El-Ain Al-Sokhna
2x650 MWe GAS/OIL THERMAL POWER PROJECT

Environmental and Social Impact Assessment

EXECUTIVE SUMMARY

FINAL REPORT
Volume – II(A)

August 2008
ECG File No. 1312

Submitted by:
Engineering Consultants Group (ECG)
Bldg. 2, Block 10, El-Safarat District
Nasr City 11765, Cairo, Egypt.
P.O.Box: 1167, Cairo 11511, Egypt.
Arab Republic of Egypt
Ministry of Electricity and Energy
Egyptian Electricity Holding Company
East Delta Electricity Production Company

EL-AIN AL-SOKHNIA
2x650 MWe GAS/OIL
THERMAL POWER PROJECT

Environmental and Social
Impact Assessment

EXECUTIVE SUMMARY

FINAL REPORT
Volume – II(A)

August 2008

Submitted by:
Engineering Consultants Group (ECG)
Bldg. 2, Block 10, El-Safarat District
Nasr City 11765, Cairo, Egypt.
P.O.Box: 1167, Cairo 11511, Egypt.
EL-AIN AL-SOKHNA 2x650 MWe GAS/OIL THERMAL POWER PROJECT

Environmental and Social Impact Assessment

EXECUTIVE SUMMARY

1. INTRODUCTION
 1.1 Background
 1.2 Project Overview

2. THE ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT
 2.1 Contributors to the EIA Report
 2.2 Scope of the EIA Report
 Legal and Administrative Framework

3. GENERAL SETTING OF THE SITE:
 DESCRIPTION OF THE ENVIRONMENT

4. PROJECT DESCRIPTION
 4.1 Overview of the Power Plant
 4.2 Process Description
 4.3 Operational Releases from the Power Plant

5. ANALYSIS OF ALTERNATIVES
 5.1 Current Situation ("No Action" Option)
 5.2 Alternative Technologies and Fuels
 5.3 Power Plant Design
 5.4 Alternative Sites

6. KEY FINDINGS OF THE ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT
 6.1 Introduction
 6.2 Air Quality
 6.3 Aquatic Environment
 6.4 Noise Impacts
 6.5 Flora and Fauna
 6.6 Land Use, Landscape and Visual Impacts
6.7 Soils, Geology and Hydrology
6.8 Traffic
6.9 Socio-economics and Soico-cultural effects
6.10 Archaeology, Historic and Cultural Heritage
6.11 Natural Disaster Risks
6.12 Major Accident Hazards
6.13 Solid and Hazardous Waste Management
6.14 Occupational Health and Safety
6.15 Associated Infrastructure

7. ENVIRONMENTAL MITIGATION AND MONITORING:
THE ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN (ESMP)

7.1 Enhancement and Mitigation Plan
7.2 Monitoring Program

8. PUBLIC CONSULTATION AND DISCLOSURE

9. RESPONSIBILITIES AND INSTITUTIONAL

9.1 Environmental Management Organization
9.2 Environmental Training
9.3 Occupational Health and Safety
9.4 Emergency Procedure and Accident Response

