and trust. Waste managers rely on citizens to con- sciously reduce the amount of waste they generate, separate or manage specific waste types at home, dispose of waste properly, pay for waste management services, and approve new disposal sites. To motivate this support, governments must gain the trust of citizens. Cities and countries are engaging the public by providing high-quality services that earn approval and trust and that, in turn, motivate citizens to pay for services, be environmentally aware, and comply with guidelines and regulations. Although changing citizen behavior can take time, the benefits of a strong relationship with the public are invaluable to a waste management system. Education Educational programs are a key aspect of raising awareness for solid waste. Many countries reach citizens using media. Effective programs distribute content in a variety of languages and through both basic and advanced technology, such as radio, television, and mobile phone applications. Other governments focus on schools to educate young citizens who will eventually become environmentally conscious adults. For example, in Kingston, Jamaica, school programs incorporate environmental and waste manage- ment issues into the formal curriculum and participate in hands-on activi- ties such as onsite recycling, composting, and gardening. Vegetables grown in school gardens are used at the schools or given to students (Clarke, per- sonal communication 2017). Some schools also encourage students and citizens to visit waste facilities such as recycling centers or landfills. Of the countries and cities studied, several make waste management information available to the public. The most common types of informa- tion made available include collection schedules and waste drop-off locations, budgets and fees, local statistics on waste generation and Waste and Society 127 composition, and community programs and recycling campaigns. For example, Bangkok, Thailand, publishes the Bangkok State of the Environment Report periodically, providing a comprehensive review of solid waste management in the city (Bangkok Metropolitan Administration 2012). Yokohama, Japan, reports on GHG emissions resulting from waste; Bern, Switzerland, provides recycling information specifically for visitors and migrants; and Montevideo, Uruguay, provides guidance to households on how to request a waste bin (City of Yokohama n.d.; Hello Switzerland n.d.; City of Montevideo n.d.). Countries typically share information on national waste management sta- tistics, legislation and policies, fees, and infrastructure such as landfills and transfer stations. Common platforms for information distribution  include face-to-face interactions, signage, media, websites, periodic reports, mobile applications, physical booklets, and fliers. The city of Baltimore, United States, has even installed a trash collection machine with a humorous appear- ance in the city’s harbor to catch the attention of citizens (box 6.4). Box 6.4 Mr. Trash Wheel Mr. Trash Wheel is a trash interceptor in Baltimore, Maryland, United States, that picks up litter floating in the Inner Harbor of Baltimore (Waterfront Partnership of Baltimore n.d.). Its remarkable visual appearance builds public awareness of proper waste management. The instrument’s rotor is powered by water and solar energy, and it deposits floating waste into a dumpster behind the vessel using a moving conveyer belt. Source: Photo courtesy of Waterfront Partnership of Baltimore; additional permission required for reuse. 128 What a Waste 2.0 Citizen Feedback Governments benefit when citizens provide feedback on waste manage- ment services. Citizen feedback allows waste management agencies to measure satisfaction and trust, understand gaps in services, and make critical changes that benefit the population, the environment, and the economy. For example, in Morocco, five cities launched a Citizen Report Card program, covering 25 percent of Morocco’s urban population, to under- stand citizen satisfaction with waste operations. The results of the survey are used to evaluate whether private operators are performing well and to make decisions on renewing their contracts. In Maputo, Mozambique, MOPA is a digital platform accessible via phone, smartphone, and com- puter that allows citizens to report issues such as overflowing dumpsites (Vasdev and Barroca 2016). Citizens that provide feedback are notified once the issue is resolved. These forms of citizen engagement allow for a closed loop between public agencies and the community affected by services. The cities studied use a variety of channels to collect citizen feedback, including phone, website, email, social media, surveys, and physical handouts. Toronto’s online platform is detailed in case study 11 in chapter 7. Financial Incentives Financial incentives are a powerful tool for motivating sustained behavior change. Governments and organizations have used various mechanisms to tie financial incentives to participation in the waste management system. Financial incentives can be linked to source separation, waste collection, reduction in the volume of waste disposed of, and disposal according to designated locations and schedules. For example, in Ningbo, China, results-based financing is being used to encourage households in high-rise apartment complexes to separate organics and recyclables (Lee et al. 2014). The government saves money since less waste is landfilled and returns a portion of the savings as a financial incentive for citizens who separate their waste. In addition, some cities only charge citizens for the disposal of residual waste or set fees for mixed waste disposal that are higher than fees for recycling services. In Kitakyushu, Japan, the government provides compost bins to households and holds public composting seminars that thousands of citizens have attended. Managing organic waste at the household level is  cheaper for Kitakyushu citizens than paying by volume for formal disposal services (Matsuo n.d.). Several organizations and companies have adopted the concept of per- sonal rewards to encourage environmental engagement and change public behavior. There are websites where citizens can earn points for taking envi- ronmentally friendly actions, such as recycling or participating in a learning program, and then can use their points to earn discounts at stores or make donations to community organizations (Recyclebank, n.d.). Waste and Society 129 Social Impacts of Waste Management and the Informal Sector The quality of solid waste management affects the urban poor in critical ways, with impacts on their health, housing quality, service access, and livelihoods. In urban low-income neighborhoods, up to two-thirds of solid waste is not collected (Baker 2012). In areas with poor service cov- erage, the incidence of diarrhea is twice as high and acute respiratory infections are six times higher than in areas with frequent waste collec- tion (UN-Habitat 2010). Waste is often dumped or burned, releasing toxic airborne chemicals and liquid runoff that contaminates water sources (Akinbile and Yusoff 2011). The dumped waste can also be a source of food and shelter for rats, mosquitoes, and scavenging animals, which could carry diseases such as dengue fever. The homes closest to dumpsites are often those of vulnerable populations who make a living by scavenging for recyclables with a monetary value. Just as gaps in solid waste services disproportionately affect the poor, improvements in ser- vice delivery can dramatically improve the lives of vulnerable populations. Informal Sector in Solid Waste Management Informal waste recycling is a common livelihood for the urban poor in low- and middle-income countries. About 1 percent of the urban popula- tion, or more than 15 million people, earn their living informally in the waste sector (Medina 2010). In urban centers in China alone, about 3.3  million to 5.6 million people are involved in informal recycling (Linzner and Salhofer 2014). Photo 6.2 Informal Recyclers in the Middle East and North Africa Region 130 What a Waste 2.0 Waste pickers are often a vulnerable demographic and are typically women, children, the elderly, the unemployed, or migrants. They generally work in unhealthy conditions, lack social security or health insurance, are subject to fluctuations in the price of recyclable materials, lack educational and training opportunities, and face strong social stigma. The data collected for this report revealed that in many places, the number of female waste pickers outnumbered the number of male waste pickers. For example, in Vientiane, Lao PDR, and Cusco, Peru, 50 percent and 80 percent of waste pickers are female, respectively (Keohanam 2017; Arenas Lizana 2012). Furthermore, many waste pickers are children who face greater risks to physical development and loss of education than adults. In Gjilan, Kosovo, about 40 percent of waste pickers at the local dumpsite are children (Kienast-Duyar, Korf, and Larsen 2017). When properly supported and organized, informal recycling can create employment, improve local industrial competitiveness, reduce poverty, and reduce municipal spending on solid waste management and social services (Medina 2007). UN-Habitat found that waste pickers commonly collect 50–100 percent of waste in cities in low-income countries, at no cost to municipalities (UN-Habitat 2010). For example, waste pickers in Mumbai, India; Jakarta, Indonesia; and Buenos Aires, Argentina, are estimated to have an economic impact of more than US$880 million annually (Medina 2007). In Jakarta, waste pickers are estimated to divert 25 percent of the city’s waste to productive use (Medina 2008). Some of the more successful interventions to improve waste pickers’ livelihoods are formalization and integration of waste pickers, strengthening of the recycling value chain, and consideration of alternative employment opportunities (box 6.5). Formalization and Integration of Waste Pickers Formalizing informal waste pickers could lead to improved waste col- lection and recycling. Because of the social stigma often associated with waste picking, political buy-in could allow for social inclusion in the solid waste sector. National regulations or guidelines can lead to sys- tematic consideration of waste pickers at all levels of government such as in Brazil (box 6.6). However, local municipalities are most directly empowered to provide recognition and social benefits to waste pickers, such as through legal identification, housing, health, and education. Box 6.5 Waste Picker Cooperative Model: Recuperar Members of Recuperar, a cooperative in Medellin, Colombia, earn 1.5 times the minimum wage. They can receive loans from the cooperative, are affiliated with the Colombian system of socialized medicine, have opportunities to earn schol- arships to continue their studies, and are provided with life and accident insurance. The members mainly collect mixed waste and recyclables and, in 1998 alone, recovered 5,000 tonnes of recyclables (Medina 2005). Waste and Society 131 For  instance, in Quezon City, the Philippines, approximately 3,000 waste pickers work at the Payatas landfill (Gupta 2014). They are pro- vided with formal identification and work in shifts to allow each worker to earn income from the recovery of recyclables. Child labor is also banned. In Morocco, as part of a World Bank project, the government requires private sector solid waste management operations to employ any waste pickers that previously worked on the site. A clause is included in contracts to hold operators accountable (World Bank 2016). One method governments can use to gain an understanding of the impact of the waste management system on multiple stakeholders is a social assessment (Bernstein n.d.). A social assessment analyzes several dimensions of the waste management system, from service quality to will- ingness to pay. Social assessments also address risks around informal labor, working conditions, and gender that are related to solid waste management. Insights from a social assessment can be used to improve the waste management system. In the study conducted for this book, 24 cities reported completion of a formal social assessment within the past five years, while 73 cities lacked a social assessment in the past five years. There is significant room for growth in cities’ awareness and analytical assessment of the informal sector given existing challenges (box 6.7). Box 6.6 Formalization of Waste Pickers in Brazil Brazil passed a comprehensive Solid Waste National Policy in 2010, which both recognized waste picking cooperatives as service providers and created mecha- nisms to integrate informal waste workers into the country’s formal system. The legislation’s focus was on establishing safe disposal systems, decreasing waste generation, and increasing reuse and recycling, all through the combined efforts of the government, private, and informal waste sectors. An overview of the legal framework in Brazil can be found at http://www .inclusivecities.org/wp-content/uploads/2012/07/Dias_WIEGO_PB6.pdf. Box 6.7 Challenges for Waste Pickers • In a study on waste pickers across five cities in Africa, Asia, and Latin America, 73 percent stated that lack of access to quality waste streams was a major or moderate problem (WIEGO 2014). • About 87 percent stated that unstable prices were a major or moderate problem, and 61 percent found it difficult to negotiate better prices from buyers. • In Bogota, Colombia, and Durban, South Africa, 80 percent of waste pick- ers said that harassment was a problem, 84 percent said they were treated poorly by local authorities, and 89 percent said that regulations and by- laws regarding waste are an issue. Some 97 percent identified social exclusion as a problem in their work. 132 What a Waste 2.0 Strengthening of the Recycling Value Chain Waste pickers engage with the recycling value chain by collecting mate- rials and selling them to middlemen who then clean and aggregate materials to distribute to industry. Governments and corporations can improve waste pickers’ income prospects by creating sanctions to ensure fair prices from middlemen, directly offering waste pickers a fair and consistent wage at deposit centers, or helping waste picker cooperatives establish direct contracts with large buyers of recyclables, such as bottle manufacturers.  An innovative partnership model between the private sector and waste pickers in Mexico is detailed in box 6.8. Governments and nonprofits can also support waste pickers in forming organized cooperatives that provide a strong bargaining posi- tion with stakeholders (box 6.8). Micro and small enterprises and cooperatives help waste pickers increase the purchase price of their collected waste by negotiating with intermediaries and allow waste pickers to gain social recognition. There may also be opportunities to access infrastructure to provide additional value to the recyclables, such as baling or cleaning the materials. Formal recognition also allows informal workers to gain job stabil- ity and acknowledgement of their work. Cooperative members consis- tently report a higher standard of living as well as improvements in self-esteem and self-reliance than when they work independently. In addition, organized workers are more productive and are healthier when provided with guaranteed collection routes and safe working conditions outside of dumpsites. Box 6.8 Socially Responsible Plastics Recycling in Mexico In 2006, the World Bank Group’s International Finance Corporation (IFC) part- nered with a Mexican company, PetStar, to finance a recycling plant that pro- cesses polyethylene terephthalate (PET), a common material in plastic bottles and food packaging. Because of low recycling rates in Mexico, sourcing a steady supply of raw PET from municipal recycling programs was not feasible. As a result, the project identified waste pickers as natural partners in collecting used PET products across the country. PetStar and the IFC worked together to generate socially responsible partnerships with waste picking communities that not only provided employment, but addressed issues with working conditions, organization and advocacy, and child labor. By partnering with the major bever- age manufacturer Coca-Cola, PetStar found a guaranteed buyer for recycled plastic. This consistent revenue stream enabled PetStar to contract with infor- mal workers at a fair, consistent wage. PetStar and the IFC’s unique, vertically integrated approach to recycling is not only profitable but socially responsible for waste pickers and the environment. Waste and Society 133 Consideration of Alternative Employment Opportunities beyond Solid Waste Management Integrating waste pickers into the solid waste management system might not always be efficient or even preferred by waste pickers. If local recycling markets are weak or if the waste collection or sorting needs of the city do not require extensive labor, waste pickers might be more productively employed outside of the waste management system. Since waste pickers often lack skills for alternative livelihoods, external employment requires social support and vocational training to ensure a smooth transition. Job retraining or skill-building programs, in combination with social support programs such as in health care and child education, can support adult career transitions and minimize periods of vulnerability. Although the personalized attention and resources needed to support alternative liveli- hoods can be substantial, when provided properly, this support can help break the cycle of poverty for several future generations. An example of education reducing waste picking is that of the conditional cash transfer program, Bolsa Familia, in Brazil (Dias 2008; Medina 2007). It entailed giving a financial incentive to vulnerable families for sending their children to school and resulted in more than 40,000 children leaving waste picking to attend school. Notes 1. CURB: Climate Action for Urban Sustainability is a low-carbon plan- ning tool available at worldbank.org/curb. 2. Emissions estimated exclude waste-related transportation. 3. Methane has much higher short-term global warming potential (GWP) than CO2. Over the typically used 100-year time horizon, methane has 25 times higher GWP, but over the shorter time frame of 20 years, methane has 72 times higher GWP than CO2 (IPCC 2007b). References Akinbile, Christopher O., and Mohd S. Yusoff. 2011. “Environmental Impact of Leachate Pollution on Groundwater Supplies in Akure, Nigeria.” International Journal of Environmental Science and Development 2 (1): 81–86. http://www.ijesd.org/papers/101-F10106.pdf. Al-Jarrah, O.,  and H. Abu-Qdais. 2006. “Municipal Solid Waste Landfill Siting Using Intelligent System.” Waste Management 26 (3): 299–306. https://www.ncbi.nlm.nih.gov/pubmed/16019199. Arenas Lizana, J. 2012. “Social Inclusion Plan for Waste Pickers in Cusco, Calca and Urabamba Provinces” [“Plan de Inclusión Social para Segregadores en las Provincias de Cusco, Calca y Urubamba”]. Regional Development Program [Programa de Desarrollo Regional (PRODER)]. 134 What a Waste 2.0 Baconguis, Beau. 2018. “Stemming the Plastic Flood.” A Break Free from Plastic Movement Report. https://www.breakfreefromplastic.org/wp -content/uploads/2018/04/Stemming-the-plastic-flood-report.pdf. Baker, Judy. 2012. Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World. Washington, DC: World Bank. Ballinger, Ann, and Dominic Hogg. 2015. “The Potential Contribution of Waste Management to a Low Carbon Economy.” Eunomia Research and Consulting, Bristol, UK. http://www.acrplus.org/images/publication /Contribution_low_carbon_economy/EN_Main-Report-.pdf. Bangkok Metropolitan Administration. “Bangkok State of the Environment 2012 (revised edition).” Department of Environment. http://203.155.220 .174/pdf/BangkokStateOfEnvironment2012RevisedEdition.pdf. Bernstein, Janice. n.d. “Social Assessment in Municipal Solid Waste Management.” World Bank, Washington, DC. http://siteresources. worldbank.org/INTURBANDEVELOPMENT/Resources /336387 -1249073752263/6354451-1249073991564/bernsteinsa.pdf. Bhada-Tata, Perinaz, and Daniel Hoornweg. 2016. “Solid Waste and Climate Change.” State of the World 2016: Can a City Be Sustainable? Washington, DC: Worldwatch Institute. http://www.worldwatch.org /http%3A/%252Fwww.worldwatch.org/bookstore/publication/state -world-can-city-be-sustainable-2016. Building Ecology. “Life Cycle Assessment Software, Tools and Databases.” n.d. BuildingEcology.com. http://www.buildingecology.com/sustainability /life-cycle-assessment/life-cycle-assessment-software. Carbon Disclosure Project. 2013. “CDP Cities 2013: Summary Report on 110 Global Cities.” Carbon Disclosure Project, London. http://www.c40 .org/researches/c40-cdp-2013-summary-report. Chaban. Matt. 2015. “Garbage Collection, without the Noise or the Smell.” New York Times, August 3. https://www.nytimes.com/2015/08/04 /nyregion/garbage-collection-without-the-noise-or-the-smell.html. City of Montevideo. n.d. http://www.montevideo.gub.uy/gestion-de-residuos. City of Yokohama. n.d. http://www.city.yokohama.lg.jp/shigen/sub-data/. de Freytas-Tamura, Kimiko. 2017. “Public Shaming and Even Prison for Plastic Bag Use in Rwanda.” New York Times, October 28. https://www .nytimes.com/2017/10/28/world/africa/rwanda-plastic-bags-banned.html. Di Addario, Martina, and Bernardo Ruggeri. 2016. “Fuzzy Approach to Predict Methane Production in Bioreactor Landfills.” https://www .researchgate.net/publication/304334842_Fuzzy_Approach_to_Predict _Methane_Production_in_Bioreactor_Landfills. Dias, Sonia. 2008. “Fórum Lixo e Cidadania: Catadores de Problema Social à Questão Sócio-Ambiental.” Paper presented at the First World Conference of Waste Pickers, Bogotá, March. Waste and Society 135 The Economist. 2018. “The Known Unknowns of Plastic Pollution.” March 3. https://www.economist.com/international/2018/03/03/the -known-unknowns-of-plastic-pollution. Ellen MacArthur Foundation. 2016. The New Plastics Economy— Rethinking the Future of Plastics. Cowes, UK: Ellen MacArthur Foundation. https://www.ellenmacarthurfoundation.org/assets/down loads/EllenMacArthurFoundation_TheNewPlasticsEconomy_ Pages.pdf. EU (European Union). 2015. “Closing the Loop—An EU Action Plan for the Circular Economy.” European Commission, Brussels. https://eur-lex .europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614. ———. 2018a. “Implementation of the Circular Economy Action Plan.” European Commission, Brussels. http://ec.europa.eu/environment/circular -economy/index_en.htm. ———. 2018b. “Plastic Waste: A European Strategy to Protect the Planet, Defend Our Citizens and Empower Our Industries.” Press Release, January 16, Strasburg. http://europa.eu/rapid/press-release_IP -18-5_en.htm. Government of Indonesia. 2016. “First Nationally Determined Contribution: Republic of Indonesia.” http://www4.unfccc.int/ndcregistry/Published Documents/Indonesia%20First/First%20NDC%20Indonesia_submitted %20to%20UNFCCC%20Set_November%20%202016.pdf. Growth Revolution Magazine. 2009. “Teresa: Waste Management.” modelhttps://growthrevolutionmag.wordpress.com/2009/09/21 /teresawaste-management-model/. Gupta, S. 2014. “Integrating the Informal Sector.” Handshake 12: 66–71. Halkos, George E., and Kleoniki N. Petrou. 2016. “Moving towards a Circular Economy: Rethinking Waste Management Practices.” Journal of Economic and Social Thought 3 (2): 220–40. http://www.kspjournals .org/index.php/JEST/article/view/854/912. Hausfather, Zeke. 2017. “Analysis: Global CO2 Emissions Set to Rise 2% in 2017 after Three-Year ‘Plateau’.” CarbonBrief, November 13. https:// www.carbonbrief.org/analysis-global-co2-emissions-set-to-rise-2-percent -in-2017-following-three-year-plateau. Hello Switzerland. http://www.helloswitzerland.ch/-/waste-and-recycling-in -switzerland. IPCC (Intergovernmental Panel on Climate Change). 2007a. “Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.” Edited by M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson. Cambridge University Press, Cambridge, UK. 136 What a Waste 2.0 ———. 2007b.“Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovern mental Panel on Climate Change.” Edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. Cambridge University Press, Cambridge, UK, and New York. http://www .ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf. Kajihara, Hiroyuki. 2017. “Introduction to the Municipal Waste Administration.” Presented at the Solid Waste Management Technical Deep Dive in Tokyo, Japan, March. Kampala Waste Management. 2017. “Kampala Waste Treatment & Disposal PPP Project.” Investor Conference. Kaza, Silpa, and Perinaz Bhada-Tata. 2018. “Decision Maker’s Guides for Solid Waste Management Technologies.”World Bank Urban Development Series, World Bank, Washington, DC. Keohanam, B. 2017. Director, Urban Development Division, Department of Housing and Urban Planning, Ministry of Public Works and Transport, Government of Lao PDR. Personal communication with the World Bank, May 17. Kienast-Duyar, U., N. Korf, and O. Larsen, eds. 2017. “Solid Waste Management in Kosovo: Assessment of a Waste Bank Model in Dardania, Pristina.” Berlin University of Technology, German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)], University of Pristina, and Municipality of Pristina. Lee, Marcus, Farouk Banna, Renee Ho, Perinaz Bhada-Tata, Silpa Kaza. 2014. Results-Based Financing for Municipal Solid Waste. Washington, DC: World Bank. Li, Xinmei, Changming Zhang, Yize Li, and QiangZhi. 2016. “The Status of Municipal Solid Waste Incineration (MSWI) in China and Its Clean Development.” Energy Procedia 104 (December): 498–503. https://www .sciencedirect.com/science/article/pii/S1876610216316423. Linzner, R., and S. Salhofer. 2014. “Municipal Solid Waste Recycling and the Significance of Informal Sector in Urban China.” Waste Management and Research 32 (9): 896–907. doi: http://dx.doi.org/10.1177/0734242 X14543555. Longhi, S., Davide Marzioni, Emanuele Alidori, Gianluca Di Buo, Mario Prist, Massimo Grisostomi, and Matteo Pirro. 2012. “Solid Waste Management Architecture Using Wireless Sensor Network Technology.” Conference Paper, 5th International Conference on New Technologies, Mobility and Security, May 7–10. https://www.researchgate.net / publication/261086497_Solid_Waste_Management_Architecture _Using_Wireless_Sensor_Network_Technology. Waste and Society 137 Lucero, Osvaldo, Maria E. Rey Nores, Ezequiel Verdini, and James Law. 2015. “Use of Drones on Landfills.” ISWA Conference, Antwerp, Belgium, September 7–9. https://www.scsengineers.com/wp-content/uploads/2015 /10/Use_of_Drones_on_Landfills_092015_ James_Law.pdf. Matsuo, Yasushi. “Introduction of Food Waste Recycling from Business Activities in Kitakyushu City.” Presented at World Bank Solid Waste Management Technical Deep Dive. Kitakyushu, Japan. McKinsey. 2016. “The Circular Economy: Moving from Theory to Practice.” McKinsey Center for Business and Environment Special Edition. https:// www.mckinsey.com/~/media/McKinsey/Business%20Functions / Sustainability%20and%20Resource%20Productivity/Our%20 Insights/The%20circular%20economy%20Moving%20from%20 theory%20to%20practice/The%20circular%20economy% 20Moving%20from%20theory%20to%20practice.ashx. Medina, Martin. 2005.“Waste Picker Cooperatives in Developing Countries.” El Colegio de la Frontera Norte, Mexico. http://www.wiego .org/sites/default/files/publications/files/Medina-wastepickers.pdf. ———. 2007. The World’s Scavengers: Salvaging for Sustainable Consumption and Production. Lanham, MD: Altamira Press. ———. 2008. “The Informal Recycling Sector in Developing Countries: Organizing Waste Pickers to Enhance Their Impact.” Gridlines. World Bank, Washington, DC. http://documents.worldbank.org/curated/en /227 581 468156575228/pdf/472210BRI0Box31ing1sectors01PUB LIC1.pdf. ———. 2010. “Scrap and Trade: Scavenging Myths.” March 15, Our World, United Nations University, Tokyo. March 15. https://ourworld.unu.edu /en/scavenging-from-waste. The Mercury News. 2018. “Success! California’s First in the Nation Plastic Bag Ban Works.” November 13. https://www.mercurynews.com/2017 /11/13/editorial-success-californias-first-in-the-nation-plastic-bag-ban -works/. Monteiro, Emanuela, and Silpa Kaza. 2016. “Jamaica—Jamaica Integrated Community Development Project: P146460—Implementation Status Results Report: Sequence 05.” World Bank, Washington, DC. National Geographic. n.d. “Great Pacific Garbage Patch.” National Geographic, Washington, DC. https://www.nationalgeographic.org /encyclopedia/great-pacific-garbage-patch/. New Hampshire Department of Environmental Services. n.d. “Approximate Time It Takes for Garbage to Decompose in the Environment.” New Hampshire DES, Concord, NH. https://www.des.nh.gov/organization /divisions/water/wmb/coastal/trash/documents/marine_debris.pdf. 138 What a Waste 2.0 Peak, Katie. 2013. “How It Works: Inside the Machine That Separates Your Recyclables.” Popular Science, August 28. https://www.popsci.com/tech nology/article/2013-07/how-it-works-recycling-machines -separate -junk-type. Rajasekhar, M., N. Venkat Rao, G. Chinna Rao, G. Priyadarshini, and N.  Jeevan Kumar. 2015. “Energy Generation from Municipal Solid Waste by Innovative Technologies—Plasma Gasification.” Procedia Materials Science 10: 513–18. https://www.sciencedirect.com/science /article/pii/S2211812815003326. Recyclebank. n.d. https://www.recyclebank.com/. Sagasti Rhor, Carlos. 2016. “Waste Collection IT Systems for Waste Management—Case: Quito—EMASEO.” Presented at World Bank event  “Citizen Engagement & ICT in Solid Waste Management,” Washington, DC, February 18. Seto, K. C., S. Dhakal, A. Bigio, H. Blanco, G. C. Delgado, D. Dewar, L. Huang, A. Inaba, A. Kansal, S. Lwasa, J. E. McMahon, D. B. Müller, J.  Murakami, H. Nagendra, and A. Ramaswami. 2014. “Human Settlements, Infrastructure and Spatial Planning.” In Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx. Cambridge, UK, and New York: Cambridge University Press. Sustainable Brands. 2017. “2018 Circulars Nominate 43 Changemakers Paving the Path to a Circular Future.” http://www.sustainablebrands .com/news_and_views/next_economy/sustainable_brands/2018_circu- lars_nominate_43_change_makers_paving_path_. Thompson, Andrea. 2014. “For Air Pollution, Trash Is a Burning Problem.” Climate Central. http://www.climatecentral.org/news/where-trash-is-a -burning-problem-17973. UNFCCC. 2017. “National Greenhouse Gas Inventory Data for the Period 1990–2015.” United Nations Framework Convention on Climate Change. http://unfccc.int/resource/docs/2017/sbi/eng/18.pdf. UN-Habitat. 2010. Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010. London and Washington, DC: Earthscan. http://www.waste.nl/sites/waste.nl/files/product/files/swm_in _world_cities_2010.pdf. United States NOAA (National Oceanic and Atmospheric Administration). n.d. “What Are Microplastics.” United States NOAA, Washington, DC. https://oceanservice.noaa.gov/facts/microplastics.html. Waste and Society 139 Vasdev, Samhir, and Jean Paulo Gil Barroca. 2016. “Development into Practice: Co-Designing a Citizen Feedback Tool That Makes Sense.” World Bank blog. https://blogs.worldbank.org/taxonomy/term/15794. Vaughan, Adam. 2016. “Biodegradable Plastic ‘False Solution’ for Ocean Waste Problem.” The Guardian, May 23. https://www.the guardian.com/environment/2016/may/23/biodegradable-plastic -false-solution-for-ocean-waste-problem. Waterfront Partnership of Baltimore. n.d.” Trash Wheel Project.” http://balti morewaterfront.com/healthy-harbor/water-wheel/. WIEGO. 2014. “The Urban Informal Workforce: Waste Pickers/Recyclers.” http://www.wiego.org/sites/wiego.org/files/publications/files/IEMS -waste-picker-report.pdf. Winne, S., L. Horrocks, N. Kent, K. Miller, C. Hoy, M. Benzie, and R. Power. 2012. “Increasing the Climate Resilience of Waste Infrastructure.” Final Report under Defra contract ERG 1102. AEA Technology, Didcot, UK. https://www.gov.uk/government/uploads/system/uploads/attachment _data/file/183933/climate-resilience-full.pdf. World Bank. 2013. Data Collection Tool for Urban Solid Waste Management. Excel Spreadsheet Tool. World Bank, Washington, DC. ———. 2016. “Morocco—Municipal Solid Waste Sector Development Policy Loans (3 and 4) Project (English).” World Bank, Washington, DC. http:// documents.worldbank.org/curated/en/563061482164575195 /Morocco -Municipal-Solid-Waste-Sector-Development-Policy-Loans-3-and-4-Project. ———. 2018a. “The CURB Tool: Climate Action for Urban Sustainability.” World Bank, Washington, DC. www.worldbank.org/curb. ———. 2018b. “Improvement of Solid Waste Management to Support Regional and Metropolitan Cities. Project Appraisal Document.” World Bank, Washington, DC. https://operationsportalws.worldbank.org/Pages /WorkingDocuments.aspx?projectid=P157245. Additional Resources Babel, Sandhya, and  Xaysackda  Vilaysouk. 2015. “Greenhouse Gas Emissions from Municipal Solid Waste Management in Vientiane, Lao PDR.” Waste Management & Research 34 (1): 30–37. http://journals .sagepub.com/doi/full/10.1177/0734242X15615425. Camara, Jaime. 2016. “From Greenfield to World’s Largest Food Grade PET Recycling Facility.” Presented at a World Bank event “Finding Resilience in a Volatile Recycling Market.” Cohen, Peter, Jeroen Ijgosse, and Germán Sturzenegger. 2013. “Preparing Informal Recycler Inclusion Plans: An Operational Guide.” Inter-American 140 What a Waste 2.0 Development Bank, Washington, DC. https://publications.iadb.org / handle/11319/697?locale-attribute=en#sthash.AIIheLww.dpufhttp:// publications.iadb.org/handle/11319/697?locale-attribute=en. Dias, Sonia. 2011. “Overview of the Legal Framework for Inclusion of Informal Recyclers in Solid Waste Management in Brazil.” WIEGO Policy Brief (Urban Policies) No. 6. May. http://www.inclusivecities.org /wp-content/uploads/2012/07/Dias_WIEGO_PB6.pdf. I Got Garbage. https://www.igotgarbage.com/. Inclusive Cities. n.d. “The Urban Informal Workforce: Waste Pickers /Recycler.” Informal Economy Monitoring Study. shttp://www.inclu sivecities.org/wp-content/uploads/2012/08/IEMS-WP-Sector-Summary -english.pdf. IPCC (Intergovernmental Panel on Climate Change). 2014. “Human Settlements, Infrastructure and Spatial Planning.” In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York: IPCC. McDonough, W., and M. Braungart. 