Can Conditional Cash Transfer Programs Improve Social Risk Management? Lessons for Education and Child Labor Outcomes

Elisabeth Sadoulet, Frederico Finan, Alain de Janvry, and Renos Vakis

December 2004

Summary Findings

This paper explores the role of Conditional Cash Transfer (CCT) programs in serving as a risk management instrument for the poor. Using various rounds of panel data from the successful CCT Progresa program in Mexico, the impact analysis indicates a number of interesting patterns. First, strong state dependence indicates that children taken out of school (partly due to shocks) are less likely to subsequently return, implying long-term consequences from short-term decisions. Nonetheless, the CCT program seems to mitigate this state dependence. Second, a number of shocks—such as unemployment or illness of the household head or younger children, droughts, natural disasters in the community and loss of land, harvest, or animals—have strong effects on children’s schooling attainment, indicating that children are used as risk coping instruments. While this creates short run consumption smoothing gains for the household, such coping strategy implies long-term losses in human capital for children that are accentuated by state dependence. Again, the impact evaluation analysis shows that the Progresa transfers compensate for these shocks, protecting child schooling from a range of shocks. Finally, while the shocks reported also seem to induce children to work—particularly girls and children of farm workers when their parents are affected by unemployment—the impact evaluation suggests that Progresa transfers and the conditionality on school attendance serve to deter using child labor as a risk coping strategy. Despite the fact that CCT are not designed to deal directly with shocks or serve as “insurance” instruments per se, these results clearly indicate that they can provide an important safety net role by protecting child education from a range of idiosyncratic and covariate shocks. Such findings also imply that incorporating risk exposure and shock incidence criteria in the design of such programs’ eligibility rules, or allowing additional flexibility in terms of scaling up or down such interventions to address large covariate or idiosyncratic shocks is a potentially worthwhile direction and use of such programs.

About this series...

Social Protection Discussion Papers are published to communicate the results of The World Bank’s work to the development community with the least possible delay. The typescript manuscript of this paper therefore has not been prepared in accordance with the procedures appropriate to formally edited texts. The findings, interpretations, and conclusions expressed herein are those of the author(s), and do not necessarily reflect the views of the International Bank for Reconstruction and Development/The World Bank and its affiliated organizations, or those of the Executive Directors of The World Bank or the governments they represent.

The World Bank does not guarantee the accuracy of the data included in this work. For free copies of this paper, please contact the Social Protection Advisory Service, The World Bank, 1818 H Street, N.W., Room G7-703, Washington, D.C. 20433-0001. Telephone: (202) 458-5267, Fax: (202) 614-0471, E-mail: socialprotection@worldbank.org or visit the Social Protection website at www.worldbank.org/sp.
CAN CONDITIONAL TRANSFER PROGRAMS IMPROVE SOCIAL RISK MANAGEMENT?
LESSONS FOR EDUCATION AND CHILD LABOR OUTCOMES

Elisabeth Sadoulet, Frederico Finan, Alain de Janvry,
University of California at Berkeley,
and
Renos Vakis
The World Bank

December, 2004
TABLE OF CONTENTS

I. School dropping out and child labor as elements of risk coping strategies…………4
II. Exposure to shocks, dropping out of school, and child labor in recent studies……6
III. Progresa and the Data………………………………………………………………………..9
IV. Empirical evidence on prevalence of shocks, attendance to school, and prevalence of child labor…………………………………………………………………………………..10
V. The econometric model……………………………………………………………………..15
VI. Impact of Progresa on schooling and child labor………………………………………..19
VII. Impact of shocks on schooling and child labor, and the mitigating effect of Progresa …………………………………………………………………………………………………….22
VIII. Discussion and policy implications………………………………………………………….26
References……………………………………………………………………………………….29
ABSTRACT

This paper explores the role of Conditional Cash Transfer (CCT) programs in serving as a risk management instrument for the poor. Using various rounds of panel data from the successful CCT Progresa program in Mexico, the impact analysis indicates a number of interesting patterns. First, strong state dependence indicates that children taken out of school (partly due to shocks) are less likely to subsequently return, implying long-term consequences from short-term decisions. Nonetheless, the CCT program seems to mitigate this state dependence. Second, a number of shocks - such as unemployment or illness of the household head or younger children, droughts, natural disasters in the community and loss of land, harvest, or animals - have strong effects on children’s schooling attainment, indicating that that children are used as risk coping instruments. While this creates short run consumption smoothing gains for the household, such coping strategy implies long-term losses in human capital for children that are accentuated by state dependence. Again, the impact evaluation analysis shows that the Progresa transfers compensate for these shocks, protecting child schooling from a range of shocks. Finally, while the shocks reported also seem to induce children to work - particularly girls and children of farm workers when their parents are affected by unemployment -, the impact evaluation suggests that Progresa transfers and the conditionality on school attendance serve to deter using child labor as a risk coping strategy. Despite the fact that CCT are not designed to deal directly with shocks or serve as “insurance” instruments per se, these results clearly indicate that they can provide an important safety net role by protecting child education from a range of idiosyncratic and covariate shocks. Such findings also imply that incorporating risk exposure and shock incidence criteria in the design of such programs’ eligibility rules, or allowing additional flexibility in terms of scaling up or down such interventions to address large covariate or idiosyncratic shocks is a potentially worthwhile direction and use of such programs.
I. **School dropping out and child labor as elements of risk coping strategies**

Poor people in rural communities tend to be exposed to a broad array of shocks. Unemployment and illness of an adult member can imply loss of income. Illness of any family member requires unexpected health expenditures. Natural shocks such as droughts, floods, hurricanes, plagues, and earthquakes affect incomes from natural resources, either directly in self-employment, or indirectly as workers in the fields of others or income earners in activities linked to agriculture. Responses to shocks to protect family consumption consist in a wide range of creative coping strategies including drawing down of liquid assets held by the household, use of credit, and risk pooling in informal insurance arrangements. Children can also be used as risk-coping instruments. When households have difficulties in sustaining consumption, children can be taken out of school and sent to work, eventually returning to school once the shock has been absorbed. Dropping out of school and temporary reliance on child labor can thus be used as a consumption smoothing instrument. Children can enter the labor market, work in home-based enterprises, or substitute for parent time by doing household chores. The problem, however, is that children who leave school and start working are less likely to return to school, and their educational achievements may also suffer. There is state dependence in school and work decisions. Because of this, temporary shocks that induce parents to take their children out of school to send them to work may have permanent effects on the children’s human capital development and on their future earning potentials.

Conditional cash transfers (CCT) programs such as Progresa in Mexico, Bolsa Escola in Brazil, and many others around the world (Morley and Coady, 2003) have been used to induce parents to send their children to school and care more for their health. Under these programs, poor parents are offered a cash transfer if their children attend school steadily and are sent for periodic health visits. These programs have been shown to be effective in raising school achievements and health conditions (Schultz, 2004; Gertler, 2000). However, this may happen not only because the CCT lowers the price of schooling, inducing a corresponding quantity response, but also because it prevents parents from responding to
shocks through taking kids out of school, at the risk of losing the transfer when it is most needed. This risk coping value of CCT has not been explored. This is what we do in this paper.

We examine whether or not shocks adversely affect child schooling and labor choices, and to what extent CCT programs can help mitigate these effects. Specifically, we analyze the effects of shocks on education and child labor outcomes using data from the evaluation component of the Progresa program. Our empirical analysis is divided into three parts. In the first, we characterize the prevalence of shocks, the low and irregular attendance to school, and the prevalence of child and teenage labor. Data show that these phenomena are all very important in the poor rural communities observed. A very high percentage of households are affected by unemployment, illness, and natural shocks. A high percentage of children tend to come in and out of school, expectedly in response to shocks. And there is a high prevalence of work among children who have not graduated from junior high school.

In the second part, we extend past analyses of Progresa’s impact on schooling and child labor by using panel data that allow introducing state dependence in the analysis, and by extending the panel analysis to periods when the control group was incorporated in the program. State dependence shows that children who are already enrolled are 15 percent more likely to be enrolled in the subsequent period. This also means that children who fail to enroll in one semester are less likely to be subsequently enrolled, showing that there are long-term effects of short run risk coping responses to shocks. Although we cannot model state dependence for the decision to work due to insufficient data, we find that Progresa had a significant impact on child labor decisions: for children ages 12-14, Progresa reduced the incidence of work by 20 percent. Our second addition to past analyses of Progresa is that we evaluate the impact of the program using the 2000 data, after control households had been incorporated into the program. We find that, compared to control villages, girls that were deciding upon entry into secondary school when the Progresa program started in November 1998 continue to enroll 11 percentage points more for the 2000/2001 school year; with baseline enrollment of 0.75, this represents an increase of 15 percent. In terms of child labor,
we find that the impact of Progresa in 2000 is also comparable with impact in previous years. This suggests that children that did not go to school because they did not benefit from transfers in earlier years are difficult to recuperate in later years, evidencing again the existence of long-term effects of short-term school decisions.

In the third part, we look at the effects of shocks on schooling and child labor decisions, and at the mitigating effect that Progresa transfers may have on how parents respond to shocks by taking children out of school and sending them to work. Results show that many shocks are important in pushing children out of school. This is particularly the case for household head unemployment and illness, and for natural disasters that hit the locality. Progresa does, however, largely compensate for these shocks in keeping children in school. Evidence is not as strong for child labor, but several categories of children (girls, children of farm workers) respond to household shocks by working more, especially when the shock is due to head of household unemployment. Progresa helps prevent these children from working more as elements of risk coping strategies.