10. IMPLEMENTATION SCHEDULE AND REPORTING

11. CONCLUSIONS

12. REFERENCES AND CONTACTS
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPP</td>
<td>Ain Sokhna Power Plant</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>BPIP</td>
<td>Building Profile Input Program</td>
</tr>
<tr>
<td>CAA</td>
<td>Competent Administrative Authority</td>
</tr>
<tr>
<td>CAPMAS</td>
<td>Central Agency for Public Mobilization and Statistics</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CWDS</td>
<td>Circulating Water Discharge Structure</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>DS</td>
<td>Dissolved Solids</td>
</tr>
<tr>
<td>EAAQLs</td>
<td>Egyptian Ambient Air Quality Limits</td>
</tr>
<tr>
<td>EDEPC</td>
<td>East Delta Electricity Production Company</td>
</tr>
<tr>
<td>EEA</td>
<td>Egyptian Electricity Authority</td>
</tr>
<tr>
<td>EEAA</td>
<td>Egyptian Environmental Affairs Agency</td>
</tr>
<tr>
<td>EEHC</td>
<td>Egyptian Electricity Holding Company</td>
</tr>
<tr>
<td>EGSMA</td>
<td>Egyptian Geological Survey and Mining Authority</td>
</tr>
<tr>
<td>EHS</td>
<td>Environmental Health and Safety</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management Staff</td>
</tr>
<tr>
<td>ENIT</td>
<td>Egyptian National Institute of Transport</td>
</tr>
<tr>
<td>ESIA</td>
<td>Environmental and Social Impact Assessment</td>
</tr>
<tr>
<td>ESMP</td>
<td>Environmental and Social Management Plan</td>
</tr>
<tr>
<td>EUPS</td>
<td>Egyptian Unified Power System</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration, (US)</td>
</tr>
<tr>
<td>GARBLT</td>
<td>General Authority for Roads, Bridges and Land Transport</td>
</tr>
<tr>
<td>GEP</td>
<td>Good Engineering Practice</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Production</td>
</tr>
<tr>
<td>GIS</td>
<td>Gas-Insulated Switchgear</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>HCM</td>
<td>Highway Capacity Manual</td>
</tr>
<tr>
<td>HFO</td>
<td>Heavy Fuel Oil</td>
</tr>
<tr>
<td>HGVs</td>
<td>Heavy Goods Vehicles</td>
</tr>
<tr>
<td>LFO</td>
<td>Light Fuel Oil</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>MWRI</td>
<td>Ministry of Water Resources & Irrigation</td>
</tr>
<tr>
<td>MSDSs</td>
<td>Material Safety Data Sheets</td>
</tr>
<tr>
<td>MWe</td>
<td>Mega-Watt electrical</td>
</tr>
<tr>
<td>NFRA</td>
<td>National Fire Protection Authority</td>
</tr>
<tr>
<td>NRIAG</td>
<td>National Research Institute for Astronomy and Geophysics</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>PCDA</td>
<td>Public Consultation and Disclosure Activities</td>
</tr>
<tr>
<td>pcp</td>
<td>passenger car per hour</td>
</tr>
<tr>
<td>PMU</td>
<td>Project Management Unit</td>
</tr>
<tr>
<td>RIGW</td>
<td>Research Institute for Ground Water</td>
</tr>
<tr>
<td>SGPP</td>
<td>Suez Gulf (BOOT) Power Plant</td>
</tr>
<tr>
<td>SPP</td>
<td>Sokhna Power Plant</td>
</tr>
<tr>
<td>SS</td>
<td>Suspended Solids</td>
</tr>
<tr>
<td>STG</td>
<td>Steam Turbine Generator</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>TWA</td>
<td>Time-Weighted Average</td>
</tr>
<tr>
<td>vph</td>
<td>vehicle per hour</td>
</tr>
</tbody>
</table>
List of Tables

Table 1 Potential World Bank Environmental Safeguard Policies and El-Ain Al-Sokhna Project Applicability
Table 2 Environmental, Health and Safety Issues Relating to Construction and Operation of El-Ain Al-Sokhna Power Project
Table 3 Environmental Impacts and Environmental Guidelines
Table 4 Institutional Arrangements for El-Ain Al-Sokhna Power Project
Table 5 Construction Impact Mitigation, Monitoring and Management Measures
Table 6 Operational Impact Mitigation, Monitoring and Management
Table 7 Transmission System Impact Mitigations, Monitoring and Management.
Table 8 Summary of Implementation Cost of the ESMP
Table 9 Monitoring Program for Ambient Air Quality, Noise and Vibration
Table 10 Monitoring of the Aquatic Environment During Operation
Table 11 Key Issues Raised During ESIA Scoping Meeting

List of Figures

Figure 1 Location of proposed El-Ain Al-Sokhna Power Plant
Figure 2 Location of the Proposed Site within the Context of the Suez Governorate
Figure 3 General View for the Proposed Site Land
Figure 4 Layout of the Proposed Power Plant
Figure 5 El-Ain Al-Sokhna Air Quality Monitoring Locations
EL-AIN AL-SOKHNA 2x650 MWe GAS/OIL THERMAL POWER PROJECT

Environmental and Social Impact Assessment

EXECUTIVE SUMMARY

1. INTRODUCTION

1.1 Background

1. Engineering Consultants Group (ECG), a private consulting firm (Egypt) was commissioned by the Egyptian Electricity Holding Company (EEHC)/East Delta Electricity production Company (EDEPC) to prepare the technical documents and procedures required by the World Bank Group (WB) and the African Development Bank (AfDB) concerning the Environmental and Social Assessment of the El-Ain Al-Sokhna Power Project.

2. EEHC is seeking financial assistance from the WB & the AfDB for the construction and operation of this 2x650 MWe, dual fuel power plant. The proposed plant is designated as a Category A project under WB & the AfDB rules and a Category C project under the Egyptian environmental regulations and therefore requires a full Environmental Impact Assessment. Financing from WB & the AfDB is conditional upon obtaining the environmental clearance from all the Egyptian regulatory authorities, the WB & the AfDB.