2002. Cradle to Cradle: Remaking the Way We Make Things. New York: North Point Press. Schwarz, H. G., M. Meyer, C. J. Burbank, M. Kuby, C. Oster, J. Posey, E. J. Russo, and A. Rypinski. 2014. “Transportation.” In Climate Change Impacts in the United States: The Third National Climate Assessment, edited by J. M. Melillo, T. C. Richmond, and G. W. Yohe. Washington, DC: U.S. Global Research Program. Waste 360 http://www.waste360.com/route-optimization /how-techn ology-continues-improve-waste-management. World Economic Forum. 2014. Towards the Circular Economy: Accelerating the Scale-up across Global Supply Chains. Geneva: World Economic Forum. http://www3.weforum.org/docs/WEF_ENV_TowardsCircular Economy_Report_2014.pdf. World Bank. 2015. “Morocco Solid Waste Sector Development Policy Loan 4. Implementation Completion Report (ICR) Review.” World Bank, Washington, DC. http://documents.worldbank.org/curated/en/70073 1500904650697/pdf/ICRR-Disclosable-P148642-07-24-2017 -15009 04641929.pdf. ———. 2016. “Waste Management Key to Regaining Public Trust in the Arab World.” World Bank, Washington, DC. http://www.worldbank.org /en/news/feature/2016/03/14/waste-management-key-to -regaining -public-trust-arab-world. https://hubs.worldbank.org/docs/ImageBank/Pages/DocProfile .aspx?nodeid=27051835. CHAPTER 7 Case Studies 1. A Path to Zero Waste in San Francisco, United States I n 2002, San Francisco announced a vision to send zero waste to landfills by 2020. Through initiatives to promote recycling and composting, San Francisco is now one of the greenest cities in North America and a global leader in waste management (Economist Intelligence Unit 2011). San Francisco’s success has been achieved largely by robust public policy implemented by determined political leadership, strong public-private part- nerships, resident education, and financial incentives for waste reduction. San Francisco was the first city in the United States to implement strict legislation about the use of or management of specific materials. The city prohibited the use of styrofoam and polystyrene foam in food service (2006), required mandatory recycling for construction debris (2007), banned plastic bags in drugstores and supermarkets (2009), and imple- mented mandatory recycling and composting for both residents and businesses (2009). San Francisco most recently also banned the sale of plastic water bottles in 2014 (EPA 2017). State-of-the-art outreach programs covering residences, businesses, schools, and events are widespread, and financial incentives encourage waste reduction and recycling. To help residents more clearly understand their waste disposal practices and financial impact, each house or building receives a detailed bill for waste management fees. Payments are reduced if residents shift their waste from mixed waste bins to ones designated for recycling or composting. Furthermore, the size of the provided mixed waste bins was halved and the size of recycling containers was doubled. Waste bins are regularly inspected, and households that fail to comply with policies first receive warnings, followed by a financial penalty. 141 142 What a Waste 2.0 San Francisco also introduced the first and largest urban food waste composting collection program in the United States, covering both the commercial and residential sectors. San Francisco has collected more than a million tons of food waste, yard trimmings, and other compostable materials and turned these materials into compost for local farmers and wineries. As a result of its efforts, San Francisco achieved nearly 80 percent waste diversion in 2012—the highest rate of any major city in the United States (EPA 2017). Case Studies 143 2. Achieving Financial Sustainability in Argentina and Colombia A key challenge often faced by municipal solid waste management systems is a shortage of financial resources. This shortage is often caused by a lack of dedicated government funding, low fees that fail to fully cover costs, tariffs that are not enforced, and a shortage of data on the real cost of services. Argentina and Colombia are effectively achieving financial sus- tainability with the approaches discussed below: Financial Sustainability in Argentinean Municipalities As in many other Latin American countries, municipal governments in Argentina were not aware of real solid waste management costs because they did not have a standard methodology or accounting system for esti- mating them. Municipalities also generally did not charge fees for waste services and very little in the way of municipal funds was earmarked for solid waste management. Argentina quantified the total cost of its waste system to improve long- term sustainability. Under the World Bank–financed Integrated Solid Waste Management Project, the Secretariat of Environment and Sustainable Development (SAyDS)1 developed a tool known as the Integrated Urban Solid Waste Management Economic and Financial Matrix. This tool helps municipalities understand the real costs of services and value of investments. The tool analyzes each stage of the solid waste management value chain, identifies the proportion of costs recovered by fees, and identifies ways to reallocate budget resources to improve financial sustainability. The tool was made available to all municipalities in Argentina. Based on its deployment, SAyDS and the Ministry of Environment set the following goals for municipalities: • Calculation of all integrated solid waste management costs (figures  7.2.1–7.2.3) and identification of all associated revenues toward the goal of equilibrating waste management accounts • Development of potential new cost-recovery schemes and calculation of the associated fees using data • Implementation of the polluter-pays principle so that larger generators of waste pay more Through in-person and online trainings, 535 municipal and provincial staff were trained and municipalities covering 26 percent of the population collected financial data using the tool.2 The municipalities of Mar del Plata, Rosario, Viedma, Concordia, and Posadas have implemented cost recovery systems using the financial matrix. Mar del Plata, a large coastal municipality, implemented a differentiated fee system across wealthy and poor neighborhoods after a broad communica- tions campaign and outreach effort. Both the variable costs of the waste system and the operational costs of the landfill are covered. Rosario, on 144 What a Waste 2.0 Figure 7.2.1 Cost Recovery by Generator in Argentina 50 40 30 Percent 20 10 0 Average Restaurants Hotels Industries Stores Houses and bars Figure 7.2.2 Urban Solid Waste Management Costs (US$) by Stage percent 1% 1% 2% <1% 7% 27% 39% 8% 6% 3% 3% 1% 2% <1% Initial disposal Administration Cleaning services Planning and control Illegal dumping cleaning Collection Yard trimming and green areas Transfer station Education and communication Final disposal Composting Landfill closing Recycling Transport Case Studies 145 Figure 7.2.3 Urban Solid Waste Management by Spending Category in Argentina 1% 2% 1% 6% 4% 42% 43% 1 Buildings and construction Goods Fuel and oil Machinery and equipment Vehicles Staff Clothing and working tools Services the other hand, applied a specific fee to large waste generators. Municipal networks have also been developed to share information and experiences, such as suppliers that provide superior goods and services or that offer more competitive costs, peer-to-peer advice on strategy and operations, and opportunities for technicians from municipalities to participate in personnel exchanges with other towns and facilities within their province. A key factor for implementation of the financial tool was having the necessary human and financial resources. SAyDS was fully staffed with qualified teams that could carry out outreach and capacity-building cam- paigns to provincial and municipal governments, tailor the training to spe- cific needs of the local governments, and scale up the training nationwide. Through this success, municipalities built trust with the federal government and had the political support needed to improve cost recovery. The tool was complemented by support for an institutional frame- work developed by the Integrated Solid Waste Management Project that 146 What a Waste 2.0 allowed for agile coordination between the municipal, provincial, and federal governments. Colombia’s Strategies for Cost Recovery In Colombia, the Regulatory Commission for Drinking Water and Basic Sanitation regulates public utilities involved in the distribution and processing of water and wastewater and also influences cost recovery for municipal solid waste systems. The commission established a national methodology for determining the maximum service fee that local service providers can charge to users. In 2016, the commission developed a formula that accounts for all costs in every step of the solid waste management system, including urban cleaning and sweeping, col- lection and transfer, final disposal, leachate management, and recycling (Correal 2016). This national framework enables municipalities to sys- tematically recover their expenses and finance the services that they provide. In 2014, 84.5 percent of the sector’s revenues originated from the collection of fees (Correal 2015). An important success factor for this system is the involvement and authority of the central government. Through Article 370, the Colombian constitution assigns responsibility to the president for ensuring good administration and efficiency of public utilities through control, inspec- tion, and surveillance. Law 142 allows municipal governments to recover the costs of local urban services. This legal infrastructure is comple- mented by the participation and involvement of stakeholders such as pri- vate contractors and recyclers. According to the Ministry of Housing, City and Territory, by imple- menting tariff systems, 891 out of 1,122 Colombian municipalities, or nearly 80 percent, managed to recover costs from user fees by 2013 (Correal 2014). Colombia´s success in cost recovery through accounting, legal infra- structure, and institutional commitment can be replicated and adapted to other Latin American countries and regions around the world. Case Studies 147 3. Automated Waste Collection in Israel In 2012, a green neighborhood, Neot Rabin, was inaugurated in Israel’s historic city of Yavne (Cohen 2012). Neot Rabin houses the country’s first pneumatic waste collection system, which is also known as an auto- mated vacuum collection (AVAC) system. Buildings with AVAC systems use a network of underground pipes to connect each residential unit with a centralized garbage storage unit. On each floor, residents dispose of waste in two garbage chutes: dry waste in one and wet waste in another. Garbage placed in these chutes is automatically directed to an under- ground storage unit. Once a week, waste from residential buildings is pumped or vacuumed through a pipe at speeds of between 50 and 80 kilometers per hour to an aggregated storage center. The waste is stored in sealed containers in prepa- ration for sorting and compaction. Finally, waste is transferred to contain- ers that are removed by truck and transported to final disposal sites. Based on the success of the pilot AVAC system in Neot Rabin, Yavne began replacing the municipality’s public trash bins with pneumatic bins in 2014. As of 2015, about 30 pneumatic waste collection points were used in public areas, including parks, schools, and streets, providing immediate removal of waste from these spaces, eliminating waste-associated odor issues, and reducing traffic congestion. The municipalities of Ra’anana and Bat Yam also began assembling automated waste collection systems for residential buildings (Revolvy n.d.). However, AVAC has certain limitations, such as the high initial invest- ment required for establishing the system, operational difficulties when pipes are blocked, workforce training, public willingness to engage in sepa- rate disposal, and challenges to collection of bulky and electronic waste (Nakou, Benardos, and Kaliampakos 2014). 148 What a Waste 2.0 4. Cooperation between National and Local Governments for Municipal Waste Management in Japan Japan manages its waste through comprehensive governance and advanced technologies. Of the nearly 44 million tonnes of waste generated annually, only 1 percent is landfilled. The remainder is recycled or converted to energy in state-of-the-art waste-to-energy facilities. Japan’s efficient solid  waste management practices can be largely attributed to effective cooperation between its national and local governments. The central and urban public authorities coordinate along several dimensions, from data collection to financing. Data Collection and Database Management Each year, the national Ministry of the Environment conducts an annual waste management survey. Local governments’ responses are aggregated in a comprehensive database that both national and local governments use to develop plans, strategies, and policies. Information surveyed includes the quantity of waste that is generated and the amount of waste disposed of via recycling, composting, and incineration. The materials recovery rates reported through the survey are disclosed to the public, which provides incentives to local governments to increase sustainable disposal practices. The transparent data system allows local governments to compare their plans and outcomes with those of other local governments that have similar  economic and demographic profiles. Local governments use this Table 7.4.1 Cooperation of National and Local Governments in Japan on Municipal Solid Waste Management Task Local governments Relationship National governments 1. Survey on the Waste Data Collect data from local Collection and state of municipal governments and aggregate submission of solid waste responses within a central waste-related data management Database database Guidelines 2. Basic municipal Development of a Provision of guidelines for waste management solid waste municipal solid waste plan management plan management plans Plan Construction 3. Waste Construction of Provision of subsidies for management plan waste treatment construction of waste implementation facilities treatment facilities Subsidies 4. Exchange of Information Collect and submit Facilitate exchange of human resources and feedback to national resources between national information across Human agencies and local governments government levels Resources Source: Shiko Hayashi. Case Studies 149 information to evaluate and continually improve their processes. Members of the public and academic organizations may also use the data to evaluate the effectiveness of the waste management system. In 2016, 1,741 municipalities and 578 special district authorities3 completed the national survey. Municipal Solid Waste Management Planning All local governments in Japan are required to develop a local solid waste management plan that looks ahead about 10 years. To ensure consistency and thoroughness of local plans, the national government publishes guide- lines for municipalities; these guidelines urge municipalities to detail their intended initiatives to sustainably treat waste and promote waste reduc- tion, reuse, and recycling. All local governments comply with national laws and regulations, including the Air Pollution Control Act, the Soil Contamination Countermeasures Act, the Water Pollution Prevention Act, and the Act on Promotion of Private Finance Initiatives. Financial Support for Municipal Solid Waste Infrastructure The Japanese national government provides subsidies to municipalities to develop and improve waste treatment facilities based on the waste management plans submitted by local governments. Subsidies cover up to one-third of the cost of basic infrastructure projects, and for advanced facilities, such as high-efficiency waste-to-energy facilities, subsidies often cover half of project costs. The types of projects that are subsidized include recycling facilities, waste-to-energy plants, organic waste pro- cessing sites, septic tanks, landfills, refurbishing of waste treatment equipment, and extension of the lifespan of existing waste disposal facilities. The remaining capital costs are the responsibility of local governments. Generally, however, much of the remaining costs are financed by local bonds that are paid back through a local tax allocation transferred from the national government. Therefore, ultimately, about 60 percent of initial project costs are financially supported by the national government while the remaining 40 percent are managed by local governments. Operational costs for facilities are fully and directly covered by local governments. The two main revenue sources are the sale of designated plas- tic bags (a form of user fees in Japan) and general tax revenue. Information and Human Resource Exchange To promote connectivity and knowledge exchange between the national government and local governments, public officials and employees may take on roles in other levels of administration. There are also several mech- anisms that allow local governments to report feedback to the national government, including the Japan Waste Management Association (JWMA), which includes 585 municipal governments, and the National Governors’ Association. For example, at the annual meeting of the JWMA, local 150 What a Waste 2.0 Photo 7.1 Japanese Bins Photo 7.2 Japanese Recycling Facility governments submit feedback that is aggregated by the JWMA and shared with national agencies, including the Ministry of the Environment. Japan’s coordination in key dimensions of waste management ensures that best practices are disseminated across the country, planning is con- ducted in a data-driven manner, and cities have sufficient financial and human resources to process waste in a most sustainable manner. Case Studies 151 5. Central Reforms to Stabilize the Waste Sector and Engage the Private Sector in Senegal Senegal produces more than 2.4 million tonnes of waste per year. However, about 1.08 million tonnes remains uncollected. Of the waste that is collected, most is disposed of at a central dump that is one of the 10 largest dumpsites in the world. The country, which faces a rapid urbanization rate of 2.5 percent each year, has strongly focused on modernizing its waste management sector and developing the urban services needed by its burgeoning city population. Although Senegal was interested in engaging the private sector to revital- ize the waste management sector, it faced challenges typical of low- and middle-income countries related to transparency and difficulty in navigating the political system. Until 2015, waste management responsibilities were spread over several ministries, making coordination difficult. Furthermore, to invest in infrastructure and provide collection and disposal services, cor- porations require opportunities to recover costs. In Senegal, the lack of an established citizen payment system created financial gaps and led to pay- ment delays that discouraged private entities. Recognizing the pressing need to revitalize the waste sector, Senegal turned to internal reforms. The national government established a single public entity to streamline all waste management planning and services, called L’Unité de Coordination de la Gestion des Déchets Solides, or the Waste Coordination Unit, in 2015. This organizational structure was sustained even as regimes changed, and the government now has a mix of public and private service provision. The government structured a realistic relationship by devolving responsibilities to the private sector that are affordable to both the capital, Dakar, and the country at large. This structure is complemented by reliable and stable public entities that will follow through on contracts. The waste management sector recovers 15 percent of operational costs, with the remaining 85 percent coming from the central government budget. Small, local private entities provide services from street cleaning to waste col- lection, and the government directly operates the remainder of the system. Waste is now collected daily in Dakar, streets are swept consistently, and most waste deposits have been cleaned up. The Waste Coordination Unit also began using media to communicate with citizens and optimized waste collection routes using web-based monitoring systems. They recruited young professionals to engage with modern technologies and implement progres- sive policies to ensure the long-term development of the waste sector. The success of the new management structure has revived the interest of potential investors, including international donors. The rapid improvement in waste service delivery in Senegal was made pos- sible through radical changes in governance and improvements in technical capacity centrally. While Senegal has so far improved waste services without a traditional public-private partnership, the structural transformation in gov- ernance has created a more stable, attractive waste management sector for investors and waste management companies. 152 What a Waste 2.0 6. Decentralized Organic Waste Management by Households in Burkina Faso In Burkina Faso, households historically managed waste through a tradi- tional practice called tampouré. Tampouré involves storing organic waste in front of homes during the dry season and spreading the waste in fields before the first rains. The waste serves as a layer of nutritious compost and moisture-retaining mulch that improves agricultural production in areas of low productivity. Currently, cities in Burkina Faso are growing rapidly along with waste and demand for agricultural products. To address these growing needs, the Ministry of Agriculture launched a Manure Pit Operation in 2001 that is in many ways inspired by the traditional practice of tampouré. Under this system, the government encourages households to establish pits and com- post on their own land. The government allocates funds each year to support household waste management. For example, between 2005 and 2012, the national government partnered with several development agencies to finance the construction of 15,000 manure pits in Burkina Faso’s eastern region. Currently, about 2 million tonnes of organic fertilizer is produced annually and used by farmers each year. A 2016 World Bank study revealed that 40 percent of the total waste produced by households in secondary cities and peri-urban areas in Burkina Faso was directly pro- cessed onsite (Banna 2017). This figure is remarkably high when com- pared with other parts of the African continent. Burkina Faso’s decentralized waste management system has signifi- cantly reduced the burden on the formal waste collection and disposal infrastructure. Its agricultural benefits have also led to increased food security and have created opportunities for citizens to generate income from waste. Case Studies 153 7. Eco-Lef: A Successful Plastic Recycling System in Tunisia Tunisia provides an example of successful integration of the informal recycling sector into waste management and of the application of the extended producer responsibility principle. In 1997, the Ministry of Environment launched a national program, Eco-Lef,4 to address the sig- nificant issue of  postconsumer packaging waste. The Eco-Lef program developed a national system for the recovery and recycling of postcon- sumer packaging primarily focused on plastic waste. The Eco-Lef program is governed by a decree that specifies the methods required for the collection and management of bags and packaging waste (Republic of Tunisia 1997). The program is partly financed by the private sector through an eco-tax of 5 percent on the net added value of certain locally manufactured or imported plastic polymers.5 The National Agency for Waste Management (ANGed) is responsible for administering the Eco- Lef program. The Eco-Lef program has successfully improved postconsumer packaging collection and recycling rates. The system encourages individual and informal collectors to gather used plastic and metal packaging and deliver the materials to Eco-Lef collection centers. In return, waste collectors receive remuneration based on the type and quantity of packaging collected. There is a financial advantage for par- ticipating in the Eco-Lef system: prices for plastic packaging waste in a local market are about 500 dinars per tonne (US$208 per tonne) com- pared to 700 dinars per tonne (US$290/tonne) at Eco-Lef collection centers. The system has an annual budget of US$5.8 million for 2018, and currently operates through 221 Eco-Lef collection centers, 41 of which are managed by ANGed and the remainder managed by the private sector (ANGed and Ministry of Social Affairs and Environment 2018). The cen- ters have collected more than 150,000 tonnes of plastic packaging waste since the program’s launch in 2001. Depending on the type of plastic, 70–90 percent of collected waste is recycled through more than 70 active private recyclers who receive plastic collected through the Eco-Lef system. Eco-Lef has contributed to the creation of about 18,000 jobs and 2,000 micro-enterprises for collection with the financial support of the National Employment Fund, a government fund that helps vulnerable populations find employment. The Eco-Lef experience provides several key lessons: • The extended producer responsibility principle can create a financially sustainable system for the collection, transportation, and recycling of materials. • Government support in connection to legal, institutional, and opera- tional activities is critical to the development of a recycling value chain. 154 What a Waste 2.0 Photo 7.3 Eco-Lef Workers Collecting and Weighing Packaging Waste at the Montplaisir Collection Center in Tunis, Tunisia Source: Anis Ismail. • Long-term ownership and management of the recycling system by the private sector can result in greater financial sustainability and opera- tional efficiency. • Integration of informal waste pickers into formal waste management operations can contribute to the success of recycling initiatives. Case Studies 155 8. Extended Producer Responsibility Schemes in Europe The European Union (EU) has integrated extended producer responsibility principles into its policies for more than 25 years (bio by Deloitte). The EPR landscape in the EU encompasses a large variety of schemes with different financial and technical configurations. Four EU directives set guidelines for specific waste streams, including packaging, end-of-life vehicles, batteries, and electronic equipment. Member states have the flexibility to develop specific regulations and operational mechanisms within EU guidelines (table 7.8.1). Collective vs. Individual Compliance Schemes Under the EU’s EPR framework, producers may choose between a collective compliance scheme or an individual scheme. Under a collective scheme, individual legal obligations are outsourced to umbrella-type organizations, such as producer responsibility organizations (PROs). PROs are created to support producers in the handling of the technical, financial, and policy aspects of managing product life cycles. PROs receive financial contribu- tions from industry and members and use these proceeds to recycle goods, manage data, conduct operations, facilitate contracting, and communicate with stakeholders. Under an individual scheme, producers that cater to a specific geography or that generate most of their waste close to the produc- tion site will manage waste directly, such as through a take-back program in which consumers can return used materials to the distributor. The EU experience reveals that the most expensive schemes are not nec- essarily the best ones. Factors such as population density, citizen awareness, local laws, and legal frameworks also affect EPR performance. Furthermore, a country must consider recyclers in the informal market since formal EPR mechanisms reduce opportunities for them to collect materials. Designing and implementing an EPR scheme involves a range of technical, financial, institutional, and legal considerations. A 2014 analysis of EU EPR Table 7.8.1 Number of European Union Member States Implementing Extended Producer Responsibility Schemes in 2013 Number of member Legal framework EPR scheme states Electrical and electronic equipment 28 Covered by Batteries 28 specific European Union directives Packaging 26 End-of-life vehicles 24 Tires 20 Graphic paper 11 Not covered by Oils 10 European Union directives Medical wastes, old and unused 10 medicines Agricultural film 8 156 What a Waste 2.0 schemes identified four key pillars of success: (1) distribution of responsibili- ties across stakeholders, (2) recovery of true costs, (3) fair competition between PROs and operators, and (4) transparency by EPR schemes in reporting and transparency by the government in monitoring (bio by Deloitte 2014). Distribution of responsibilities: Financial responsibility for a product’s life cycle will often be borne by producers while the recycling programs them- selves are operated by municipalities. At other times, producers will take a direct role in managing waste and contracting with private recyclers. Recovery of true costs: EPR schemes must account for the costs of source segregation, collection, treatment, enforcement, and operation of the EPR program. In some cases, the amount that producers pay municipalities to recycle waste may depend on the final revenue generated in secondary mate- rials markets, as is the case with the lubricant oil market in Germany. Governments may consider rewarding good product design with lower pro- ducer fees. In France, for example, graphic paper fees are calculated based on recyclability and other technical criteria. Finally, EPR profitability is tied to the performance of the secondary materials market, and legislators should plan EPR systems to be resilient across varying recycling markets. Fair competition: A strong EPR system allows for competition between PROs and waste management operators. Competition encourages improve- ments in efficiency and reduces monopolies. Service operators should be procured using transparent procedures and competitive open tenders. PROs may be for-profit or nonprofit organizations, and are often owned by indus- try investors, such as within the battery industry in Austria and Denmark. An EPR system with free competition between PROs requires an indepen- dent body to verify compliance, centralize and aggregate performance reports, and ensure fair competition for all actors. Transparency and monitoring: Monitoring the performance of an EPR system requires clear performance metrics such as unit costs and impact of the design on recycling activities. Metrics allow governments to compare the performance of different EPR schemes and support the replicability of good practices. EPR systems must also be monitored to reduce corruption, prevent lack of action, ensure that all waste is fully reported, optimize collection and treatment operations, and stay attuned to PRO activities and compliance. For example, Austria uses a two-tiered audit system to ensure the effective man- agement of end products. Governmental authorities audit PROs, and PROs audit collection and treatment operators. Collective schemes can also be audited by their members. EPR systems should adapt as new products are designed to ensure high recycling rates, minimal costs, and a strong transition to a circular economy. Examples of producers’ responsibilities within EPR schemes in the EU are as follows: • Simple financial responsibility schemes in the United Kingdom, where producers are financing waste management operations • Financial responsibility and partial organizational responsibility in  Belgium, where producers provide financial compensation to Case Studies 157 municipalities for collection while other activities, such as sorting, are fully managed within the private sector • Full organizational responsibility where producers are contracting with private operators (electronic waste in France) or directly operat- ing through collection and treatment of products (packaging waste in Germany) In addition to operational, data management, and communication costs, fees might also cover the following: • Contribution to a prevention fund (Austria, Belgium, and Czech Republic) • Additional costs registered by municipalities such as use of public space or cleaning of container areas (Germany) • Research and development programs or waste prevention activities (Austria, France, and Portugal) • Litter prevention programs (Netherlands, Belgium) Varying EPR models for treatment of end products include the following: • Packaging waste: Direct management of end-products by producer (Czech Republic, France) or outsourcing to several PROs (7 in Austria, 10 in Germany, 39 in the United Kingdom) • End-of-life vehicles and oils: Direct management of end products by producer (Germany) but more commonly outsourced to a single PRO (Finland, Italy, Portugal) • Electrical and electronic equipment and batteries: Outsourced to a single PRO (the Netherlands, the Czech Republic) or several PROs (Austria, Denmark, the United Kingdom) Photo 7.4 An Automated Bottle Deposit Machine Source: Flaviu Pop. 158 What a Waste 2.0 9. Financially Resilient Deposit Refund System: The Case of the Bottle Recycling Program in Palau Palau is a small country in the North Pacific with a population of 21,000 in 2015 (UN DESA 2014). Palau’s economy relies on tourism visits to its famed Rock Islands and impressive diving sites. As of 2016, Palau received about 12,500 visitors per month. Waste collection is coordinated within each state and waste disposal is the responsibility of the national Solid Waste Management Office of the Bureau of Public Works, which manages the M-dock semi-aerobic landfill, the country’s largest landfill, situated in the capital city, Koror. Financially, solid waste management is funded entirely by the government. Although households and institutions are required to segregate waste streams, includ- ing for various recyclables and food waste, user fees are not charged or imposed on residents and businesses for waste collection and disposal, with the exception of a beverage container recycling program. Solid waste generation is an increasing problem in Palau because of