CCT are thus seen to be effective in keeping children at school when their families are hurt by different kinds of shocks, both idiosyncratic and covariate. The policy implication of the results is that extending eligibility to CCT programs to households affected by observable shocks could be used to protect school age children from dropping out of school and joining the labor force. This would be a novel use of these programs that could give considerable added social value to what has proven to be a successful approach for enhancing human capital formation among the children of the poor.

II. Exposure to shocks, dropping out of school, and child labor in recent studies

There is a well-established conventional wisdom linking child labor to poverty. According to this view, child labor is associated with an income constraint on parents, not to their preference for child work. Basu and Van (1998) conceptualized this relation as the “luxury axiom”. Rising parents’ income would allow them not to send their children to the
labor market. Without this income, parents use child labor to tradeoff higher current income at the cost of lower future child income as it reduces children’s human capital development, and sometimes compromises their future health as well. Poverty is, however, not sufficient for this relation to hold. It has to be associated with non-positive bequests and financial market imperfections that prevent parents from trading-off old-age income with current resources, leading them to produce too much child labor relative to the first best optimum that would hold with positive bequests or perfect financial markets (Baland and Robinson, 2000).

Developing financial institutions to remedy this liquidity constraint is, however, unlikely to be sufficient. Financial institutions are unlikely to deliver the necessary long-term credit for primary or secondary education as parents lack a commitment device that child education will pay for itself. The South African pension system, by injecting anticipated liquidity into poor households, has been shown to help increase children’s schooling (Edmonds, 2004). CCT programs like Progresa can also serve this purpose. Because income effects are weak (including the “wealth paradox” according to which the children of households with productive assets may work more and study less than the children of less wealthy households), impact achieved on school enrollment is much greater by tying transfers to conditions on school assistance and health visits, transforming the transfer from an income into a price effect. By targeting transfers on children at risk of not meeting the condition without a transfer, CCT can be quite efficient in improving school achievements among the poor (Sadoulet and de Janvry, 2004).

In recent years, another determinant of child labor and erratic school attendance has been analyzed: the role of income shocks and the use of child labor as an instrument of risk coping when other instruments are insufficient to shelter consumption. Other risk-coping instruments could include the drawn-down of liquid assets for self-insurance, mutual insurance in protecting from idiosyncratic shocks, and access to flexible credit to make up for consumption shortfalls. Using the ICRISAT India panel data for rural households, Jacoby and Skoufias (1997) show how unanticipated income shocks and financial market failures
result in an increase in child labor and a decline in school attendance. Child labor in turn leads to lower educational attainments, and hence to lower future child productivity. Short-term self-insurance via child labor is thus obtained at the cost of lower future income growth. They also show that the income shocks that result in lower school attendance are covariate (as opposed to idiosyncratic) and un-anticipated (as opposed to anticipated) shocks.

This paper has been followed by several empirical studies measuring the impact of uninsured shocks and credit market failures on child labor and schooling. Duryea et al. (2003) show how in Brazil male household head unemployment increases child labor and decreases school advancement, particularly for 16 years old girls, thus reducing their future welfare. Guarcello et al. (2003) show that, in Guatemala, a similar response is observed and that child labor creates state dependence in that children that are sent to work are subsequently less likely to return to school. Parents’ access to credit and to medical insurance provide risk coping instruments that protect children from dropping out of school. Parker and Skoufias (2000) show that, in urban Mexico, idiosyncratic shocks such as parents’ unemployment and divorce have no impact on boys’ schooling, but reduce school attendance and school attainment among girls, creating long term effects on their human capital. Jensen (2000) and Beegle et al. (2003) look at agricultural shocks in Côte d’Ivoire and Tanzania, respectively. They show that these shocks increase child labor and reduce school attainment. Access to credit in Tanzania protects children from these shocks and keeps them at school. Similar results on higher child labor incidences and lower schooling attainments are also found by Vakis et al. who evaluate the impact of the coffee crisis in Nicaragua (2004). Economic crises have also been shown to lead to declines in school enrollment, especially among the poor and younger children. This has been evidenced by Funkhouserer (1999) in response to the debt crisis in Costa Rica, by Thomas (2003) in response to the financial crisis in Indonesia, and by Rucci (2003) in response to the Argentine economic crisis.

We show in this paper that CCT programs like Progresa are effective in sheltering recipient children from being taken out of school when they are used as risk coping instruments in response to shocks. Beneficiaries remain at school when there are
idiosyncratic (unemployment and illnesses) and covariate (droughts and natural disasters) shocks. Girls and children of farm workers that receive cash transfers are also less likely to be sent to work when the household head is affected by an unemployment shock. This suggests that CCT programs can be used as safety nets in protecting investments in children’s human capital from short run uninsured shocks. We discuss in Section VI how these safety nets could be put into place in response to both idiosyncratic and covariate shocks.

III. Progresa and the data

We use an exceptional data set collected for the evaluation of Progresa, a CCT program in rural Mexico. Progresa was introduced in 1997 to offer cash transfers to poor mothers in marginal rural communities, conditional on their children using health facilities on a regular basis and attending school between third grade of primary and third grade of secondary. Children cannot miss more than three days of school per month without losing the transfer, and will not receive the transfer if they have not visited a health center. The Program was recently renamed Oportunidades, and expanded to sixth grade of secondary and to peri-urban areas. In 2003, it serviced 4 million families at an annual cost of US$2.2 billion. The payment schedule is tailored to grade and gender, with primary schoolers receiving from $70/year in 3rd grade to $135 in 6th grade, and secondary schoolers receiving from $200/year for boys in first grade and $210 for girls to $220 for boys in third grade and $255 for girls.

The data consist in a census of households in 500 rural localities, with information in November 1997, and then every 6 months until November 2000. Of these 500 localities, almost two thirds were randomly chosen to be incorporated in the CCT program in May 1998 while the others were kept as control localities until early 2000. Since only households classified as poor according to a constructed welfare index are eligible for the CCT program, we restrict our analysis to the children of poor households.

We are interested in the school and labor choices of children 8 to 16 years old at any point in time during the period of analysis. Our total sample thus consists in the 52,719 poor children that were 5 to 16 years old in November 1997. Although there are many missing values in the database, the school enrollment status is recorded in each of the 7 rounds. The work status in the week prior to the survey for children at least 8 years old is recorded in 6 of the rounds (the question was not included in the March 1998 round).

IV. Empirical evidence on prevalence of shocks, attendance to school, and prevalence of child labor

4.1. Prevalence of shocks

Exposure to shocks is very high among the rural poor. Table 1 reports the prevalence of different types of shocks at the household or community level. We consider three types of idiosyncratic shocks at the household level: unemployment of the head of household, illness of the head of household, and illness of the younger siblings. The first two shocks are causes for loss of income. The two illness shocks are potential causes for special expenses or need of help at home to take care of the sick. Information on the employment status of the head of household is not observed in round 2 (March 1998), and illness shocks are not reported in either rounds 3 or 7 (November 1998 and 2000). The frequency reported in Table 1 shows a high exposure to risk. Almost one in every four households has experienced unemployment of its head at least once over six rounds of observation, and about 10% have experienced unemployment more than once. Almost one household in five has experienced illness of its head at least once in 5 rounds of observation. An even more frequent but probably less severe shock is the illness of younger siblings.

Information on climatic shocks was collected in rounds 3 to 6. Each household was asked whether it had experienced certain shocks (drought, earthquake, hurricane, flood, or plague), and whether it had either lost its land, its harvest, or an animal as a consequence of these climatic events. Table 1 reports these individual observations. There is a clear
distinction between the very frequent shock of a drought which affect 60% of the household at least once over the course of these two years (and more than 25% of the households more than once), and the low frequency shocks (earthquake, hurricane, flood, or plague), although they still affect around 10% of the households over the four rounds. Regrouping the low frequency shocks under the collective name of natural disaster, prevalence is high with 25% of the households reporting having experienced a natural disaster at least once over 4 rounds. Since these shocks are really community level, we construct and use in the analysis a measure of severity of two community shocks (drought and natural disaster) using the percentage of households in the community that declare having been affected by any of them in any specific round. The average severity of climatic shock in each round is 24% for drought and 7% for natural disaster. The idiosyncratic loss of a harvest follows closely the drought shocks.

While climatic shocks are clearly exogenous to a specific household, this is not necessarily the case for health and employment shocks, or even to a certain extent for loss of land, harvest, or animal, since these are partly determined by household behavior. In addition, by imposing regular health checkups as conditionality for transfers, Progresa may decrease the prevalence of illness shocks. We do observe a lower health shock frequency in the Progresa than in the non-Progresa villages. For unemployment, there could also be some effect of the Progresa program as it injects a large amount of resources in the communities, although confirming causality would require a more detailed study. On the other hand, drought just happens to have been 10% less frequent in the Progresa villages despite randomization of program placement, but frequency of natural disasters is not different across the two types of villages. In the econometric analysis that follows, we will argue that using household fixed or random effects controls for problems associated with potential endogeneity of these shocks.
4.2. Low and irregular school attendance

A serious educational problem in rural Mexico that prompted creation of the Progresa program is low enrollment rates among school age children. Table 2 reports the percent of children not attending school by age. Focusing first on control villages, we see that, most 8 years old children are enrolled in school in fall semesters. However, 5% of the 11 years old are not attending school at each beginning of school year. These non-enrollment rates rise dramatically to 14%, 26% and 38% for the 12, 13, and 14 years old, with an additional 2–3% in spring semesters. The effect of the Progresa program is seen in the decline, but by far not elimination, of these non-enrollment percentages starting in the 1998 school year in the treatment villages (November 1998), and in November 2000 in the control villages.