1.2 Project Overview

3. East Delta Electricity Production Company (EDEPC), a company incorporated in Egypt and affiliated to the Egyptian Electricity Holding Company (EEHC) proposes to construct and operate a new thermal power plant at El-Ain Al-Sokhna, which is along the Suez Gulf and about 52km south of the city of Suez on the western coast of the Suez Gulf. The site is within an existing piece of land allocated to previous Egyptian Electricity Authority (EEA) (today EEHC) by the Presidential Decree No. 299 of the year 1999. The overall proposed site area is approximately 275,000 m2.

4. The proposed power plant will consist of two supercritical thermal steam units, each with a nominal electricity generating capacity of 650 megawatts (MWe), which will be known as El-Ain Al-Sokhna Power Plant. The overall generating capacity of the power plant will be 1300MWe. The power plant is intended to be operational by the end of the year 2012/2013. The power output from the proposed plant will be sold to the Egyptian Electricity Transmission Company (EETC).
5. The power plant will utilize natural gas as its primary fuel, delivered to the site via an existing pipeline to be operated by "City Gas", and also have the capability to operate using mazout (heavy fuel oil). The ability to "dual-fuel" the power plant (with natural gas or mazout) will provide security of electricity supply in the event that gas supplies are unavailable for any reason. In addition, a small emergency generator, for the plant safe shut down, operating on sollar oil (light fuel oil) will also be provided on-site to drive key items of equipment within the power plant in the event of a power supply failure, and sollar oil will also be able to be used, if required, to operate the auxiliary boiler during start-up.

6. The power plant will incorporate a direct (once through) cooling system using water abstracted from the Suez Gulf. The abstracted water will also be used, following pre-treatment demineralization and desalination, to provide process water make-up in the boiler system. Potable water supplies will be drawn from the same existing supply system for the Suez Gulf BOOT power plant.

7. The main demand for water is due to the direct cooling system. The use of a direct cooling system maximizes the electrical efficiency of the power plant and, after use, virtually all of the water will be returned to the Gulf of Suez at a slightly elevated temperature compared to the abstraction. No evaporative cooling towers are required, hence there is no opportunity for water drift or the formation of visible plumes of water vapor or ground fogging.

8. The site is bordered to the south by the 2 x 341.25 MWs E-2 Suez Gulf BOOT power plant on the rest of the land area that was allocated to the Egyptian Electricity Authority (EEA) (today EEHC) by the Government of the Arab Republic of Egypt. EEA have granted exclusive rights of use of that adjacent land to the BOOT project company. The site of the proposed power plant is shown on Figure 1. Also, Figure 2 depicts this location within the context of the Suez Governorate. Figure 3 illustrates a general view of the proposed site land.
Figure 1

Location of Proposed El-Ain Al-Sokhna Power Plant
Figure 2

Location of the Proposed Site within the Context of the Suez Governorate
Figure 3

General View for the Proposed Site Land
2. THE ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT

2.1 Contributors to the EIA Report

9. The Environmental and Social Impact Assessment (ESIA) report is prepared by ECG, a private consulting firm (Egypt), based on many baseline studies undertaken by independent national and international consultants and on information provided by EEHC, EDEPC and their sub-contractors. Public consultation activities are undertaken by ECG and EEHC in conjunction with EDEPC. The ESIA report draws heavily on the environmental and social assessment documentation prepared by group of local and international multidisciplinary consultants and submitted to ECG, for preparing the ESIA report for local permitting purposes and financing requirements. All such documentations were reviewed by ECG and cleared for inclusion in this report. Most of the relevant local permits for the construction of the power plant have now been received (Further details of the relevant local permits are available in Section 2.3.1 of the main ESIA report).

2.2 Scope of the ESIA Report: Legal and Administrative Framework

2.2.1 Government of Egypt Requirements

10. Beginning in the 1950s, the Government of Egypt has promulgated several laws and regulations concerning protection of the environment.

11. The Egyptian standards have been drawn from the range of provisions in the following documents:

- Law No. 93 for 1962 regarding the drainage of liquid wastes, particularly sanitary drainage.

12. Law 4/1994 requires that, for establishments requiring licenses, an environmental impact assessment must be prepared and submitted to the Egyptian Environmental Affairs Agency (EEAA) for review. The environmental impact assessment must be submitted to the EEAA by "the Competent Administrative Authority (CAA) or the licensing authority" for the project in question. For the Power Plant Project, the Competent Administrative Authority is the Suez Governorate.