booming tourism and an increasing local population. Palau’s waste system is inundated with food waste and plastics, composing 26 percent and 32 percent of waste, respectively. Tourism generates a large volume of bev- erage containers, and as an island state, plastic waste would overwhelm Palau if it is not addressed properly. Palau’s Beverage Container Recycling Program In response to increasing plastic waste, the national government passed the Beverage Container Recycling Regulation in October 2006 to establish a national recycling program. The program is overseen by three main agencies: the Ministry of Finance (MOF), the Ministry of Public Infrastructures, Industries and Commerce (MPIIC), and the Koror State Government. The MOF manages the recycling fund, the MPIIC implements the recycling program, ensures sustainability, and identifies opportunities to export redeemed containers, and the Koror State Government operates a redemption center. Palau’s beverage recycling system addresses containers that are 32 ounces and smaller. The national government levies a US$0.10 deposit fee to con- sumers for plastic, glass, and metal containers, which are typically imported. When a container is returned to a redemption center, US$0.05 are returned to the customer, US$0.025 are channeled to Koror State, and the remaining US$0.025 are given to the national government to cover administrative costs. The program began with a 6-month fundraising period to ensure operational sustainability during which beverage containers were taxed but the refund program was not yet in operation. This initial effort led to more than US$659,000 in revenue and funded the initial phases of the refund pro- gram. Through the program’s full operation from 2011 to 2016, the national government earned US$2.2 million and refunded US$3.9 to customers by recovering more than 88 million imported containers. Through this system, Case Studies 159 Photo 7.5 Compacting Beverage Containers inside the Plant in Palau Source: Kevin Serrona. about 8 percent of beverage containers were removed from the waste stream. In addition, about 98 percent of aluminum containers were recycled. Furthermore, about US$12,000 in operational costs were saved by diverting the containers from the M-dock semi-aerobic landfill. Collected beverage containers are shipped to Taiwan, China, for further processing. The program has provided a variety of benefits. The national government has used profits to purchase heavy equipment to fix the slope of the M-dock semi-aerobic landfill, preventing a potential landslide of the waste. Koror State has used proceeds to buy balers and other equipment to improve the efficacy of the redemption center. The program has also provided employ- ment to individuals who collect containers from other states. Enabling Environment Palau’s beverage recycling program serves as a model for island countries that face limited space for waste management facilities and that possess sensitive natural environments. The program has operated sustainably because of the following factors: • Strong national government oversight: The Recycling Act of 2006 effectively mandated a disposal fee for beverage containers. Because it is an island, the government maintains strong control over the entry of 160 What a Waste 2.0 goods across its borders, which makes the program easier to monitor and manage. • Effective financial incentives: The US$0.05 that residents are paid for each redeemed container makes the program sufficiently attrac- tive to the public. The program has virtually removed used contain- ers from the streets. • High public participation: The key to the sustained operation of Palau’s bottle recycling program is strong public support. Palauans realize the value of preserving their environment and the economic value of tourism. • Collaboration between Palau’s national government and Koror State: National and local collaboration in Palau was made possible by clear delineation of roles and responsibilities. Case Studies 161 10. Improving Waste Collection by Partnering with the Informal Sector in Pune, India The city of Pune has significantly advanced its solid waste management by entering into a public-private partnership with the organization SWaCH (Solid Waste Collection and Handling or, officially, SWaCH Seva Sahakari Sanstha Maryadit, Pune). SWaCH is India’s first self-owned cooperative of waste pickers and other urban poor. In 2008, Pune Municipal Corporation (PMC) signed a five-year memorandum of understanding that gave SWaCH responsibility for collecting source-separated waste from households and commercial establishments, depositing the waste at designated collection points, and charging a user fee. The agreement also authorized waste collec- tors to retrieve and sell recyclables from aggregated waste. Pune generates about 1,500–1,600 tonnes of solid waste per day. SwaCH provides door-to-door waste collection services to more than 500,000 households in the city and covers 60 percent of the geographical area. The remaining 40 percent not covered by SwaCH’s collection operations either receive waste collection services directly from the city or dispose of waste in the city’s community bins. The SwaCH door-to-door collection partnership has saved PMC about 510 million Indian rupees (about US$7.9  million) each year and has reduced carbon emissions significantly through reduced truck usage. In 2016, the agreement between PMC and SwaCH was renewed for another five years. Overview of the Public-Private Partnership Through the arrangement with PMC, 2,688 SwaCH members collect seg- regated waste from households, institutions, and businesses. Waste collec- tors sort dry waste in sheds provided by PMC and retrieve recyclables such as paper, glass, and plastic. Waste collectors retain all income from the sale of reclaimed materials, and in 2016 SwaCH diverted 50,000 tonnes of waste to recycling. The door-to-door collection program was introduced first through a pilot in apartment complexes in wealthy areas, where citizens were highly aware, and had a willingness to pay, and were politically supportive of the initiative. The success of the pilot created demand in other areas of the city. Awareness initiatives, including rallies, one-on-one meetings, and political endorsement by local councilors, further generated support. SWaCH members collect monthly user fees ranging from INR 10 to INR 40 (US$0.15–US$0.6) per household and INR 100 (US$1.5) per commer- cial entity for waste collection services. PMC partially subsidizes collection costs in slums so that households pay about INR 5 (US$0.07) per month. The total estimated cost of collection to the city is one of the lowest in India, at about INR 4.38 per month (US$0.06) in 2015. SWaCH members also treat organic waste. Members are trained to oper- ate biogas plants and to compost waste. To encourage citizens to treat waste at the source, PMC rebates 5 percent of property taxes to institutions 162 What a Waste 2.0 that compost their own organic waste. Many of these institutions hire SWaCH members to collectively compost about 10 tonnes of waste per day. SWaCH members also operate biomethanation plants through build- operate-transfer contracts with the city. Because the SwaCH model is based on customer satisfaction, the ser- vice provider is directly accountable to the user and has incentives to pro- vide quality services. The service provider is entitled to collection of waste  dumped outside of homes, which encourages user compliance. PMC conducts individual consultations with households to gain user sup- port and levies penalties on users who fail to provide payment for services. To provide financial resilience to the public-private partnership, PMC provides an ongoing annual grant to SWaCH that covers management and training costs, awareness-generation programs, and welfare benefits for members of SWaCH. The grant does not cover the salaries of collectors. Through the partnership with SWaCH, Pune has offered sustainable and efficient daily waste collection services to residents while improving the live- lihoods of waste collectors within the city. Case Studies 163 11. Improving Waste Management through Citizen Communication in Toronto, Canada Toronto, Canada, uses citizen engagement to build a foundation for a more efficient solid waste management system. A multipronged communication strategy has been critical for reaching various residential audiences. Toronto has launched a detailed, interactive website that educates residents on gar- bage reduction, reuse, and recycling (City of Toronto 2018a). Waste man- agement information that is relevant to citizens, such as source-separation guidelines, drop-off points, city regulations, and disposal rates and fees, are readily available on the site in a user-friendly, attractive manner. Within the online platform, residents can use the Waste Wizard tool to understand how and on what day any item should be disposed of and when (figure  7.11.1). For instance, a search for items such as “pencil” and “clothes” yields advice on donating items in good condition wherever pos- sible and disposing of the items in a garbage bin as a final option. A search for “plastic chair” results in guidance to place oversized items  two feet away from the garbage bin on the next scheduled collection day (City of Toronto 2018b). Toronto also actively uses social media to reach a wide audience. For instance, YouTube videos explain garbage to kids in a fun and simple way.6 Videos are also available in foreign languages to reach growing populations living in multifamily homes, where recycling and composting rates (at 27 percent) are relatively lower than in single-family homes (at 65 percent) (McKay 2016). Figure 7.11.1 Screenshot of Waste Wizard on the City of Toronto Website 164 What a Waste 2.0 Other successful initiatives to engage residents include a waste collec- tion schedule mobile application and the 3Rs Ambassador Program, in which volunteers are trained to educate fellow residents on sustainable practices in waste reduction, reuse, and recycling. In 2016, the Mayor’s Towering Challenge was organized to recognize notable reduce and reuse initiatives led by city residents. Toronto is currently focusing on applying these excellent communication strategies to implementation of its Long- Term Waste Strategy to achieve zero waste in the next 30 to 50 years. Case Studies 165 12. Managing Disaster Waste Depending on their nature and severity, disasters can create large volumes of debris ranging from 5 to 15 times the annual waste generation rates of the  affected community (Reinhart and McCreanor 1999; Basnayake, Chiemchaisri, and Visvanathan 2006). The financial cost of managing disaster waste following a major event is also spiraling and has crossed the billion dol- lar mark in recent years (Thummarukudy 2012). For instance, after Hurricane Katrina, the cost of handling the disaster debris exceeded US$4 billion in a recovery effort that lasted more than three years (UNEP 2012). The nature and composition of disaster waste differs based on the type of disaster and the built environment that has been affected. In most cases, the bulk of disaster waste is construction and demolition material such as concrete, steel, and wood. Disaster waste may also include natural debris such as trees, mud and rocks, food waste, damaged vehicles and boats, hazardous waste, and municipal waste. With climate change modifying the frequency and intensity of many weather-related hazards (IPCC 2014), efficient, effective, and low-impact recovery is crucial (Brown 2015). If managed well, disaster waste can provide valuable resources for the postdisaster recovery and rebuilding process, generate income, and offset the use of virgin natural resources (Brown, Milke, and Seville 2011). Disaster waste can then be recycled, dis- posed of, used to generate energy, or repurposed for land reclamation and engineering fill (Brown 2015). Managing disaster waste well can help pub- lic agencies avoid future liabilities and costs, such as by recompacting unstable dumpsites or by cleaning up contaminated soil. Disaster waste is typically managed in three phases, detailed in table 7.12.1. Japan is considered one of the most disaster-prepared countries in  the world, and its plans and abilities were put to use in recent years (UNEP 2012). Table 7.12.1 Typical Phases of Disaster Waste Management Emergency Recovery Rebuild response - Debris management as part of restoration efforts and - Debris - Removal of debris and building demolition other immediate management threats to public - Majority of waste will be of wastes health and safety managed in this phase generated - Might be affected by factors from, and - Lasts between a few used in, days and two weeks beyond control of disaster waste managers such as reconstruction - Little scope for waste returning residents - Longest phase; recycling and hard to define diversion - Can last for years (for example, Hurricane endpoint Katrina took five years) Source: Brown, Milke, and Seville 2011. 166 What a Waste 2.0 Photo 7.6 Recovery Efforts after Meethotamulla Dumpsite Collapse from Heavy Rains in Colombo, Sri Lanka In March 2011, a massive earthquake off the Pacific coast triggered a tsunami and damaged the Fukushima Daiichi Nuclear Power Plant, leading to the release of radioactive materials and the evacuation of thousands of people. Damages were estimated at more than US$210 billion, marking one of the most economically devastating disasters in history. Japan’s Ministry of the Environment formed a task force consisting of more than 100 experts from government agencies, research institutions, academia, and industry. Two months after the event, the Ministry of the Environment developed clear guidance notes for municipalities on dealing with disaster debris. The guidelines emphasized the importance of maxi- mizing recycling opportunities and using local employment in recovery. Recognizing that many municipalities would be unable to handle the vol- ume of disaster debris without assistance, the guidelines promoted collabo- ration between prefectures and jurisdictions. Additional funding was provided. These measures ensured consistency in the overall approach to the clean up, segregation, offsite transportation, and final disposal of debris. Most middle- and lower-income countries that struggle to manage nor- mal waste streams on a routine basis experience deeper crises after natural disasters. For instance, following the massive earthquake of April 25, 2015, in Nepal, waste accumulated in streets for several weeks. During that time, the need for clear guidelines for handling hazardous constituents such as paints and heavy metals became clear (UNEP 2015). Over the past two decades, disaster waste management has been a grow- ing focus of international policy-making and advisory efforts. Several guid- ance frameworks for public authorities have been developed, including Disaster Waste Management Guidelines developed by the Swedish Civil Contingencies Agency and the United Nations in 2011 (Joint UNEP/OCHA Environment Unit 2011). Case Studies 167 13. Minimizing Food Loss and Waste in Mexico In Mexico, more than 50 percent of waste is organic, a large share of which originates from food loss and waste (FLW). Food loss occurs during the production, storage, and distribution of food products, and food waste occurs when consumable food is thrown away. Of the many environmental consequences associated with FLW, a major impact is its contribution to greenhouse gas emissions (FAO 2013). In Mexico, conservative estimates from the Ministry of Environment and Natural Resources (2015) state that by 2020 the solid waste sector, including FLW, will be the fifth-largest source of greenhouse gas emissions in the country. In 2016, the quantity, magnitude, and composition, as well as the envi- ronmental, social, and economic impacts of FLW in Mexico were compre- hensively measured and assessed through a study supported by the World Bank (Aguilar Gutiérrez 2016). The study led to a legal reform that pro- vided incentives for food donation and a call for the development of a national strategy. The following findings emerged from the study con- ducted in Mexico, and likely reflect similar situations in other countries in the region: • More than 35 percent of total annual food production is lost or wasted at an annual economic cost of more than US$25 billion per year, or more than 2.5 percent of GDP. • Greenhouse gas emissions from FLW are at least equal to that pro- duced by 14 million cars per year. • The estimated water loss associated with FLW is 39 billion liters per year. • Estimated FLW in Mexico amounts to more than 20.4 million tonnes per year. The largest share of food loss occurs at the produc- tion stage, specifically during distribution and wholesale, while the largest share of food waste occurs at distribution centers and urban centers. • More than 11 million people are living in extreme poverty in Mexico, often suffering from food insecurity, undernourishment, and malnour- ishment. The quantity of FLW exceeds the food requirements of this population. Food Banks Are a Key Part of the FLW Solution The Mexican Food Banking Network (BAMX) is a key organization responsible for promoting the reduction of FLW in the public and private sector’s agenda and for motivating the recovery and channeling of food to combat hunger (BAMX 2015). BAMX began its operations as a nonprofit organization in 1995 to recover food to fight hunger and improve nutri- tion for vulnerable populations in Mexico. One in four Mexicans suffers from food shortages and undernour- ishment, and since its inception, BAMX has effectively helped this 168 What a Waste 2.0 Photo 7.7 Organic Waste Bin in Mexico City, Mexico vulnerable population while substantially reducing FLW. BAMX was one of the founding entities of the Global FoodBanking Network, an organization comprising 792 food banks in 32 countries. The Global FoodBanking Network is the second-largest network after that of the United States. BAMX is a key civil society organization in Mexico (World Bank 2016). BAMX leads food rescue efforts resulting in savings of more than 120,000 tonnes annually and has benefited more than 1,137,000 people. It also purchases about 8,000 tonnes of food per year to achieve nutritional balance in the food donated to social causes. In addition to supporting Mexico’s efforts to fulfill the United Nations Sustainable Development Goals for 2030 (specifically, Goal 12.3 for Case Studies 169 Responsible Consumption and Production), BAMX has also been a key advocate for several policies and legal proposals: • In 2000, Mexico’s General Law of Health was modified to encourage food donation. • An amendment to the Income Tax Law provides tributary benefits to companies that donate their products five days before the expiration date.7 • As part of a presidential decree, companies that make food donations to food banks only receive an additional 5 percent fiscal incentive. FLW and hunger are improving in Mexico as effective food banks are complemented by support from the government, the private sector, and international agencies. 170 What a Waste 2.0 14. Sustainable Source Separation in Panaji, India Panaji is the capital of the state of Goa in southwest India, with a metro- politan area population of 114,759 according to the Census of India in 2011. Panaji is known for its strong cultural heritage and as a popular tourist destination, with colorful villas, hillside developments, and Portuguese influence. After the city’s only landfill was closed in 2005, and faced with a vulnerable natural ecosystem and strong tourism economy, the city turned to sustainable practices. Source separation was the first step toward the vision of a landfill-free city, and today Panaji serves as a role model in solid waste management. Source Separation Overview Panaji generated 50 tonnes of waste daily in 2017. Residential waste is source separated into five streams through a system of colored bins: • Green bins: Wet waste • Black or grey bins: Glass and metals • Pink bins: Paper and cartons • Orange bins: Plastics • White bins: Nonrecyclables The City Corporation of Panaji provides door-to-door collection of waste. Wet waste is collected from households every day, and dry waste is collected twice a week. Household wet waste is composted at one of 96 decentralized compost units, whereas wet waste from commercial estab- lishments is treated using windrow composting at two bulk processing units, and it is used for urban horticulture projects. In some cases, wet waste from hotels is digested onsite to produce biogas. In total, the city processes about 24 tonnes of wet waste daily. After collection, the city’s dry waste is stored and aggregated at one of 12  sorting units. From there, the dry waste is further segregated into 20  different streams at one of two Material Recycling Facilities. Each day, about 4 tonnes of dry waste is sent to a cement processing plant in Wadi, Karnataka, and 3 tonnes of recyclables are auctioned to vendors. In 2016, about US$22,000 in revenue was generated from the sale of recyclables. Hazardous waste, such as batteries and tube lights, is also separated and processed at a specialized treatment facility. Success Factors The success of Panaji’s source separation program can be attributed to strong public engagement, financial management, and institutional commitment. • Public engagement: The city promoted sustainable waste practices through a public campaign called “Bin Free in 2003.” The city engaged local students, celebrities, business leaders, and neighborhood civic Case Studies 171 Photo 7.8a and b Sorting Center at Residential Colony in Panaji, India Photo 7.8c Decentralized Composting Units in Panaji, India Source: Ritu Thakur. 172 What a Waste 2.0 bodies to promote source segregation. As part of the campaign, the city spearheaded cultural programs ranging from music festivals to carnivals to encourage citizens to take responsibility for city cleanli- ness. Finally, the city launched a program called “Waste Wise” in all schools to promote waste segregation and to provide incentives for environmentally friendly behavior. • Pilot design: The city’s source separation program was first launched at a pilot scale covering only 70 households and two waste streams, one for dry waste and one for wet waste. • Enforcement mechanisms: To encourage citizen engagement, the city removed all community waste bins, which required households to manage their waste privately. Simultaneously, the city introduced a door-to-door collection program through which households must per- sonally hand their waste to collectors. Paid sanitation workers inspect waste, and a combination of the personal exchange with households and formal daily monitoring motivates compliance. • Financial management: The City Corporation of Panaji has achieved financial sustainability for the solid waste program through fees and  recycling revenues. The city established a new sanitation fee for  households as well as a higher commercial fee for institutions. Households are charged a flat fee of INR 500 (US$7.3) for door-to- door collection in combination with the property tax, and commercial entities are charged between INR 600 (US$8.7) and INR 11,000 (US$16). User fees are strongly enforced with penalties. Some remain- ing costs are subsidized by city funds. • Institutional commitment and responsiveness: The city government formed a new Solid Waste Management department that is overseen by a Waste Management Officer. The program also created a central- ized complaint redress system, which includes a 24- hour helpline for unattended garbage and a dedicated vehicle to quickly respond to urgent waste situations. Finally, the city ensured that workers were provided with healthy and safe working conditions. Case Studies 173 15. Musical Garbage Trucks in Taiwan, China Three decades ago, the waste disposal system in Taiwan, China, looked nothing like it does today. Garbage collection spots were overflowing, smelly, and infested with rats and insects. Most waste was disposed of in dumpsites. In the late 1980s, the Taiwanese government decided to revi- talize its waste system by implementing strict guidelines and regulations and promoting recycling. A circular economy emerged as a new guiding principle. Today, Taiwan, China is a leader in recycling, with its Environmental Protection Administration reporting a 55 percent recycling rate in 2015. A key component of its comprehensive strategy is motivating community involvement through popular “musical” garbage trucks (Shen n.d.). On this small, densely populated island, most families live in apart- ments and do not have communal garbage bins close to their homes. Within their households, residents are required to separate their waste into three categories—general (or nonrecyclable) waste recyclables, and food waste. Purchase of a blue City of Taipei garbage bag for general refuse is also compulsory in the capital. These bags are available at most corner stores and come in differently priced sizes, ranging from 3 to 120 liters. Recycling, on the other hand, is free. This encourages citizens to recycle and produce less trash. At night, garbage trucks alert people to their arrival with high-pitched, familiar tunes, such as Beethoven’s “Für Elise.” Residents gather on the streets with their bags of general waste and throw them into the yellow musical trucks. Three times a week, recyclables are collected in a separate white pickup truck that follows the yellow garbage truck. Volunteers and officials stand on the back of the truck to help citizens sort their recyclables correctly (Bush 2017). This way, trash is delivered straight from home to truck without ever touching the ground. The trucks run on a regular schedule so residents are ready with their bags of waste when the curbside melodies begin. In the capital, Taipei, there are more than 4,000 pickup spots over five nights each week. Residents can receive alerts on nearby stops via mobile phone applications. Once collected, most general waste is incinerated, raw food waste is converted to fertilizer for farmers, cooked food waste is used as livestock feed, and recyclables are sorted and recycled. Public authorities monitor com- pliance using video cameras and financially reward citizens that report mis- behavior. Violators are fined and may be publicly chastised for their offense. 174 What a Waste 2.0 16. The Global Tragedy of Marine Litter Across the world, beaches and waterways scattered with litter are an increasingly common sight and this marine litter has serious impacts on the environment, public health, and the economy. Marine litter comes in all shapes and sizes and, depending on the mate- rial, could be damaging to human health. Some 90 percent of floating marine debris is plastic, of which nearly 62 percent is food and beverage packaging (Galgani, Hanke, and Maes 2015; Consultic 2013). Although plastics have been mass-produced for only about 60 years, they persist in open waters for decades and even centuries (Andrady 1994). Even plastics designed to be biodegradable may not fully decompose since they depend on factors such as exposure to light, oxygen, and temperature (Swift and Wiles 2004), which are scarce in ocean depths. Smaller particles of plastic from manufacturing processes could also be difficult to account for and nearly impossible to extract. Marine litter can be land- or sea-based and often results from poor solid waste management practices. An estimated 80 percent of marine litter origi- nates from land-based sources such as mismanaged dumps and landfills, storm water discharge, sewage, industrial facilities, and coastal tourism (Arcadis 2014; McIlgorm, Campbell, and Rule 2008). Waste may also be transported to the ocean from inland rivers. In 2010, an estimated 32  million tonnes of plastic waste were mismanaged in coastal areas, allowing between 4.8 and 12.7 million tonnes of plastic waste to escape into oceans (UNEP and NOAA 2012; Jambeck et al. 2015). When collection systems and disposal sites are in proper operation, waste is less likely to be disposed of haphazardly. Photo 7.9 Spilled Garbage on the Beach Case Studies 175 Although research is in its infancy, sufficient evidence indicates that marine litter has a detrimental effect on society. One study estimates that costs associated with ocean-based plastic consumer waste leads to losses of US$8 billion annually, including revenue losses to fisheries, aquaculture, and marine tourism industries in addition to the cost of cleaning up litter on beaches (UNEP 2014). Marine debris affects marine life through debris entanglement, which injures marine life or makes escaping for air or consuming food impossible (Laist 1997). Marine litter can also be ingested by sea organisms, with nega- tive effects on reproduction and development for both the organisms them- selves and downstream consumers. A study revealed that marine litter was present in all marine turtles studied, 59 percent of whales, 36 percent of seals, and 40 percent of seabirds (Foekema et al. 2013). Plastic particles have even been found in many species of fish and shellfish sold for human consumption. Marine waste is expected to grow with increasing population and rising per capita consumption, especially in urban areas and quickly developing economies. Several policy initiatives related to marine environmental pro- tection and pollution have been drafted along with action plans at the regional, national, and municipal levels to address the problem. The UN 2030 Agenda for Sustainable Development, adopted in 2015, provides an overarching framework to guide international, regional, national, and local initiatives. Four out of the 17 Sustainable Development Goals have associ- ated targets particularly relevant to marine plastic pollution. At the national level, Japan, the Republic of Korea, the Netherlands, and Singapore have developed legislation and policies to address marine litter, but such legisla- tion remains uncommon globally. At a municipal level, many cities are improving waste management practices, and some are implementing plastic bans or penalties on bottles and bags, which can reduce plastic usage and waste if enforced. 176 What a Waste 2.0 17. Using Information Management to Reduce Waste in Korea Korea is a high-income country with a population of almost 50 million people in 2015 (UN DESA 2014). The country generated 18.2 million tonnes of municipal waste in 2014 and recycled 58 percent of its waste, achieving one of the highest rates among Organisation for Economic Co-operation and Development countries (Kho and Lee 2016). Korea is also a global leader in progressive solid waste management legislation, under which residents are encouraged to recycle plastics through a deposit refund system, reduce waste through volume-based fees, and separate dif- ferent streams of waste at the household and business levels. The country has also established an extended producer responsibility system and recycles its construction waste. Korea established its solid waste management information system in 2001. The system digitally records statistics from waste generation to transporta- tion and final disposal. The system was developed by the Ministry of Information and Communication and comprises three separate databases. The Allbaro System is an overarching platform that monitors all waste trans- portation and disposal activities. The system tracks the amount of waste that is collected and transported, analyzes truck routes using a geographic information system, records licenses and authorization documents, and aggregates statistics to support evidence-based policy making. The second system uses radio-frequency identification (RFID) to obtain information about food waste management. Each household uses a personalized card con- taining an RFID chip to open local food waste disposal bins. Through this process, the identity of the household and the weight of waste disposed of is instantly recorded, and households are charged a fee based on waste amount. In 2013, a 20 percent reduction in food waste was achieved in the capital city of Seoul through this digital volume-based system. Finally, the Recyclable Information System matches suppliers and buyers of recycled materials on a centralized platform. The platform provides information on recycling prices and technologies, matches businesses to recycling firms, and facilitates elec- tronic bidding. As of September 2013, the platform had registered 69,000 members. Korea’s waste information system has led to cost savings, promoted transparency, and eliminated illegal waste disposal. The phased implemen- tation of the system allowed stakeholders to adjust to the system success- fully. Other success factors include a public relations strategy that increased awareness and a strong feedback mechanism that enabled the system to be improved over time. Most importantly, the waste information system allowed a volume-based waste fee to be implemented, which has led to a valuable change in citizen behavior and reduced resource consumption. Case Studies 177 Notes 1. In 2015, it became the Ministry of Environment and Sustainable Development. 2. https://cursos.ambiente.gob.ar/sigirsu/. 3. Entities established by several municipalities and wards to jointly con- duct administrative services. 4. “Eco” for ecology and “Lef” for packing in Arabic. 5. Such as ethylene products, propylene, styrene, vinyl chloride, and vinyl acetate. 6. Videos are available on the City of Toronto’s YouTube channel: https:// www.youtube.com/watch?v=aNrX4MZxszo&list=PLp11YxteHNp25 DJbbfEeuY59Z3gPPOtdg. 7. Companies that produce or commercialize food are exempt from any liability for possible damage to the health of third parties caused by food donated through food banks, and food banks are responsible for the good management of donated products. References Aguilar Gutiérrez, G. 2016. “Food Losses and Food Waste in Mexico: Quantification and Some Proposals for Public Policy.” International Workshop on Food Loss and Food Waste, Washington, DC, November 7–9. Andrady, A. L. 1994. “Assessment of Environmental Biodegradation of Synthetic Polymers.” Journal of Macromolecular Science Part C Polymer Reviews 34 (1): 25–76. ANGed and Ministry of Social Affairs and Environment. 