A related issue that can be observed with the panel data is high irregularity in school attendance, meaning children that interrupt their schooling for one or more semesters in the course of their education. Table 3 reports on this phenomenon. We qualify as transition into school the observation of a child enrolled in school, while the previous non-missing information was non-enrollment. And, symmetrically, we qualify as transition out of school observations of non-enrollment after observing enrollment. Column 1 reports on all 52,719 children in the database, column two on children without missing information in the middle of the sequence of 7 semesters, and columns 3–9 only on those children with complete school information over the seven semesters. This second sub-sample includes children that either became too old during the survey period (above 16 or 18 depending on the rounds) to be asked about their schooling, or young children that had missing information before entering school for the first time. The striking number is the 8–11% of children that experience at least two transitions into or out of school. This corresponds to students that either drop out of school for a period and re-enter afterwards, or reciprocally children that go to school for a period and drop again, and all this within a period of only seven semesters. There is no

\[\text{Noting school participation by 0 (out), 1 (in), or . (information is missing), examples of complete sequences are [1110111] for a child that temporarily dropped out of school in Spring 99 or [0011111] for a child that entered school in Fall 98. Examples of sequences without missing intermediate information are [.10111] for a child with no information in the year 97-98, or [1100...] for a child with no information from Fall 99 on. Finally, an example of sequence with missing intermediate information is [011..111].}\]
obvious contrast between boys and girls (columns 4 and 5), but there are very sharp differences between the younger and older children (columns 6 and 7). Children that were already more than 12 years old in 1997, not only quit school in large numbers (36%) during the period of observation but also experienced very large instability, with 20% of them moving in or out of school at least twice, and 6.8% at least three times. Comparisons of columns 8 and 9 shows that Progresa keeps more children in school by reducing both the drop-out rate and irregularity.

It is very likely that these interruptions have dear consequences on school achievements, with children lagging in age behind their cohort being a strong correlate of low performance and high probability of drop out of school definitively. Establishing causality between instability and performance would, however, require proper control for selection effects.

Table 4 reports on the reasons given by survey respondents (usually the mother) for a child to drop out of school. We distinguish between children that we know return to school (as observed later in the data) and those that we don’t observe coming back to school. This last group includes those that drop out of school indefinitely and those with truncated information that would eventually return, but after November 2000. Financial reasons or need for the child at work or at home, account for 50 to 60% of the responses, with numbers increasing with age of the child and higher among those that don’t return to school. The distance to school is almost strictly related to entry into junior high school (all villages have their own primary school). A striking result is the very high percentage of children that quit school simply because they don’t like it or feel they don’t learn anything. This could simply indicate a self-selected group of children that for idiosyncratic reasons do not perform well in school. The very high number though is disturbing and suggests a serious problem with school quality. What is surprising is how this reason is also given by many children that will eventually overcome this dislike and return to school. Splitting the sample between Progresa beneficiaries and non-beneficiaries, we can show that this phenomenon is not due to Progresa dragging back to school children that quit for not liking school.
4.3. **Evidence on child and teenage labor**

A similar analysis of the work pattern of children indicates large numbers working at least intermittently during the period of observation. Work here is defined as engaging into productive activities, including wage work, unpaid work outside home, and work in the family business or farm, in the week preceding the survey, and is recorded for all children 8 years of age and older in six of the seven rounds (there is no information in round 2). We, however, do not know the number of hours of work and hence cannot distinguish between part-time and full-time work. As seen in Table 5, and considering only children that have not yet graduated from 9th grade, the percentage of children that declare working at least once over the 6 rounds increases with their age, from 11% for those 8-11 years old during the period of observation to 25% for the 11–14 years old, and to 51% for the 13-16 years old. More than half of these working children work intermittently, i.e., have at least 2 transitions into or out of work (e.g. \((17+8.3)/39.8 = 63.6\%\) for the 12-15 years old), except for the older group, and 10 to 18% of them experience at least 3 transitions. This high frequency of intermittent child labor suggests that their work may be used as a mechanism to cope with shocks or temporary needs.

One should not consider work as necessarily incompatible with school, especially in environments where the school day is short. However, only 2 to 3% of the children in fact do both (Table 6). The most surprising number here, again, is the large percentage of children that neither go to school nor work, starting at 12 years old, roughly the time of entry in secondary school. Whether working is for children a cause of lower school achievement or not is debatable. Work is seen as an apprenticeship that complements school by some researchers, and as competing for the energy and the attention of children for school by others. The simple observation of children’s performance is not sufficient to imply any causality, given potential selection bias. There is also no a priori clear direction for that bias, as it could be either children with low performance, little taste for school, or difficult family environments that choose to work as they go to school, or it could be the most energetic and performing that seize the opportunity of short school days to do both. Controlling for

V. The econometric model

We consider two econometric specifications for the schooling and work decisions. Both specifications are linear probability models that allow for unobserved heterogeneity of children. One is a standard static model and the other a dynamic decision model that includes first-order state dependence.

5.1. Fixed-effect model to measure Progresa’s impact on school and work

The basic specification for measuring the impact of the Progresa treatment on schooling or work is a linear probability model with unobserved child heterogeneity:

\[y_{it} = \delta_i T + \theta + \mu_i + \epsilon_{it}, \quad i = 1, \ldots, N; t = 1, \ldots, 7, \tag{1} \]

where \(y_{it} \) is a binary variable representing school or work participation, \(T \) an indicator for the treatment (Progresa) villages, \(\delta_i \) the impact of the treatment in round \(t \), \(\theta \) a survey round fixed effect, \(\mu_i \) a child fixed effect representing time invariant heterogeneity, and \(\epsilon_{it} \) a time variant heterogeneity term. Because the treatment assignment was randomized, \(T \) is truly exogenous and orthogonal to \(\epsilon_{it} \).

In a fixed-effect estimation, with first round parameters normalized to 0, the estimation provides treatment effects \(\delta_i \) relative to November 1997. The treatment effects are thus identified by double difference between treatment and control villages, before and after treatment. Since both rounds 1 and 2 are pre-treatment observations, we expect to find no treatment effect in round 2, and effective treatment afterwards. Recall also that the
control villages were brought into the program in January 2000, so that one needs to be cautious when interpreting the “treatment” effect in rounds 6 and 7. The school and work participation decisions are estimated with the same model, although round 2 is missing for work participation.

5.2. Dynamic schooling model with state dependence

School participation (and non-participation) exhibits substantial serial persistence over time. While some children do move in and out of school more than once (as seen in Table 3), most children tend either to stay in school or out of school from semester to semester. There are two potential reasons for this observed persistence in the schooling pattern. One is due to unobserved heterogeneity of children. Some children, bound to higher achievement, have a higher propensity to be in school in any year, while others have a higher propensity to stay out. But there is also a genuine state dependence in school participation. The simple fact of attending school may create habits or tastes for staying enrolled if school becomes more interesting at grades rise. Even more evident is the fact that, once a child is out of school, it is difficult for him/her to come back, as he/she has lost habits and discipline required by school, has forgotten some of the materials, and has fallen behind his/her age cohort, etc. In this true state dependence, the current participation choice affects future participation choices. The corresponding econometric model includes a lagged dependent variable:

\[y_{it} = \gamma y_{i,t-1} + \delta_i T_i + \theta_i + \mu_i + \epsilon_i, \quad i = 1, \ldots, N; t = 2, \ldots, 7, \]

where \(\gamma \) is the state dependence parameter.

There is an emerging literature on estimating such dynamic binary response models (Hyslop, 1999; Chay and Hyslop, 2000) with dynamic probit or logit models.\(^3\) Staying with

\(^3\) There are also a few papers that estimate structural dynamic models of school and work decisions, where unobserved heterogeneity is captured by parameters characterizing a discrete number of types (Eckstein and Wolpin (1999) and Canals -Cerdá and Ridao-Cano (2004)).
linear probability models, however, is far more tractable and allows flexibility in the
handling of unobserved heterogeneity (Hyslop, 1999). We pursue this estimation procedure.
Following Arellano-Bond, the model is estimated by first differencing to eliminate the
heterogeneity parameters μ_i:

$$
\Delta y_{it} = \gamma \Delta y_{i,t-1} + \Delta \delta_t + \Delta \theta_t + \Delta \varepsilon_{it}, \quad i = 1, \ldots, N; \ t = 3, \ldots, 7.
$$

(2)

With lagged variable and first differencing, we loose two rounds, and hence only treatment
effects for rounds 3 to 7, relative to round 2, can be identified. First differencing also creates
a correlation between $\Delta y_{i,t-1}$ and the error term $\Delta \varepsilon_{it}$. To address this problem, the Arellano-
Bond estimator uses the lagged endogenous variables dated up to $t-2$, $y_{i1}, \ldots, y_{i,t-2}$, as
instruments for $\Delta y_{i,t-1}$.

The value of the state dependence parameter γ carries information on the long-term
effect of any variation in the current determinants of participation. If the endogenous
variable were continuous, a one-time incorporation in the treatment in period t would
generate a contemporaneous effect of δ_t and persistent effects of $\gamma \delta_t, \gamma^2 \delta_t, \ldots$ over the
following years. With a binary endogenous variable, whereby the treatment shock may
induce y_{it} to switch from 0 to 1, small differences in one year may have long lasting effects on
participation decisions.

Reflecting on the underlying process of schooling decision, it seems warranted to
consider the asymmetry between dropping out and entering school. Returning to school after
having missed one semester is intrinsically more difficult that the reverse move. The
“diploma” effect also creates incentives to finish school cycles. One would thus expect the
state dependence to be stronger between grades within the same cycle and lower at the end of
primary school and the end of secondary school. A third source of heterogeneity in the state
dependence effect is the “end of grade” effect. Quitting school in the middle of a school year
wastes the benefit of the whole school year. Entering school in the second semester is
impossible. For this reason, children are more likely to finish a school year and to change
their participation between two school years. At this point, however, we only estimate an average state dependence effect.