2018. Eco-Lef Progress Report, February 22, 2018, in Arabic Power Point format. https://www.linkedin.com/in/anged-tunisie/detail/recent-activity/shares. Arcadis. 2014. “Marine Litter Study to Support the Establishment of an Initial Quantitative Headline Reduction Target.” SFRA0025. European Commission DG Environment Project number BE0113.000668. BAMX (Bancos de Alimentos de Mexico). 2015. Informe 2015. (online). https://bamx.org.mx/wp-content/uploads/2016/09/Informe -Anual -2015.pdf. Banna, Farouk. 2017. “Municipal Solid Waste Management in Burkina Faso: Diagnostic and Recommendations.” World Bank, Washington, DC. Basnayake B. F. A., C. Chiemchaisri, C. Visvanathan. 2006. “Wastelands: Clearing Up after the Tsunami in Sri Lanka and Thailand.” Waste Management World 31–38. bio by Deloitte. 2014. Development of Guidance on Extended Producer Responsibility (EPR). Final Report. Report prepared for the European Commission. Neuilly-sur-Seine: bio by Deloitte. 178 What a Waste 2.0 Brown, Charlotte. 2015. “Waste Management Following Earthquake Disaster.” In Encyclopedia of Earthquake Engineering, edited by M. Beer, E. Patelli, I. Kougioumtzoglou, 3921–34. Berlin, Heidelberg: Springer. ———, Mark Milke, and Erica Seville. 2011. “Disaster Waste Management: A Review Article.” Waste Management 31: 1085–98. Bush, Jessica. 2017. “Taiwan Has Found a Brilliant Way to Get People to  Recycle More.” Buzzfeed, August 30. https://www.buzzworthy.com /taiwan-garbage-disposal/. City of Toronto. 2018a.  “Recycling, Organics & Garbage.” https://www .toronto.ca/services-payments/recycling-organics-garbage/. City of Toronto. 2018b. “Waste Wizard.” https://www.toronto.ca/services -payments/recycling-organics-garbage/waste-wizard/. Cohen, Anna. 2012. “ʴʩʰʥʩ ʠʹʴʤ ʴʰʠʥʮʠʨʩ  ʶʲʣ ʩʸʥʷ ʬʮʲʯ ʤʱʡʩʡʤ ʡʩʡʰʤ ʥʤʱʡʩʡʤ” (“Pneumatic garbage disposal—a green step for the environ- ment in Yavneh and the surrounding area.”) MYavne. July 25. Consultic. 2013. “Post-Consumer Plastic Waste Management in European Countries 2012 - EU 27 + 2 Countries.” Consultic, Rückersdorf, Germany. http://kunststofkringloop.nl/wp-content/uploads/2014/05/Plastic-waste -management-report-October-2013-versie-NL-en-EU-voor -keten akkoord.pdf. Correal, Magda. 2015. “Estrategia Nacional para el desarrollo de infrae- structura.” Sector Aseo. Bogota, Colombia. ———. 2016. “Modelos de regionalización y mecanismos de recuperación de costos de la prestación del servicio.” Foro Internacional “Organismos Operadores para la Gestión Integral de los Residuos Sólidos Urbanos.” IBD-SEMARNAT. Mexico City, April 20–21. Economist Intelligence Unit. 2011. US and Canada Green City Index— Assessing the Environmental Performance of 27 Major US and Canadian Cities. Munich: Siemens, A.G. https://www.siemens.com/entry/cc/features /greencityindex_international/all/en/pdf/report_northamerica_en.pdf. EPA (United States Environmental Protection Agency). 2017. “Zero Waste Case Study: San Francisco.” Managing and Transforming Waste Streams—A Tool for Communities. https://www.epa.gov/transforming -waste-tool/zero-waste-case-study-san-francisco. FAO (Food and Agriculture Organization of the United Nations). 2013. Food Wastage Footprint—Impacts on Natural Resources (online). http:// www.fao.org/docrep/018/i3347e/i3347e.pdf. Foekema, E. M., C. De Gruijter, M. T. Mergia, J. A. van Franeker, A. J. Murk, and A. A. Koelmans. 2013. “Plastic in North Sea Fish.” Environmental Science and Technology 47 (15): 8818–24. Galgani, Francois, Georg Hanke, and Thomas Maes. 2015. “Global Distribution, Composition and Abundance of Marine Litter.” In Marine Anthropogenic Litter, edited by Melanie Bergmann, Lars Gutow, and Michael Klages, 29–56. London: Springer. Case Studies 179 IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. New York, and Cambridge, UK: Cambridge University Press. http://www.ipcc.ch/report /ar5/wg2/. Jambeck, Jenna R., Roland Geyer, Chris Wilcox, Theodore R. Siegler, Miriam Perryman, Anthony Andrady, Ramani Narayan, and Kara Lavender Law. 2015. “Plastic Waste Inputs from Land into the Ocean.” Science 347 (6223): 768–71. https://www.iswa.org/fileadmin/user_upload/Calendar _2011_03_AMERICANA/Science-2015-Jambeck-768-71__2_.pdf. Kho, Pan-Ki, and Syung-Uk Lee. 2016. “Waste Resources Management and Utilization Policies of Korea.” Korea Research Institute for Human Settlements, Publications Registration Number 11-10510000-000755 -01, Republic of Korea. Accessed May 27, 2017. http://www.ksp.go.kr /publication/modul.jsp. Laist, David W. 1997. “Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records.” In Marine Debris, edited by J.  M.  Coe and D. B. Rogers, 99–139. New York: Springer Series on Environmental Management. McIlgorm, A., H. F. Campbell, and M. J. Rule. 2008. Understanding the Economic Benefits and Costs of Controlling Marine Debris in the APEC Region. (MRC 02/2007). A report to the Asia-Pacific Economic Cooperation Marine Resource Conservation Working Group by the National Marine Science Centre (University of New England and Southern Cross University), Coffs Harbour, NSW, Australia, December. McKay, Jim. 2016. “City of Toronto Solid Waste Management Services.” Presented at “Property Management Expo,” November 30. https:// ccitoronto.org/sites/default/uploads/files/Jims-waste-presentation -Jan2017.pdf. Ministry of Environment and Natural Resources (Secretaría de Medio Ambiente y Recursos Naturales). 2015. Informe de la Situación del Medio Ambiente en México. Nakou, D., A. Benardos, and D. Kaliampakos. 2014. “Assessing the Financial and Environmental Performance of Underground Automated Vacuum Waste Collection Systems.” Tunneling and Underground Space Technology 41: 263–71. https://www.researchgate.net/publication/260114762_Assessing _ the_financial_and_environmental_performance_of_underground _automated_vacuum_waste_collection_systems. Reinhart, Debra R., and Philip T. McCreanor. 1999. Disaster Debris Management—Planning Tools. Washington, DC: US Environmental Protection Agency. https://www.researchgate.net/publication/237778695 _Disaster_Debris_Management_-_Planning_Tools. Republic of Tunisia. Presidency of the Government. National Portal of Legal Information. Decree no 97-1102 of 2 Juin 1997. http://legislation.tn. 180 What a Waste 2.0 Revolvy. n.d. “Automated Vacuum Collection.” https://www.revolvy.com /main/index.php?s=Automated%20vacuum%20collection. Shen, Stephen. n.d. “Waste Management Policies and Services in Taipei.” https://www.pecc.org/resources/infrastructure-1/1246-towards-zero -waste-society-new-management-policies-for-solid-waste-disposal-in -chinese-taipei-1/fil. p. 81–88. Swift, G., and D. Wiles. 2004. “Biodegradable and Degradable Polymers and Plastics in Landfill Sites.” Encyclopedia of Polymer Science and Technology, edited by J. I. Kroschwitz. Hoboken: John Wiley & Sons. Thummarukudy, Muralee. 2012. “Waste: Disaster Waste Management: An Overview.” In Environment Disaster Linkages (Community, Environment and Disaster Risk Management, Volume 9, edited by  Rajib Shaw and  Phong Tran, 195–218. Bingley, UK: Emerald Group Publishing Limited. UN DESA (United Nations Department of Economic and Social Affairs). 2014. “World Urbanization Prospects: The 2014 Revision.” CD-ROM Edition. UN DESA, Population Division, New York. UNEP (United Nations Environmental Programme). 2012. Managing Post- Disaster Debris: The Japan Experience. Geneva: United Nations Environmental Programme. ———. 2014. Valuing Plastics: Business Case for Measuring, Managing and Disclosing Plastic Use in the Consumer Goods Industry. Nairobi: United Nations Environment Programme. ———. 2015. Nepal Final Draft. Disaster Waste Management Policy, Strategy & Action Plan. Kathmandu, Nepal: UNEP. ——— and NOAA. 2012. The Honolulu Strategy—A Global Framework for Prevention and Management of Marine Debris. Nairobi: United Nations Environment Programme; and Washington, DC: National Oceanic and Atmospheric Administration. https://marinedebris.noaa .gov/sites/default/files/publications-files/Honolulu_Strategy.pdf. UNEP-UNOCHA. 2011. Disaster Waste Management Guidelines. Geneva: Emergency Preparedness Section, Joint UNEP/OCHA Environment Unit. Additional Resources Achieving Financial Sustainability in Argentina and Colombia Solda, S., I. Berardo, and M. Mosteirin. 2014. “Integrated Urban Solid Waste Management Economic and Financial Matrix. A Methodology for Calculating Integrated Solid Waste Management Cost: The Case of Argentina.” National Solid Waste Management Project Implementation Unit. National Secretariat of Environment and Sustainable Development. Paper presented at the International Solid Waste Association Conference, São Paulo, Brazil. Case Studies 181 Economic and Financial Sustainability in Municipalities. Argentina. Presentation by the Executing Unit of Argentina—National Secretariat of Environment and Sustainable Development at the International SWM Workshop in Washington, DC, May 2013. Information provided by Santiago Solda through several e-mail messages. https://cursos.ambiente.gob.ar/sigirsu/. http://www.cra.gov.co/es/acerca-de-la-entidad/estructura-organizacional. Comisión de Regulación de Agua Potable y Saneamiento Básico. 2015. Nuevo marco tarifario del servicio público de aseo para municipios con más de 5.000 suscriptores en el área urbana. Automated Waste Collection in Israel Alon Group. 2018. “The State of Garbage and Waste in Israel.” http://www .alon-group.com/en/the-state-of-garbage-and-waste-in-israel/. Central Reforms to Stabilize Waste Sector and Engage Private Sector in Senegal AllAfrica. 2016. “Senegal: Solid Waste Management in Dakar—Ucg gets a new tool.” https://translate.googleusercontent.com/translate_c?depth=1& hl=en&prev=search&rurl=translate.google.com&sl=fr&sp =nmt4&u=http://fr.allafrica.com/stories/201606171199.html&usg=ALkJ rhiIQ3vvgmsZHsB3XSQ03WvwgFA8rA. World Bank. 2017. “Project Information Document/Integrated Safeguards Data Sheet (PID/ISDS).” World Bank, Washington, DC. http://documents .worldbank.org/curated/en/581531500995135875/pdf/ITM00 184 -P161477-07-25-2017-1500995132357.pdf. Decentralized Organic Waste Management by Households in Burkina Faso International Monetary Fund. 2005. “Burkina Faso: Poverty Reduction Strategy Paper.” Country Report 05-338. Washington, DC. https://www .imf.org/external/pubs/ft/scr/2005/cr05338.pdf. World Bank. 2005. “Burkina Faso Joint IDA-IMF Staff Advisory Note on the Poverty Reduction Strategy Paper and the Annual Progress Report of  the Poverty Reduction Strategy Paper.” Report No. 31749-BF. Washington, DC. http://documents.worldbank.org/curated/en/42594146 8239680045/text/31749.txt. Financially Resilient Deposit Refund System: The Case of the Bottle Recycling Program in Palau Bureau of Immigration, Ministry of Justice, Bureau of Planning and Ministry of Finance, Republic of Palau: 2016. http://palaugov.pw/immigration -tourism-statistics/. 182 What a Waste 2.0 ADB (Asian Development Bank). 2014. “Solid Waste Management in the Pacific: Palau Country Snapshot.” ADB Publication Stock No. ARM1466 11-2, Manila. JICA (Japan International Cooperation Agency) and Palau Ministry of Resources and Development). 2008. “Draft National Solid Waste Management Plan.” JICA, Palau. Improving Waste Collection by Partnering with the Informal Sector in Pune, India https://swachcoop.com/. Bhaskar, A., and P. Chikarmane. 2012. “The Story of Waste and Its Reclaimers: Organising Waste Collectors for Better Lives and Livelihoods.” The Indian Journal of Labour Economics 55 (4): 595–619. https://swachcoop.com/pdf/AnjorBhaskar.pdf. Chikarmane, P. 2012. “Integrating Waste Pickers into Municipal Solid Waste Management in Pune.” WIEGO. https://swachcoop.com/pdf /SWaCH%20policy%20brief.pdf. Managing Disaster Waste Ekici, Siddik, David A. McEntire, and Richard Afedzie. 2009. “Transforming Debris Management: Considering New Essentials.” Disaster Prevention and Management: An International Journal 18 (5): 511–22. UNISDR (United Nations International Strategy for Disaster Reduction). 2007. Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters. Geneva: United Nations Office for Disaster Risk Reduction. https://www.unisdr.org/we/coordinate/hfa. ———. 2015. The Sendai Framework for Disaster Risk Reduction 2015– 2030. Geneva: United Nations Office for Disaster Risk Reduction. UNEP (United Nations Environmental Programme). 2005. Lessons Learnt from the Tokage Typhoon (Typhoon 23 of 2004) in Japan. Geneva: United Nations Environmental Programme. US EPA (United States Environmental Protection Agency). 2008. Planning For Natural Disaster Debris. Washington, DC: Office of Solid Waste and Emergency Response and Office of Solid Waste. Minimizing Food Loss and Waste in Mexico Secretaría de Medio Ambiente y Recursos Naturales. El medio Ambiente en Mexico 2013–2014 (online). http://apps1.semarnat.gob.mx/dgeia/informe _resumen14/05_atmosfera/5_2_2.html. International Workshop on Food Loss and Food Waste. Washington, DC. 2016. Federico Gonzalez Celaya (online). http://www.worldbank.org/en /events/2016/11/07/2016-international-workshop-on-food-loss-and -food-waste (July 10, 2016). Case Studies 183 Sustainable Source Separation in Panaji, India Corporation of Panaji, http://ccpgoa.com/index.php. The Water and Sanitation Programme. 2006. “Panaji (Goa): Innovation and Incentives Work Wonders.” In Solid Waste Management Initiatives in Small Towns—Lessons and Implications, 11–17. Washington, DC: World Bank. http://ccpgoa.com/swachhbharat/uploads/download/18 _down_SWM_initatives_in_small_towns-Case_Study.pdf. The Global Tragedy of Marine Litter Cole, M., P. Lindeque, E. Fileman, C. Halsband, and T. S. Galloway. 2015. “The Impact of Polystyrene Microplastics on Feeding, Function and Fecundity in the Marine Copepod Calanus Helgolandicus.” Environmental Science and Technology 49 (2): 1130–37. Davison, P., and R. G. Asch. 2011. “Plastic Ingestion by Mesopelagic Fishes in the North Pacific Subtropical Gyre.” Marine Ecology Progress Series 432 (June): 173–80. European Commission. 2010. “Marine Litter: Time to Clean Up Our Act.” European Commission, Brussels. http://ec.europa.eu/environment /marine/pdf/flyer_marine_litter.pdf. ———. 2012. “Overview of EU Policies, Legislation and Initiatives Related to Marine Litter.” SWD(2012) 365 final. European Commission, Brussels. http://ec.europa.eu/environment/marine/pdf/SWD_2012_365.pdf. Gall, S., and R. Thompson. 2015. “The Impact of Debris on Marine Life.” Marine Pollution Bulletin 92 (1-2): 170–79. GESAMP (Joint Group of Experts on the Scientific Aspect of Marine Environmental Protection). 2015. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment. London: International Maritime Organization. http://ec.europa.eu/environment /marine/good-environmental-status/descriptor-10/pdf/GESAMP_micro plastics%20full%20study.pdf. Meeker, J. D., S. Sathyanarayana, and S. H. Swan. 2009. “Phthalates and Other Additives in Plastics: Human Exposure and Associated Health Outcomes.” Philosophical Transactions of the Royal Society of London B: Biological Sciences 364 (1526): 2097–113. Moss, E., A. Eidson, and J. Jambeck. 2017. Sea of Opportunity: Supply Chain Investment Opportunities to Address Marine Plastic Pollution. New York: Encourage Capital on behalf of Vulcan. Napper, I. E., A. Bakir, S. J. Rowland, and R. C. Thompson. 2015. “Characterisation, Quantity and Sorptive Properties of Microplastics Extracted from Cosmetics.” Marine Pollution Bulletin 99 (1–2):178–85. Rochman, Chelsea M., Akbar Tahir, Susan L. Williams, Dolores V. Baxa, Rosalyn Lam, Jeffrey T. Miller, Foo-Ching Teh, Shinta Werorilangi, and  Swee J. Teh. 2015. “Anthropogenic Debris in 184 What a Waste 2.0 Seafood: Plastic Debris and Fibers from Textiles in Fish and Bivalves Sold for Human Consumption.” Scientific Reports 5, Article number 14340, https://www.nature.com/articles/srep14340. Sheavly, S. B. 2007. “National Marine Debris Monitoring Program: Final Program Report, Data Analysis and Summary.” Prepared for U.S. Environmental Protection Agency by Ocean Conservancy. http://www .scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers .aspx?ReferenceID=1692635. UNEP (United Nations Environment Programme). 2005. Marine Litter: An Analytical Overview. Nairobi: United Nations Environment Programme. http://www.cep.unep.org/content/about-cep/amep/marine-litter-an-ana lytical-overview/view. ———. 2016. “Marine Plastic Debris and Microplastics: Global Lessons and Research to Inspire Action and Guide Policy Change.” Nairobi: United Nations Environment Programme. http://drustage.unep.org / about/partnerships/marine-plastic- debris-and-microplasticsglobal -lessons-and-research-inspire-action-and-guide-policy. ——— and GRID-Arendal. 2016. Marine Litter Vital Graphics. Nairobi and Arendal: United Nations Environment Programme and GRID- Arendal. https://www.grida.no/publications/60. Wright, S. L., R. C. Thompson, and T. S. Galloway. 2013. “The Physical Impacts of Microplastics on Marine Organisms: A Review.” Environmental Pollution 178: 483–92. APPENDIX A Waste Generation (tonnes per year) and Projections by Country or Economy 185 186 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Afghanistan SAR LIC 5,628,525 34,656,032 2016 World Bank 2016b, 18 Albania, INSTAT Albania ECA UMIC 1,142,964 2,880,703 2015 2016, 2 Algeria MENA UMIC 12,378,740 40,606,052 2016 Ouamane 2017 American EAP UMIC 18,989 55,599 2016 SPREP 2016, 21 Samoa Andorra ECA HIC 43,000 82,431 2012 UNSD 2016 Angola, Ministry of Angola SSA LMIC 4,213,644 25,096,150 2012 Environment 2012, 6 Caribbean Community Antigua and LAC HIC 136,720 98,875 2009 Secretariat 2013, 147; Barbuda Francis et al. 2015 Argentina LAC UMIC 17,910,550 42,981,515 2014 World Bank 2015b, 35 Armenia, National Armenia ECA LMIC 492,800 2,906,220 2014 Statistical Service 2017 Pricewaterhouse Aruba LAC HIC 88,132 103,187 2013 Coopers Aruba 2014, 11 Australia EAP HIC 13,345,000 23,789,338 2015 OECD 2018 Austria ECA HIC 4,836,000 8,633,169 2015 Eurostat 2017 Azerbaijan, Ministry of Azerbaijan ECA UMIC 2,930,349 9,649,341 2015 Economy 2017, 80 (table 4.5) Waste Generation (tonnes per year) and Projections by Country or Economy 187 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 1 (Kabul, 0.7 kg/ 5,628,525 34,656 7,979,843 46,700 12,887,446 61,928 person/day)   1,178,111 2,926 1,320,644 2,933 1,392,409 2,664 2 12,378,740 40,606 16,319,973 48,822 21,171,891 57,437 1 (urban, 1 kg/person/day; rural regional average, 18,989 56 21,468 57 25,433 57 0.5 kg/person/day) 3 43,594 77 45,675 78 49,509 77 4 (0.46 kg/person/day) 4,829,098 28,813 7,668,976 44,712 13,468,138 76,046 Municipal waste collected from HH and deposited in the landfill is 22,700 tonnes in 2009. HH generation is adjusted for the amount of uncollected household waste by dividing HH waste 33,239 101 64,920 115 79,530 125 generation by the fraction of households with waste collection in 2011 (0.9861). Municipal waste collected from other origins is added (113,700 tonnes) from 2009. 4 (49.07 tonnes/day) 18,184,606 43,847 23,740,083 49,323 31,086,051 55,229   501,528 2,925 590,607 2,907 661,744 2,700 4 (2.34 kg/person/day) 111,189 105 152,814 109 166,977 107   13,601,628 24,126 16,972,554 28,235 21,377,002 33,187   4,887,032 8,712 5,351,594 8,946 5,805,911 8,878 The National Solid Waste Management Strategy plan covers only 77.5 percent of Azerbaijan, excluding occupied territory (20 percent) and the Greater Baku Area (2.5 percent). The total amount generated in 2,900,944 9,725 3,329,963 10,680 3,617,967 11,039 these areas is 964,427 tonnes/year; value is calculated from the amount generated in these areas (964,427 tonnes/year) and in the Baku area (1,965,922 tonnes/year). (Table continues on next page) 188 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Bahamas, The LAC HIC 264,000 386,838 2015 SIDS DOCK 2015, 10 Idrees and McDonnell Bahrain MENA HIC 951,943 1,425,171 2016 2016 Bangladesh SAR LMIC 14,778,497 155,727,053 2012 BMDF 2012 Barbados LAC HIC 174,815 280,601 2011 Burnside 2014 Belarus, National Belarus ECA UMIC 4,280,000 9,489,616 2015 Statistical Committee 2017 Belgium ECA HIC 4,708,000 11,274,196 2015 Eurostat 2017 Belize LAC UMIC 101,379 359,288 2015 IDB 2015, 3 Benin SSA LIC 685,936 5,521,763 1993 Achankeng 2003, 11 Bermuda NA HIC 82,000 64,798 2012 UNSD 2016 Bhutan SAR LMIC 111,314 686,958 2007 Phuntsho et al. 2007 Bolivia LAC LMIC 2,219,052 10,724,705 2015 Bolivia, DGGIRS 2016 Waste Generation (tonnes per year) and Projections by Country or Economy 189 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 5; Residential waste accounts for 70 percent of the waste collected and commercial waste accounts 263,946 391 317,600 440 373,151 475 for 30 percent. About 77 percent of this amount is generated in New Providence. 4 (1.83 kg/person/day) 951,943 1,425 1,423,838 2,013 1,785,605 2,327 4 (0.29 kg/person/day) 16,380,103 162,952 22,138,475 185,585 31,162,100 201,927 Includes only mixed MSW (collected curbside in bags or containers that can be picked up by hand) entering the landfill with estimated collection coverage of 90 178,767 285 200,673 290 223,677 280 percent; includes cardboard, coconut husks, green waste, pellets and lumber, paper, plastic, shingles, and tires; excludes C&D waste. 2 4,227,784 9,480 4,935,505 9,163 5,451,248 8,571   4,759,760 11,358 5,349,712 12,002 6,164,189 12,488 1 (urban, 1.07 kg/person/day) 102,440 367 144,792 473 223,778 592 1 (Porto Novo, 0.5 kg/person/ 1,401,386 10,872 2,166,407 15,628 4,202,189 23,930 day) 3 102,261 62 104,677 59 100,274 53 1 (urban, 0.53 kg/person/ 152,647 798 249,472 914 367,260 994 day) Includes domestic waste and waste from public areas and markets; excludes slaughterhouse and hospital waste (together totaling 144,155.6 tonnes/year); data estimated based on population from census 2,276,967 10,888 3,288,932 13,158 5,214,928 15,903 projections and per capita generation estimates from in-country studies in sample cities and reference values in the region for cities of similar size and rural areas. (Table continues on next page) 190 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Bosnia and Bosnia and Herzegovina, ECA UMIC 1,248,718 3,535,961 2015 Herzegovina BHAS 2016, 1 Seanama Conservation Botswana SSA UMIC 210,854 2,014,866 2010 2012; Botswana, Statistics Botswana 2011 Brazil LAC UMIC 79,889,010 205,962,108 2015 ABRELPE 2015, 19 British Virgin LAC HIC 21,099 20,645 2000 Treasure n.d., 3 Islands Brunei, Department of Brunei EAP HIC 216,253 423,196 2016 Environment, Parks and Darussalam Recreation 2015 Bulgaria ECA UMIC 3,011,000 7,177,991 2015 Eurostat 2017 Burkina Faso SSA LIC 2,575,251 18,110,624 2015 Cissé 2015 UNECA-UNEP-UNIDO- Burundi SSA LIC 1,872,016 6,741,569 2002 ARSCP 2011 Cabo Verde SSA LMIC 132,555 513,979 2012 de Carvalho 2013, 15 Cambodia EAP LMIC 1,089,000 15,270,790 2014 Modak et al. 2017, 214 Mbue, Bitondo, and Cameroon SSA LMIC 3,270,617 21,655,715 2013 Balgah 2015 Canada, Statistics Canada NA HIC 25,103,034 35,544,564 2014 Canada 2016 Cayman Amec Foster Wheeler LAC HIC 60,000 59,172 2014 Islands 2016 Central UN OCHA 2014;  African SSA LIC 1,105,983 4,515,392 2014 UN DESA 2014b Republic Simos and de Leeuw 2017, Chad SSA LIC 1,358,851 11,887,202 2010 94; UN DESA 2014b Channel States of Guernsey 2017; ECA HIC 178,933 164,541 2016 Islands States of Jersey 2018 Chile LAC HIC 7,530,879 17,910,000 2009 Chile, CONAMA 2010, 12 China EAP UMIC 220,402,706 1,403,500 2015 Ji et al. 2016, 2 Colombia LAC UMIC 13,475,241 48,653,000 2011 IDB 2012, 11 and 25 Comoros SSA LIC 93,134 796,000 2015 World Bank 2015a Congo, Dem. Tshitala Kalula 2016; SSA LIC 14,385,226 78,736,153 2016 Rep. UN DESA 2014b Congo, Rep. SSA LMIC 894,237 5,126,000 1993 Achankeng 2003, 11 Costa Rica, Ministry of Costa Rica LAC UMIC 1,525,982 4,857,274 2014 Health 2016, 13 Waste Generation (tonnes per year) and Projections by Country or Economy 191 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 3; and percentage of population using municipal 1,261,143 3,517 1,457,111 3,405 1,588,584 3,058 services across various municipalities. 1 (Gaborone, 85 tonnes/ 252,462 2,250 363,790 2,800 516,517 3,421 month) 4 (218,874 tonnes/day) 79,081,401 207,653 96,693,974 225,472 114,304,745 232,688 4 (2.8 kg/person/day) 41,960 31 63,605 35 75,942 38 4 (1.4 kg/person/day) 216,253 423 262,788 490 307,979 537   3,049,324 7,131 3,306,089 6,431 3,295,494 5,424 1 (big cities, 0.7 kg/person/ day; small cities, 0.5 kg/ 2,659,191 18,646 4,265,523 27,382 8,807,490 43,207 person/day; average used); 2 1 (Bujumbura, 511 2,950,090 10,524 4,228,365 15,799 8,367,259 25,762 kg/person/year)   139,864 540 191,675 635 274,533 734   1,159,859 15,762 1,702,523 18,798 2,641,058 22,019 1 (Douala, 3,621,758 23,439 5,862,357 32,980 11,858,301 49,817 0.54 kg/person/day) Value represents waste disposed of from residential 25,666,127 36,290 30,384,216 40,618 36,171,524 44,949 and nonresidential sources. 5 76,141 61 117,277 71 150,789 81 1 (Bangui, 750 tonnes/day) 1,107,218 4,595 1,377,932 6,124 2,366,704 8,851 1 (N’Djamena, 1,645,769 14,453 2,564,763 21,460 5,237,093 33,636 533 tonnes/day)   178,933 165 207,125 174 235,743 181   7,530,879 17,910 9,359,890 19,637 11,403,108 20,718   220,402,706 1,403,500 295,035,224 1,441,182 335,791,732 1,364,457 4 (33,288 tonnes/day) Data represents 1,102 out of 1,120 13,475,241 48,653 16,435,975 53,134 20,091,306 54,733 municipalities.   93,134 796 131,021 1,062 234,683 1,463 1 (Kinshasa, 14,385,226 78,736 21,491,194 120,443 44,389,132 197,404 7,000 tonnes/day) 1 (Brazzaville, 0.6 kg/person/ 894,237 5,126 1,533,286 7,319 3,193,587 11,510 day) 4 (4,000 tonnes/day) 1,525,982 4,857 1,933,590 5,417 2,389,760 5,774 (Table continues on next page) 192 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Ludington 2015; Côte d’Ivoire SSA LMIC 4,440,814 20,401,331 2010 UN DESA 2014b Croatia ECA UMIC 1,654,000 4,203,604 2015 Eurostat 2017 Cuba LAC UMIC 2,692,692 11,303,687 2007 Rebelde 2007 PricewaterhouseCoopers Curaçao LAC HIC 24,704 153,822 2013 Aruba 2014, 11 Cyprus ECA HIC 541,000 1,160,985 2015 Eurostat 2017 Czech ECA HIC 3,337,000 10,546,059 2015 Eurostat 2017 Republic Denmark ECA HIC 4,485,000 5,683,483 2015 Eurostat 2017 Djibouti MENA LMIC 114,997 746,221 2002 IMF 2004 Dominica LAC UMIC 13,176 72,400 2013 World Bank 2017a, 5 Dominican Republic, Dominican Ministry of the LAC UMIC 4,063,910 10,528,394 2015 Republic Environment and Natural Resources 2017, 16 Ecuador, Ministry of Ecuador LAC UMIC 5,297,211 16,144,368 2015 Environment 2018 Egypt, Arab GIZ and SWEEP-Net MENA LMIC 21,000,000 87,813,257 2012 Rep. 2014a, 10 El Salvador LAC LMIC 1,648,996 6,164,626 2010 IDB-AIDIS-PAHO 2011, 104 Equatorial SSA UMIC 198,443 1,221,490 2016 Calculated (See box 1.1) Guinea Eritrea SSA LIC 726,957 4,474,690 2011 Calculated (See box 1.1) Estonia ECA HIC 473,000 1,315,407 2015 Eurostat 2017 Eswatini SSA LMIC 218,199 1,343,098 2016 Calculated (See box 2.1) Waste Generation (tonnes per year) and Projections by Country or Economy 193 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 1 (Abidjan, 290 kg/person/ 5,525,029 23,696 9,817,371 33,337 22,186,836 51,375 year)   1,684,219 4,213 1,703,139 3,896 1,670,840 3,461 1 (Havana, 0.7 kg/person/ day; rural, 0.5 kg/person/ day); excludes bulky, industrial, and medical 2,818,053 11,476 3,253,115 11,496 3,647,101 10,823 waste; likely also excludes commercial waste, but this cannot be confirmed. 4 (0.44 kg/person/day) 31,787 159 45,230 172 53,398 181   551,614 1,170 624,277 1,282 715,657 1,383   3,389,662 10,611 3,848,146 10,528 4,245,312 10,054   4,527,726 5,712 4,982,841 6,025 5,640,297 6,314 1 (Djibouti City, 240 kg/day) 152,359 942 217,297 1,133 332,342 1,308 5; total waste (urban and rural) collected, including household (67 percent), commercial (17 percent), institutional (5 percent), industrial (6 percent), and 13,542 74 17,555 78 20,671 77 other (6 percent), is 12,385 tonnes per year; uncollected waste was included by using the collection coverage (94 percent). 4 (11,134 tonnes/day) 4,202,756 10,649 5,412,538 12,098 6,905,740 13,265 2; 9 (12,829.41 tonnes/day collected and a collection 5,307,241 16,385 7,157,795 19,555 10,225,146 22,968 rate of 88.5 percent)   23,366,729 95,689 34,213,851 119,746 55,163,107 153,433 1 (urban, 0.89 kg/ 1,786,871 6,345 2,162,742 6,786 2,771,792 6,997 person/day) 6 198,443 1,221 319,272 1,871 557,175 2,845 6 774,249 4,955 1,084,661 6,718 1,991,475 9,607   475,808 1,312 523,237 1,254 553,719 1,145 6 218,199 1,343 276,577 1,666 407,836 2,081 (Table continues on next page) 194 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source GIZ 2015 (Awadai, Bale Robe, Burie Town, Dilla, Dire Dawa, Jijiga, Jimma, Waliso, Wolkite, Wuqro); Artelia Ville et Transport 2014 (Addis Ababa); WaterAid 2015a (Adigrat, Axum, Bahir Dar, Bule Hora, Yirgachefe, Injibara, Ethiopia SSA LIC 6,532,787 99,873,033 2015 Finoteselam); WaterAid 2015b (Ambo, Hosanna, Bishoftu, Fitche, Gerbe Guracha, Holeta, Yirgalem); Anon 2015 (Adola Woyu, Weldiya, Tepi, Maichew, Halaba Kulito Town, Dembi Dolo, Debre Tabor, Bati) Nordic Competition Faroe Islands ECA HIC 61,000 48,842 2014 Authorities 2016, 57 Fiji, Department of Fiji EAP UMIC 189,390 867,086 2011 Environment 2011, 13 Finland ECA HIC 2,738,000 5,479,531 2015 Eurostat 2017 France ECA HIC 33,399,000 66,624,068 2015 Eurostat 2017 French French Polynesia, DIREN EAP HIC 147,000 273,528 2013 Polynesia 2017, 223 Mombo and Edou 2005, Gabon SSA UMIC 238,102 1,086,137 1995 90 Sanneh et al. 2011, 3; UN Gambia, The SSA LIC 193,441 1,311,349 2002 DESA 2014b Georgia ECA LMIC 800,000 3,717,100 2015 Particip 2015, 8 Germany ECA HIC 51,046,000 81,686,611 2015 Eurostat 2017 Ghana SSA LMIC 3,538,275 21,542,009 2005 Puopiel 2010, 21 Gibraltar, Ministry for the Gibraltar ECA HIC 16,954 33,623 2012 Environment 2017, 30 Greece ECA HIC 5,477,424 10,892,413 2014 Greece, ELSTAT 2017 Eisted and Greenland ECA HIC 50,000 56,905 2010 Christensen 2011, 1 Caribbean Development Grenada LAC UMIC 29,536 105,481 2012 Bank 2014 Waste Generation (tonnes per year) and Projections by Country or Economy 195 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 1 (various cities, 0.30 kg/ 6,727,941 102,403 10,040,763 139,620 18,102,122 190,870 person/day)   65,882 49 72,356 52 83,920 55 1 (urban, 0.78 kg/person/ day; rural, 0.4 kg/person/ 206,277 899 242,350 970 298,039 998 day)   2,769,576 5,503 3,079,571 5,739 3,449,266 5,866   32,544,914 64,721 36,021,363 67,894 40,862,922 70,609 5 139,585 280 174,067 307 199,138 326 1 (Libreville, 0.685 kg/ 403,931 1,980 578,036 2,594 924,679 3,516 person/day) 1 (Banjul, 0.54 kg/person/ 301,751 2,039 503,966 3,001 1,078,463 4,562 day) 3 854,577 3,925 998,425 3,748 1,136,220 3,394   51,410,863 81,915 54,399,513 82,187 57,050,957 79,238 4 (0.45 kg/person/day); 5 5,287,958 28,207 8,142,202 37,294 14,272,518 51,270 Value represents MSW, excluding mattresses and 18,761 34 20,279 36 22,973 37 nonhazardous bulky waste.   5,636,374 11,184 5,966,360 10,784 6,379,219 9,982 5 53,601 56 56,336 57 58,128 54 Value includes HH (20,818 tonnes/year), institutional (1,017 tonnes/year), and commercial (5,560 tonnes/ year) waste disposed of in Perserverance Landfill and all the waste in Dumfries 32,359 107 37,194 112 43,325 110 Landfill (1,639 tonnes/year) totaling 29,034 tonnes/year. This value is then adjusted by the collection rate of 98.3 percent; C&D, shipping, industrial, and green waste excluded. (Table continues on next page) 196 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Guam EAP HIC 141,500 159,973 2012 Guam 2013, 10 Guatemala LAC LMIC 2,756,741 16,252,429 2015 IDB 2015, 3 Barry 2002; UN DESA Guinea SSA LIC 596,911 8,132,552 1996 2014b Guinea- SSA LIC 289,514 1,770,526 2015 Ferrari et al. 2016, 2 Bissau Guyana, Ministry of Guyana LAC UMIC 179,252 746,556 2010 Communities n.d., 11 (Table 2) SWANA Haiti Response Haiti LAC LIC 2,309,852 10,847,334 2015 Team 2010, 4; Naquin 2016, 12 Honduras LAC LMIC 2,162,028 9,112,867 2016 Honduras, DGA 2017 Hong Kong, Hong Kong EAP HIC 5,679,816 7,305,700 2015 Environmental Protection SAR, China Department 2016 Hungary ECA HIC 3,712,000 9,843,028 2015 Eurostat 2017 Iceland, Statistics Iceland Iceland ECA HIC 525,000 330,815 2015 2015, 429 Waste Generation (tonnes per year) and Projections by Country or Economy 197 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) Reported as a range of 129,000–154,000 tonnes/ 134,551 163 170,308 181 195,298 193 year (average used). 1 (urban, 0.61 kg/ 2,824,598 16,582 3,990,278 21,203 6,307,100 26,968 person/day) 1 (Conakry, 0.31 kg/ 941,169 12,396 1,757,060 17,631 4,102,204 26,852 person/day) 1 (Bissau, 0.6 kg/ 297,640 1,816 441,963 2,493 894,814 3,603 person/day) 4 (491.1 tonnes/day); includes HH and commercial waste; 491.1 tonnes/day is a weighted average of waste generation in 10 regions; per capita waste generation 202,463 773 244,517 825 293,510 822 (0.73 kg/person/day) was measured for the most populous region, Region 4, while remainder used assumptions based on reference values. 1 (Port au Prince metro area, 0.7 kg/person/day; rural, 0.41 kg/person/day); rural rate is for Cap-Haïtien data, which is representative of the rest 2,309,852 10,847 2,975,484 12,544 4,693,120 14,041 of the country and involves both rural and urban populations; Port au Prince data are from 2010 and Cap-Haïtien’s from 2016. 4 (0.65 kg/person/day); 7; based on 62 percent of the 2,162,028 9,113 3,050,449 11,147 4,787,863 13,249 population in Honduras. 4 (2.13 kg/person/day); 1.39 kg/person/day is the rate of 65 percent of MSW disposed of at landfill; when 5,710,414 7,303 6,858,836 7,987 7,637,326 8,253 35 percent of recovered MSW is factored in, value increases to 2.13 kg/person/ day.   3,715,742 9,753 3,885,730 9,235 3,989,253 8,279 5 539,686 332 637,438 366 755,434 390 (Table continues on next page) 198 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source UNICEF-India, Ministry of Rural Development 2008; India SAR LMIC 168,403,240 1,071,477,855 2001 India, Ministry of Home Affairs 2001; Kumar et al. 2009 Indonesia, Ministry of Environment and Forestry Indonesia EAP LMIC 65,200,000 261,115,456 2016 and Ministry of Industry 2016, 4 Iran, Islamic MENA UMIC 17,885,000 80,277,428 2017 Abedini 2017 Rep. Iraq, Ministry of Iraq MENA UMIC 13,140,000 36,115,649 2015 Environment 2015 Ireland ECA HIC 2,692,537 4,586,897 2012 Ireland, EPA 2014, 1 Isle of Man, Department Isle of Man ECA HIC 50,551 80,759 2011 of Infrastructure n.d., 10 Israel, Ministry of Israel MENA HIC 5,400,000 8,380,100 2015 Environmental Protection 2016 Italy ECA HIC 29,524,000 60,730,582 2015 Eurostat 2017 Jamaica LAC UMIC 1,051,695 2,881,355 2016 Jamaica, NSWMA n.d., 7 Waste Generation (tonnes per year) and Projections by Country or Economy 199 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) Calculated based on daily per capita waste generation rates published by the Central Public Health and Environmental Engineering Organizations, segmented by population groups. Population was taken from 2011 census. Calculations as follows: Population > 5 million (85,188,627), 0.5 kg/person/day; population between 2 million and 5 million (28,850,634), 0.35 kg/ person/day; population 277,136,133 1,324,171 387,770,524 1,512,985 543,277,457 1,658,978 between 1 million and 2 million (46,686,245), 0.27 kg/ person/day; population between 500,000 and 1 million (30,235,593), 0.25 kg/ person/day; population between 100,000 and 500,000 (73,930,414), 0.21 kg/ person/day; for towns and villages > 100,000 population (833,748,852), assumed that the waste generation rate is half that of the lowest population group (0.11 kg/ person/day); value is likely a conservative estimate.   65,200,000 261,115 87,958,248 295,595 118,551,290 321,551 2; estimated based on reports from some cities and 17,653,936 80,277 21,303,899 88,863 25,597,026 93,553 some rural areas. 4 (1.2 kg/person/day) 13,967,851 37,203 21,053,906 53,298 34,328,393 81,490   3,157,225 4,726 3,692,571 5,220 4,322,409 5,801 7 56,476 84 63,371 91 74,679 97 Value represents municipal 5,322,248 8,192 7,108,848 9,984 10,038,606 12,577 and commercial waste.   29,009,742 59,430 29,855,267 58,110 30,839,601 55,093 4 (1 kg/person/day); per capita generation calculated by a collection sampling 1,051,695 2,881 1,156,300 2,933 1,271,212 2,704 exercise in six urban and rural communities. (Table continues on next page) 200 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Japan, Ministry of the Japan EAP HIC 43,981,000 127,141,000 2015 Environment 2015 Jordan MENA LMIC 2,529,997 8,413,464 2013 Al-Jayyousi 2015, 22 Kazakhstan ECA UMIC 4,659,740 16,791,425 2012 World Bank n.d., 42 Kenya SSA LMIC 5,595,099 41,350,152 2010 Okot-Okumu 2012, 4 Kiribati EAP LMIC 35,724 114,395 2016 SPREP 2016, 21 Korea, Rep. EAP HIC 18,218,975 50,746,659 2014 Kho and Lee 2016, 23 Kosovo ECA LMIC 319,000 1,801,800 2015 Eurostat 2017 Kuwait, Partnerships Kuwait MENA HIC 1,750,000 2,998,083 2010 Technical Bureau 2014, 4 Kyrgyz Kyrgyzstan, NSC 2016, 62 ECA LMIC 1,113,300 5,956,900 2015 Republic (Table 5.9) Lao PDR EAP LMIC 351,900 6,663,967 2015 Keohanam 2017 Latvia ECA HIC 857,000 1,977,527 2015 Eurostat 2017 GIZ and SWEEP-Net Lebanon MENA UMIC 2,040,000 5,603,279 2014 2014b, 8; UNDP 2014 Lesotho, Bureau of Lesotho SSA LMIC 73,457 1,965,662 2006 Statistics 2013; Lesotho, Bureau of Statistics 2006 UNEP 2007; UN DESA Liberia SSA LIC 564,467 3,512,932 2007 2014b Omran, Altawati, and Libya MENA UMIC 2,147,596 6,193,501 2011 Davis 2017, 5 Liechtenstein, Office of Liechtenstein ECA HIC 32,382 36,545 2015 Statistics 2018, 7 Lithuania ECA HIC 1,300,000 2,904,910 2015 Eurostat 2017 Luxembourg ECA HIC 356,000 569,604 2015 Eurostat 2017 Macao SAR, Macao SAR, China, DSEC EAP HIC 377,942 612,167 2016 China 2017 Macedonia, ECA UMIC 796,585 2,081,206 2016 Macedonia, MAKStat 2017 FYR Madagascar SSA LIC 3,768,759 24,894,551 2016 World Bank 2016a, 5 Barré 2014; UN DESA Malawi SSA LIC 1,297,844 16,577,147 2013 2014a Waste Generation (tonnes per year) and Projections by Country or Economy 201 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) Excludes disaster waste. 44,374,189 127,749 45,019,046 121,581 43,315,197 108,794   2,793,380 9,456 3,825,435 11,122 6,351,694 14,188 9 (3,588,000 tonnes/year collected and a collection 5,126,019 17,988 6,850,097 20,301 8,512,123 22,959 rate of 77 percent) 1 (Nairobi, 0.6 kg/ 6,844,079 48,462 10,513,071 66,960 19,033,007 95,467 person/day) 8 35,724 114 70,876 142 115,089 178 4 (49,915 tonnes/day) 18,576,898 50,792 22,435,453 52,702 24,624,834 50,457   323,281 1,802 484,974 1,802 645,955 1,802   2,290,389 4,053 2,894,529 4,874 3,613,973 5,644   1,120,523 5,956 1,566,360 6,997 2,475,253 8,113 2 364,463 6,758 522,053 8,049 748,378 9,163   864,936 1,971 881,848 1,747 861,239 1,517 UNDP 2014 estimates that the incremental daily quantity of MSW attributed to refugees is expected to reach 324,568 tonnes/year by 2014; this value is 2,148,803 6,007 2,302,862 5,369 2,862,432 5,412 significant and is equivalent to about 15.7 percent of the waste generated by Lebanese residents before the crisis. 1 (Maseru City, 60 kg/ 87,981 2,204 117,518 2,608 193,270 3,203 person/year) 1 (Monrovia, 780 tonnes/ 722,949 4,614 988,354 6,495 1,910,290 9,804 day) 4 (0.95 kg/person/day) 2,419,759 6,293 3,631,710 7,342 4,617,447 8,124 Value represents total urban 35,486 38 39,939 41 46,168 43 waste only.   1,320,616 2,908 1,382,158 2,718 1,363,525 2,407   360,964 576 433,768 675 524,875 796 Value includes domestic waste and waste produced 377,942 612 481,342 746 575,184 876 by businesses.   796,585 2,081 933,411 2,076 1,056,395 1,931 1 (Antananarivo, 0.61 kg/ 3,768,759 24,895 5,587,354 35,592 10,522,518 53,803 person/day); 5 1 (Lilongwe and Blantyre, 1,415,204 18,092 2,117,841 26,578 4,081,844 41,705 0.37 kg/person/day) (Table continues on next page) 202 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Malaysia EAP UMIC 12,982,685 30,228,017 2014 UNCRD and IGES 2017, xii Maldives, WMPDC and Maldives SAR UMIC 211,506 409,163 2015 MEE 2017 Mali SSA LIC 1,937,354 16,006,670 2012 World Bank 2014, 66 Malta MENA HIC 269,000 431,874 2015 Eurostat 2017 Marshall Pattle Delamore Partners EAP UMIC 8,614 52,793 2013 Islands 2015, 17 Mauritania SSA LMIC 454,000 3,506,288 2009 GIZ and SWEEP-Net 2010a Mauritius, Ministry of Social Security, National Solidarity, and Mauritius SSA UMIC 438,000 1,263,473 2016 Environment and Sustainable Development 2017 Mexico, SEMARNAT 2016, Mexico LAC UMIC 53,100,000 125,890,949 2015 434 Micronesia, EAP LMIC 26,040 104,937 2016 SPREP 2016, 21 Fed. Sts. Moldova, Statistica Moldova ECA LMIC 3,981,200 3,554,108 2015 Moldovei 2016 Monaco ECA HIC 46,000 37,783 2012 UNSD 2016 Mongolia EAP LMIC 2,900,000 3,027,398 2016 Delgerbayar 2016, 4 Montenegro ECA UMIC 332,000 622,159 2015 Eurostat 2017 GIZ and SWEEP-Net Morocco MENA LMIC 6,852,000 34,318,082 2014 2014c, 7 Mozambique SSA LIC 2,500,000 27,212,382 2014 Tas and Belon 2014, 9 Myanmar EAP LMIC 4,677,307 46,095,462 2000 Thein 2010, 6 Namibia SSA UMIC 256,729 1,559,983 1993 Achankeng 2003, 11 Nauru EAP UMIC 6,192 13,049 2016 SPREP 2016, 21 Nepal, SWMTSC 2017; Nepal SAR LIC 1,768,977 28,982,771 2016 ADB 2013 Netherlands ECA HIC 8,855,000 16,939,923 2015 Eurostat 2017 Waste Generation (tonnes per year) and Projections by Country or Economy 203 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s)   13,723,342 31,187 18,235,817 36,815 23,733,545 41,729 2; based on Maldives Ministry of Environment and Energy data for households in Male (1.7 kg/person/day), 224,663 428 300,525 512 393,328 576 other islands (0.8 kg/person/ day), and resorts, hotels, and guest houses (3.5 kg/ bed/day). 1 (Sikasso, 46,770 tonnes/ 2,207,589 17,995 3,515,355 27,057 7,084,361 44,020 year)   270,442 429 303,995 440 324,623 419 4 (23.6 tonnes/day) 8666 53 14,195 56 20,046 66   572,992 4,301 919,925 6,077 1,771,918 8,965 4 (1,200 tonnes/day) 437,535 1,262 518,359 1,287 571,593 1,221   54,151,287 127,540 69,638,974 147,540 90,440,574 164,279 8 129,821 523 207,574 589 298,646 656 5; legislation does not clearly differentiate between industrial and municipal waste. Existing law defines 4,622,874 4,060 5,636,646 3,844 6,588,017 3,293 waste from production and consumption; hence, waste statistics include both types of waste. 3 50,685 38 56,417 41 68,391 46 5 2,900,000 3,027 4,337,475 3,561 6,295,598 4,075   339,542 629 368,880 625 399,240 588   7,126,270 35,277 10,160,132 40,874 15,157,504 45,660   2,644,873 28,829 4,124,044 42,439 8,750,664 67,775 4 (0.278 kg/person/day) 7,451,835 52,885 9,315,917 58,916 11,207,310 62,359 1 (Windhoek, 0.7 kg/person/ 501,797 2,480 738,810 3,246 1,205,787 4,339 day) 8; Nauru is 100 percent 5,384 11 5,200 11 6,139 11 urban according to source 60 additional municipalities were newly formed recently; the two sources provide waste generation for 58 cities and the additional 60 1,768,977 28,983 2,205,525 33,168 2,968,223 36,107 cities, respectively; average waste generated per day for 118 cities is estimated to be 1,854 tonnes/day.   8,936,530 16,987 9,816,231 17,594 10,677,957 17,518 (Table continues on next page) 204 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source New EAP HIC 108,157 278,000 2016 SPREP 2016 Caledonia New Zealand EAP HIC 3,405,000 4,692,700 2016 OECD 2018 Nicaragua LAC LMIC 1,528,816 5,737,723 2010 IDB-AIDIS-PAHO 2011 Niger SSA LIC 1,865,646 8,842,415 1993 Achankeng 2003, 11 Nigeria SSA LMIC 27,614,830 154,402,181 2009 Oguntoyinbo 2012, 1 Northern Mariana EAP HIC 32,761 54,036 2013 Mohee et al. 2015 Islands Norway ECA HIC 2,187,000 5,188,607 2015 Eurostat 2017 Oman MENA HIC 1,734,885 3,960,925 2014 Be’ah 2016, 13 Korai, Mahar, and Uqaili Pakistan SAR LMIC 30,760,000 193,203,476 2017 2017 Palau EAP HIC 9,427 21,503 2016 SPREP 2016, 21 Panama LAC UMIC 1,472,262 3,969,249 2015 IDB 2015, 3 Papua New EAP LMIC 1,000,000 7,755,785 2014 ADB 2014a, 1 Guinea Paraguay LAC UMIC 1,818,501 6,639,119 2015 IDB-AIDIS-PAHO 2011, 104 Peru, Ministry of Environment 2016, 20; Peru LAC UMIC 8,356,711 30,973,354 2014 Peru, Ministry of Environment 2014, 33 Philippines EAP LMIC 14,631,923 103,320,222 2016 Philippines, NSWMC 2017 Poland ECA HIC 10,863,000 37,986,412 2015 Eurostat 2017 Portugal ECA HIC 4,710,000 10,401,062 2014 Eurostat 2017 Puerto Rico LAC HIC 4,170,953 3,473,181 2015 Energy Answers 2012, 41 Qatar MENA HIC 1,000,990 2,109,568 2012 Qatar, MDPS 2014, 92 Romania ECA UMIC 4,895,000 19,815,481 2015 Eurostat 2017 Waste Generation (tonnes per year) and Projections by Country or Economy 205 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 8 106,086 273 132,841 321 168,274 378   3,381,877 4,661 3,971,657 5,213 4,789,174 5,711 4 (0.73 kg/person/day); 7 1,787,370 6,150 2,363,847 7,046 3,502,392 7,876 1 (Niamey, 1 kg/person/day) 4,281,415 20,673 7,164,740 34,994 16,015,498 68,454 4 (0.49 kg/person/day) 34,572,968 185,990 54,806,190 264,068 107,077,289 410,638 1 (Saipan, 1.81 kg/person/ day; average regional rural, 30,922 55 36,345 57 36,190 52 0.5 kg/person/day)   2,216,799 5,255 2,593,368 5,959 3,070,182 6,802 4 (1.2 kg/person/day) 1,928,958 4,425 2,710,244 5,897 3,385,564 6,757   30,352,981 193,203 42,427,624 244,248 66,377,808 306,940 8 9,427 22 19,117 25 22,944 28 1 (urban, 1.22 kg/person/day) 1,516,612 4,034 2,194,682 4,884 3,074,132 5,827 Reported as more than 1,052,408 8,085 1,595,910 10,487 2,844,877 13,871 1 million tonnes/year. 1 (urban, 0.94 kg/person/ 1,862,514 6,725 2,484,878 7,845 3,595,736 8,897 day) Calculated from urban (7,497,482 tonnes/year) and rural (859,229.13 tonnes/year) waste generation; urban value reported in Plan Nacional as 64 percent (4,798,388 tonnes/year) generated by HH and 26 percent (1,949,345 8,737,853 31,774 12,466,705 36,807 17,441,927 41,620 tonnes/year) by non-HH sources; rural value is calculated by World Bank team using an estimate of 0.35 kg/person/day based on reporting for all urban districts multiplied by the rural population in Peru in 2014. 4 (40,087.46 tonnes/day) 14,631,923 103,320 20,039,044 125,372 29,275,773 151,293   11,059,953 38,224 12,000,866 36,616 11,941,493 32,390   4,776,650 10,372 4,890,090 9,877 4,941,153 8,995 Value is a projection based on historical waste 4,392,515 3,668 4,607,101 3,593 4,619,340 3,282 generation. 4 (1.30 kg/person/day); if bulky waste and tires are included, the per capita 1,195,225 2,570 1,592,401 3,232 1,864,992 3,773 MSW generation rate increases to 3.79 kg/person/ day.   4,993,965 19,778 5,301,420 18,464 5,308,936 16,397 (Table continues on next page) 206 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Russian ECA UMIC 60,000,000 143,201,676 2012 Tekes 2013, 11 Federation Rwanda SSA LIC 4,384,969 11,917,508 2016 Isugi and Niu 2016 Saint Martin LAC HIC 15,480 30,959 2012 Sterviinou n.d. (French part) Samoa EAP UMIC 27,399 187,665 2011 SPREP 2016, 21 San Marino ECA HIC 17,175 33,203 2016 San Marino, AASS 2016 São Tomé and Dias, Vaz, and Carvalho SSA LMIC 25,587 191,266 2014 Príncipe 2014 Saudi Arabia MENA HIC 16,125,701 31,557,144 2015 Nizami 2015 Senegal SSA LIC 2,454,059 15,411,614 2016 Senegal, UCG 2016, 23 Serbia ECA UMIC 1,840,000 7,095,383 2015 Eurostat 2017 Seychelles SSA HIC 48,000 88,303 2012 Talma and Martin 2013, 5 Sierra Leone SSA LIC 610,222 5,439,695 2004 Gogra et al. 2010, 2 Singapore EAP HIC 7,704,300 5,607,283 2017 Singapore, NEA 2017 Slovak ECA HIC 1,784,000 5,423,801 2015 Eurostat 2017 Republic Slovenia ECA HIC 926,000 2,063,531 2015 Eurostat 2017 Solomon EAP LMIC 179,972 563,513 2013 ADB 2014b, 1 Islands Somalia SSA LIC 2,326,099 14,317,996 2016 Calculated (See box 1.1) South Africa, Department South Africa SSA UMIC 18,457,232 51,729,345 2011 of Environmental Affairs 2012 South Sudan SSA LIC 2,680,681 11,177,490 2013 UNEP 2013, 18 Spain ECA HIC 20,151,000 46,447,697 2015 Eurostat 2017 Sri Lanka, Ministry of Sri Lanka SAR LMIC 2,631,650 21,203,000 2016 Mahaweli Development and Environment 2016, v St. Kitts and LAC HIC 32,892 54,288 2015 SIDS DOCK 2015, 15 Nevis Waste Generation (tonnes per year) and Projections by Country or Economy 207 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s)   59,585,899 143,965 67,001,631 140,543 71,574,530 132,731 1 (Kigali, reported as a range of 1.8–2.0 kg/person/day; 4,384,969 11,918 6,555,912 16,024 11,586,425 21,886 average used) 4 (500 kg/person/year) 19,322 31 25,450 31 28,535 31 4 (0.4 kg/person/day); 7 28,964 195 35,111 212 49,216 243   17,175 33 17,018 35 18,686 35 4 (70.1 tonnes/day) 26,999 200 35,319 268 64,173 380 4 (1.4 kg/person/day) 16,455,464 32,276 20,986,707 39,480 25,183,676 45,056 4 (6,723.45 tonnes/day) 2,454,059 15,412 3,957,017 22,123 8,059,355 34,031 A new methodology to collect MSW generation data was introduced in 2010, which requires public utility companies to report collected waste amounts 2,319,171 8,820 2,408,682 8,355 2,392,222 7,447 and MSW composition. In 2013, data were delivered by 106 of 168 companies; data reported by some companies are still based on estimates. 5 53,921 94 58,271 98 72,626 97 1 (Freetown, 0.45 kg/person/ 829,206 7,396 1,157,579 9,720 1,998,055 12,972 day) 5 7,629,509 5,622 9,284,685 6,342 9,989,340 6,575   1,813,640 5,444 2,024,455 5,387 2,132,309 4,965   943,902 2,078 1,029,557 2,059 1,090,649 1,942 4 (reported a range of 0.75–1.0 kg/person/day, 192,172 599 291,573 773 535,497 1,033 average used) 6 2,326,099 14,318 3,411,381 21,535 7,291,620 35,852 Includes municipal, commercial, and industrial 20,102,994 56,015 27,094,596 64,466 36,766,292 72,755 waste; excludes C&D, hazardous, and inert waste. 1 (Juba, 1.11 kg/person/day) 2,854,926 12,231 3,989,661 17,254 7,530,449 25,366   20,361,483 46,348 21,226,169 46,115 21,829,247 44,395 4 (7,210 tonnes/day). The data are for 22 out of 25 districts in Sri Lanka and 2,581,444 20,798 3,168,447 21,475 3,746,891 20,792 exclude approximately one-quarter of the population. 4 (St. Kitts: 2.08 kg/person/ day and Nevis: 1.52 kg/ 33,380 55 59,629 61 69,926 63 person/day) (Table continues on next page) 208 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source St. Lucia, SLSWMA St. Lucia LAC UMIC 77,616 177,206 2015 2015, 47 St. Vincent and the LAC UMIC 31,561 109,455 2015 SIDS DOCK 2015, 15 Grenadines Elbaroudi, Ahmed, and Sudan SSA LMIC 2,831,291 38,647,803 2015 Adam 2015, 9 Suriname LAC UMIC 78,620 526,103 2010 IDB 2010; Zuilen 2006 Sweden ECA HIC 4,377,000 9,799,186 2015 Eurostat 2017 Switzerland ECA HIC 6,056,000 8,372,098 2016 OECD 2018 Syrian Arab GIZ and SWEEP-Net MENA LMIC 4,500,000 20,824,893 2009 Republic 2010b, 5 Taiwan, China EAP HIC 7,336,000 23,434,000 2015 Chen 2016 Tajikistan ECA LMIC 1,787,400 8,177,809 2013 Tajikistan, Tajstat 2017 Tanzania, NBS and OCGS Tanzania SSA LIC 9,276,995 49,082,997 2012 2014 Thailand EAP UMIC 26,853,366 68,657,600 2015 Thailand, PCD 2015, 74 Timor-Leste, Ministry of Timor-Leste EAP LMIC 63,875 1,268,671 2016 Commerce, Industry and the Environment 2016, 1 Togo SSA LIC 1,109,030 7,228,915 2014 CCAC n.d. Tonga EAP UMIC 17,238 104,951 2012 ADB 2014c Waste Generation (tonnes per year) and Projections by Country or Economy 209 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) 4 (1.2 kg/person/day); Deglos Sanitary Landfill received 51,661 tonnes and the Vieux Fort Solid Waste Management Facility 78,361 178 91,811 186 106,930 182 received 20,228 tonnes.  The total generation was accounted for by dividing by the collection efficiency. 4 (0.79 kg/person/day) 31,761 110 39,210 112 45,567 109 1 (Khartoum, 0.2–0.4 kg/ 2,922,225 39,579 4,492,595 54,842 8,214,056 80,386 person/day; average used) 1 (urban, 0.47 kg/person/day, based on Paramaribo data; rural, 0.29 kg/person/day, 82,609 558 104,605 617 133,249 648 based on data from other districts); 7   4,426,933 9,838 5,122,838 10,712 6,019,418 11,626   6,077,441 8,402 6,945,435 9,204 8,039,954 9,880   3,849,718 18,430 6,594,549 26,608 11,170,733 34,021 28 percent of total waste (26,200,000 tonnes/year) 6,884,963 23,557 8,040,360 24,151 8,168,078 22,771 comprises MSW; remaining is IW.   1,968,475 8,735 3,091,105 11,194 5,633,844 14,521 Calculated based on summing amount of waste collected by company or 10,860,140 55,572 18,545,453 83,702 39,824,577 138,082 authority, burned, dumped on roadside, buried, and other (bush, open space).   27,268,302 68,864 32,484,794 69,626 37,342,182 65,372 4 (175 tonnes/day) 63,875 1,269 91,347 1,704 161,765 2,421 1 (Lome, 220 kg/person/ 1,169,455 7,606 1,702,085 10,507 3,083,704 15,298 year) 4 (0.5 kg/person/day); 7 17,849 107 27,763 121 38,277 140 (Table continues on next page) 210 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source Trinidad and Trinidad and Tobago, LAC HIC 727,874 1,328,100 2010 Tobago EMA n.d., 54 Tunisia MENA LMIC 2,700,000 11,143,908 2014 Brahim 2017, 2 Turkey ECA UMIC 31,283,000 78,271,472 2015 Eurostat 2017 Zoï Environment Network Turkmenistan ECA UMIC 500,000 5,366,277 2013 2013, 25 Tuvalu EAP UMIC 3,989 11,097 2016 SPREP 2016, 21 Okot-Okumu and Nyenje Uganda SSA LIC 7,045,050 35,093,648 2011 2011 Ukraine ECA LMIC 15,242,025 45,004,645 2016 Ukraine, SSC 2017 United Arab Idrees and McDonnell MENA HIC 5,413,453 9,269,612 2016 Emirates 2016 United ECA HIC 31,567,000 65,128,861 2015 Eurostat 2017 Kingdom United States NA HIC 258,000,000 318,563,456 2014 U.S. EPA 2014, 2 Uruguay LAC HIC 1,260,140 3,431,552 2015 IDB 2015, 3 Uzbekistan ECA LMIC 4,000,000 29,774,500 2012 ADB 2012, 1 Vanuatu EAP LMIC 70,225 270,402 2016 SPREP 2016, 21 Venezuela, RB LAC UMIC 9,779,093 29,893,080 2012 Venezuela, INE 2013, 5 Nguyen, Heaven, and Vietnam EAP LMIC 9,570,300 86,932,500 2010 Banks 2014, 366 Virgin Islands Davis, Haase, and Warren LAC HIC 146,500 105,784 2011 (U.S.) 2011, 9 Waste Generation (tonnes per year) and Projections by Country or Economy 211 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s) Value is an extrapolated number from 2009 (650,000 tonnes), which used estimates of waste going into major landfills and assumed an amount for the rest of the landfills. “Of this figure, about one third of the waste was generated from ICI sources 731,213 1,365 805,080 1,374 848,091 1,295 whilst the majority of two thirds from household sources. Based on Trinidad’s population, it is further estimated that 0.54 tonnes of waste is generated per capita per year amounting to 1.50 kilograms per person per day. ” Reported as about 2,762,239 11,403 3,881,898 12,842 5,399,358 13,884 2.7 million tonnes/year.   31,983,841 79,512 39,975,974 88,417 48,783,058 95,627 Reported as almost 500,000 tonnes/year of municipal 566,202 5,663 884,585 6,767 1,252,664 7,888 waste generated, including HW. 8 3,989 11 9,038 13 11,933 15 4 (0.55 kg/person/day) 8,375,073 41,488 14,103,192 63,842 30,856,601 105,698 9 (11,562,600 tonnes/year collected in 2016 and a 15,050,327 44,439 17,542,698 41,200 19,940,300 36,416 collection rate of 75.86 percent in 2012) 4 (1.6 kg/person/day) 5,413,453 9,270 6,802,059 11,055 8,571,552 13,164   32,037,871 65,789 36,720,437 70,579 42,820,633 75,381   263,726,732 322,180 311,039,297 354,712 359,887,136 389,592 1 (urban, 1.03 kg/person/day) 1,271,646 3,444 1,521,565 3,594 1,804,592 3,662 Reported as more than 4 million tonnes/year of 4,622,615 31,447 6,594,881 36,712 9,407,851 40,950 MSW generated. 8 70,225 270 109,807 354 210,239 475 3; country reports 100 percent collection 10,093,925 31,568 11,693,608 36,750 15,756,898 41,585 coverage. 4 (26,220 tonnes/day) 11,562,740 94,569 15,922,186 106,284 21,961,818 114,630 Calculated from waste generated in St. Thomas (65,000 tonnes/year) and in 170,720 105 218,451 102 213,661 89 St. Croix (81,500 tonnes/ year). (Table continues on next page) 212 What a Waste 2.0 Original year reported Country or MSW economy Region Income generation Population Year Source West Bank GIZ and SWEEP-Net MENA LMIC 1,387,000 4,046,901 2012 and Gaza 2014d, 11 Yemen, Rep. MENA LMIC 4,836,820 27,584,213 2016 Al-Eryani 2017 Edema, Sichamba, and Ntengwe 2012; Zambia, Zambia SSA LMIC 2,608,268 14,264,756 2011 Central Statistical Office 2013 GIZ 2013a, 2013b, 2013c, Zimbabwe SSA LIC 1,449,752 12,500,525 2002 2013d, 2014 Note: Year refers to year of data, unless otherwise specified. Population for original year of data from the World Bank (2017b), except for Taiwan, China. Population for Taiwan, China, is from the Taiwan National Development Council (2015). Population for 2016 adjusted waste generation and 2030 and 2050 projected waste generation from UN DESA (2017). For projection methodology, see box 2.1. C&D = construction and demolition; EAP = East Asia and Pacific; ECA = Europe and Central Asia; HH = household; HIC = high-income country; HW = hazardous waste; ICI = institutional, commercial, and industrial; IW = industrial waste; kg = kilogram; LAC = Latin America and the Caribbean; LIC = low-income country; LMIC = lower-middle-income country; MENA = Middle East and North Africa; MSW = municipal solid waste; NA = North America; SAR = South Asia; SSA = Sub-Saharan Africa; UMIC = upper-middle-income country. 1. Calculated using an urban or city-specific daily or monthly MSW generation rate as a proxy for national urban generation; rural MSW generation is assumed to be 50 percent of urban or city rate; urban or city and value denoted in parentheses. 2. Personal communication. 3. Value represents amount collected. 4. Calculated using an average national MSW generation rate; value denoted in parentheses. 5. Value represents total solid waste generated, not only MSW. 6. One out of four countries in Sub-Saharan Africa for which no data were available at the country or city level. A regional estimate of waste generation per capita was calculated for the 44 other Sub-Saharan Africa countries; this regional per capita estimate was used to estimate total MSW generated for each of these four countries. 7. Value represents household waste only. 8. Calculated based on an urban regional per capita average of 1.3 kg/person/day and rural regional per capita average of 0.5 kg/person/day. 9. Calculated based on the amount of MSW collected and percentage of collection. Waste Generation (tonnes per year) and Projections by Country or Economy 213 2016 adjusted 2030 projected 2050 projected MSW Population MSW Population MSW Population Comment generation (’000s) generation (’000s) generation (’000s)   1,628,920 4,791 2,768,338 6,739 5,618,921 9,704 1 (urban, 0.55–0.65 kg/ person/day; rural 0.3–0.4 kg/ 4,836,820 27,584 6,903,335 36,815 12,057,526 48,304 person/day; averages used); 2 1 (Lusaka and Ndola, 3,114,269 16,591 5,239,016 24,859 11,185,099 41,001 0.72 kg/person/day) 1 (Chinhoyi, Gweru, Kariba, Kadoma, and Norton, 0.27 1,799,140 16,150 2,484,974 21,527 4,189,544 29,659 kg/person/day) 214 What a Waste 2.0 References Abedini, Ali R. 2017. Solid waste management specialist and founder and  CEO, ISWM Consulting Ltd. Personal communication with the World Bank. ABRELPE (Brazilian Association of Public Cleaning and Special Waste Companies [Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais]). 2015. “Overview of Solid Waste in Brazil 2015” [“Panorama dos Resíduos Sólidos no Brasil 2015”]. São Paulo. Achankeng, Eric. 2003. “Globalization, Urbanization and Municipal Solid Waste Management in Africa.” Paper presented at African Studies Association of Australasia and the Pacific, “African on a Global Stage,” Adelaide, Australia. ADB (Asian Development Bank). 2012. “Sector Assessment (Summary): Water and Other Municipal Infrastructure and Services.” Solid Waste Management Improvement Project RRP UZB 45366, Asian Development Bank (ADB). Accessed April 18, 2017. https://www.adb.org/sites/default /files/linked-documents/45366-004-ssa.pdf. ———. 2013. Solid Waste Management in Nepal: Current Status and Policy  Recommendations. Mandaluyong City, Philippines: Asian Development Bank. ———. 2014a. “Solid Waste Management in the Pacific: Papua New Guinea Country Snapshot.” ADB Publication Stock No. ARM146612-2. Asian Development Bank, Manila. Accessed May 18, 2017. https://www .adb.org/sites/default/files/publication/42664/solid-waste-management -png.pdf. ———. 2014b. “Solid Waste Management in the Pacific: Solomon Islands Country Snapshot.” ADB Publication Stock No. ARM146614-2. Asian Development Bank, Manila. Accessed May 9, 2017.  https://www.adb .org/sites/default/files/publication/42662/solid-waste-management -solomon-islands.pdf. ———. 2014c. “Solid Waste Management in the Pacific: Tonga Country Snapshot.”ADB Publication Stock No. ARM146616-2. Asian Development Bank, Manila. Albania, INSTAT (Institute of Statistics). 2016. “Urban Solid Wastes in Albania.” Institute of Statistics (INSTAT), Government of Albania, Tirana. Al-Eryani, Muammer. 2017. Director of Solid Waste Management, Ministry of Local Administration (MoLA), Government of Republic of Yemen. Personal communication with the World Bank. Al-Jayyousi, O. R. 2015. “National Action Plan.” Ministry of Environment, Government of Jordan. Amec Foster Wheeler. 2016. “National Solid Waste Management Strategy for the Cayman Islands: Final Report.” Amec Foster Wheeler Environment Waste Generation (tonnes per year) and Projections by Country or Economy 215 and Infrastructure UK Limited, for the Government of Cayman Islands. http://ministryofhealth.gov.ky/sites/default/files/36082%20Strategy %20Final%20Report%2016229i1.pdf. Angola, Ministry of Environment. 2012. “Strategic Plan for the Management of Urban Waste in Angola.” [“Plano Estratégico para a Gestão de Resíduos Urbanos em Angola (PESGRUA)”]. Paper pre- sented at the First Congress of Portuguese-Language Engineers [Primero Congresso dos Engenheiros de Língua Portuguesa], September 18. Anon. 2015. “Integrated Solid Waste Management Plan, Bati Town, Amhara Regional State. Strategic Action Plan 2016–2025.” November. Armenia, National Statistical Service. 2017. “Waste Generation by Source, Hazardous Classes and Years.” ArmState Bank Database. National Statistical Service, Government of Armenia. Accessed  July 20, 2017. http://armstatbank.am. Artelia Ville et Transport. 2014. “Solid Waste Characterization.” R-11 Final Report. Solid Waste Management Project–Strategic and Technical Studies and Work Supervision. Addis Ababa City Government–Ethio–French Cooperation. Azerbaijan, Ministry of Economy. 2017. “National Solid Waste Manegement Strategy Plan: Volume I (Main Report).” Aim Texas Trading, LLC–ICP Joint Venture, on behalf of Ministry of Economy, Government of Azerbaijan, Baku. Barré, Juliette. 2014. “Waste Market in Urban Malawi: A Way Out of Poverty?” Master’s thesis, Department of Urban and Rural Development, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden. Barry, M. M. 2002.  “Information on Household Waste Management in Conakry” [“Informations sur la gestion des ordures ménagères à Conakry”]. Cotonou Regional Workshop, “Shared Waste Management in African Cities” [Atelier régional de cotonou, “Gestion partagée des déchets dans les villes africaines”]. July 9–11. Be’ah (Oman Environmental Service Holding Company S.A.O.C). 2016. “Transformation of Waste Management in Oman.” Paper presented by M. al-Harthy at ISWA Energy Recovery WG Meeting, West Palm Beach, Florida, May 25. Belarus, National Statistical Committee. 2017. National Statistical Committee, Government of Belarus. Personal communication with the World Bank. BMDF (Bangladesh Municipal Development Fund). 2012. “Study on Municipal Solid Waste Management: Chittagong City Corporation, Rajshahi City Corporation, Rangpur Municipality, Patuakhali Municipality.” BMDF, Dhaka. 216 What a Waste 2.0 Bolivia, DGGIRS. 2016. “National Infrastructure Program for Solid Waste Management, 2017–2020” [“Programa Nacional de Infraestructuras en Gestión Integral de Residuos Sólidos, 2017–2020”]. General Directorate of Integrated Solid Waste Management [Dirección General de Gestión Integral de Residuos Sólidos (DGGIRS)], Sub-Ministry of Potable Water and Basic Sanitation [Viceministerio de Agua Potable y Saneamiento Básico], Ministry of Environment and Water [Ministerio de Medio Ambiente y Agua], Government of Bolivia. Bosnia and Herzegovina, BHAS (Agency for Statistics of Bosnia and Herzegovina). 2016. “First Release: Environment—Public Transportation and Disposal of Municipal Waste.” Agency for Statistics of Bosnia and Herzegovina (BHAS), Bosnia and Herzegovina, Sarajevo. http://www .bhas.ba/saopstenja/2016/KOM_2015_001_01_BA.pdf. Botswana, Statistics Botswana. 2011. “2011 Botswana Population and Housing Census.” Statistics Botswana, Government of Botswana. Brahim, R.  2017. “Household Waste Management in Tunisia” [“Gestion des déchets ménagers en Tunisie: Projets programmés et orientations des cahiers des charges de concession”]. National Waste Management Agency [Agence Nationale de Gestion des déchets (ANGed)], Ministry of Local Governments and of the Environment [Ministère des affaires locales et de l’environnement], Government of Tunisia. Brunei, Department of Environment, Parks and Recreation. 2015. “Recycle 123 Handbook.”  Department of Environment, Parks and Recreation, Ministry of Development, Government of Brunei. http://www.env.gov .bn/Recyclers/Recycle%20123%20Handbook %204%20Nov%20 2015.pdf. Burnside. 2014. “Preliminary Draft: Waste Characterization Report: Mangrove Pond Green Energy Complex.” R. J. Burnside International Limited, for the Sanitation Service Authority, Government of Barbados. St. James, January. Canada, Statistics Canada. 2016. “Waste Disposal by Source, Province and Territory.” Statistics Canada, Government of Canada. Accessed November 10, 2017. http://www.statcan.gc.ca/tables-tableaux/sum-som/ l01/cst01/envir25a-eng.htm. Caribbean Community Secretariat. 2013. “The CARICOM Environment in Figures 2009.” Regional Statistics Programme, Caribbean Community Secretariat. http://www.caricomstats.org/Files/Publications/Environment 2009/CARICOMEnv2009.pdf. Caribbean Development Bank. 2014. “Appraisal Report on Integrated Solid Waste Management Project—Grenada.” Report No. AR 14/11 (BD 94/14). Paper presented at the Two Hundred and Sixty-Fourth Meeting of the Board of Directors, Caribbean Development Bank, Barbados, December 11. CCAC (Climate and Clean Air Coalition). n.d. “Solid Waste Management City Profile: Lomé, Togo.” Municipal Solid Waste Initiative. http://waste .ccac-knowledge.net. Waste Generation (tonnes per year) and Projections by Country or Economy 217 Chen, K. 2016. “Taiwan: The World’s Geniuses of Garbage Disposal.” Wall Street Journal, May 17. https://www.wsj.com/articles/taiwan-the-worlds -geniuses-of-garbage-disposal-1463519134. Chile, CONAMA (National Environmental Commission [Comisión Nacional de Medio Ambiente]). 2010. “First Report on Solid Waste Management in Chile” [“Primer Reporte del Manejo de Residuos Sólidos en Chile”]. CONAMA, Government of Chile. Cissé, Sidi Mahamadou. 2015. Director of Sanitation, Government of Burkina Faso. Personal communication with the World Bank. Costa Rica, Ministry of Health. 2016. “National Plan for Integrated Waste Management, 2016–2021.” [“Plan Nacional para la Gestión Integral de  Residuos, 2016–2021”]. Ministry of Health, Government of Costa Rica, San José. Davis, J., S. Haase, and A. Warren.  2011.  “Waste-to-Energy Evaluation: U.S. Virgin Islands.” Technical Report NREL/TP-7A20-52308. National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC. de Carvalho, J. M. C. 2013. “Elaboration of the Third International Conference on Sustainable Development in Small Island States in Development.” National Report, United Nations Development Programme, Government of Cape Verde, Praia, July. Delgerbayar, Badam. 2016. “Solid Waste Management in Mongolia.” Paper presented at the Seventh Regional 3R Forum in Asia and the Pacific,” Advancing 3R and Resource Efficiency for the 2030 Agenda for Sustainable Development,” Adelaide, Australia, November 2–4. http:// www.uncrd.or.jp/content/documents/4136Country%20Presentation _Mongolia.pdf. Dias, S., J. Vaz, and A. Carvalho. 2014. “Financing Waste Management in São Tomé and Principe.” Paper presented at  the Second International Africa Sustainable Waste Management Conference, Luanda, Angola, April 22–24. Dominican Republic, Ministry of the Environment and Natural Resources. 2017. “Policy for Integrated Municipal Solid Waste Management” [“Política para la Gestión Integral de los Residuos Sólidos Municipales”]. Draft report. Ministry of the Environment and Natural Resources [Ministerio de Medio Ambiente y Recursos Naturales], Government of the Dominican Republic. Ecuador, Ministry of Environment. 2018. National Program for Integrated Solid Waste Management [Programa Nacional para Gestión Integral de Residuos Sólidos], Ministry of Environment, Government of Ecuador. Personal communication with the World Bank. February. Edema, Mojisola O., Victora Sichamba, and Felix W. Ntengwe. 2012. “Solid Waste Management: Case Study of Ndola, Zambia.” International Journal of Plant, Animal and Environmental Sciences 2 (3): 248–55. 218 What a Waste 2.0 Eisted, Rasmus, and Thomas H. Christensen. 