With missing information in round 2, the panel is too short for estimating the state dependence model for work participation.

5.3. Fixed-effect and state dependence models to measure the impact of shocks on school and work and the mitigating effect of Progresa.

We extend the previous models to include shocks s_{it} and the mitigating effect of Progresa with the interactive term $s_{it}T$. The dynamic model used for estimating schooling decisions becomes:

$$y_{it} = \gamma y_{it-1} + \alpha s_{it} + \beta s_{it}T + \delta_i T + \theta_i + \mu_i + \epsilon_{it}. $$

With shocks observed only in rounds 3 to 6, we simplify the treatment effect to an average treatment effect over the four rounds, which is eliminated by first differencing. We thus estimate the following model:

$$\Delta y_{it} = \gamma \Delta y_{it-1} + \alpha \Delta s_{it} + \beta \Delta s_{it}T + \Delta \theta_i + \Delta \mu_i + \Delta \epsilon_{it}, \; i = 1, \ldots, N; t = 4, \ldots, 6. \quad (3)$$

The parameters of interest in this equation are the instantaneous effect α of a shock s_{it} on enrollment probability and the mitigating effect β of the treatment.

For the effect of shocks on work decision, we resort to an extension of the fixed effect model:

$$y_{it} = \alpha s_{it} + \beta s_{it}T + \delta_i T + \theta_i + \mu_i + \epsilon_{it}, \; i = 1, \ldots, N; t = 3, \ldots, 6. \quad (4)$$
Note that, as there are no pre-treatment observations, β is identified in both estimations of equations (3) and (4) by simple difference between the effect of shocks in the treatment and control villages.

VI. Impact of Progresa on schooling and child labor

Before analyzing the impact of shocks on schooling, we estimate the simple impact of Progresa on schooling using the panel data to control for unobserved child heterogeneity and considering the role of state dependence on school attendance.

6.1. Impact of Progresa on schooling

Table 7 reports the impact of Progresa on the decision to enroll in school for various children cohorts. These results are estimated from a linear probability model that allows for child-fixed effects (equation (1)). We compare enrollment rates among eligible households from treatment and control village, before and after the start of program to identify the program’s impact. Justification for the counterfactual assumption underlying the difference-in-difference model stems from the randomization of villages into treatment and control. Table 7 presents Progresa’s impact for each of the 6 rounds, with the November 1997 baseline census representing the excluded round. Implementation of the program starts in May of 1998, hence with round 3 (November 1998) for the purpose of schooling decisions. The experimental design of the program ends in January of 2000 with inclusion of the control villages; although, there is speculation that the control villages knew that they be would included as early as November of 1999, potentially affecting school enrollment decisions before inclusion in the program. Columns 5 and 6 present the program’s impact on the boys and girls who had completed 5th grade in 1997, and hence were ready to decide whether to continue in secondary school in Fall 1998 when Progresa started. Columns 3 and 4 report the estimates for the sample of boys and girls who had attained at least grade 5 in 1997, and columns 1 and 2 estimate the impact for children who had completed no higher than grade 4 in 1997.
Focusing on specifications in columns 5 and 6, results show that the impact of Progresa is higher for girls than for boys. This is consistent with both the design of the program, as it provides higher grants to girls than to boys, and previous evaluations of the programs (see Schultz, etc). An interesting point, however, and a contribution to the literature, is Progresa’s impact on school enrollment in May and November of 2000, well after the control villages have been incorporated into the program. Compared to the control villages, girls in the Progresa villages enroll 11 percentage points more for the 2000/2001 school year (November 2000 treatment). With baseline enrollment of 0.75, this represents an increase of 15 percent. For boys, the November 2000 impact is positive, but attenuated and imprecisely measured. Note that despite the lack of a control group by 2000, we are still capturing the proper treatment effect. Children who had completed 5th grade in 1997 were on average 15-16 years old in 2000, and ineligible for Progresa, when the controls were incorporated. In addition, many children of this age from the control villages would already have dropped out of school for 2 years, making it difficult to return to school.

The remaining columns report the effects of the program for secondary school and primary school children. Overall, the impacts are positive but smaller; an indication that the decision to enroll into secondary school is the biggest hurdle and the grade at which Progresa has its greatest effect. The March 1998 impact observed for secondary school boys could be due to announcement of the program, preventing dropping out of school in the middle of the year, in anticipation of transfers the following school year.

With the same sample specifications, Table 8 estimates a linear probability model that in addition to controlling for unobserved time-invariant factors, allows for the possibility of state dependence in the enrollment decision (equation (2)). To account for endogeneity concerns imposed by a lagged dependent variable, we apply the Arellano-Bond estimator, which instruments lagged schooling with the enrollment history. As the lagged specification makes us lose one year of pre-treatment data, interpretation of the treatment parameters is relative to the spring semester of the pre-treatment year, March 1998. Moreover, these
coefficients are not the marginal effects of the program because Progresa feeds back on enrollment through the lagged dependent variable.

As Table 8 points out, there is state dependence in enrollment decisions. Having been enrolled in the previous semester increases the probability of enrolling in the next period by 15 percentage points for boys who had completed 5th grade in 1997. State dependence is higher in secondary school than in primary school, and higher for secondary school girls than for boys. With state dependence, the long term impact of a temporary effect (i.e., one single year of Progresa transfer) would persist the following year at 15% of the value of the short-term effect. The long-term effect of a permanent change (a lasting Progresa transfer) is 15% larger than the short-term effect. The estimated impacts are consistent with those found in the fixed-effects models in Table 7.

6.2. Impact of Progresa on Child Labor

Table 9 considers the effects of Progresa on child labor. The sample consists of children at least 8 years old at any point during the period observation, and each specification controls for child fixed-effects. The dependent variable in this linear probability model takes on a value of one if the child worked in the previous week. We do not distinguish between part-time and full-time work. Distinguishing between boys and girls, columns 1 and 2 correspond to children younger than 11 years old in November 1997, columns 3 and 4 to ages 12-14, and columns 5 and 6 to ages 15-17. Identification of the program’s impact is again based on a difference-in-difference model, and the impact is reported for each of 5 rounds, with November 1997 as the pre-treatment reference round. Unfortunately, with no information on child labor in the March 1998 survey, we cannot estimate the state dependence model for work decisions.

Progresa’s most dramatic impact on child labor occurs among children 12-14 years old in 1997. Focusing on column 3, we see that Progresa reduces the probability that boys work by 7 percentage points on average. This impact, which represents a 23 percent decrease
in the incidence of child labor, is consistent across all rounds, even after elimination of the control group in 2000. Progresa also has a larger absolute impact on boys than on girls, which is not surprising given that girls work less (the relative impact on girls is to reduce labor by around 50%).

These coefficients, while consistent with those reported by Skoufias and Parker (2001), are estimated to be slightly higher. Our analysis differs from their study in three respects. First, we control for child fixed-effects. Second and more substantive, we estimate the effects of Progresa for each round, as opposed to each year. Finally, we also estimate the impact on the 2000 round, after the control group had already been incorporated.

VII. Impact of shocks on schooling and child labor, and the mitigating effect of Progresa

7.1. The effects of shocks on school and Progresa’s ability to mitigate them

We now add shocks and interactions of shocks with the Progresa treatment effect in the school enrollment equation. Note that we only have information on shocks in rounds 3 to 6. In addition the Arellano-Bond estimator requires differencing. Hence, results reported in Table 10 correspond to an estimated relationship between current enrollment and lagged enrollment, shocks, and mitigation by Progresa for rounds 4 to 6 (equation (3)). There is no pre-intervention observation among these rounds, and therefore the Progresa mitigating effect is identified by the simple difference in the effect of shocks between the treatment and control villages. This is sufficient given the random assignment of the program. Table 10 reports the impact of individual shocks (columns 1 to 6) and then of all shocks jointly in column 7. Column 8 reports an estimation of the model with child fixed effects and no state dependence (equation (4)).

Considering shocks one at a time, we see that an unemployment or illness shock for the head of household reduces the probability of enrollment of the child by an average 1.7–
1.8 percentage points, but that Progresa almost completely mitigates these negative effects. Illness of the younger siblings has no aggregate effect on schooling of the children in the family. Interestingly, despite its very damaging effect on income, drought has no measurable effect on schooling. This is a very robust result that we have found whatever group of children is considered and whatever econometric specification of the model is used. This is likely because the event is sufficiently frequent in Mexico that it is hardly unexpected and households have designed ex-ante strategies that account for these occurrences. By contrast, natural disasters have a dramatic effect on schooling. A disaster that affects the whole community reduces enrollment by 3.2 percentage points, but this effect is again completely mitigated by Progresa. The household’s experience of a loss of land, crop, or animal, only has a small effect (0.5 percentage point) on schooling, completely mitigated by Progresa.

When all the shocks are considered together, we lose precision in the estimation. Column 7 shows that the two main shocks that affect schooling are unemployment of the head of household and natural disaster. While Progresa completely mitigates the natural disaster effect, it only partially compensates for the unemployment shock. Column 8 of Table 10 gives results for a fixed-effect linear probability model. Results are similar.

Table 11 analyzes the heterogeneity of effects of shocks on different sub-groups of children. Primary school children, boys, and children of agricultural workers are more affected by the unemployment shock of the head of household than secondary school children, girls, and children of non-agricultural workers, respectively, and are only partially protected by Progresa. The effect of natural disaster is severe on all categories of children, but particularly on girls, indigenous, and children of agricultural workers. In all circumstances, Progresa completely erases the negative effects of the natural disaster on schooling. Table 12 shows that secondary school boys and children of agricultural workers are strongly affected by illness of the household head, but here again are completely protected by Progresa.