2011. “Waste Management in Greenland: Current Situation and Challenges.” Waste Management and Research 29 (10): 1064–70. Elbaroudi, N. O. M., S. E. M. Ahmed, and E. E. A. Adam. 2015. “Solid Wastes Management in Urban Areas: The Case of Khartoum State, Sudan.” Pinnacle Engineering and Technology 3 (2): 616–24. Energy Answers. 2012. “Materials Separation Plan.” Energy Answers Arecibo LLC, Energy Answers International Inc. Eurostat. 2017. “Municipal Waste by Waste Operations [env_wasmun].” Accessed April 25, 2017. http://ec.europa.eu/eurostat/web/waste /transboundary-waste-shipments/key-waste-streams/municipal-waste. Ferrari, K., S. Cerise, R. Gamberini, B. Rimini, and F. Lolli. 2016. “An International Partnership for the Sustainable Development of Municipal Solid Waste Management in Guinea-Bissau, West Africa.” Paper pre- sented at the Twenty-First Summer School “Francesco Turco”—Industrial Systems Engineering. Naples, Italy, September 13–15. Fiji, Department of Environment. 2011. “Fiji National Solid Waste Management Strategy, 2011–2014.” Department of Environment, Ministry of Local Government, Urban Development, Housing and Environment, Government of Fiji. Accessed May 11, 2017. http://www .sprep.org/attachments/Fiji_NSWMS_2011-2014.pdf. Francis, Shaka K. Y., Y. Higano, T. Mizunoya, and H. Yabar. 2015. “Preliminary Investigation of Appropriate Options for Leachate and Septage Treatment for the Caribbean Island of Antigua.” Paper presented at the Fifty-Second Annual Meeting of the Japan Section of the Regional Science Association International (RSAI), Okayama University, Okayama, Japan, October 10–12. http://www.jsrsai.jp/Annual_Meeting /PROG_52/ResumeD/D02-4.pdf. French Polynesia, DIREN (Directorate of the Environment). 2017. “Waste: Essential Data on Waste in French Polynesia” [“Les déchets: Les don- nées essentielles sur les déchets en Polynésie française”]. Directorate of the Environment [La Direction de l’environnement (DIREN)], Government of French Polynesia, Papeete. http://www.environnement .pf/les-dechets. Gibraltar, Ministry for the Environment. 2017. “Gibraltar Waste Management Plan 2013.”Adopted December 2013. Revised December 2017. Environmental Agency Gibraltar and Department of the Environment, Ministry for the Environment, Government of Gibraltar. http://environmental-agency.gi/wp- content/uploads/2016/04/WasteManagementPlan2013.pdf. GIZ (German Corporation for International Cooperation). 2013a. “Household and Commercial Solid Waste Characterisation Study: Kadoma City,” by Hailey Johnson. GIZ, Bonn. ———. 2013b. “Household and Commercial Solid Waste Characterisation Study: Kariba,” by Hailey Johnson. GIZ, Bonn. Waste Generation (tonnes per year) and Projections by Country or Economy 219 ———. 2013c. “Household, Commercial and Industrial Solid Waste Characterisation Study: Chinhoyi,” by Hailey Johnson. GIZ, Bonn. ———. 2013d. “Household, Commercial and Industrial Solid Waste Characterisation Study: Norton,” by Hailey Johnson. GIZ, Bonn. ———. 2014. “Household and Commercial Solid Waste Characterisation Study: Gweru,” by Hailey Johnson. GIZ, Bonn. ———. 2015. “Preparation of an Assessment and Project Proposal for the Implementation of the Solid Waste Management Standards in Ethiopia.” Urban Governance and Decentralisation Program. Implemented by RWA. GIZ and SWEEP-Net. 2010a. “Country Report on the Solid Waste Management in Mauritania.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2010b. “Country Report on the Solid Waste Management in Syria.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014a. “Country Report on the Solid Waste Management in Egypt.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014b. “Country Report on the Solid Waste Management in Lebanon.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. April. ———. 2014c. “Country Report on the Solid Waste Management in  Morocco.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf 220 What a Waste 2.0 of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. April. ———. 2014d. “Country Report on the Solid Waste Management in Occupied Palestinian Territories.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. Gogra, A. B., J. Yao, V. T. Simbay Kabba, E. H. Sandy, G. Zaray, S. P. Gbanie, and T. S. Bandagba. 2010. “A Situational Analysis of Waste Management in Freetown, Sierra Leone.” Journal of American Science 6 (5): 124–35. Greece, ELSTAT (Hellenic Statistical Authority). 2017. “Press Release: Waste Statistics, 2004–2014.” ELSTAT, Government of Greece, Piraeus. January 31. Guam. 2013. “Volume I: Guam Zero Waste Plan. Reaching for Zero: A Blueprint for Zero Waste in Guam.” Government of Guam. Guyana, Ministry of Communities. n.d. “Putting Waste in Its Place: A  National Integrated Solid Waste Management Strategy for the Cooperative Republic of Guyana, 2017–2030—Part 1: Our Strategy.” Ministry of Communities, Government of Guyana. Honduras, DGA (General Directorate of Environmental Management). 2017. “Report on the Situation of Waste Management in Honduras 2016” [“Diagnóstico sobre la situación de la gestión de los residuos en Honduras 2016”]. General Directorate of Environmental Management [Dirección General de Gestión Ambiental (DGA)], Department of Energy, Natural Resources, Environment, and Mines [Secretaría de Energía, Recursos Naturales Ambiente y Minas (MiAmbiente)], Government of Honduras. Hong Kong, Environmental Protection Department. 2016. “Hong Kong  2016 Waste Statistics: At a Glance.” Waste Reduction Website, Environmental Protection Department (EPD), Government of Hong Kong SAR, China. Iceland, Statistics Iceland. 2015. Statistical Yearbook of Iceland 2015 [Landshagir 2015]. Statistics of Iceland III, 108 [Hagskýrslur Íslands III, 108]. Statistics Iceland [Hagstofa Íslands], Government of Iceland. IDB (Inter-American Development Bank). 2010. “2020 Vision on Solid Waste: Strategic Solid Waste Management Plan, 2010–2020.” IDB, Washington, DC. ———. 2012.  “Strategic Plan for Solid Waste in Colombia” [“Plan Estratégico Sectorial de Residuos Sólidos de Colombia”], by G. A. Bernate. IDB, Washington, DC. Waste Generation (tonnes per year) and Projections by Country or Economy 221 ———. 2015. “Status of Solid Waste Management in Latin America and the Caribbean” [“Situación de la gestión de residuos sólidos en América Latina y el Caribe”]. IDB, Washington, DC. IDB-AIDIS-PAHO (Inter-American Development Bank, Inter-American Association of Sanitary and Environmental Engineering, and Pan American Health Organization). 2011. “Report of the Regional Evalution of the Management of Municipal Solid Waste in Latin American and the Caribbean 2010” [“Informe de la Evaluación Regional del Manejo de Residuos Sólidos Urbanos en América Latina y el Caribe 2010”]. IDB, AIDIS, and PAHO. Idrees, A. M., and K. P. McDonnell. 2016. “Feasibility Study of Applying Cynar Technology in the Gulf Cooperation Council Countries.”  Biosystems and Food Engineering Research Review 21: 88–91. IMF (International Monetary Fund). 2004. “Djibouti: Poverty Reduction Strategy Paper.” IMF Country Report No. 04/152, IMF, Washington, DC. India, Ministry of Home Affairs. 2001. Census Data 2001. Office of the Registrar General and Census Commissioner, India, Ministry of Home  Affairs, Government of India. http://www.censusindia.gov.in /2011-common/census_data_2001.html. Indonesia, Ministry of Environment and Forestry and Ministry of Industry. 2016. “Indonesia Country Report on the Implementation of 3R Program.” Paper presented at the Seventh Regional 3R Forum in Asia and the Pacific, “Advancing 3R and Resource Efficiency for the 2030 Agenda for Sustainable Development,” Adelaide, Australia, November 2–4. http:// www.uncrd.or.jp/content/documents/456620-CB1-Indonesia.pdf. Iraq, Ministry of Environment. 2015. “State of the Environment in Iraq 2015”  [Ρ΍ϝΓ ΍ϝΏϱΉΓ ϑϱ ΍ϝωέ΍ϕ ϝω΍ϡ 2015]. Ministry of Environment, Government of Iraq. Ireland, EPA (Environmental Protection Agency). 2014. “National Waste Report for 2012.” EPA, Government of Ireland. Isle of Man, Department of Infrastructure. n.d. “Waste Policy and Strategy, 2012 to 2022.” Waste Management, Department of Infrastructure, Government of Isle of Man. https://www.gov.im/media/472034/waste _strategy.pdf. Israel, Ministry of Environmental Protection. 2016. “New Waste Composition Survey.” Ministry of Environmental Protection, Government of Israel. January 24. Accessed November 11, 2017.  http://www.sviva .gov.il/English/env_topics/Solid_Waste/FactsAndFigures/Pages /WasteCompositionSurvey.aspx. Isugi, Josephine, and  Dongjie Niu. 2016.  “Research on Landfill and Composting Guidelines in Kigali City, Rwanda, Based on China’s Experience.” International Proceedings of Chemical, Biological and Environmental Engineering 94: 62–68. 222 What a Waste 2.0 Jamaica, NSWMA (National Solid Waste Management Authority). n.d. “Waste Characterization and Per Capita Generation Rate Report 2013: The Metropolitan Wasteshed.” Draft. Planning and Research Department, NSWMA, Government of Jamaica. Japan, Ministry of the Environment. 2015. “Waste Treatment in Japan FY2015 Version” [“Nihonno haikibutsu syori heisei 27 nendo ban”]. Ministry of the Environment, Government of Japan. http://www.env.go .jp/recycle/waste_tech/ippan/h27/data/disposal.pdf. Ji, L., S. Lu, J. Yang, C. Du, Z. Chen, A. Buekens, and J. Yan. 2016. “Municipal Solid Waste Incineration in China and the Issue of Acidification: A Review.” Waste Management and Research 34 (4): 280–97. Keohanam, Bounthong. 2017. Director, Urban Development Division, Department of Housing and Urban Planning, Ministry of Public Works and Transport, Government of Laos PDR. Personal communication with the World Bank. May 8. Kho, P.-K., and S.-U. Lee. 2016. “Waste Resources Management and Utilization Policies of Korea.” Korea Research Institute for Human Settlements, for the Ministry of Strategy and Finance, Government of South Korea. Accessed May 27, 2017. http://www.ksp.go.kr/publication /modul.jsp. Korai, Muhammad Safar, Rasool Bux Mahar, and Muhammad Aslam Uqaili. 2017. “The Feasibility of Municipal Solid Waste for Energy  Generation and Its Existing Management Practices in Pakistan.” Renewable and Sustainable Energy Reviews 72: 338–53. Kumar, Sunil, J. K. Bhattacharyya, A. N. Vaidya, Tapan Chakrabarti, Sukumar Devotta, and A. B. Akolkar. 2009. “Assessment of the Status of Municipal Solid Waste Management in Metro Cities, State Capitals, Class I Cities, and Class II Towns in India: An Insight.” Waste Management 29 (2009) 883–95. Kuwait, Partnerships Technical Bureau. 2014. “Building Kuwait’s First Waste to Energy Plant: Kabd Municipal Solid Waste Project.” Partnerships Technical Bureau, Government of Kuwait. http://www.recuwatt.com /pdf/aiduwaisan_manal.pdf. Kyrgyzstan, NSC (National Statistical Committee of Kyrgyz Republic). 2016. “Annual Environmental Report, 2011–2015” [ɋɬɚɬɢɫɬɢɱɟɫɤɢɣ ɫɛɨɪɧɢɤ 2011–2015].  NSC, Government of Kyrgyzstan. http://stat.kg/media /publicationarchive/194156d4-c806-4f02-9423-61ba3e85cce3.pdf. Lesotho, Bureau of Statistics. 2006. “Total De Jure Population (Excluding Institutional Population) by District and Sex for 1996 and 2006.” Bureau of Statistics, Government of Lesotho. http://www.bos.gov.ls/Census _Pre_Results_2006.htm. ———. 2013. “2012 Solid Waste, Water and Sanitation.” Statistical Report No. 19. Bureau of Statistics, Government of Lesotho, Maseru.  Waste Generation (tonnes per year) and Projections by Country or Economy 223 Liechtenstein, Office of Statistics. 2018. “Liechtenstein in Figures 2018.” Office of Statistics, Government of Liechtenstein. https://www.llv.li/files /as/liechtenstein-in-figures-2018.pdf. Ludington, Gaïa. 2015. “Work Plan for Improved Consideration of Short-Lived Climate Pollutants in Household Solid Waste Management in Abidjan” [“Plan de travail pour une meilleure prise en compte des polluants climatiques à courte durée de vie dans la gestion des déchets solides ménagers à Abidjan”]. Gevalor, Orléans, France. Macao SAR, China, DSEC (Statistics and Census Service). 2017. “Environmental Statistics 2016.” Statistics and Census Service, Government of Macao SAR, China. http://www.dsec.gov.mo/Statistic /Social/EnvironmentStatistics/2016%E5%B9%B4%E7%92%B0%E5 %A2%83%E7%B5%B1%E8%A8%88.aspx?lang=en-US. Macedonia, MAKStat (State Statistical Office of the Republic of Macedonia).  2017. “Municipal Waste, 2016.” MAKStat, Government of Macedonia. http://www.stat.gov.mk/PrikaziSoopstenie_en.aspx?rbrtxt=80. Maldives, Waste Management and Pollution Control Department and Ministry of Environment and Energy. 2017. Personal communication with the World Bank. Mauritius, Ministry of Social Security, National Solidarity, and Environment and Sustainable Development. 2017. “SWMD-Solid Waste Management in Mauritius: The Solid Waste Management Division.” Environment and Sustainable Development Division, Ministry of Social Security, National Solidarity, and Environment and Sustainable Development, Government of Mauritius. Accessed December 5, 2017. http://environment.govmu .org/English/Pages/swmd/SWMD-Solid-Waste-In-Mauritius.aspx. Mbue, N. I., D. Bitondo, and R. Azibo Balgah. 2015. “Municipal Solid Waste Generation, Composition, and Management in the Douala Municipality, Cameroon.” Journal of Environment and Waste Management 2 (4): 91–101. Mexico, SEMARNAT (Secretariat of Environment and Natural Resources). 2016. “Report on the Situation of the Environment in Mexico” [“Informe de la Situación del Medio Ambiente en México”]. General Directorate of  Environmental Statistics and Information [Dirección General de Estadística e Información Ambiental], SEMARNAT, Government of Mexico. Modak, Prasad, Agamuthu Pariatamby, Jeffrey Seadon, Perinaz Bhada- Tata, Guilberto Borongan, Nang Sian Thawn, and Ma Bernadeth Lim. 2017. Asia Waste Management Outlook, edited by P. Modak. Nairobi: United Nations Environment Programme, Asian Institute of Technology, and International Solid Waste Association. Mohee, R., S. Mauthoor, Z. M. A. Bundhoo, G. Somaroo, N. Soobhany, and S. Gunasee. 2015. “Current Status of Solid Waste Management in Small 224 What a Waste 2.0 Island Developing States: A Review” [Supplementary Material].  Waste Management 43: 539–49. Moldova, Statistica Moldovei (National Bureau of Statistics of the Republic of Moldova). 2016. Natural Resources and the Environment in the  Republic of Moldova: Collected Statistics [Resursele naturale úi mediul în Republica Moldova: Culegere statistică / ɉɪɢɪɨɞɧɵɟɪɟɫɭɪɫɵ ɢɨɤɪɭɠɚɸɳɚɹɫɪɟɞɚɜɊɟɫɩɭɛɥɢɤɟɆɨɥɞɨɜɚɋɬɚɬɢɫɬɢɱɟɫɤɢɣɫɛɨɪɧɢɤ]. Statistica Moldovei, Government of Moldova, ɋhiúinău. Mombo, Jean-Bernard, and Mesmin Edou. 2005. “Urban Solid Waste Management in Gabon” [“La gestion des déchets solides urbains au Gabon”]. Geo-Eco-Trop 29: 89–100. Naquin, P. 2016. “Design and Implementation of a Quantification and  Characterization Campaign for Household Waste in the Territory of  AITOM le Marien (Cap Haïtien–Limonade–Quartier Morin)” [“Conception et réalisation d’une campagne de  quantification et de caractérisation de déchets ménagers sur le territoire de l’AITOM le Marien (Cap Haïtien–Limonade–Quartier Morin)”]. Contract ATN/OC–5 400 – HA. Inter-American Development Bank, Washington, DC. Nepal, SWMTSC (Solid Waste Management Technical Support Center). 2017. “Solid Waste Management Baseline Study of 60 New Municipalities: Finale Report.” By the Engineering Study and Research Centre (P) Ltd. (ESRC). SWMTSC, Ministry of Federal Affairs and Local Development, Government of Nepal.  Nguyen, H. H., S. Heaven, and C. Banks. 2014. “Energy Potential from the Anaerobic Digestion of Food Waste in Municipal Solid Waste Stream of Urban Areas in Vietnam.”  International Journal of Energy and Environmental Engineering 5: 365–74. Nizami, A.-S. 2015. “Recycling and Waste-to-Energy Prospects in Saudi Arabia.” BioEnergy Consult, November 10. Accessed April 28, 2017. http://www.bioenergyconsult.com/recycling-waste-to -energy -saudi -arabia. Nordic Competition Authorities. 2016.“Competition in the Waste Management Sector: Preparing for a Circular Economy.” Nordic Competition Authorities, Konkurrensverket (Sweden), Konkurransetilsynet (Norway), Kilpailu ja Kuluttajavirasto (Finland), Samkeppniseftirlitid (Iceland), Konkurrence og Forbrugerstyrelsen (Denmark), Kappingareftirlitid (Faroe Islands), and Forbruger og Konkurrencestyrelsen (Greenland). http://www.konkurrens- verket.se/globalassets/publikationer/nordiska/nordic-report-2016_waste- management-sector.pdf. OECD (Organisation for Economic Co-operation and Development). 2018. “Municipal Waste, Generation and Treatment.” OECD.Stat. OECD, Paris. https://stats.oecd.org/Index.aspx?DataSetCode=MUNW. Oguntoyinbo, O. O. 2012. “Informal Waste Management System in Nigeria and Barriers to an Inclusive Modern Waste Management System: A Review.” Public Health 126 (5): 441–47. Waste Generation (tonnes per year) and Projections by Country or Economy 225 Okot-Okumu, James. 2012. “Solid Waste Management in African Cities— East Africa.” In Waste Management: An Integrated Vision, edited by Luis Fernando Marmolejo Rebellon, 3–20. London: InTechOpen. Okot-Okumu, James, and Richard Nyenje. 2011. “Municipal Solid Waste Management under Decentralisation in Uganda.” Habitat International 35 (2011): 537–43. Omran, A., M. Altawati, and G. Davis. 2017. “Identifying Municipal Solid  Waste Management Opportunities in Al-Bayda City, Libya.” Environment, Development and Sustainability 20 (4): 1597–613. Ouamane, Karim. 2017. General director, Waste Management Agency, Government of Algeria. Personal communication with the World Bank. Particip. 2015. “National Waste Management Strategy, 2016–2030 (Draft): Development of Legislation for Waste Management as Part of the EU-Georgia Association Agreement.” Prepared by Particip, with the financial assistance of the European Commission, Freiburg, Germany. Pattle Delamore Partners Ltd. 2015. “Assessment of Status and Options for Solid Waste Management on Majuro Atoll.” Prepared by Tristan Bellingham. SPREP (Secretariat of the Pacific Regional Environment Programme), Apia, Samoa. Accessed May 10, 2017. https://www.sprep. org/ attachments /pacwaste/A02753600R001Final_Rev2_with_ Appendices.pdf. Peru, Ministry of Environment. 2014. “Sixth National Report on Municipal and Non-Municipal Management of Solid Waste” [“Sexto informe nacional de residuos sólidos de la gestión del ámbito municipal y no municipal 2013”]. Ministry of Environment, Government of Peru, Lima. ———. 2016. “National Plan for Integrated Solid Waste Management, 2016–2024” [“Plan Nacional de Gestión Integral de Residuos Sólidos, 2016–2024”]. Ministry of Environment, Government of Peru, Lima. Philippines, NSWMC (National Solid Waste Management Commission). 2017. “Solid Waste Management Dashboard.” NSWMC, Government of Philippines. Acessed April 20, 2017.  http://119.92.161.4/nswmc4 /default3.aspx. Phuntsho, S., I. Dulal, D. Yangden, S. Herat, H. Shon, and S. Vigneswaran. U. M. Tenzin. 2010. “Studying Municipal Solid Waste Generation and Composition in the Urban Areas of Bhutan.” Waste Management and Research 28 (6): 545–51. PricewaterhouseCoopers Aruba. 2014. “Environmental Sustainability Ranking: Determining and Fortifying Aruba’s Position in the Caribbean.” Version 1.1. PricewaterhouseCoopers Aruba, October 28. https://www .pwc.com/an/en/publications/assets/pwc-environmental-sustainability -ranking-positioning-and-fortifying-aruba-in-caribbean.pdf. Puopiel, F. 2010. “Solid Waste Management in Ghana: The Case of Tamale Metropolitan Area.” MSc thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. 226 What a Waste 2.0 Qatar, MDPS (Ministry of Development Planning and Statistics). 2014. “Environment Statistics Annual Report 2013.” MDPS, Government of Qatar. http://www.mdps.gov.qa. Rebelde, Juventud. 2007. “The 100th Street Landfill” [“El Vertedero de la Calle 100”]. July 8. San Marino, AASS (Autonomous State Company for Public Services). 2016. “Collection Data” [“Dati di raccolta”]. AASS, Government of San Marino. http://www.aass.sm/site/home/ambiente/dati-di-raccolta/2016.html. Sanneh, E. S., Allen H. Hu, Y. M. Chang, and Edrisa Sanyang. 2011. “Introduction of a Recycling System for Sustainable Municipal Solid Waste Management: A Case Study on the Greater Banjul Area of the Gambia.” Environment, Development and Sustainability 13: 1065–80. Seanama Conservation. 2012. “Botswana National Report for the United Nations Conference on Sustainable Development (Rio+20).” Seanama Conservation Consultancy (Pvt.), Ltd. Senegal, UCG (Coordinating Unit for Solid Waste Management). 2016. “National Report: Report of the National Campaign for the Characterization of Household and Integrated Waste (2016)” [“Rapport national: Rapport de la campagne nationale de caractérisation des ordures ménagères et assimilées (2016)”]. UCG, Ministry of Local Governance, Development, and Planning, Government of Senegal.  SIDS DOCK (Small Island Developing States). 2015. “Toward the Development of a Caribbean Regional Organic Waste Management Sub- Sector: Development of a Caribbean Regional Organic Waste Management Conversion Sub-Sector to Increase Costal Resilience and Climate Change Impacts and Protect Fresh Water Resources.” Draft 1.0. SIDS DOCK Secretariat and Caribbean Community Climate Change Centre. Simos, J., and E. de Leeuw. 2017. “Healthy Cities in Africa: A Continent of Difference.” In Healthy Cities: The Theory, Policy, and Practice of Value- Based Urban Planning, edited by E. de Leeuw and J. Simos, 89–132. New York: Springer. Singapore, NEA (National Environment Agency). 2017. “Waste Statistics and Overall Recycling.” NEA, Government of Singapore. http://www.nea.gov. sg/energy-waste/waste-management/waste-statistics-and-overall-recycling. South Africa, Department of Environmental Affairs. 2012. “National Waste Information Baseline Report: Draft.” Department of Environmental Affairs, Government of South Africa, Pretoria, November 14. SPREP (Secretariat of the Pacific Regional Environment Programme). 2016. “Cleaner Pacific 2025: Pacific Regional Waste and Pollution Management Strategy, 2016–2025.” SPREP, Apia, Samoa.  https://sus- tainabledevelopment .un.org/content / documents/commit- ments/1326_7636_commitment_cleaner-pacific-strategy-2025.pdf. Waste Generation (tonnes per year) and Projections by Country or Economy 227 Sri Lanka, Ministry of Mahaweli Development and Environment. 2016. “Comprehensive Integrated Solid Waste Management Plan for Target Provinces in Sri Lanka.” Ministry of Mahaweli Development and Environment, Government of Sri Lanka. States of Guernsey. 2017. “Guernsey Facts and Figures 2017.” States of Guernsey Data and Analysis. https://www.gov.gg/CHttpHandler.ashx?id =110282andp=0. States of Jersey. 2018. “Waste Management s\Statistics.” Jersey in figures. Environmental statistics. https://www.gov.je/Government/JerseyInFigures /Environment/pages/wastemanagement.aspx. Sterviinou, L. n.d. “What to Do with Our Waste in Saint Martin?” [“Quoi faire de nos déchets à Saint-Martin?”]. MAXImini.com. St. Lucia, SLSWMA (St. Lucia Solid Waste Management Authority). 2015. “Saint Lucia Solid Waste Management Authority Annual Report, April 2014–March 2015.” Saint Lucia Solid Waste Management Authority, Government of Saint Lucia. SWANA Haiti Response Team. 2010. “Municipal Solid Waste Collection Needs in Port-au-Prince, Haiti: Position Paper.” Solid Waste Association of North America (SWANA). Taiwan National Development Council. 2015. “Taiwan Statistical Data Book.” National Development Council, Government of Taiwan, China. July.  https://www.ndc.gov.tw/en/News_Content.aspx?n=607ED343456 41980andsms=B8A915763E3684ACands=A016E84591034DC5. Tajikistan, Tajstat. 2017. “Time Series Data on Indicators for the Period 1990–2013: Waste Generation” [ȼɪɟɦɟɧɧɵɟɪɹɞɵɞɚɧɧɵɯɩɨɩɨɤɚɡɚɬɟɥɹɦ ɡɚɩɟɪɢɨɞ 1990-2013 ɝɝ., Ɉɛɪɚɡɨɜɚɧɢɟɨɬɯɨɞɨɜ]. Tajstat, Government of Tajikistan. Accessed November 10, 2017. http://www.gksintranet.tj /ecostat/Otkhod.html. Talma, Elme, and Michele Martin. 2013. “The Status of Waste Management in Seychelles.” Sustainability for Seychelles. GEF (Global Environment Facility), SGP (The GEFs Small Grants Programme), and United Nations Development Programme. Tanzania, NBS (National Bureau of Statistics) and OCGS (Office of Chief Government Statistician). 2014. “Basic Demographic and Socio- Economic Profile.” NBS, Ministry of Finance, Dar es Salaam, and Office of Chief Government Statistician, Ministry of State, President’s Office, State House and Good Governance, Zanzibar, Government of Tanzania.  Tas, Adriaan, and Antoine Belon. 2014. “A Comprehensive Review of the  Municipal Solid Waste Sector in Mozambique: Background Documentation for the Formulation of Nationally Appropriate Mitigation Actions in the Waste Sector in Mozambique.” Carbon Africa Limited and Mozambican Recycling Association [Associação Moçambicana de Reciclagem]. Maputo and Nairobi. 228 What a Waste 2.0 Tekes (Finnish Funding Agency for Technology and Innovation). 2013. “Future Watch Report: Future of Waste Management in Russian Megacities.” Tekes—The Finnish Funding Agency for Technology and Innovation. December. Accessed April 25, 2017. https://www.tekes.fi / globalassets/julkaisut/future_of_waste_management_in_russian _megacities.pdf. Thailand, PCD (Pollution Control Department). 2015. “Thailand State of Pollution Report 2015.” PCD No. 06-062. PCD, Ministry of Natural Resources and Environment, Government of Thailand. Accessed April 1, 2016. http://infofile.pcd.go.th/mgt/PollutionReport2015_en.pdf. Thein, M. 2010. “GHG Emissions from Waste Sector of INC of Myanmar.” Paper presented at the Eighth Workshop on GHG Inventories in Asia (WGIA8), Vientiane, Lao PDR, July 13–16. Timor-Leste, Ministry of Commerce, Industry and the Environment. 2016. “Country Report (Draft): Timor-Leste.” Paper presented at the Seventh Regional 3R Forum in Asia and the Pacific, Adelaide, Australia, November 2–4. Accessed May 25, 2017. http://www.uncrd.or.jp/content /documents/4056Country%20Report_Timor%20Leste.pdf. Treasure, A. S.-O. n.d. “Comparison of Municipal Solid Waste Characterization and Generation Rates in Selected Caribbean Territories and Their Implications.” Trinidad and Tobago, EMA (Environmental Management Authority). n.d. “State of the Environment Report, 2011.” EMA, Government of Trinidad and Tobago. Tshitala Kalula, P. 2016. “A Study of the Solid Waste Management Sector in  the DRC: The Case of the City of Kinshasa, from 25 August to 19 December 2016” [“État des lieux de la gestion des déchets solides en République Démocratique du Congo: Cas de la ville de Kinshasa, situa- tion du 25 août au 19 décembre 2016”]. Ukraine, SSC (State Statistics Service of Ukraine). 2017. “Management of Household and Similar Wastes in Ukraine for 2011–2015.” SSC, Government of Ukraine. Accessed June 1, 2017. https://ukrstat.org/en/ operativ/operativ2013/ns_rik/ns_e/pzppv_2013_e.htm. UNCRD (United Nations Centre for Regional Development) and IGES (Institute for Global Environmental Strategies). 2017. “State of 3Rs in Asia and the Pacific, Country Report: Malaysia.” Secretariat of the Regional 3R Forum in Asia and the Pacific, UNCRD and IGES, Kamiyamaguchi, Japan. UN DESA (United Nations, Department of Economic and Social Affairs). 2014a. “Population of Urban Agglomerations with 300,000 Inhabitants or More in 2014, by Country, 1950–2030 (Thousands)” (UN Doc. No. POP/DB/WUP/Rev.2014/1/F12). In World Urbanization Prospects: The 2014 Revision. New York: Population Division, UN DESA. Waste Generation (tonnes per year) and Projections by Country or Economy 229 ———. 2014b. “World Urbanization Prospects: The 2014 Revision.” UN Doc. No. ST/ESA/SER.A/366. Population Division, UN DESA, New York. ———. 2017. “World Population Prospects: The 2017 Revision.” Population Division, UN DESA, New York. UNDP (United Nations Development Programme). 2014. “Lebanon Environmental Assessment of the Syrian Conflict and Priority Interventions.” UNDP, New  York. http://www.undp.org/content/dam/lebanon/docs/ Energy%20and%20Environment/Publications/EASC-WEB.pdf. UNECA-UNEP-UNIDO-ARSCP (United Nations Economic Commission for Africa, United Nations Environment Programme, United Nations Industrial Development Programme, Africa Roundtable on Sustainable Consumption and Production. 2011.“Sustainable Consumption and Production for Sustainable Growth and Poverty Reduction” (SDSRA Volume III). https:// www.uneca.org/sites/default/files/PublicationFiles/sdra3.pdf. UNEP (United Nations Environment Programme). 2007. “Assessment of Solid Waste Management in Liberia.” Post-Conflict and Disaster Management Branch, UNEP, in collaboration with the Environmental Protection Agency, Government of Liberia. ———. 2013. “Municipal Solid Waste Composition Analysis Study: Juba, South Sudan.” UNEP, Nairobi. UNICEF-India, Ministry of Rural Development. 2008. “Solid and Liquid Waste Management in Rural Areas—A Technical Note.” Ministry of Rural Development, Department of Drinking Water Supply. UN OCHA (Office for the Coordination of Humanitarian Affairs). 2014. “Central African Republic: WASH  Update, Mai 2014.” UN OCHA, New York. UNSD (United Nations Statistics Division). 2016. “Environmental Indicators: Waste: Municipal Waste Collected.” UNSD, New York, November. http://unstats.un.org/unsd/ENVIRONMENT/qindicators. htm. U.S. EPA (Environmental Protection Agency). 2014. “Advancing Sustainable Materials Management: 2014 Fact Sheet: Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States.” Office of Land and Emergency Management, EPA, Washington, DC. Venezuela, INE (National Statistical Institute). 2013. “Generation and Management of Solid Waste in Venezuela, 2011–2012” [“Generación y manejo de residuos y desechos sólidos en Venezuela,  2011–2012”]. Report No. 3. INE, Government of Venezuela. WaterAid. 2015a. “Solid Waste Generation Rate and Characterization Study for Bule Hora Town.” Getaneh Gebre Consultancy Service, Addis Ababa. 230 What a Waste 2.0 ———. 2015b. “Solid Waste Generation Rate and Characterization Study for Gerbe Guracha Town.” Getaneh Gebre Consultancy Service, Addis Ababa. World Bank. 2014. “Results-Based Financing for Municipal Solid Waste.” Urban Development Series Knowledge Papers No. 20. Global Urban and DRM Unit, World Bank, Washington, DC. ———. 2015a. “Addressing Challenges of Municipal Solid Waste Management in Moroni (P145255).” Output-Based Aid Concept Note Executive Summary, World Bank, Washington, DC. ———. 2015b. “Assessment of the Integrated Management of Municipal Solid Waste in Argentina: Collection, Generation and Analysis of Data: Collection, Sweeping, Transfer, Treatment and Final Disposal of Municipal Solid Waste.” [Diagnóstico de la Gestión Integral de Residuos Sólidos Urbanos en la Argentina: Recopilación, generación y análisis de datos: Recolección, barrido, transferencia, tratamiento y disposición final de Residuos Sólidos Urbanos]. World Bank, Washington, DC. ———. 2016a. “Integrated Urban Development and Resilience Project for Greater Antananarivo (P159756): Project Information Document/ Integrated Safeguards Data Sheet (PID/ISDS).” Concept Stage. Report No. PIDISDSC17608. World Bank, Washington, DC. ———. 2016b. “Rapid Assessment of Kabul Municipality’s Solid Waste Management System.” Report No. ACS19236. Environment and Natural Resources Global Practice, South Asia Region, World Bank. June. ———. 2017a. “Financial Analysis in Support of the Dominica Solid Waste Management Corporation Modernization Project.”  Solid Waste Management and Disaster Risk Management (GFDRR), Social, Urban, Rural and Resilience Global Practice, World Bank, Washington, DC. ———. 2017b. Population, total (database). World Bank, Washington, DC. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=LK. ———. n.d. “Legal, Institutional, Financial Arrangement and Practices of  Solid Waste Management Sector in Kazakhstan.” World Bank, Washington, DC. Zambia, Central Statistical Office. 2013. “Population and Demographic Projections, 2011–2035.” Central Statistical Office, Government of Zambia. http://www.zamstats.gov.zm. Zoï Environment Network. 2013. “Waste and Chemicals in Central Asia: A Visual Synthesis.” Zoï Environment Network, with support from the Swiss Federal Office for the Environment. Accessed April 27, 2017. http://wedocs.unep.org/handle/20.500.11822/7538. Zuilen, L. F. 2006. “Planning of an Integrated Solid Waste Management System in Suriname: A Case Study in Greater Paramaribo with Focus on Households.” PhD thesis, Department of Soil Management, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium. APPENDIX B Waste Treatment and Disposal by Country or Economy 231 232 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Algeria MENA UMIC 2.0 89.0 8.0 1.0 Andorra ECA HIC 52.1 Antigua and LAC HIC 98.7 0.1 Barbuda Argentina LAC UMIC 22.6 8.9 62.5 6.0 Armenia ECA LMIC 100.0 Aruba LAC HIC 11.0 Australia EAP HIC 48.9 42.1 9.8 Austria ECA HIC 3.0 25.7 31.2 37.9 Azerbaijan ECA UMIC 100.0 Bahrain MENA HIC 92.0 8.0 Bangladesh SAR LMIC 5.3 Waste Treatment and Disposal by Country or Economy 233 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment CLF, SLF: Ismail 2017 2016, RE, CM: GIZ and 1 2013 SWEEP-Net 2014a UA: Does not include landfilling, recycling, 47.9 2012 UNSD 2016 or composting, as values for those are 0. CLF: Cooks Sanitary Landfill and Civic Amenities Site is referred to as a “sanitary landfill”; however, based on the performance audit report by the National Solid Waste Management Authority, 2013, it is run as a CLF; CLF estimated by subtracting uncollected waste (composted or thrown in waterways) from 100 percent of the waste. CM: Calculated by the population composting compared with total population CLF: Gore-Francis disposing of garbage by various means from 2013 questionnaire on Population by Parish by 2014, CM, UA, WW: Waste Disposal Method. 0.1 1.1 2011 Antigua and WW: Calculated by the population dumping Barbuda, Statistics waste in river, sea, or pond compared with Division 2014, 36 total population disposing of garbage by various means from questionnaire on Population by Parish by Waste Disposal Method. UA: Calculated by the population burning (0.23 percent), burying (0.04 percent), not stated (0.56 percent), and other (0.31 percent) compared with total population disposing of garbage by various means from questionnaire on Population by Parish by Waste Disposal Method. Argentina SIDSA 2010   2015, 80 New sanitary landfills are being constructed 2012 UNSD 2016 as of 2018. Pricewaterhouse- 89.0 2013   Coopers Aruba 2014 LF: Calculated based on amount of MSW disposed of compared with amount Australia, generated. Department of the RE: Calculated based on amount of MSW 2015 Environment and recycled compared with amount generated. Energy 2017, vii IN: Calculated based on amount of MSW recovered for energy compared with amount generated. 