4 Correlations are 0.19 between head of household unemployment and illness, 0.11 between head of household and siblings illness, and 0.16 between drought and natural disaster.
Note that, while a temporary disaster has an immediate effect in taking some children out of school, it also has a long-term impact through the state dependence effect. Even when the shock does not last over the next period, an effect equal to 17% of the initial short-term effect remains in the following semester (Table 10, column 7). A natural disaster thus reduces the probability of enrollment by 5.1 percentage point immediately and by 0.9 percentage point the following semester (5.1*17%). Given the frequency of such events, as seen in Table 1, all of these shocks, each with its long term effect cumulated over several years, can indeed seriously compromise the schooling of children when they are not protected. Table 11 shows that the state dependence is stronger for girls than for boys, implying that any temporary event that takes a girl out of school has a more lasting effect. Conversely, on the positive side, any event that induces a girl to stay in school, such as receiving a Progresa transfer, has more lasting impact as well. Children of non-agricultural workers have particularly high state dependence parameter, suggesting that their behavior is less volatile than that of other children.

7.2. The effects of shocks on child and teenage labor and Progresa’s ability to mitigate them

Estimations of the effects of shocks on child and teenage labor are reported in Table 13. As discussed above, with no information on child labor in round 2, we do not have enough data points to estimate the state dependence model. We thus report results from a fixed-effect model over four rounds of observations, from November 1998 to May 2000. The Progresa effect is here again identified by simple difference between control and treatment villages.

We do not expect to find a symmetrical effect of Progresa in mitigating the effect of shocks on school and child labor. This is because Progresa is a “price” subsidy to school, and not an income transfer. Hence, stepping out of school immediately induces a loss of the corresponding transfer, which is certainly the last thing a household would want to do in case
of an income shortfall, while entering the labor market does not preclude receiving the Progresa transfer. Hence, Progresa would mitigate entry in the labor market only through its income effect that reduces the need for additional income from child work, or through the difficulty of combining work and school.

Results show that a household head unemployment shock does not induce children to work. However, others shocks do. Child labor increases in response to illness of the household head, illness among young siblings, and more severe natural disasters in the locality. Progresa is, however, unable to prevent these child labor responses to shocks. There are two cases where Progresa mitigates the effect of the shock. These are impacts of droughts and losses as a consequence of a natural disasters. In both cases, the shocks reduce opportunities for children to work. Progresa compensates for these effects by helping maintain children working. If the income effect of Progresa helps reduce loss of land, harvests, and animals (as seen for crops in Table 1), this helps keep children at work. It is also possible that the lower effect of drought in the Progresa villages is due to, in fact, a lower severity of drought events, despite the randomization of Progresa treatment (we saw in Table 1 that Progresa villages were less subject to droughts), in a way that is not properly captured by the indicator that we use.

Finally, focusing on children 12 to 14 years old in Table 14, we observe that girls and especially children of agricultural workers dramatically increase their participation to the labor market when the head of household is hit by unemployment. In both cases, Progresa completely protects them for the shocks. The mitigating function of CCT programs in protecting child labor from being used as a risk coping instrument is thus verified in these two cases.
VIII. Discussion and policy implications

8.1. Summary of results

Using panel data for villages from the Mexican Progresa program with random treatments and controls, we have shown that shocks are highly prevalent, that many children have irregular periods of school enrollment, and that child labor is very frequent. We extended the impact analysis of the conditional cash transfers to show that there is strong state dependence. Children taken out of school are less likely to subsequently return, implying long-term consequences from short-term decisions. By observing control villages after they became incorporated in the treatment, we see that children that did not benefit from transfers during the experiment are harder to bring back to school, implying as well that short-term actions are difficult to reverse.

A number of shocks -- such as unemployment of the household head, illness of the household head or younger children, droughts, natural disasters in the community, and loss of land, harvest, or animals -- have strong effects on children’s schooling attainment. This indicates that in these rural communities, children are used as risk coping instruments. While this creates short run consumption smoothing gains for the household, such coping strategy implies long term losses in human capital for children that are accentuated by state dependence. Nonetheless, the impact evaluation analysis shows that the Progresa transfers to a large extent compensate for these shocks, protecting child schooling from a range of shocks.

Finally, while the shocks reported also seem to induce children to work -- particularly girls and children of farm workers when their parents are affected by unemployment --, the impact evaluation suggests that Progresa transfers and the conditionality on school attendance serve to deter using child labor as a risk coping strategy.
8.2. Policy implications

What do these findings suggest in terms of policy design vis-à-vis risk mitigation? Despite the fact that CCT are not designed to deal directly with shocks or serve as “insurance” instruments per se, our results clearly show that they can provide an important safety net role by protecting child education from a range of idiosyncratic and covariate shocks. This implies that incorporating risk exposure and shock incidence criteria in the design of such programs’ eligibility rules, or allowing additional flexibility in terms of scaling up or down such interventions to address large covariate or idiosyncratic shocks, is a potentially worthwhile direction and use of such programs.

For example, in terms of the eligibility criteria, CCT programs could be expanded to enroll non-beneficiaries by linking eligibility with shocks. In the case of Progresa, inclusion could automatically follow covariate shocks since these are easily verifiable (such as droughts). In such a scheme, all members of poor communities would be offered the CCT for the duration of the shock.

Similarly, idiosyncratic shocks could be easily verifiable through community participation, even if after some delay. In such cases, a household that declares a shock (such as unemployment of the main income earner) could automatically be immediately included in the program for some initial period (e.g., one semester) to avoid irreversibilities. Community verification would then decide on extended inclusion for as long as the idiosyncratic shock is effective and the child is at risk of being taken out of school. CCT programs could thus acquire an additional dimension relative to the ones they currently have: serve as flexible safety nets to prevent short run shocks from having long term consequences on the human capital formation of children when their parents are exposed to shocks and they lack access to other risk coping instruments. Since households will be informed that if they are affected by a particular shock they will be eligible to enter the program, they will effectively be partially insured against the shock, allowing them to reduce risk management and increase expected income.
Another potential approach would be to extend conditionalities to include risk management related rules that enable households to better prevent or mitigate the impact of shocks before they occur. To some extent, long term investments in human capital and health induced by Progresa already reduce shocks and strengthen households’ capacity to address them. Still, risk-specific conditionality rules could have a more direct impact in insuring that households take actions to reduce the risk of being affected by a specific shock or minimize its impact. For example, a CCT could only give a transfer to households that engage in risk management, such as adoption of cultivation practices less sensitive to climatic shocks. In this way, the conditionality would strengthen the ex-ante risk management capacity of the households and the transfer itself would help mitigate the impact of shocks, both ex-ante and ex-post.5 To our knowledge, such schemes do not exist and, as such, more work needs to be done.

5 Of course, this requires finding and designing conditionality rules that can be easily implemented and verifiable.
REFERENCES

Table 1. High prevalence of shocks

<table>
<thead>
<tr>
<th></th>
<th>Progresa villages</th>
<th>Control villages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of households</td>
<td>6764</td>
<td>4091</td>
</tr>
<tr>
<td>Percentage of household having experienced a shock:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head of household unemployed at least once in 6 rounds</td>
<td>22.5</td>
<td>24.2</td>
</tr>
<tr>
<td>more than once</td>
<td>9.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Head of household ill at least once in 5 rounds</td>
<td>17.2</td>
<td>20.3</td>
</tr>
<tr>
<td>more than once</td>
<td>2.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Children 0-5 years old ill at least once in 5 rounds</td>
<td>42.7</td>
<td>44.5</td>
</tr>
<tr>
<td>more than once</td>
<td>24.3</td>
<td>25.7</td>
</tr>
<tr>
<td>Drought at least once in 4 rounds</td>
<td>59.3</td>
<td>61.9</td>
</tr>
<tr>
<td>more than once</td>
<td>25.5</td>
<td>28.6</td>
</tr>
<tr>
<td>Crop lost at least once in 4 rounds</td>
<td>58.6</td>
<td>61.7</td>
</tr>
<tr>
<td>more than once</td>
<td>26.9</td>
<td>30.0</td>
</tr>
<tr>
<td>At least once in 4 rounds:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td>9.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Hurricane</td>
<td>8.0</td>
<td>9.2</td>
</tr>
<tr>
<td>Flood</td>
<td>11.5</td>
<td>11.6</td>
</tr>
<tr>
<td>Plague</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Natural disaster (earthquake, hurricane, flood, or plague)</td>
<td>25.7</td>
<td>24.7</td>
</tr>
</tbody>
</table>

Community shocks intensity (percentage of households reporting the shock, average per round)

<table>
<thead>
<tr>
<th></th>
<th>Progresa villages</th>
<th>Control villages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought</td>
<td>22.6</td>
<td>25.2</td>
</tr>
<tr>
<td>Natural disaster (earthquake, hurricane, flood, or plague)</td>
<td>6.9</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Shocks significantly higher/lower in Progresa villages at 5% (+/–), 1%(+/– –)
Head of household employment observed in 6 rounds (not March 98), head of household illness in 5 rounds Nov-98 to Nov-00, drought, crop loss, and natural disasters in 4 rounds Nov-98 to May-00)
Table 2. School non-attendance rate by age

<table>
<thead>
<tr>
<th>Age in fall semester</th>
<th>Percent of children not enrolled</th>
<th>Average over November months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nov-97</td>
<td>Mar-98</td>
</tr>
<tr>
<td>Children from Progresa villages</td>
<td>8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>25.4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>55.3</td>
</tr>
<tr>
<td>Number of observations</td>
<td>16,713</td>
<td>13,226</td>
</tr>
<tr>
<td>Children from control villages</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>29.4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>41.2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>58.8</td>
</tr>
<tr>
<td>Number of observations</td>
<td>10,402</td>
<td>8,400</td>
</tr>
</tbody>
</table>