2.2 2015 Eurostat 2017 CM: 2 Based on the statement “All of Azerbaijan’s Azerbaijan, Ministry disposal sites, other than the new systems 2015 of Economy within the Baku metropolitan area, is by 2017, 105 open dumping. ” Al Sabbagh et al. RE: Value for recycling and material 2012 2012 recovery rate. OD: Enayetullah, Sinha, and Khan OD: Most common method of waste 94.8 2011 2005 disposal in Bangladesh. CM: ADB 2011 (Table continues on next page) 234 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Barbados LAC HIC 90.0 9.0 Belarus ECA UMIC 7.1 76.9 16.0 Belgium ECA HIC 0.9 34.3 19.1 43.4 Belize LAC UMIC 66.0 34.0 Benin SSA LIC 25.0 Bermuda NA HIC 12.2 2.0 18.3 67.6 Bhutan SAR LMIC 98.0 0.9 1.4 Bolivia LAC LMIC 55.5 0.0 31.9 12.1 0.4 Bosnia and ECA UMIC 41.8 8.6 24.1 Herzegovina Botswana SSA UMIC 1.0 Brazil LAC UMIC 15.6 21.9 53.3 1.4 0.2 Waste Treatment and Disposal by Country or Economy 235 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment CLF: Estimated based on total generation minus the amount uncollected; the main landfill in use is the Mangrove facility, which is considered a CLF . RE: Represents only a portion of waste that is 2012, Riquelme, Méndez, recycled by the Sustainable Barbados 1.0 2015 and Smith 2016 Recycling Centre; the actual amount of HH waste that is finally recycled is not known. CM: 3. UA: Calculated based on difference between total waste generation and sum of waste landfilled and recycled. OD, CLF: Belarus, Ministry of Housing and Utility 2017b 2016 1 RE: Belarus, Ministry of Housing and Utility 2017a 2.3 2015 Eurostat 2017 CM: 2 CM: 3 RE: 4 OD: Reported as “inadequate disposal of OD, SLF: IDB 2015 waste” in source, which includes open 2012 CM: IDB 2013, 18 dumps, open burning, and other forms of final disposal (bodies of water, animal feed, and so on), of which most is assumed to be openly dumped. 75.0 2005 AFED 2008, 18   CLF: 5 2012 UNSD 2016 IN: Value represents IN and ATT. CLF: Majority of waste is dumped at a Bhutan, National Memelakha controlled landfill in Thimphu; 2016 Environment it has soil cover and compaction of waste on Commission 2016 a regular basis. OD: Includes remainder of waste not processed through formal collection or informal recycling. CLF, SLF: SLF includes those constructed as such and in good operation; CLF are those Bolivia, MMAyA/ 2015 constructed as SLF but not operating well; VAPSB/DGGIRS 2016 abandoned landfills excluded. RE: Includes informal recycling based on estimates and formal recycling based on inventory of existing plants. CM: Based on inventory of existing plants. Bosnia and CLF: Reported as controlled landfill because 0.0 25.6 2015 Herzegovina, there is no landfill gas management. BHAS 2016, 1 Other: 6 99.0 2005 AFED 2008, 18   OD, CLF, SLF: ABRELPE 2015, 23 CM: Data refer to percentage of waste sent to 2015, IN: ABRELPE 2015, 69 7.6 open dumps, sanitary landfills, compost, and 2014 RE: UFPE 2014, 84 sorting plants in participating municipalities. CM: Brazil SNIS 2017, 145 (Table continues on next page) 236 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration British Virgin LAC HIC 80.3 Islands Brunei EAP HIC 70.0 2.0 Darussalam Bulgaria ECA UMIC 66.2 19.0 10.3 2.8 Burkina Faso SSA LIC 59.0 17.0 12.0 Cambodia EAP LMIC Cameroon SSA LMIC 80.3 19.3 0.4 Canada NA HIC 72.3 20.6 4.1 3.0 Cayman LAC HIC 21.0 Islands Channel ECA HIC 39.2 28.4 15.9 16.4 Islands Chile LAC HIC 8.4 85.3 0.4 0.4 0.1 China EAP UMIC 8.2 60.2 3.0 29.8 Colombia LAC UMIC 4.0 89.0 17.2 Congo, SSA LIC 4.9 Dem. Rep. Waste Treatment and Disposal by Country or Economy 237 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment 19.7 2005 UNSD 2016   Shams, Juani, and 28.0 2014   Guo 2014 1.7 2015 Eurostat 2017   CM: 3 OD, LF, UA: IMF 2012 2009, AD: 7 (There is a small-scale biogas facility in 12.0 CM, AD: Cissé 2015 2005 Ouagadougou). RE: AFED 2008, 18 UA: Includes some open burning. 8 OD: 9 SLF: There is a sanitary landfill in Phnom Penh. Patriamby and 17.5 82.5 2004 Other: Includes open burning (15 percent) Tanaka 2014, 82 and other unspecified methods in urban areas (2.5 percent); other methods (unspecified) in suburban areas is 15 percent (not included in figure). OD, SLF: UNFCCC CM: 3 2014 OD: Proportion of waste that is not landfilled 2012 CM, Other: Armel or recycled is dumped. 2017 Other: 10 RE: UNSD 2016 LF: In total, 25,871,310 tonnes are disposed of by landfill and incineration, amounting to 75.3 percent of waste; 3 percent is incinerated, so total landfill amount is 72.3 percent. RE: In total, 8,473,257 tonnes were diverted LF, RE, IN: Canada, to recycling and composting. According to a Statistics Canada 2008, 2007 article, 17 percent of organic waste is 2012 2007 composted, which in total is about CM: van der Werf and 4.1 percent of waste; thus total recycled is Cant 2007 approximately 20.6 percent. CM: 17 percent of organic waste is composted, which in total is about 4.1 percent of waste. IN: Seven municipal incineration plants in Canada. LF: Amec Foster Wheeler 2016 79.0 2013 LF: 11 (3 landfills). RE: Pricewaterhouse- Coopers Aruba 2014 States of Guernsey 2016   2017 14 Chile, CONAMA 0.0 5.3 2009 IN: Includes both with and without energy 2010, 59 recovery. OD, LF, IN: Modak CM: Includes biological treatment and other 2014, et al. 2017, 215 treatment technologies. Informal recycling is 2011 CM: Takeda, Wang, estimated to be 15.8% nationally based on a and Takaoka 2014, 35 World Bank 2011 study. OD, SLF: IDB 2012, 28 2011   RE: IDB 2015, 3 RE: AFED 2008, 18 95.1 2005 SLF: 12 Other: Kalula 2016 (Table continues on next page) 238 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Congo, Rep. SSA LMIC 26.2 Costa Rica LAC UMIC 9.1 23.5 67.5 1.3 Côte d’Ivoire SSA LMIC 3.0 Croatia ECA UMIC 79.8 16.3 1.7 Cuba LAC UMIC 42.2 30.7 9.5 Curaçao LAC HIC 2.0 Cyprus ECA HIC 74.5 13.3 4.6 Czech ECA HIC 52.6 25.5 4.2 17.7 Republic Denmark ECA HIC 1.1 27.3 19.0 52.6 Dominica LAC UMIC 94.0 Dominican LAC UMIC 72.6 0.1 8.2 Republic Waste Treatment and Disposal by Country or Economy 239 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment OD, CM: Guillaume, Château, and CM: 3 73.8 2005 Tsitsikalis 2015 OD: 9 RE: AFED 2008, 18 OD, CLF, SLF: LF: 11 IDB-AIDIS-PAHO OD: 9 (Waste from 9.1 percent of covered 2011, 132 population is dumped.) 2010, RE: Costa Rica, CLF: Waste from 23.5 percent of covered 2014 Division of population goes to CLF. Operational and RE: 13 Evaluative Inspection SLF: 12 (Waste from 67.5 percent of covered 2016, 2, 22, 23, and 26 population goes to SLF.) 97.0 2005 AFED 2008, 18   CM: 2 2.2 2015 Eurostat 2017 UA: 14 OD: Calculated based on remainder of waste that was collected but not recycled or put in CLF in Havana. CLF: Calculated based on estimate of total waste received at unengineered landfills in OD, RE, UA: Cuba Havana Province only divided by MSW ONEI 2016 generated nationwide; no information CLF: Cuba, ONEI 2017 available on landfills outside of Havana; (population); Anon MSW generation estimates do not include 17.6 2015 n.d. (waste disposed bulky waste, industrial, or medical waste; in landfills); Rebelde also likely does not include commercial, but 2007 (generation this cannot be confirmed. rates) RE: Calculated based on estimates of waste recycled or composted compared with total generation. UA: Calculated based on waste produced by population without collection service, primarily in rural areas. Pricewaterhouse- 98.0 2013   Coopers Aruba 2014 7.6 2015 Eurostat 2017   0.0 2015 Eurostat 2017 CM: 2 0.0 2015 Eurostat 2017 CM: 2 CLF: Estimated based on population with access to formal collection services; likely 6.0 2005 UNSD 2013 that actual value is higher; value is supported by World Bank site visits. UA: 6 (Actual figure may be lower.) OD: Calculated based on the sum of other OD, RE: Dominican treatment and disposal options subtracted Republic, Ministry of from total waste generated. Environment and SLF: 1 (Estimated based on the amount of Natural Resources waste taken to one sanitary landfill in Las 2014 2017, Placetas, San Jose de las Matas.) 19.1 SLF: Dominican 2015 RE: Includes all exported recyclables (metals, Republic, Ministry of paper, carton, plastics, and glass); does not Environment and include items recycled in country. Natural Resources Other: Calculated based on the amount of and Ministry of waste from HH without collection services Economy 2017 compared with total waste generation. (Table continues on next page) 240 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Ecuador LAC UMIC 22.3 - 53.2 12.9 Egypt, Arab MENA LMIC 84.0 7.0 12.5 7.0 Rep. El Salvador LAC LMIC 13.8 78.2 Estonia ECA HIC 7.4 24.7 3.6 51.4 Ethiopia SSA LIC 43.0 Faeroe ECA HIC 67.0 Islands Fiji EAP UMIC 52.0 5.5 Finland ECA HIC 11.5 28.1 12.5 47.9 France ECA HIC 25.8 22.3 17.3 34.7 French EAP HIC 39.0 Polynesia Germany ECA HIC 0.2 47.8 18.2 31.7 Greece ECA HIC 80.0 19.0 Greenland ECA HIC 60.0 40.0 Waste Treatment and Disposal by Country or Economy 241 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment 1 OD: Calculated assuming that 29.5 percent of all collected waste (88.4 percent) that is not recycled is dumped. Ecuador, Ministry of SLF: Calculated based on percentage of 11.6 2015 Environment 2018 people with collection service for this disposal method times the percent of total collection coverage. RE: 14 UA: 6 OD: Reported as 80–88 percent in source GIZ and SWEEP-Net (average used). 2013 2014b RE: Reported as 10–15 percent in source (average used). Other: Includes open burning (7.3 percent) IDB-AIDIS-PAHO 7.9 0.1 2010 and waste disposed as cattle feed, dumped 2011, 132 in WW, and so on. 12.9 2015 Eurostat 2017 CM: 2 Global Methane 57.0 2011   Initiative 2011 RE: Recovery includes incineration with RE: Nordic recovery, CM, AD, RE, other recovery, and Competition hazardous materials exported for treatment; 33.0 2012 Authorities 2016, 59 mineral waste that is inert is usually IN: Frane, Stenmarck, landfilled or used for land reclamation. and Gislason 2014 IN: Some incineration occurs but exact percentage unknown. LF: Calculated based on the amount of waste LF: Fiji, Department landfilled or dumped in 2010 compared with 2011, of Environment 2011 the amount of waste generated in 2011. 42.6 2013 RE: Patriamby and RE: Average recycling rate derived from the Tanaka 2014, 274 recycling rates of Lautoka City (8.1 percent) and Nadi Town (2.8 percent). 0.0 2015 Eurostat 2017 CM: 2 0.0 2015 Eurostat 2017   OD: 9 LF: 11 SLF: 12 (99 waste disposal sites, of which 5 are SLF , 3 are controlled dumps, 8 are 61.0 2013 SPREP 2016 authorized open dumps, and 80 are temporary unregulated dumps.) CM: 3 (1 large-scale compost program in Tahiti.) 2.0 2015 Eurostat 2017   LF: Reported as disposed of. Greece, Ministry of RE: Reported as recovered (recycling and 2014, 1.0 Environment and composting). 2011 Energy 2015, 17 Other: Reported as unregistered management. LF: Calculated based on the amount of waste landfilled compared with amount generated Eisted and (average used). 2010 Christensen 2011 IN: Calculated based on the amount of waste incinerated compared with amount generated. (Table continues on next page) 242 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Grenada LAC UMIC 98.3 0.2 Guam EAP HIC 64.0 17.9 Guatemala LAC LMIC 69.8 9.6 15.4 Guinea SSA LIC 5.0 Guyana LAC UMIC 61.4 0.5 Haiti LAC LIC 9.9 Honduras LAC LMIC 15.0 59.9 11.3 Hong Kong EAP HIC 66.0 34.0 SAR, China Hungary ECA HIC 53.6 25.9 6.2 14.1 Iceland ECA HIC 30.3 55.8 2.9 1.9 India SAR LMIC 77.0 5.0 18.0 Waste Treatment and Disposal by Country or Economy 243 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment CLF: The two landfills are controlled landfills; they are being upgraded as part of a Caribbean Development Bank project. Grenada, Population CM: Represents an approximate value of 1.5 2011 and Housing Census waste composted in HH. 2011, 35 Other: Includes open burning (0.7 percent), dumping (0.2 percent), dumping on land (0.4 percent), burying (0.1 percent), and other unspecified (0.1 percent). SLF: Calculated based on amount disposed 2012, SLF, RE: Guam 2013 18.2 of in Layon Landfill and amount of waste 2011 CM: SPREP 2016 generated. IDB-AIDIS-PAHO 5.2 2010 UA: 15 2011, 132 95.0 2005 AFED 2008, 18   UA: Refers to remainder of waste not disposed of in landfill or recycled, which is 2011, Guyana, Ministry of 38.1 mainly disposed of in CLF and ODs; a small 2010 Communities n.d. portion is recycled through glass and scrap metal recycling programs. IHSI, IRD, Dial, Nopoor, ANR 2014 (coverage); IHSI 2015 CLF: Calculated assuming that total waste (population); SWANA collected in the metropolitan area of Port au Haiti Response Team Prince is disposed of in the Trutier landfill as 2010 (generation - 90.1 2012 a percentage of the total waste generated Port au Prince); countrywide. Naquin 2016 UA: Includes all waste collected from other (generation per urban and rural areas. capita urban and rural areas – Cap-Haïtien) IDB-AIDIS-PAHO 13.8 2010 UA: 15 and all other disposal methods. 2011, 132 Hong Kong, Environmental 2016 Protection   Department, Statistics Unit 2017 0.1 2015 Eurostat 2017   Calculated based on actual values provided. Iceland, Statistics Other: Includes other recovery (8.38 percent), 9.1 2013 Iceland 2015, 429 other disposal (0.38 percent), and hazardous waste exported for treatment (0.38 percent). 1 OD: Assuming 100 percent of rural waste is dumped; 77.96 percent of urban waste is dumped based on CPCB data, less amount OD, CM: India recycled. 2016, CPCB 2017 RE: Based on estimate that 15,342 tonnes of 2013 RE: Mahapatra 2013 plastic is disposed of every day, 60 percent of which is recycled. CM: Value refers to total amount of waste processed from composting, RDF , and biogas. (Table continues on next page) 244 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Indonesia EAP LMIC 10.0 69.0 7.0 Iran, Islamic MENA UMIC 72.0 10.0 5.0 12.0 0.3 0.4 Rep. Iraq MENA UMIC 100.0 Ireland ECA HIC 41.0 33.0 6.0 17.0 Isle of Man ECA HIC 25.0 50.0 25.0 Israel MENA HIC 75.0 25.0 Italy ECA HIC 26.5 25.9 17.6 19.0 Jamaica LAC UMIC 64.0 Japan EAP HIC 1.1 4.9 0.4 0.1 80.2 Jordan MENA LMIC 45.0 48.0 7.0 Kazakhstan ECA UMIC 60.1 2.9 Kenya SSA LMIC 8.0 Korea, Rep. EAP HIC 16.0 58.0 1.0 25.0 Kosovo ECA LMIC 33.6 66.4 Waste Treatment and Disposal by Country or Economy 245 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment RE: 13 OD: Referred to as “illegal dumping” in source. 14.0 2016 Damanhuri 2017, 3 Other: Includes disposal in rivers, on streets, gardens, and so on (9 percent) and open burning (5 percent). 1 RE: Value for material segregated in sorting plants. 0.3 2017 Abedini 2017 AD: There is only one facility in Tehran with capacity of 150 tonnes/day. IN: There is only one facility in Tehran with capacity of 200 tonnes/day. Iraq, Ministry of 2015   Environment 2015 CM: 2 Other: 34 percent of MSW managed in 2.0 1.0 2012 Ireland, EPA 2014, 1 Ireland was exported for energy recovery and recycling. Isle of Man, 2011 Department of   Infrastructure n.d., 12 Israel, Ministry of LF, RE: Reported as, “Some 75 percent of the 2017 Environmental waste in the country is buried in landfills Protection 2017 while only about 25 percent is recycled.” CM: 2 11.0 2015 Eurostat 2017 UA: 14 CLF: 14 Other: Calculated based on the amount CLF: Jamaica 2016, treated or disposed of compared with the 29.0 7.0 NSWMA 2016 2011 amount generated [burned (34.58 percent), Other: Jamaica 2011 buried (0.60 percent), and WW (0.82 percent)]. Japan, Ministry of the SLF: 12 (2 out of 1,718 facilities.) 13.3 2015 Environment 2015 IN: Includes ATT. GIZ and SWEEP-Net 2014   2014c, 7 OD: Calculated based on the amount of waste disposed of in dumpsites or landfills compared with the amount of MSW 37.0 2012 World Bank n.d., 42 generated. RE: Calculated based on the amount of waste recycled and processed compared with the amount of MSW generated. 8 92.0 2009 UNECA 2009, 24 RE: 13 2014 OECD 2017   Kosovo, Ministry of Environment and 2010   Spatial Planning 2013, 27 (Table continues on next page) 246 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Kuwait MENA HIC 100.0 Kyrgyz ECA LMIC 100.0 Republic Lao PDR EAP LMIC 60.0 30.0 10.0 Latvia ECA HIC 57.6 21.2 5.5 Lebanon MENA UMIC 29.0 48.0 8.0 15.0 Liechtenstein ECA HIC 64.6 Lithuania ECA HIC 54.0 22.9 10.2 11.5 Luxembourg ECA HIC 17.7 28.4 19.7 34.0 Macao SAR, EAP HIC 20.0 China Macedonia, ECA UMIC 99.7 0.2 0.1 FYR Madagascar SSA LIC 96.7 3.5 Malaysia EAP UMIC 71.5 10.0 17.5 1.0 Maldives SAR UMIC 7.0 6.0 Malta MENA HIC 89.6 6.7 0.4 Marshall EAP UMIC 30.8 6.0 Islands Mauritania SSA LMIC 54.7 37.3 8.0 Mauritius SSA UMIC 91.0 9.0 Mexico LAC UMIC 21.0 74.5 5.0 Moldova ECA LMIC 35.1 15.3 Waste Treatment and Disposal by Country or Economy 247 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment 2014 Alsulaili et al. 2014   Calculated based on amount of domestic 2010 Barieva 2012 waste disposed of compared with total amount of domestic waste generated. CLF: Keohanam 2017 2015   RE: CCAC n.d.(b) 15.7 2015 Eurostat 2017 CM: 2 GIZ and SWEEP-Net 2014   2014d, 8 RE: Liechtenstein, 35.4 2015 Office of Statistics RE: Value is for urban waste. 2018, 7 1.4 2015 Eurostat 2017   0.3 2015 Eurostat 2017 CM: 2 RE: Includes plastics, rubber, paper, metal, and other recoverable waste; approximated RE: Macao SAR, from figure in source. China 2014 80.0 2014 IN: Some incineration occurs at Macao IN: Macao SAR Refuse Incineration Plant, which treats China, DSEC 2017 domestic and ICI waste, but exact percentage unknown. LF, RE, CM: Macedonia, FYR, Ministry of Environment and 2013 Physical Planning   2014, 92 IN: Dimishkovska and Dimishkovski 2012, 264 2007 UNSD 2016   2017, UNCRD 2017   2016 All values are specifically for kitchen Maldives, MEE 2017, waste disposal. 63.0 24.0 2016 173 Other: Includes bury (17 percent) and open burning (7 percent). SLF: Uncontrolled landfills were replaced 3.4 2015 Eurostat 2017 with two major engineered landfills in 2004 and 2006. 63.2 2007 UNSD 2016   GIZ and SWEEP-Net 2009   2010a 2012 UNSD 2016   AD: 16 Mexico, SEMARNAT 2013 IN: Only for hazardous waste and health 2016, 444–45 care waste. OD: Calculated based on the amount deposited compared with the amount of Moldova, Statistica waste generated. 49.6 2015 Moldovei 2016, 58 RE: Calculated based on the amount recycled compared with the amount of waste generated. (Table continues on next page) 248 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Monaco ECA HIC 5.4 85.0 Mongolia EAP LMIC 93.5 Montenegro ECA UMIC 91.6 5.4 Morocco MENA LMIC 52.0 37.0 8.0 1.0 Mozambique SSA LIC 99.0 1.0 Myanmar EAP LMIC Namibia SSA UMIC 4.5 Nepal SAR LIC 37.0 2.9 Netherlands ECA HIC 1.4 24.6 27.1 47.4 New EAP HIC 100.0 Zealand Nicaragua LAC LMIC 59.3 19.6 Niger SSA LIC 64.0 - 4.0 - Nigeria SSA LMIC 40.0 Northern Mariana EAP HIC 36.0 Islands Norway ECA HIC 3.4 26.2 16.7 52.4 Oman MENA HIC 100.0 0.0 Pakistan SAR LMIC 50.0 40.0 8.0 2.0 Panama LAC UMIC 23.4 16.0 41.7 Papua New EAP LMIC 62.0 2.0 Guinea Paraguay LAC UMIC 23.4 40.2 36.4 Peru LAC UMIC 56.4 15.6 24.0 4.0 Waste Treatment and Disposal by Country or Economy 249 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment RE: UNSD 2016 IN: Calculated based on 39,000 tonnes from 2012, IN: Monaco, the principality (including sewage sludge) 9.6 2013 Directorate of that is incinerated; actual incineration rate is Environment 2013 higher as waste is imported. 6.5 2016 Delgerbayar 2016   OD, RE, UA: Eurostat SLF: 12 [2 SLF in Podgorica (Livade) and 3.0 2016 2017 Mozura.] SLF: ZWMNE 2016 GIZ and SWEEP-Net 2.0 2014 CM: Value is given as <1 percent in source. 2014e, 7 RE: < 1 percent of waste recycled 2014 Tas and Belon 2014 (estimated); waste that is not recycled is either dumped or buried. OD: 9 8.0 92.0 2010 Thein 2010 Other: Value refers to open burning. 95.5 2005 AFED 2008, 18   LF: Source says disposed of in sanitary landfills, but not in a sanitary manner. 60.1 2013 ADB 2013 CM: Value for all composting not known. UA: Value represents uncollected waste. 2015 Eurostat 2017 CM: 2 2015 UNSD 2016   IDB-AIDIS-PAHO 21.1 2010 Other: Includes open burning (7.5 percent). 2011, 132 12.0 20.0 2005 UNSD 2016 Other: Refers to open burning. OD, RE: Ayuba et al. 2013 RE: 4 60.0 1995 LF, Other: IPCC 2006, OD: 9 17 64.0 2016 US EPA 2016   1.4 2015 OECD 2017   2017 Ouda 2017 1; 8 Korai, Mahar, and 2017   Uqaili 2017, 348 IDB-AIDIS-PAHO 18.9 2010 Other: 15 and open burning (4.7 percent). 2011, 132 RE: Recycling is limited to cans, plastic, glass Papua New Guinea, containers, and food for piggeries. 37.0 2016 NCDC 2016, 45 Other: Includes illegal dumping and open burning. IDB-AIDIS-PAHO 2010   2011, 132 OD, CLF, SLF: Peru, Ministry of OD: Waste not disposed of in SLF was 2014, Environment 2016, 21 disposed of inadequately. 2012 RE: Peru, Ministry of SLF: 14 Environment 2013, 3 (Table continues on next page) 250 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Philippines EAP LMIC 28.0 Poland ECA HIC 44.3 26.4 16.1 13.2 Portugal ECA HIC 49.0 16.2 14.1 20.7 Puerto Rico LAC HIC 66.5 14.0 Qatar MENA HIC 93.0 3.0 4.0 Romania ECA UMIC 72.0 5.7 7.5 2.4 Russian ECA UMIC 95.0 4.5 Federation Samoa EAP UMIC 31.0 36.0 San Marino ECA HIC 45.1 Saudi Arabia MENA HIC 85.0 15.0 Senegal SSA LIC 43.8 5.1 Serbia ECA UMIC 73.9 0.8 Singapore EAP HIC 2.0 61.0 37.0 Slovak ECA HIC 68.7 7.6 7.3 10.7 Republic Slovenia ECA HIC 22.7 46.4 7.7 17.1 Solomon EAP LMIC Islands South SSA UMIC 72.0 28.0 Africa Waste Treatment and Disposal by Country or Economy 251 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment Modak et al. 72.0 2014   2017, 235 2015 Eurostat 2017 CM: 2 2014 Eurostat 2017 CM: 2 LF: Energy Answers 2007, 2012, 2 LF: 14 (Assumed disposed of in landfill, as 19.5 2013 RE: Pricewaterhouse- there are 29 operating landfills.) Coopers Aruba 2014 Ayoub, Musharavati, 2014   and Gabbar 2014, 96 LF: Refers to waste disposal in general as there is no information on the type of disposal; in Romania there is a combination 12.5 2015 Eurostat 2017 of controlled and sanitary landfills with landfill gas recovery. UA: 14 OD: IFC 2012, 5 RE: Russia, Ministry RE: Source provides a range of 4–5 percent 0.5 2012 of Natural Resources (average used). and Ecology 2012, 7 CLF: 14 [Semi-aerobic landfill (Fukuoka method).] 33.0 2013 SPREP 2016 RE: Refers to amount exported or recycled or reused locally. RE: Value refers to amount of waste that is San Marino, AASS 55.0 2016 collected separately; all of this waste is 2016 recovered in some form. CLF: Value based on personal knowledge and the difference between total disposal 2015 Saudi Arabia n.d. (100 percent) and amount recycled (15 percent). RE: Includes recycling and treatment. OD: Includes dumping (42.2 percent) and informal burial (1.6 percent). OD, CLF, Other: RE: Most households engage in recycling ANSD 2014 4.7 46.4 2014 activities; there are various societies devoted RE, CM: Gret-LVIA- to the recycling of plastic (PROPLAST), paper Pacte 2006 (PRONAT), and aluminum (SELMEG). Other: Includes open burning (3.5 percent). OD: Anthouli et al. OD: There are 3,582 identified landfills, of 25.3 2015 2013, 27 which 165 are municipality landfills, 5 are LF, RE: Eurostat 2017 SLF, and the rest are dumps. Singapore, Ministry of the Environment 2015   and Water Resources 2017 5.7 2015 Eurostat 2017   6.2 2015 Eurostat 2017 CM: 2 Solomon Islands, 81.0 19.0 2015 8 MECDM 2015 South Africa, Department of CLF, RE: Include MSW and C&I waste; 2011 Environmental excludes C&D, hazardous, and inert waste. Affairs 2012 (Table continues on next page) 252 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Spain ECA HIC 55.1 16.8 16.5 11.6 Sri Lanka SAR LMIC 85.0 12.8 5.0 St. Kitts and LAC HIC 100.0 Nevis St. Lucia LAC UMIC 96.8 0.1 St. Vincent and the LAC UMIC 99.9 0.1 Grenadines Sudan SSA LMIC 82.0 Suriname LAC UMIC 63.0 Sweden ECA HIC 0.8 32.4 15.6 51.2 Switzerland ECA HIC 32.0 21.0 47.0 Syrian Arab MENA LMIC 80.0 20.0 2.5 1.5 Republic Taiwan, EAP HIC 34.8 64.2 China Waste Treatment and Disposal by Country or Economy 253 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment 2015 Eurostat 2017 CM: 2 Sri Lanka, Ministry of Mahaweli OD: Reported as more than 85 percent of 2016 Development and waste dumped unscientifically. Environment 2016 2017 SIDS DOCK 2015, 14   Other: Includes open burning (1.5 percent); St. Lucia dumping on land (0.6 percent); dumping in Government river, sea, or pond (0.4 percent); and burying 2.6 0.5 2010 Statistics Department (0.1 percent). 2011 UA: Includes other (0.2 percent) and not stated (0.3 percent). LF: Five landfills are operational; MSW either is sent to landfills or composted. CM: Includes that which is composted after LF, CM: St. Vincent collection and at HH level (0.1 percent of and the Grenadines, households compost as their major form of Statistical Office disposal). 3.6 2012 2012, 45 Other: Includes burning (2.6 percent); burial Other: St. Vincent (0.2 percent); open dumping (0.4 percent); and the Grenadines, dumping in river, sea, or pond (0.2 percent); Statistical Office n.d. and other not specified (0.2 percent); values are for percentage of HH undertaking waste disposal. 18.0 2003 IPCC 2006, 17   OD: Open dumping is the main waste disposal method for the country; the largest dump that is most similar to a formal landfill still has fires, leachate management 37.0 2013 Viren 2013 deficiencies, and animals on site; formally collected waste is sent to a dump. UA: 6, which is managed by households in a variety of ways, but is most likely dumped. 2015 Eurostat 2017 CM: 2 LF: There are no landfills for MSW, but they 2015 OECD 2017 exist for inert materials, stabilized residues, and bioreactor landfills. OD: Source provides a value of about 80 percent. LF: Source provides a value of about GIZ and SWEEP-Net 20 percent landfilled. 2010 2010b RE: Source provides a range of 2–3 percent (average used). CM: Source provides a range of 1–2 percent (average used). IN: Primary method of disposal. 1.0 2002 Tsai and Chou 2006 Other: Value includes composting and dumping. (Table continues on next page) 254 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Tajikistan ECA LMIC 100.0 Tanzania SSA LIC 69.0 Thailand EAP UMIC 53.5 27.0 19.1 0.4 Togo SSA LIC 96.2 2.0 1.8 Tonga EAP UMIC 40.0 Trinidad and LAC HIC 84.0 12.0 0.8 Tobago Tunisia MENA LMIC 21.0 70.0 4.0 5.0 Turkey ECA UMIC 44.0 54.0 1.0 Turkmenistan ECA UMIC 100.0 Tuvalu EAP UMIC 14.5 15.0 Uganda SSA LIC 87.0 7.0 6.0 Waste Treatment and Disposal by Country or Economy 255 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment 8 OD: MSW is neither sorted nor treated; uncontrolled dumping is widespread. OD: Boboeva 2015, 2 RE: The country generally lacks recycling 2015 RE: UNECE 2017 infrastructure, except for scrap metals and paper; collection of waste paper, glass, and other recyclables is primarily done by the informal sector. OD: Includes informally disposed of in pits or buried (36.2 percent). Tanzania, NBS and Other: Value refers to open burning. 22.6 8.5 2012 OCGS 2014 UA: Amount is collected by company or authority but disposal mechanism is unspecified. Intharathirat and ” OD: Reported as “disposed improperly. 2012 Salam 2015, 35 ” LF: Reported as “disposed properly. OD: All waste is disposed of in an “open 2014, OD: CCAC n.d.(a) - landfill” (dump) that is not sorted and 2012 RE, CM: UNSD 2016 precollected. Calculated based on the amount collected 60.0 2012 ADB 2014 compared with the amount generated; all collected waste is landfilled. All values calculated based on National Census 2011. CM: 1.17 percent of HH waste is composted Trinidad and Tobago, by HH and HH waste makes up two-thirds of 3.2 2011 EMA n.d. all waste generation. UA: 4.5 percent of HH waste is not collected or composted; includes waterways. (0.1 percent) and burning (2.2 percent). GIZ and SWEEP-Net 2014   2014g OD, SLF, UA: Bakas UA: Consists of biological treatment or 1.0 2015 and Milios 2013, 5 disposal by other methods. CM: OECD 2017 Zoï Environment LF: Reported as “almost all” going to 2013 Network 2013, 25 landfills. CM: 3 OD: Calculated based on the amount 70.5 2013 SPREP 2016 landfilled or dumped compared with the amount of waste generated; there are 9 authorized dumps in Tuvalu. RE: 4 OD, SLF, RE: Estimate based on total waste generated and report that Kampala has the only SLF receiving 1,300 tonnes/day; an estimated 6 percent of waste is removed OD, RE, SLF: from the waste stream for recycling; waste in KCCA-IFC 2017 2017 other areas is dumped. CM: Okot-Okumu CM: 8 (Composting is being practiced in 2012, 7 more than 11 urban councils of Uganda under the Clean Development Mechanism under the Kyoto Protocol pilot project promoted by the World Bank, but no actual values available.) (Table continues on next page) 256 What a Waste 2.0 Country or Open Landfill Controlled Sanitary Com- Anaerobic Incin- economy Region Income dump unspecified landfill landfill Recycling posting digestion eration Ukraine ECA LMIC 94.1 3.2 2.7 United Arab MENA HIC 62.0 9.0 20.0 9.0 Emirates United ECA HIC 22.6 27.3 16.2 31.4 Kingdom United NA HIC 52.6 34.6 12.8 States Uruguay LAC HIC 17.5 61.7 10.5 8.0 Uzbekistan ECA LMIC 60.0 Vanuatu EAP LMIC 11.3 37.0 Vietnam EAP LMIC 23.0 15.0 West Bank MENA LMIC 67.0 33.0 0.5 0.5 and Gaza Yemen, Rep. MENA LMIC 25.0 12.0 8.0 Zimbabwe SSA LIC 16.0 Note: Year refers to year of data, unless otherwise specified. AD = anaerobic digestion; ATT = advanced thermal treatment; C&D = construction and demolition; C&I = commercial and institutional; CLF = controlled landfill; CM = composting; CPCB = Central Pollution Control Board (Government of India); EAP = East Asia and the Pacific; ECA = Europe and Central Asia; HH = household; HIC = high-income country; ICI = institutional, commercial, and industrial; IN = incineration; LAC = Latin America and the Caribbean; LF = landfill unspecified; LIC = low-income country; LMIC = lower-middle-income country; MENA = Middle East and North Africa; MSW = municipal solid waste; NA = North America; OD = open dumping; RDF = refuse-derived fuel; RE = recycling; SAR = South Asia; SLF = sanitary landfill; SSA = Sub-Saharan Africa; UA = unaccounted for; UMIC = upper-middle-income country; WW = waterways. 1. Personal communication. 2. Value includes composting and anaerobic digestion. 3. Composting occurs but exact percentage is unknown. 4. Recycling occurs but exact percentage is unknown. 5. Value for MSW only. 6. Value refers to uncollected waste. 7. Anaerobic digestion occurs but exact percentage is unknown. 8. Year refers to year of publication. 9. Open dumping occurs but exact percentage is unknown. 10. Open burning occurs but exact percentage is unknown. 11. Some landfilling occurs but exact percentage is unknown. 12. Some sanitary landfilling occurs but exact percentage is unknown. 13. Value includes recycling and composting. 14. Calculated based on the amount treated or disposed of compared with the amount generated, which is reported in appendix A. 15. Value includes dumping in waterways and usage as animal feed. 16. According to source, being established but exact status unknown. Waste Treatment and Disposal by Country or Economy 257 Advanced Un- thermal Water- accounted treatment ways Other for Year(s) Source Comment Business Sweden, The Swedish Trade LF: 6,000 landfills, of which 31 percent are 2015 and Invest Council not certified or licensed. 2016, 5 Abu Dhabi SCAD OD: 5; reported as dumpsite and other; 2015 2016 all values for Abu Dhabi emirate only. 2.6 2015 Eurostat 2017 CM: 2 2014 US EPA 2014 RE: 13 OD, CLF, SLF: CSI OD, CLF, SLF: Calculated based on amount Ingenieros 2011; disposed of at type of facility and coverage Anon n.d.(d); LKSur rate. 2013, 2.3 2013, 8 RE: Calculated based on values available 2011 RE: Oriental Republic from formal recycling programs; does not of Uruguay 2004, 9; include informal recycling or other formal CSI Ingenieros 2011 recycling activities. OD: According to the State Committee for Nature Protection, there are 178 registered 40.0 2011 CER 2011, 28 dumps and several hundred additional unregistered dumps. Calculated based on the amount landfilled or 51.7 2013 SPREP 2016 dumped compared with the amount of waste generated. RE: Patriamby and 2014, Tanaka 2014, 364 RE: Reported as a range of 18–28 percent 62.0 2013 CM: Vietnam WENID (average used). 2013 GIZ and SWEEP-Net RE, CM: Value in source given as 2013 2014f < 0.5 percent. 8.0 47.0 2016 Al-Eryani 2017 1 84.0 2005 AFED 2008, 18   258 What a Waste 2.0 References Abedini, Ali R. 2017. Solid waste management specialist, and founder and CEO, ISWM Consulting Ltd. Personal communication between A. Abedini and Iran Municipal and Rural Management Organization (MRMO). ABRELPE (Brazilian Association of Public Cleaning and Special Waste Companies). 2015. “Overview of Solid Waste in Brazil 2015” [“Panorama dos Resíduos Sólidos no Brasil 2015”]. ABRELPE, São Paulo. Abu Dhabi SCAD (Statistics Centre Abu Dhabi). 2016. “Waste Statistics 2015.” Government of Abu Dhabi. ADB (Asian Development Bank). 2011. Toward Sustainable Municipal Organic Waste Management in South Asia - A Guidebook for Policy Makers and Practitioners. Manila: ADB. ———. 2013. Solid Waste Management in Nepal: Current Status and Policy Recommendations. Mandaluyong City, Philippines: ADB. ———. 2014. “Solid Waste Management in the Pacific: Tonga Country Snapshot.” ADB Publication Stock No. ARM146616-2, ADB, Manila. h t t p s : / / w w w. a d b . o r g / s i t e s / d e f a u l t / f i l e s / p u b l i c a t i o n / 4 2 6 6 0 /solid-waste-management-tonga.pdf. AFED (Arab Forum for Environment and Development). 2008. “Arab Environment: Future Challenges.” Edited by Mostafa K. Tolba and Najib W. Saab. Arab Forum for Environment and Development, Beirut. Al-Eryani, Muammer. 2017. Director of Solid Waste Management, Ministry of Local Administration (MoLA), Government of the Republic of Yemen. Personal communication with the World Bank. Al Sabbagh, Maram K., Costas A. Velis, David C. Wilson, and Christopher R. Cheeseman. 