Excluding observations with missing information on enrollment

Progresa villages were incorporated in the program in May 1998, and control villages in January 2000.
Table 3. Irregularity in school attendance

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All observations</td>
<td>Children w/o missing intermediate observations</td>
<td>Children with complete schooling data only</td>
<td>All</td>
<td>Boys</td>
<td>Girls</td>
<td>Age in 1997</td>
<td>Š 12 years</td>
<td>> 12 years</td>
</tr>
<tr>
<td>Number of observations</td>
<td>52,719</td>
<td>27,002</td>
<td>16,981</td>
<td>8,798</td>
<td>8,178</td>
<td>13,026</td>
<td>3,955</td>
<td>4,475</td>
<td>7,463</td>
</tr>
<tr>
<td>No transition into or out of school</td>
<td>74.4</td>
<td>77.6</td>
<td>71.6</td>
<td>71.5</td>
<td>71.7</td>
<td>80.4</td>
<td>42.6</td>
<td>71.6</td>
<td>74.6</td>
</tr>
<tr>
<td>Out of school</td>
<td>18.0</td>
<td>13.4</td>
<td>6.7</td>
<td>6.8</td>
<td>6.7</td>
<td>0.7</td>
<td>26.8</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>In school</td>
<td>56.4</td>
<td>64.2</td>
<td>64.9</td>
<td>64.8</td>
<td>65.0</td>
<td>79.8</td>
<td>15.7</td>
<td>66.3</td>
<td>69.4</td>
</tr>
<tr>
<td>One transition</td>
<td>17.2</td>
<td>14.3</td>
<td>17.8</td>
<td>18.0</td>
<td>17.6</td>
<td>11.7</td>
<td>38.0</td>
<td>16.8</td>
<td>15.8</td>
</tr>
<tr>
<td>Quit school after Nov-97</td>
<td>15.1</td>
<td>12.5</td>
<td>16.4</td>
<td>16.9</td>
<td>16.0</td>
<td>10.6</td>
<td>35.8</td>
<td>15.7</td>
<td>14.1</td>
</tr>
<tr>
<td>Enter school after Nov-97</td>
<td>2.2</td>
<td>1.8</td>
<td>1.4</td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
<td>2.1</td>
<td>1.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Two transitions or more</td>
<td>8.3</td>
<td>8.0</td>
<td>10.6</td>
<td>10.4</td>
<td>10.7</td>
<td>7.8</td>
<td>19.5</td>
<td>11.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Two transitions</td>
<td>6.4</td>
<td>5.8</td>
<td>7.6</td>
<td>7.4</td>
<td>7.8</td>
<td>6.0</td>
<td>12.7</td>
<td>8.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Three or more transitions</td>
<td>2.0</td>
<td>2.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
<td>1.8</td>
<td>6.8</td>
<td>3.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Sample constituted of all children age 5 to 16 years in November 1997, observed over 7 semesters from November 1997 to November 2000.
Table 4. Reasons for dropping out of school

<table>
<thead>
<tr>
<th>Age in November</th>
<th>Number of observations</th>
<th>No money Needed at work/home</th>
<th>School too far</th>
<th>Doesn't like/ Too old</th>
<th>Other reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children that return to school by Nov-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>66</td>
<td>27.3</td>
<td>3.0</td>
<td>19.7</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>66</td>
<td>31.8</td>
<td>6.1</td>
<td>31.8</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>36.7</td>
<td>1.7</td>
<td>32.5</td>
<td>2.5</td>
</tr>
<tr>
<td>11</td>
<td>186</td>
<td>48.9</td>
<td>4.8</td>
<td>29.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>424</td>
<td>51.7</td>
<td>10.4</td>
<td>26.4</td>
<td>0.7</td>
</tr>
<tr>
<td>13</td>
<td>465</td>
<td>58.5</td>
<td>11.6</td>
<td>27.5</td>
<td>1.5</td>
</tr>
<tr>
<td>14</td>
<td>565</td>
<td>56.3</td>
<td>1.9</td>
<td>23.6</td>
<td>0.9</td>
</tr>
<tr>
<td>15</td>
<td>585</td>
<td>55.9</td>
<td>7.9</td>
<td>23.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Children that don’t return to school by Nov-00

<table>
<thead>
<tr>
<th>Age in November</th>
<th>Number of observations</th>
<th>No money Needed at work/home</th>
<th>School too far</th>
<th>Doesn't like/ Too old</th>
<th>Other reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>50.0</td>
<td>7.1</td>
<td>14.3</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>50.0</td>
<td>7.5</td>
<td>30.0</td>
<td>2.5</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>52.8</td>
<td>18.3</td>
<td>22.7</td>
<td>1.7</td>
</tr>
<tr>
<td>12</td>
<td>229</td>
<td>53.3</td>
<td>8.9</td>
<td>29.9</td>
<td>0.3</td>
</tr>
<tr>
<td>13</td>
<td>304</td>
<td>56.0</td>
<td>10.4</td>
<td>23.3</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>495</td>
<td>59.6</td>
<td>8.1</td>
<td>22.4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Sample of children dropping out of school, in the semester when they leave school.

Table 5. Prevalence of work among children not having graduated from 9th grade

<table>
<thead>
<tr>
<th>Cohorts: Age over 1997–2000</th>
<th>Number of children</th>
<th>Distribution of children by number of rounds in which they work</th>
<th>Percent of children with transitions into/out of work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At least 1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8–11</td>
<td>3,291</td>
<td>10.6</td>
<td>9.6</td>
</tr>
<tr>
<td>9–12</td>
<td>3,122</td>
<td>13.9</td>
<td>12.1</td>
</tr>
<tr>
<td>10–13</td>
<td>3,366</td>
<td>18.5</td>
<td>14.8</td>
</tr>
<tr>
<td>11–14</td>
<td>3,024</td>
<td>25.4</td>
<td>18.4</td>
</tr>
<tr>
<td>12–15</td>
<td>2,437</td>
<td>39.8</td>
<td>23.0</td>
</tr>
<tr>
<td>13–16</td>
<td>1,912</td>
<td>51.3</td>
<td>24.3</td>
</tr>
<tr>
<td>14–17</td>
<td>1,574</td>
<td>61.5</td>
<td>21.5</td>
</tr>
<tr>
<td>15–18</td>
<td>1,376</td>
<td>72.7</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Observation in 6 rounds from Fall 1997 to Fall 2000 (Spring 1998 missing)
Table 6. School and work

<table>
<thead>
<tr>
<th>Age in Fall semester</th>
<th>Number of Fall semester observations</th>
<th>School only</th>
<th>Work only</th>
<th>School and Work</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>17,557</td>
<td>96.5</td>
<td>0.2</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>9</td>
<td>19,053</td>
<td>96.2</td>
<td>0.2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>19,084</td>
<td>95.2</td>
<td>0.3</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>11</td>
<td>18,942</td>
<td>93.1</td>
<td>0.8</td>
<td>2.4</td>
<td>3.7</td>
</tr>
<tr>
<td>12</td>
<td>19,062</td>
<td>84.7</td>
<td>2.3</td>
<td>3.0</td>
<td>10.1</td>
</tr>
<tr>
<td>13</td>
<td>18,692</td>
<td>74.5</td>
<td>5.5</td>
<td>3.1</td>
<td>16.9</td>
</tr>
<tr>
<td>14</td>
<td>17,829</td>
<td>63.5</td>
<td>11.1</td>
<td>3.3</td>
<td>22.2</td>
</tr>
<tr>
<td>15</td>
<td>16,453</td>
<td>45.2</td>
<td>20.9</td>
<td>3.1</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Data on 6 rounds from Fall 97 to Fall 00 (Spring 98 missing)
Table 7. The effect of Progresa on schooling - Static model
Dependent variable: child at school

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1998 Treatment</td>
<td>-0.004</td>
<td>-0.003</td>
<td>0.018</td>
<td>-0.002</td>
<td>0.051</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>[0.010]</td>
<td>[0.011]</td>
<td>[0.009]*</td>
<td>[0.009]</td>
<td>[0.029]</td>
<td>[0.028]</td>
</tr>
<tr>
<td>November 1998 Treatment</td>
<td>0.021</td>
<td>0.023</td>
<td>0.032</td>
<td>0.036</td>
<td>0.098</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>[0.009]*</td>
<td>[0.010]*</td>
<td>[0.008]**</td>
<td>[0.008]**</td>
<td>[0.027]**</td>
<td>[0.027]**</td>
</tr>
<tr>
<td>May 1999 Treatment</td>
<td>0.031</td>
<td>0.03</td>
<td>0.032</td>
<td>0.043</td>
<td>0.114</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td>[0.009]**</td>
<td>[0.010]**</td>
<td>[0.008]**</td>
<td>[0.008]**</td>
<td>[0.027]**</td>
<td>[0.027]**</td>
</tr>
<tr>
<td>November 1999 Treatment</td>
<td>0.05</td>
<td>0.052</td>
<td>0.017</td>
<td>0.037</td>
<td>0.073</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>[0.009]**</td>
<td>[0.010]**</td>
<td>[0.008]**</td>
<td>[0.008]**</td>
<td>[0.027]**</td>
<td>[0.026]**</td>
</tr>
<tr>
<td>May 2000 Treatment</td>
<td>0.046</td>
<td>0.057</td>
<td>0.025</td>
<td>0.032</td>
<td>0.078</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>[0.010]**</td>
<td>[0.010]**</td>
<td>[0.008]**</td>
<td>[0.008]**</td>
<td>[0.028]**</td>
<td>[0.027]**</td>
</tr>
<tr>
<td>November 2000 Treatment</td>
<td>0.03</td>
<td>0.039</td>
<td>0.003</td>
<td>0.017</td>
<td>0.029</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>[0.010]**</td>
<td>[0.010]**</td>
<td>[0.008]</td>
<td>[0.008]*</td>
<td>[0.028]</td>
<td>[0.027]**</td>
</tr>
</tbody>
</table>

Observations 30,016 26,746 63,149 61,198 6,911 6,453
Number of children 4,660 4,153 12,942 12,719 1,063 994
Mean value of schooling 0.868 0.876 0.722 0.699 0.739 0.755
R-squared (within) 0.058 0.054 0.078 0.053 0.158 0.160

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.
Linear probability model. All regressions include round and child fixed-effects. Excluded round is November 1997.
Primary, secondary, and entry into secondary school cohorts of children are defined as having graduated from less than, exactly, or at least 5th grade in November 97.
Table 8. The effect of Progresa on schooling - Dynamic model
Dependent variable: child at school

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagged Schooling</td>
<td>0.119</td>
<td>0.087</td>
<td>0.163</td>
<td>0.197</td>
<td>0.155</td>
<td>0.135</td>
</tr>
<tr>
<td>November 1998 Treatment</td>
<td>0.025</td>
<td>0.036</td>
<td>0.018</td>
<td>0.051</td>
<td>0.043</td>
<td>0.146</td>
</tr>
<tr>
<td>May 1999 Treatment</td>
<td>0.029</td>
<td>0.030</td>
<td>0.015</td>
<td>0.049</td>
<td>0.050</td>
<td>0.144</td>
</tr>
<tr>
<td>November 1999 Treatment</td>
<td>0.011</td>
<td>0.012</td>
<td>0.000</td>
<td>0.045</td>
<td>0.008</td>
<td>0.128</td>
</tr>
<tr>
<td>May 2000 Treatment</td>
<td>0.018</td>
<td>0.014</td>
<td>0.014</td>
<td>0.050</td>
<td>0.012</td>
<td>0.094</td>
</tr>
<tr>
<td>November 2000 Treatment</td>
<td>0.010</td>
<td>0.012</td>
<td>0.012</td>
<td>0.038</td>
<td>-0.041</td>
<td>0.113</td>
</tr>
</tbody>
</table>

Observations 19,080 17,097 29,354 28,192 4,369 4,086
Number of children 4,611 4,102 9,417 9,183 1,053 985

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.
All regressions include round and child fixed-effects. Treatment effects are relative to the March 98 pre-treatment round. Linear probability model estimated with the Arellano-Bond estimator.
Primary, secondary, and entry into secondary school children are defined as having graduated from less than, exactly, or at least grade in November 97.
Table 9. The effect of Progresa on child labor - Static
Dependent variable: child at work

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>(1) Age 11 in Nov-97</th>
<th>(2) Ages 12-14 in Nov-97</th>
<th>(3) Ages 15-17 in Nov-97</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boys</td>
<td>Girls</td>
<td>Boys</td>
</tr>
<tr>
<td>November 1998 Treatment</td>
<td>-0.017</td>
<td>-0.020</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>[0.008]*</td>
<td>[0.006]**</td>
<td>[0.019]**</td>
</tr>
<tr>
<td>May 1999 Treatment</td>
<td>-0.028</td>
<td>-0.008</td>
<td>-0.063</td>
</tr>
<tr>
<td></td>
<td>[0.008]**</td>
<td>[0.006]</td>
<td>[0.020]**</td>
</tr>
<tr>
<td>November 1999 Treatment</td>
<td>-0.029</td>
<td>-0.011</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>[0.008]**</td>
<td>[0.006]*</td>
<td>[0.020]**</td>
</tr>
<tr>
<td>May 2000 Treatment</td>
<td>-0.050</td>
<td>-0.040</td>
<td>-0.073</td>
</tr>
<tr>
<td></td>
<td>[0.008]**</td>
<td>[0.006]**</td>
<td>[0.020]**</td>
</tr>
<tr>
<td>November 2000 Treatment</td>
<td>-0.032</td>
<td>-0.019</td>
<td>-0.058</td>
</tr>
<tr>
<td></td>
<td>[0.008]**</td>
<td>[0.006]**</td>
<td>[0.021]**</td>
</tr>
</tbody>
</table>

Observations	38,239	36,731	18,070	15,716	11,357	10,209
Number of children	8,873	8,509	3,506	3,227	2,491	2,419
Mean value of work	0.047	0.021	0.304	0.091	0.647	0.190
R-squared	0.01	0.01	0.07	0.01	0.06	0.01

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.
Linear probability model. All regressions include round and child fixed-effects. Excluded round is November 1997
Observations on children 8 years and older.
Table 10. Impact of state dependency, shocks, and Progresa on school attendance

Dependent variable: Child at school

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AB-FE</td>
<td>AB-FE</td>
<td>AB-FE</td>
<td>AB-FE</td>
<td>AB-FE</td>
<td>AB-FE</td>
<td>AB-FE</td>
<td>FE</td>
</tr>
<tr>
<td>Individual shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State dependency:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child at school last semester</td>
<td>0.164</td>
<td>0.168</td>
<td>0.174</td>
<td>0.173</td>
<td>0.171</td>
<td>0.172</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.023]**</td>
<td>[0.023]**</td>
<td>[0.031]**</td>
<td>[0.023]**</td>
<td>[0.022]**</td>
<td>[0.022]**</td>
<td>[0.032]**</td>
<td></td>
</tr>
<tr>
<td>Head of household unemployed</td>
<td>-0.018</td>
<td>-0.021</td>
<td>-0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.009]**+</td>
<td>[0.013]**+</td>
<td>[0.009]**+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.012</td>
<td>0.008</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.109]</td>
<td>[0.015]</td>
<td>[0.011]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head of household ill</td>
<td>-0.017</td>
<td>-0.005</td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.008]**+</td>
<td>[0.011]</td>
<td>[0.008]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.020</td>
<td>0.005</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.010]**+</td>
<td>[0.013]</td>
<td>[0.010]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children age 0-5 ill</td>
<td>-0.006</td>
<td>-0.002</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.006]</td>
<td>[0.006]</td>
<td>[0.005]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.001</td>
<td>-0.001</td>
<td>-0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.007]</td>
<td>[0.007]</td>
<td>[0.006]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drought severity in locality</td>
<td>0.001</td>
<td>-0.005</td>
<td>-0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.007]</td>
<td>[0.009]</td>
<td>[0.007]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.005</td>
<td>-0.004</td>
<td>-0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.007]</td>
<td>[0.009]</td>
<td>[0.007]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural disaster severity in locality</td>
<td>-0.032</td>
<td>-0.051</td>
<td>-0.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.009]**+</td>
<td>[0.011]**+</td>
<td>[0.010]**+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.040</td>
<td>0.053</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.010]**+</td>
<td>[0.013]**+</td>
<td>[0.013]**+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss as consequence of natural disaster</td>
<td>-0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.004]**+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of observations | 65,716 | 72,752 | 45,660 | 72,264 | 72,332 | 72,332 | 41,938 | 67,531 |
Number of children | 23,588 | 24,483 | 17,014 | 24,599 | 24,621 | 24,621 | 16,291 | 24,069 |

Robust standard errors in bracket; + significant at 10%; * significant at 5%; ** significant at 1%
All regressions include round and child fixed-effects. Dynamic model estimated with the Arellano-Bond estimator (AB-FE), static model with a fixed-effect specification (FE).

1 Proportion of households in locality reporting having experienced a drought or a natural disaster (earthquake, hurricane, flood, plague) in last 6 months
2 Loss of land, harvest, or animal. Average occurrence of these shocks are 25%, 7%, and 2% respectively.
Table 11. Heterogeneity in schooling vulnerability to shock

Dependent variable: Child at school

<table>
<thead>
<tr>
<th></th>
<th>Primary school</th>
<th>Secondary school</th>
<th>Boys</th>
<th>Girls</th>
<th>Indigenous</th>
<th>Non-indigenous</th>
<th>Children of agricultural worker</th>
<th>Children of non-ag. worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>State dependency:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child at school last semester</td>
<td>0.18**</td>
<td>0.16**</td>
<td>0.12**</td>
<td>0.22**</td>
<td>0.20**</td>
<td>0.16**</td>
<td>0.12**</td>
<td>0.64**</td>
</tr>
<tr>
<td>Head of household unemployed</td>
<td>-0.041*</td>
<td>-0.006</td>
<td>-0.029*</td>
<td>-0.011</td>
<td>-0.026</td>
<td>-0.018</td>
<td>-0.029*</td>
<td>-0.027</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.021</td>
<td>-0.001</td>
<td>0.023</td>
<td>-0.011</td>
<td>0.017</td>
<td>0.003</td>
<td>0.031</td>
<td>0.000</td>
</tr>
<tr>
<td>Head of household ill</td>
<td>0.018</td>
<td>-0.021</td>
<td>-0.009</td>
<td>-0.000</td>
<td>0.002</td>
<td>-0.009</td>
<td>-0.025*</td>
<td>0.014</td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.023</td>
<td>0.023</td>
<td>0.022</td>
<td>-0.015</td>
<td>-0.005</td>
<td>0.010</td>
<td>0.028*</td>
<td>-0.015</td>
</tr>
<tr>
<td>Proportion of children age 0-5 years ill</td>
<td>0.003</td>
<td>-0.007</td>
<td>-0.001</td>
<td>-0.004</td>
<td>-0.010</td>
<td>0.002</td>
<td>-0.000</td>
<td>-0.002</td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.010</td>
<td>0.005</td>
<td>0.002</td>
<td>-0.001</td>
<td>-0.004</td>
<td>-0.000</td>
<td>-0.007</td>
<td>0.006</td>
</tr>
<tr>
<td>Drought severity in locality</td>
<td>0.008</td>
<td>-0.015</td>
<td>-0.003</td>
<td>-0.008</td>
<td>0.007</td>
<td>-0.013</td>
<td>0.001</td>
<td>-0.010</td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.020</td>
<td>0.008</td>
<td>0.002</td>
<td>-0.011</td>
<td>-0.019</td>
<td>0.007</td>
<td>-0.004</td>
<td>-0.017</td>
</tr>
<tr>
<td>Natural disaster severity in locality</td>
<td>-0.051**</td>
<td>-0.052**</td>
<td>-0.033*</td>
<td>-0.073**</td>
<td>-0.056**</td>
<td>-0.036*</td>
<td>-0.057**</td>
<td>-0.41*</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.056**</td>
<td>0.052**</td>
<td>0.034*</td>
<td>0.075**</td>
<td>0.057**</td>
<td>0.043**</td>
<td>0.057**</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Number of observations: 17,061 24,877 21,425 20,507 14,718 27,051 28,308 13,630
Number of children: 5,865 10,426 8,301 7,987 5,614 10,609 13,466 8,775
Mean value of endogenous variable: 0.894 0.794 0.841 0.828 0.858 0.822 0.842 0.819