2012. “Resource Management Performance in Bahrain: A Systematic Analysis of Municipal Waste Management, Secondary Material Flows and Organizational Aspects.” Waste Management and Research 30 (8): 813–24. http://journals.sagepub.com/doi/pdf/10.1177 /0734242X12441962. Alsulaili, Abdalrahman, Bazza Al Sager, Hessa Albanwan, Aisha Almeer, and Latifa Al Essa. 2014. “An Integrated Solid Waste Management System in Kuwait.” 5th International Conference on Environmental Science and Technology. IPCBEE vol. 69. IACSIT Press, Singapore. doi:10.7763/IPCBEE. V69. 12. Amec Foster Wheeler. 2016. “National Solid Waste Management Strategy for the Cayman Islands: Final Report.” Amec Foster Wheeler Environment and Infrastructure UK Limited, for the Cayman Islands Government. http://ministryofhealth.gov.ky/sites/default/files/36082%20Strategy %20Final%20Report%2016229i1.pdf. Anon. n.d. (a). Joint study by representatives of the following organizations: Departamento de Estudios sobre Contaminación Ambiental, Centro Nacional de Investigaciones Científicas, Consultoría de Ingeniería y Waste Treatment and Disposal by Country or Economy 259 Arquitectura, Centro de Estudios de Ingeniería de  Procesos, Instituto Superior Politécnico ‘‘José Antonio Echeverría.’’ Laboratorio de Análisis de Residuos (LARE), Dirección Provincial de Servicios Comunales, Ministerio de Economía y Planificación, Estimated Entries to Campo Florido. Cited in Periodísmo de Barrio article, but original source unknown. Anon. n.d. (b). “Sanitary Filling of Roses” [“RELLENO SANITARIO DE LAS ROSAS”]. Maldonado; Seminar of Small Municipalities, CEMPRE. ANSD (National Agency of Statistics and Demography). 2014. “General Census of Population and Housing, Agriculture and Livestock. Final Report”  [“Recensement Général de la Population et de l’Habitat, de l’Agriculture et de l’Elevage. RAPPORT DEFINITIF”]. ANSD, Government of Senegal. Anthouli, Aida, Konstantine Aravossis, Rozy Charitopoulou, Bojana Tot, and Goran Vujic. 2013. “Opportunities and Barriers of Recycling in Balkan Countries: The Cases of Greece and Serbia.” Hellenic Solid Waste Management Association and Serbian Solid Waste Management Association, with the International Solid Waste Association. Antigua and Barbuda, Statistics Divison. 2014. “Antigua and Barbuda 2011 Population and Housing Census–Book of Statistical Tables.” April. Argentina SIDSA (System of Indicators of Sustainable Development). 2015. “System of Indicators of Sustainable Development, Argentina.” 8th  Edition. [“Sistema de Indicadores de Desarrollo Sostenible, Argentina.” Octava Edición.] SIDSA. Armel, Lucien. 2017. AWAH [Manga Solid Waste Disposal among Urban  Agricultural Households in Lowland Area of Yaounde]. Third International Scientific Symposium “Agrosym Jahorina 2012.” Australia, Department of the Environment and Energy. 2017. “Australian National Waste Report 2016.” Department of the Environment and Energy and Blue Environment Pty Ltd. Ayoub, Nasser, Farayi Musharavati, and Hossam A. Gabbar. 2014. “A  Future Prospect for Domestic Waste Management in Qatar.” International Conference on Earth, Environment and Life Sciences (EELS-2014), Dubai, December 23–24.  http://iicbe.org/upload/9363 C1214080.pdf. Ayuba, Kadafa Adati, Latifah Abd Manaf, Abdullah Ho Sabrina, and Sulaiman Wan Nur Azmin. 2013. “Current Status of Municipal Solid Waste Management Practise in FCT Abuja.” Research Journal of Environmental and Earth Sciences 5 (6): 295–304. Azerbaijan, Ministry of Economy. 2017. “National Solid Waste Management Strategy Plan: Volume I (Main Report).” Aim Texas Trading, LLC – ICP Joint Venture, on behalf of Ministry of Economy, Government of Azerbaijan, Baku. 260 What a Waste 2.0 Bakas, Ioannis, and Leonidas Milios. 2013. “Municipal Waste Management in Turkey.” European Environment Agency, Copenhagen. Barieva, A. 2012. “Waste Production and Disposal in the Kyrgyz Republic.” Paper presented at the Waste Statistics Seminar, Geneva, April 11–13. Belarus, Ministry of Housing and Utility. 2017a. Personal communication with the World Bank. ———. 2017b. “Report on Sanitation of Cities and Populated Areas for 2016.” Bhutan, National Environment Commission. 2016. “Bhutan State of Environment Report 2016.” National Environment Commission, Bhutan. Boboeva, Shahnoza. 2015. “Current State of Waste Management in Tajikistan and Potential for a Waste-to-Energy Plant in Khujand City.” Master’s the- sis, Columbia University, Earth Engineering Center, New York. Bolivia, MMAyA/VAPSB/DGGIRS. 2016. “National Infrastructure Program for Solid Waste Management, 2017–2020” [“Programa Nacional de Infraestructuras en Gestión Integral de Residuos Sólidos, 2017–2020”]. General Directorate of Integrated Solid Waste Management, Sub- Ministry of Potable Water and Basic Sanitation, Ministry of Environment and Water [Dirección General de Gestión Integral de Residuos Sólidos, Viceministerio de Agua Potable y Saneamiento Básico, Ministerio de Medio Ambiente y Agua], Government of Bolivia. Bosnia and Herzegovina, BHAS (Agency for Statistics of Bosnia and Herzegovina). 2016. “First Release: Environment—Public Transportation and Disposal of Municipal Waste.” BHAS, Bosnia and Herzegovina, Sarajevo. Brazil SNIS (National Sanitation Information System). 2017. “Diagnosis of Urban Solid Waste Management - 2015” [“Diagnóstico do Manejo de Resíduos Sólidos Urbanos – 2015”]. SNIS, Ministry of Cities, National Secretariat of Environmental Sanitation. Business Sweden, The Swedish Trade and Invest Council. 2016. “Solid Waste Management in Ukraine—Market Insights.” Business Sweden in Ukraine, Kiev. Canada, Statistics Canada. 2012. “Human Activity and the Environment: Waste Management in Canada.” Environment Accounts and Statistics Division. Catalogue no. 16-201-X. CCAC (Climate and Clean Air Coalition). n.d.(a). “Solid Waste Management City Profile: Lomé, Togo.” Municipal Solid Waste Initiative. http://waste .ccac-knowledge.net. ———. n.d.(b). “Vientiane Capital, Lao People’s Democratic Republic: Solid Waste Management City Profile.” Accessed April 17, 2017. http:// www.waste.ccacoalition.org/sites/default/files/files/vientiane-_city _profile_vientiane_capital_lao.pdf. Waste Treatment and Disposal by Country or Economy 261 CER (Center for Economic Research). 2011. “Improvement of Urban Governance and Urban Infrastructure in Uzbekistan: Problems and the Search for New Mechanisms and Tools.” [ɐɟɧɬɪ ɷɤɨɧɨɦɢɱɟɫɤɢɯ ɢɫɫɥɟɞɨɜɚɧɢɣ ³ɋɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɟ ɝɨɪɨɞɫɤɨɝɨ ɭɩɪɚɜɥɟɧɢɹ ɢ ɢɧɮɪɚɫɬɪɭɤɬɭɪɵ ɝɨɪɨɞɨɜ ɜ ɍɡɛɟɤɢɫɬɚɧɟ ɩɪɨɛɥɟɦɵ ɢ ɩɨɢɫɤ ɧɨɜɵɯ ɦɟɯɚɧɢɡɦɨɜ ɢ ɢɧɫɬɪɭɦɟɧɬɨɜ”]. Accessed April 18. http://www.unece .org/fileadmin/DAM/hlm/prgm/cph/experts/uzbekistan/UZB-Urban -Development-2011-RUS.pdf. Chile, CONAMA (National Environmental Commission). 2010. “First Report on Solid Waste Management in Chile” [“Primer Reporte del Manejo de Residuos Sólidos en Chile”]. CONAMA, Government of Chile. Cissé, Sidi Mahamadou. 2015. Director of sanitation, Government of Burkina Faso. Personal communication with the World Bank. Costa Rica, Division of Operational and Evaluative Inspection. 2016. “Operational Audit Report on Municipalities Management to Guarantee the Efficient Provision of the Ordinary Waste Collection Service” [“Informe De Auditoría Operativa Acerca De La Gestión De Las Municipalidades Para Garantizar La Prestación Eficaz Y Eficiente Del Servicio De Recolección De Residuos Ordinarios”]. CSI Ingenieros. 2011. “Background Information for the Design of a Solid Waste Strategic Plan” [“Informacion de Base para el Diseno de Un Plan Estrategico de Residuos Solidos”]. CSI Ingenieros. Pittamiglio Studio [Estudio Pittamiglio], Montevideo, Uruguay. Cuba, ONEI (National Office of Statistics and Information). 2016. “Statistical Yearbook of Cuba 2015” [“Anuario Estadistico de Cuba 2015”]. ONEI, Government of Cuba. ———. 2017. “Catalogue of Publications.” Damanhuri, E. 2017. “Challenges of Construction of WtE Facility in Indonesia.” Paper presented at the Workshop on Disaster Waste Management and Construction of WtE in Japan Environmental Sanitation Center (JESC), Bangkok, March 8. Delgerbayar, Badam. 2016. “Solid Waste Management in Mongolia.” Paper presented at the Seventh Regional 3R Forum in Asia and the Pacific, “Advancing 3R and Resource Efficiency for the 2030 Agenda for  Sustainable Development,” Adelaide, Australia, November 2–4. http://www.uncrd.or.jp/content/documents/4136Country%20 Presentation_Mongolia.pdf. Dimishkovska, B., and J. Dimishkovski. 2012. “Waste Management in R. Macedonia.” QUAESTUS Multi Disciplinary Research Journal. http:// www.quaestus.ro/wp-content/uploads/2012/03/dimiskovska42.pdf. Dominican Republic, Ministry of Environment and Natural Resources. 2014. “Policy for the Integral Management of Municipal Solid Waste” [“Politica para la Gestion Integral de los Residuos Solidos Municipales”]. 262 What a Waste 2.0 Ministry of Environment and Natural Resources [Ministerio de Medio Ambiente y Recursos Naturales]. Government of the Dominican Republic. Dominican Republic, Ministry of Environment and Natural Resources and  Ministry of Economy. 2017. Personal communication through interviews. Ecuador, Ministry of Environment. 2018. National Program for Integrated Solid Waste Management [Programa Nacional para Gestión Integral de Residuos Sólidos], Ministry of Environment [Ministerio del Ambiente], Government of Ecuador. Personal communication with the World Bank, February. Eisted, Rasmus, and Thomas H. Christensen. 2011. “Waste Management in Greenland: Current Situation and Challenges.” Waste Management and Research 29 (10): 1064–70. Enayetullah, I., A. H. Md. M. Sinha, and S. S. A. Khan. 2005. “Urban Solid Waste Management Scenario of Bangladesh: Problems and Prospects.” Waste Concern. Energy Answers. 2012. “Materials Separation Plan.” Energy Answers Arecibo LLC., Energy Answers International Inc. Eurostat. 2017. “Municipal Waste by Waste Operations [env_wasmun].” Accessed April 25, 2017. http://ec.europa.eu/eurostat/web/waste /transboundary-waste-shipments/key-waste-streams/municipal-waste. Fiji, Department of Environment. 2011. “Fiji National Solid Waste Management Strategy, 2011–2014.” Department of Environment, Ministry of Local Government, Urban Development, Housing and Environment, Government of Fiji. Accessed May 11, 2017. http://www .sprep.org/attachments/Fiji_NSWMS_2011-2014.pdf. Frane, Anna, Asa Stenmarck, and Stefan Gislason. 2014. Collection and Recycling of Plastic Waste: Improvements in Existing Collection and Recycling Systems in the Nordic Countries (Temanord). Copenhagen: Nordic Council of Ministers. GIZ and SWEEP-Net. 2010a. “Country Report on the Solid Waste Management in Mauritania.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2010b. “Country Report on the Solid Waste Management in Syria.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network Waste Treatment and Disposal by Country or Economy 263 in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the  German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014a. “Country Report on the Solid Waste Management in Algeria.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the  German Federal Ministry for Economic Cooperation and Development  [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014b. “Country Report on the Solid Waste Management in Egypt.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the  German Federal Ministry for Economic Cooperation and Development  [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014c. “Country Report on the Solid Waste Management in Jordan.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the  German Federal Ministry for Economic Cooperation and Development  [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014d. “Country Report on the Solid Waste Management in Lebanon.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the  German Federal Ministry for Economic Cooperation and Development  [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014e. “Country Report on the Solid Waste Management in Morocco.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. 264 What a Waste 2.0 ———. 2014f. “Country Report on the Solid Waste Management in Occupied Palestinian Territories.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. ———. 2014g. “Country Report on the Solid Waste Management in Tunisia.” German Corporation for International Cooperation [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ)] and Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (SWEEP-Net), on behalf of the  German Federal Ministry for Economic Cooperation and Development [Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)]. Global Methane Initiative. 2011. “Ethiopia Solid Waste and Landfill [Country Profile and Action Plan].” Community Development Research. Gore-Francis, Janil. 2013. “Antigua and Barbuda SIDS 2014 Preparatory Progress Report.”  Environment Division, Ministry of Agriculture, Housing, Lands, and the Environment. Greece, Ministry of Environment and Energy. 2015. “National Waste Management Plan” [“ǼșȞȚțȠȈȤİįȚȠ ΔȚĮȤİȚȡȚıȘıǹπȠȕȜȘIJȦȞ”]. Ministry of Environment and Energy, Government of Greece. Grenada, Population and Housing Census. 2011. http://finance.gd/images /Censussubmissionfinal.pdf. Gret-LVIA-Pacte [Julien Rouyat, Cécile Broutin, Virginie Rachmuhl (Gret), Ahmed Gueye, Valentina Torrasani (LVIA), Ibrahima Ka (Pacte)]. 2006. “Household Waste Management in Secondary Cities of Senegal.” Studies and Online Works # 8. [“La gestion des ordures ménagères dans les villes secondaires du Sénégal.” Études et Travauxen ligne no. 8]. Guam. 2013. “Volume I: Guam Zero Waste Plan. Reaching for Zero: A Blueprint for Zero Waste in Guam.” Government of Guam. Guillaume, Marie, Bénédicte Château, and Alicia Tsitsikalis. 2015. “In-Depth Diagnosis of Waste Pre-Collection in Brazzaville” [“Diagnostic approfondi de la pré-collecte des déchets à Brazzaville”]. Groupe de Recherches et d’Echanges Technologiques. Guyana, Ministry of Communities. n.d. “Putting Waste in Its Place: A  National Integrated Solid Waste Management Strategy for the Cooperative Republic of Guyana, 2017–2030—Part 1: Our Strategy.” Ministry of Communities, Government of Guyana. Hong Kong, Environmental Protection Department, Statistics Unit. 2017. “Monitoring of Solid Waste in Hong Kong: Waste Statistics for 2016.” Government of Hong Kong SAR, China. Waste Treatment and Disposal by Country or Economy 265 Iceland, Statistics Iceland. 2015. Statistical Yearbook of Iceland 2015 [Landshagir 2015]. Statistics of Iceland III, 108 [Hagskýrslur Íslands III, 108]. Statistics Iceland [Hagstofa Íslands], Government of Iceland, Reykjavík. IDB (Inter-American Development Bank). 2012. “Strategic Plan for Solid Waste in Colombia” [“Plan Estratégico Sectorial de Residuos Sólidos de Colombia”]. IDB, Washington, DC. ———. 2013.  “Water and Sanitation in Belize.”  Infrastructure and Environment Sector / Water and Sanitation Division  (INE/WSA) Technical Note No. IDB-TN-609. IDB, Washington, DC. ———. 2015. “Status of Solid Waste Management in Latin America and the Caribbean” [“Situación de la gestión de residuos sólidos en América Latina y el Caribe”]. IDB, Washington, DC. IDB-AIDIS-PAHO (Inter-American Development Bank, Inter-American Association of Sanitary and Environmental Engineering, and Pan American Health Organization). 2011. “Report of the Regional Evalution of the Management of Municipal Solid Waste in Latin American and the Caribbean 2010” [“Informe de la Evaluación Regional del Manejo de Residuos Sólidos Urbanos en América Latina y el Caribe 2010”]. IDB, AIDIS, and PAHO, New York. IFC (International Finance Corporation). 2012.  Municipal Solid Waste Management: Opportunities for Russia. Washington, DC: IFC Advisory Services in Eastern Europe and Central Asia. IHSI. 2015. “Total Population, 18 Years and Above, Households and Densities Estimated in 2015.” [Population Totale, de 18 Ans et Plus, Menages et Densites Estimes en 2015.] (Demographic and Social Statistics Branch, Haitian Institute of Statistics and Informatics [Direction des Statistiques Démographiques et Sociales, Institut Haitien de Statistique et d’Informatique]). March. IHSI, IRD, Dial, Nopoor, ANR. 2014. “The evolution of living conditions in  Haiti between 2007 and 2012. The social replica of the earthquake”[“L’évolution des conditions de vie en Haïti entre 2007 et 2012. La réplique sociale du séisme”]. IHSI (Haitian Institute of Statistics and Informatics [Institut Haitien de Statistique et d’Informatique]), IRD (Research Institute for Development [Institut de recherche pour le dével- oppement]), and ANR (The National Research Agency [l’Agence natio- nale de la recherche]). Port-au-Prince, Paris, June. IMF (International Monetary Fund). 2012. “Burkina Faso: Strategy for Accelerated Growth and Sustainable Development 2011–2015.” IMF Country Report No. 12/123. IMF, Washington, DC. India CPCB (Central Pollution Control Board). 2017. “Consolidated Annual Review Report on Implementation of Solid Wastes Management Rules, 2016 – Annual Review Report 2015–16.” Government of India Ministry of Environment, Forests and Climate Change. 266 What a Waste 2.0 Intharathirat, R., and P. A. Salam. 2015. “Valorization of MSW-to-Energy in Thailand: Status, Challenges and Prospects.” Waste Biomass Valor 7: 31–57. doi:10.1007/s12649-015-9422-z. IPCC (Intergovernmental Panel on Climate Change). 2006. “Waste Generation, Composition and Management Data.” In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 5: Waste. Edited by S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tinabe. Kanagaw, Japan: Institute for Global Environmental Strategies.  Iraq, Ministry of Environment. 2015. “State of the Environment in Iraq 2015”  [Ρ΍ϝΓ ΍ϝΏϱΉΓ ϑϱ ΍ϝωέ΍ϕ ϝω΍ϡ 2015]. Ministry of Environment, Government of Iraq. Ireland, EPA (Environmental Protection Agency). 2014. “National Waste Report for 2012.” EPA, Government of Ireland. Isle of Man, Department of Infrastructure. n.d. “Waste Policy and Strategy, 2012 to 2022.” Waste Management, Department of Infrastructure, Government of Isle of Man. https://www.gov.im/media/472034/waste _strategy.pdf. Ismail, Anis. 2017. Personal communication between A. Ismail and Ministry of Environment. Israel, Ministry of Environmental Protection. 2017. “Waste: Facts and Figures.” http://www.sviva.gov.il/English/env_topics/Solid_Waste/landfilling/Pages /default.aspx. Jamaica. 2011. “Number of Households by Method of Garbage Disposal by Parish.” Census of Population and Housing, Kingston. Jamaica NSWMA (National Solid Waste Management Authority). 2017. “Tonnage Islandwide 2016.” NSWMA, Kingston. Japan, Ministry of the Environment. 2015. “Waste Treatment in Japan FY2015 Version” [“Nihonno haikibutsu syori heisei 27 nendo ban”]. Ministry of the Environment, Government of Japan. http://www.env.go .jp/recycle/waste_tech/ippan/h27/data/disposal.pdf. Kalula, Patrice Tshitala. 2016. “A Study of the Solid Waste Management Sector in the DRC: The Case of the City of Kinshasa, from 25 August to 19 December 2016” [“État des lieux de la gestion des déchets solides en République Démocratique du Congo: Cas de la ville de Kinshasa, situa- tion du 25 août au 19 décembre 2016”]. KCCA-IFC (Kampala Capital City Authority and International Finance Corporation). 2017. “Project Teaser—Kampala Waste Treatment and Disposal PPP.” Kampala Waste Management. Keohanam, Bounthong. 2017. Director, Urban Development Division, Department of Housing and Urban Planning, Ministry of Public Works and Transport, Government of Lao PDR. Personal communication with the World Bank. May 8. Waste Treatment and Disposal by Country or Economy 267 Korai, Muhammad Safar, Rasool Bux Mahar, and Muhammad Aslam Uqaili. 2017. “The Feasibility of Municipal Solid Waste for Energy Generation and Its Existing Management Practices in Pakistan.” Renewable and Sustainable Energy Reviews 72: 338–53. Kosovo, Ministry of Environment and Spatial Planning. 2013. “Strategy of the Republic of Kosovo on Waste Management 2013–2022.” Liechtenstein, Office of Statistics. 2018. “Liechtenstein in Figures 2018.” Office of Statistics, Government of Liechtenstein. LKSur. 2013. “Study of Characterization of Urban Solid Waste for Energy Purposes” [“Estudio de Caracterizacion de Residuos Solidos Urbanos con Fines Energeticos”]. ALUR (Alcoholes del Uruguay). MIEM DNE. February. Macao SAR, China. 2014. “Report on the State of the Environment of Macao 2014.” http://www.dspa.gov.mo/StateReportHTML/2014/pdf/en/04.pdf.  Macao SAR, China, DSEC (Statistics and Census Service). 2017. “Environmental Statistics 2016.” DSEC, Government of Macao SAR, China. http://www.dsec.gov.mo/Statistic/Social/EnvironmentStatistics/20 16%E5%B9%B4%E7%92%B0%E5%A2%83%E7%B5%B1%E 8%A8%88.aspx?lang=en-US. Macedonia, FYR, Ministry of Environment and Physical Planning. 2014. “State of Environment Report 2013.” Macedonian Environmental Information Center, Skopje. Mahapatra, Dhananjay. 2013. “Plastic Waste Time Bomb Ticking for India, SC Says.” Times of India, April 4. Maldives, MEE (Ministry of Environment and Energy). 2017. “State of the Environment 2016.” MEE, Government of Maldives, Malé. Mexico, SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). 2016. “Report on the Situation of the Environment in Mexico” [“Informe de la Situación del Medio Ambiente en México”]. General Directorate of Environmental Statistics and Information, Secretariat of Environment and Natural Resources, SEMARNAT, Government of Mexico. Modak, Prasad, Agamuthu Pariatamby, Jeffrey Seadon, Perinaz Bhada- Tata, Guilberto Borongan, Nang Sian Thawn, and Ma Bernadeth Lim. 2017. Asia Waste Management Outlook, edited by P. Modak. Nairobi: United Nations Environment Programme, Asian Institute of Technology, and International Solid Waste Association. Moldova, Statistica Moldovei (National Bureau of Statistics of the Republic of Moldova). 2016. “Natural Resources and the Environment in the Republic of Moldova: Collected Statistics” [“Resursele naturale úi mediul  în Republica Moldova: Culegere statistică” / ɉɪɢɪɨɞɧɵɟ ɪɟɫɭɪɫɵ ɢ ɨɤɪɭɠɚɸɳɚɹ ɫɪɟɞɚ ɜ Ɋɟɫɩɭɛɥɢɤɟ Ɇɨɥɞɨɜɚ: ɋɬɚɬɢɫɬɢɱɟɫɤɢɣ ɫɛɨɪɧɢɤ].  National Bureau of Statistics of the Republic of Moldova, Government of Moldova, Chiúinău. 268 What a Waste 2.0 Monaco, Directorate of Environment. 2013. “The Environment in the Principality of Monaco” [“L’ENVIRONNEMENT en Principauté de Monaco”]. Directorate of Environment, Government of Monaco. Naquin, Pascale. 2016. “Design and Implementation of a Quantification and Characterization Campaign for Household Waste in the Territory of AITOM le Marien (Cap Haïtien – Limonade – Quartier Morin)” [“Conception et réalisation d’une campagne de quantification et de car- actérisation de déchets ménagers sur le territoire de l’AITOM le Marien (Cap Haïtien  – Limonade  –  Quartier Morin)”]. Inter-American Development Bank, Washington, DC. Nordic Competition Authorities. 2016. “Competition in the Waste Management Sector: Preparing for a Circular Economy.” Nordic Competition Authorities, Konkurrensverket (Sweden), Konkurransetilsynet (Norway), Kilpailu ja Kuluttajavirasto (Finland), Samkeppniseftirlitid (Iceland), Konkurrence og Forbrugerstyrelsen (Denmark), Kappingareftirlitid (Faroe Islands), Forbruger og Konkurrencestyrelsen (Greenland). http://www.konkurrensverket.se/globalassets/publikationer /nordiska/nordic-report-2016_waste-management-sector.pdf. OECD (Organisation for Economic Co-operation and Development). 2017. “Municipal Waste (Indicator).” OECD Data, OECD, Paris. https://data .oecd.org/waste/municipal-waste.htm. Okot-Okumu, James. 2012. “Solid Waste Management in African Cities— East Africa.” In Waste Management: An Integrated Vision, edited by Luis Fernando Marmolejo Rebellon, 3–20. London: InTechOpen. Oriental Republic of Uruguay. 2004. “TOMO II: Urban Solid Waste. Solid Waste Management Plan of Montevideo and the Metropolitan Area” [“TOMO II: Residuos Sólidos Urbanos. Plan Director de Residuos Sólidos de Montevideo y Área Metropolitana”]. Office of Planning and Budgeting. Directorate of Development Projects. Ouda, Omar. 2017. Civil and environmental consultant. Personal communication. Papua New Guinea, NCDC (National Capital District Commission). 2016. “NCD Waste Management Plan 2016–2025: For a Sustainable Port Moresby.” NCDC, Government of Papua New Guinea. Patriamby, Agamuthu, and Masaru Tanaka. 2014. Municipal Solid Waste Management in Asia and the Pacific Islands: Challenges and Strategic Solutions. Singapore: Springer. Peru, Ministry of Environment. 2013. “Report: “Solid Waste Diagnostics in Peru, Solid Waste NAMA Program” [“Informe: “Diagnostico de los residuos solidos en Peru, Programa NAMA de Residuos Solidos”]. Ministry of the Environment, Government of Peru. ———. 2016. “National Plan for Integrated Solid Waste Management, 2016–2024” [“Plan Nacional de Gestión Integral de Residuos Sólidos, 2016–2024”]. Ministry of Environment, Government of Peru. Waste Treatment and Disposal by Country or Economy 269 PricewaterhouseCoopers Aruba. 2014. “Environmental Sustainability Ranking: Determining and Fortifying Aruba’s Position in the Caribbean.” Version 1.1. PricewaterhouseCoopers Aruba. https://www.pwc.com/an /en/publications/assets/pwc-environmental-sustainability-ranking-posi tioning-and-fortifying-aruba-in-caribbean.pdf. Rebelde, Juventud. 2007. “The 100th Street Landfill” [“El Vertedero de la Calle 100”]. July 8. Riquelme, Rodrigo, Paola Méndez, and Ianthe Smith. 2016. “Solid Waste Management in the Caribbean. Proceedings from the Caribbean Solid Waste Conference.” Technical Note DB-TN-935.  Inter-American Development Bank, Washington, DC. Russia, Ministry of Natural Resources and Ecology. 2012.  “The Substantiation of the Election of the Optimum Method of Waste Fund Disposal in the Cities of Russia.” Federal Service for Supervision of Natural Resources Management Public Council, under Rosprirodnadzor the Commission of the Scientific Council of the Russian Academy of Sciences on Ecology and Emergency Situations. Accessed April 18, 2017. San Marino, AASS (Autonomous State Company for Public Services). 2016. “Collection Data” [“Dati di raccolta”]. AASS, Government of San Marino. http://www.aass.sm/site/home/ambiente/dati-di-raccolta/2016 .html. Saudi Arabia. n.d. “National Transformation Program 202.” Program by Vision 2030, Saudi Arabia. http://vision2030.gov.sa/sites/default/files/NTP_En.pdf. Shams, Shahriar, R. H. M. Juani, and Zhenren Guo. 2014. “Integrated and Sustainable Solid Waste Management for Brunei Darussalam.” doi:10.1049/cp.2014.1066. https://www.researchgate.net/publication /272042749 _Integrated_and_sustainable_solid_waste_management _for_Brunei_Darussalam. SIDS DOCK (Small Island Developing States). 2015. “Toward the Development of a Caribbean Regional Organic Waste Management Sub-Sector: Development of a Caribbean Regional Organic Waste Management Conversion Sub-Sector to Increase Coastal Resilience and Climate Change Impacts and Protect Fresh Water Resources.” Draft 1.0. SIDS DOCK Secretariat and  Caribbean Community Climate Change Centre. May 18.  Singapore, Ministry of the Environment and Water Resources. 2017. “Key Environmental Statistics 2016.” Government of Singapore. Solomon Islands, MECDM (Ministry of Environment, Climate Change, Disaster Management and Meteorology). 2015. “Draft National Waste Management and Pollution Control Strategy 2017–2026: Honiara.” Government of Solomon Islands. South Africa, Department of Environmental Affairs. 2012. “National Waste Information Baseline Report: Draft.” Department of Environmental Affairs, Government of South Africa, Pretoria, November 14. 270 What a Waste 2.0 SPREP (Secretariat of the Pacific Regional Environment Programme). 2016. “Cleaner Pacific 2025: Pacific Regional Waste and Pollution Management Strategy, 2016–2025.” SREP, Apia, Samoa.  https:// sustainabledevelopment.un .org/content/documents/commitments /1326_7636_commitment_cleaner-pacific-strategy-2025.pdf. Sri Lanka, Ministry of Mahaweli Development and Environment. 2016. “Comprehensive Integrated Solid Waste Management Plan for Target Provinces in Sri Lanka.” Ministry of Mahaweli Development and Environment, Government of Sri Lanka. St. Lucia Government Statistics Department. 2011. “2010 Population and Housing Census, Preliminary Report.” Government of St. Lucia. St. Vincent and the Grenadines, Statistical Office. 2012. “2012 Compendium of Environmental Statistics.” Central Planning Division. Ministry of Economic Planning, Sustainable Development, Industry, Information and Labour. Government of St. Vincent and the Grenadines, Kingstown. http://www.cwsasvg.com/contactus.html. ———. n.d.  “Population and Housing Census Report 2012.” Statistical Office, Central Planning Division, Ministry of Finance, Planning and Economic Development, St. Vincent and the Grenadines, Kingstown. States of Guernsey. 2017. “Guernsey Facts and Figures 2017.” States of Guernsey Data and Analysis. https://www.gov.gg/CHttpHandler.ashx ?id=110282andp=0. SWANA Haiti Response Team. 2010. “Municipal Solid Waste Collection Needs in Port-au-Prince, Haiti: Position Paper.” Solid Waste Association of North America (SWANA). Takeda, Nobou, Wei Wang, and Masaki Takaoka, eds. 2014. Solid Waste Management. Urban Environment 3. Kyoto: Kyoto University Press. Tanzania, NBS (National Bureau of Statistics) and OCGS (Office of Chief Government Statistician). 2014. “Basic Demographic and Socio- Economic Profile.” NBS, Ministry of Finance, Dar es Salaam, and OCGS, Ministry of State, President’s Office, State House and Good Governance, Zanzibar, Government of Tanzania.  Tas, Adriaan, and Antoine Belon. 2014. “A Comprehensive Review of the Municipal Solid Waste Sector in Mozambique: Background Documentation for the Formulation of Nationally Appropriate Mitigation Actions in the Waste Sector in Mozambique.” Carbon Africa Limited, Nairobi, and Associação Moçambicana de Reciclagem, Maputo. Thein, M. 2010. “GHG Emissions from Waste Sector of INC of Myanmar.” Paper presented at the Eighth Workshop on GHG Inventories in Asia (WGIA8), Vientiane, Lao PDR, July 13–16. Trinidad and Tobago, EMA (Environmental Management Authority). n.d. “State of the Environment Report, 2011.” EMA, Government of Trinidad and Tobago. Waste Treatment and Disposal by Country or Economy 271 Tsai, W. T., and Y. H. Chou. 2006. “An Overview of Renewable Energy Utilization from Municipal Solid Waste (MSW) Incineration in Taiwan.” Renewable and Sustainable Energy Reviews 10: 491–502. doi:10.1016/j. rser.2004.09.006. UFPE (Federal University of Pernambuco). 2014. “Analysis of the Various Treatment Technologies and Final Disposal of Urban Solid Waste in Brazil, Europe, the United States and Japan.” [“Análise das Diversas Tecnologias de Tratamento e Disposição Final de Resíduos Sólidos Urbanos no Brasil, Europa, Estados Unidos e Japão”]. UFPE and National Bank for Economic and Social Development, Recife, Brazil. UNCRD (United Nations Centre for Regional Development). 2017. “State of 3Rs in Asia and the Pacific Country Report: Malaysia,” by Agamuthu Pariatamby. Secretariat of the Regional 3R Forum in Asia and the Pacific, UNCRD, Nagono, Japan, and  Institute for Global Environmental Strategies, Kamiyamaguchi, Japan. UNECA (United Nations Economic Commission for Africa). 2009. “Africa Review Report on Waste Management.” Addis Ababa, October 27–30. UNECE  (United Nations Economic Commission for Europe). 2017. “Environmental Performance Reviews Series No. 46: Tajikistan.” UNECE, New York. UNFCCC (United Nations Framework Convention on Climate Change). 2014. Nkolfoulou Landfill Gas Recovery Project. Project Design Document. UNFCCC, New York. UNSD (United Nations Statistics Division). 2013. “Dominica Environment Statistics Country Snapshot.” UNSD, New York. ———. 2016. “Environmental Indicators: Waste. Municipal Waste Treated.” UNSD, New York. http://unstats.un.org/unsd/ENVIRONMENT/qindi cators.htm. U.S. EPA (Environment Protection Agency). 2014. “Advancing Sustainable Materials Management: 2014 Fact Sheet: Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States.” Office of Land and Emergency Management, EPA, Washington, DC. ———. 2016. “Sustainable Approaches for Materials Management in  Remote, Economically Challenged Areas of the Pacific.” EPA/600/R-16/303. EPA, Washington, DC. van der Werf, Paul, and Michael Cant. 2007. “Composting in Canada.” Waste Management World, January 3. https://waste-management-world .com/a/composting-in-canada. Vietnam WENID (Waste Management and Environment Improvement Department). 2013. “Country Analysis Paper.” Paper presented at the Fourth Regional 3R Forum in Asia, “3Rs in the Context of Rio+20 Outcomes: The Future We Want,” Hanoi, March 18–20. 272 What a Waste 2.0 Viren, Lilta. 2013. “Transfer Station for Garbage at Saramaccakanaa” [“Overslagstation voor huisvuil aan het Saramaccakanaa”]. Anton de Kom Universiteit van Suriname. World Bank. n.d. “Legal, Institutional, Financial Arrangement and Practices of Solid Waste Management Sector in Kazakhstan.” World Bank, Washington, DC. Zoï Environment Network. 2013. “Waste and Chemicals in Central Asia: A Visual Synthesis.” Zoï Environment Network, with support from the Swiss Federal Office for the Environment. Accessed April 27, 2017. http://wedocs.unep.org/handle/20.500.11822/7538. ZWMNE (Zero Waste Montenegro). 2016. “Waste Management Status in Montenegro.”  Accessed July 8, 2017. http://zerowastemontenegro.me /waste-management-status-montenegro. ECO-AUDIT Environmental Benefits Statement The World Bank Group is committed to reducing its environmental footprint. In support of this commitment, we leverage electronic publishing options and print- on-demand technology, which is located in regional hubs worldwide. Together, these initiatives enable print runs to be lowered and shipping distances decreased, resulting in reduced paper consumption, chemical use, greenhouse gas emis- sions, and waste. We follow the recommended standards for paper use set by the Green Press Initiative. The majority of our books are printed on Forest Stewardship Council (FSC)–certified paper, with nearly all containing 50–100 percent recycled con- tent. The recycled fiber in our book paper is either unbleached or bleached using totally chlorine-free (TCF), processed chlorine–free (PCF), or enhanced elemen- tal chlorine–free (EECF) processes. More information about the Bank’s environmental philosophy can be found at http://www.worldbank.org/corporateresponsibility.