+ (*) (**) Significantly different from 0 at 10% (5%) (1%)

Arellano-Bond estimator. Regressors include round fixed effects, child fixed effects eliminated by first differencing.

1 Primary school include all children having completed less than 5th grade in Fall 1997; secondary school children have completed 5th grade or more in Fall 9
Table 12. Schooling vulnerability to illness shocks - selected results
Dependent variable: Child at school

<table>
<thead>
<tr>
<th></th>
<th>Secondary school</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boys</td>
<td>Girls</td>
<td>Children of ag. worker</td>
</tr>
<tr>
<td>Head of household ill</td>
<td>-0.031</td>
<td>-0.008</td>
<td>-0.038*</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.050*</td>
<td>-0.010</td>
<td>0.044*</td>
</tr>
<tr>
<td>Proportion of children age 0-5 years ill</td>
<td>0.006</td>
<td>-0.020+</td>
<td>-0.009</td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.008</td>
<td>0.019</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Number of observations 12,498 12,374 16,599
Number of children 5,218 5,206 8,372

+ significant at 10% level; * significant at 5% level; ** significant at 1% level.

Arellano-Bond estimator. All regressions include round and child fixed effects, and the other shocks and interaction terms shock*Progresa, as in Table 11.
Table 13. Impact of shocks on child work and mitigation by Progresa

Dependent variable: Child works

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head of household unemployed</td>
<td>-0.002</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.008]</td>
<td>[0.011]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.016</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.011]</td>
<td>[0.014]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head of household ill</td>
<td>0.022</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.008]**</td>
<td>[0.010]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.013</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.010]</td>
<td>[0.013]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of children age 0-5 ill</td>
<td>0.023</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.006]**</td>
<td>[0.006]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.005</td>
<td>-0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.008]</td>
<td>[0.008]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drought severity in locality</td>
<td>-0.075</td>
<td>-0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.007]**</td>
<td>[0.009]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.019</td>
<td>0.028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.007]**</td>
<td>[0.009]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural disaster severity in locality</td>
<td>0.048</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.011]**</td>
<td>[0.014]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.023</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.013]</td>
<td>[0.017]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss as consequence of natural disaster</td>
<td>-0.019</td>
<td>-0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.004]**</td>
<td>[0.005]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.017</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.005]**</td>
<td>[0.008]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of observations: 87,631 90,224 59,586 90,276 90,276 90,276 57,798
Number of children: 27,678 27,960 21,109 27,969 27,969 27,969 20,814
R-squared: 0.01 0.02 0.01 0.02 0.02 0.02 0.02

Standard errors in brackets; * significant at 5% level; ** significant at 1% level.
Linear probability model. All equations include round and child fixed effects.
1 Proportion of households in locality reporting having experienced a drought or a natural disaster (earthquake, hurricane, flood, or plague) in last 6 months.
2 Loss of land, harvest, or animal. Average occurrence of these shocks are 25%, 7%, and 2% respectively.
<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Boys</th>
<th>Girls</th>
<th>Children of agricultural worker</th>
<th>Children of non-ag. worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of household unemployed</td>
<td>0.023</td>
<td>-0.033</td>
<td>0.096</td>
<td>0.514</td>
<td>-0.044</td>
</tr>
<tr>
<td></td>
<td>[0.028]</td>
<td>[0.044]</td>
<td>[0.033]**</td>
<td>[0.238]*</td>
<td>[0.043]</td>
</tr>
<tr>
<td>* Progresa</td>
<td>-0.023</td>
<td>0.042</td>
<td>-0.104</td>
<td>-0.580</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>[0.036]</td>
<td>[0.056]</td>
<td>[0.043]*</td>
<td>[0.301]</td>
<td>[0.057]</td>
</tr>
<tr>
<td>Head of household ill</td>
<td>0.008</td>
<td>-0.005</td>
<td>0.018</td>
<td>-0.018</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>[0.027]</td>
<td>[0.042]</td>
<td>[0.031]</td>
<td>[0.040]</td>
<td>[0.047]</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.075</td>
<td>0.121</td>
<td>0.031</td>
<td>0.125</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>[0.035]*</td>
<td>[0.055]*</td>
<td>[0.040]</td>
<td>[0.053]*</td>
<td>[0.064]</td>
</tr>
<tr>
<td>Proportion of children age 0-5 ill</td>
<td>0.029</td>
<td>0.020</td>
<td>0.041</td>
<td>0.027</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>[0.017]</td>
<td>[0.026]</td>
<td>[0.019]*</td>
<td>[0.021]</td>
<td>[0.039]</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.007</td>
<td>0.018</td>
<td>-0.007</td>
<td>0.008</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>[0.022]</td>
<td>[0.034]</td>
<td>[0.025]</td>
<td>[0.028]</td>
<td>[0.049]</td>
</tr>
<tr>
<td>Drought severity in locality</td>
<td>-0.134</td>
<td>-0.143</td>
<td>-0.120</td>
<td>-0.077</td>
<td>-0.199</td>
</tr>
<tr>
<td></td>
<td>[0.024]**</td>
<td>[0.037]**</td>
<td>[0.028]**</td>
<td>[0.031]*</td>
<td>[0.057]**</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.056</td>
<td>0.060</td>
<td>0.050</td>
<td>0.020</td>
<td>0.170</td>
</tr>
<tr>
<td></td>
<td>[0.026]*</td>
<td>[0.040]</td>
<td>[0.030]</td>
<td>[0.032]</td>
<td>[0.064]**</td>
</tr>
<tr>
<td>Natural disaster severity in locality</td>
<td>0.038</td>
<td>0.052</td>
<td>0.026</td>
<td>0.021</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>[0.036]</td>
<td>[0.056]</td>
<td>[0.043]</td>
<td>[0.046]</td>
<td>[0.102]</td>
</tr>
<tr>
<td>* Progresa</td>
<td>0.084</td>
<td>0.119</td>
<td>0.039</td>
<td>0.019</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>[0.044]</td>
<td>[0.068]</td>
<td>[0.052]</td>
<td>[0.058]</td>
<td>[0.115]</td>
</tr>
</tbody>
</table>

Number of observations | 13,340 | 7,054 | 6,284 | 8,403 | 4,937 |
Number of children | 4,630 | 2,389 | 2,240 | 3,819 | 2,915 |
Mean value of endogenous variable | 0.191 | 0.284 | 0.086 | 0.173 | 0.220 |
R-squared | 0.04 | 0.05 | 0.03 | 0.04 | 0.05 |

Standard errors in brackets; * significant at 5%; ** significant at 1%.
Linear probability model. All equations include round and child fixed effects.
1 Proportion of households in locality reporting having experienced a drought or a natural disaster (earthquake, hurricane, flood, or plague) in last 6 months.
This paper explores the role of Conditional Cash Transfer (CCT) programs in serving as a risk management instrument for the poor. Using various rounds of panel data from the successful CCT Progresa program in Mexico, the impact analysis indicates a number of interesting patterns. First, strong state dependence indicates that children taken out of school (partly due to shocks) are less likely to subsequently return, implying long-term consequences from short-term decisions. Nonetheless, the CCT program seems to mitigate this state dependence. Second, a number of shocks—such as unemployment or illness of the household head or younger children, droughts, natural disasters in the community and loss of land, harvest, or animals—have strong effects on children’s schooling attainment, indicating that children are used as risk coping instruments. While this creates short run consumption smoothing gains for the household, such coping strategy implies long-term losses in human capital for children that are accentuated by state dependence. Again, the impact evaluation analysis shows that the Progresa transfers compensate for these shocks, protecting child schooling from a range of shocks. Finally, while the shocks reported also seem to induce children to work—particularly girls and children of farm workers when their parents are affected by unemployment—the impact evaluation suggests that Progresa transfers and the conditionality on school attendance serve to deter using child labor as a risk coping strategy. Despite the fact that CCT are not designed to deal directly with shocks or serve as “insurance” instruments per se, these results clearly indicate that they can provide an important safety net role by protecting child education from a range of idiosyncratic and covariate shocks. Such findings also imply that incorporating risk exposure and shock incidence criteria in the design of such programs’ eligibility rules, or allowing additional flexibility in terms of scaling up or down such interventions to address large covariate or idiosyncratic shocks is a potentially worthwhile direction and use of such programs.