13. The Suez Governorate will send the EIA to EEAA for review and provide its opinion within 60 days. Once EEAA has approved the project, a
license to proceed can be issued. No additional environmental or social clearances are required other than the EIA approval to proceed with the project activities. The law requires that any new project should comply with all the relevant articles pertinent to environmental attributes, which could be impacted from project activities.

14. Egyptian EEAA regulations specify the technical scope or contents of an environmental impact assessment. As a matter of practice, environmental impact assessments for power plant projects typically have a scope and organization similar to World Bank environmental assessments.

15. In addition to environmental impact assessment requirements, the Government of Egypt has established air pollution and water pollution limits applicable to the Power Plant project. These limits are discussed in Chapter 6, along with the actual air and water pollution levels expected from the Power Plant.

2.2.2 World Bank Guidelines and Safeguard Policies

16. The World Bank includes environmental impact assessment as an integral part of the evaluations it performs before financing a proposed project. The World Bank’s Operational Policy 4.01 (October 3, 1991 and its updates, 1999) provides guidance on the types of assessments that should be performed for different types of projects, and on the scope and content of those assessments. According to Operational Directive 4.01, thermal power plant projects require a full Environmental Assessment (EA).

17. World Bank Environmental Safeguard Policies provide 10 potential issues that may need to be considered in an EA, depending on the specific characteristics of each project. Table 1 summarizes the expected triggerability of the potential Safeguard Policies for the Al-Sokhna Power Plant Project. The Safeguard Policies identified as “triggerable” are those which may be triggered and thus considered "Requiring Management". When the detailed design of the Al-Sokhna Power Plant has been determined, the EDEPC should prepare project-specific plans to manage these potential impacts.

18. No safeguard policies were triggered except for the Environmental Impact Assessment and the Involuntary Resettlement. Table 1 shows potential World Bank environmental Safeguard Policies and El-Ain Al-Sokhna project triggerability. The table justifies the triggerability or lack thereof for WB Safeguard Policies.

19. Annex B to Operational Directive 4.01 provides an outline of the information that should be included in a full EA. This Environmental and Social Impact Assessment follows the scope of Annex B.
Table 1

Potential World Bank Environmental Safeguard Policies and El-Ain Al-Sokhna Power Project Triggerability

<table>
<thead>
<tr>
<th>No.</th>
<th>Safeguard Policy</th>
<th>Policy Triggered?</th>
<th>Justification</th>
</tr>
</thead>
</table>
| 1 | Environmental Assessment | Yes | • This policy applies to all projects requiring a Category A Environmental Assessment Under OP 4.01.
• All environmental and Social aspects included in El-Ain Al-Sokhna project are adequately examined.
• El-Ain Al-Sokhna project is not likely to have significant potential (reverse) environmental risks & impacts in its area of influence (impacts on the natural environment: air, water & land; human health & safety; physical cultural resources; and transboundary and global environment concerns). |
| 2 | Forest | No | • No forest areas exist. |
| 3 | Involuntary Resettlement | Yes | • This policy applies to all projects triggering OP 4.12.
• There may be relocation or loss of shelters along the routing of interconnecting transmission lines.
• There may be loss of assets or access to assets.
• There may be loss of income sources or means of livelihood.
• All activities related to the construction of the new plant will take place within on EDEPC land either on the site or on land directly adjacent to the site. i.e. no land acquisition. Not even temporary will result from the construction.
• Experience from a number of similar power plants along the Mediterranean or Suez Gulf shore line has shown that the impacts on fisheries of the discharge of warm water into the sea waters have been positive. Consultations with the fishermen support this assertion. Impacts will be positive rather than negative, i.e. no loss of livelihood.
• Transmission lines which will evacuate power generated by the El-Ain Al-Sokhna power plant will extend to the west direction with a length of approximately 90 km on high voltage 500 kV to connect the power plant with existing 500kV “South Tebbin/Abu Zaalal” transmission line and to the north direction with a length of about 40 km on high voltage 220 kV via opening the existing “Kattamyyah/El-Masryyah Cement” double circuit transmission line and extending it for about 40km. Land take or resettlement may be associated to the power interconnecting lines. |
| 4 | Indigenous Peoples | No | • The project does not affect the indigenous peoples in the project area. |
| 5 | Safety of Dams | No | • The project does not involve construction of a large dam.
• The project is not dependent upon an existing dam. |
| 6 | Pest management | No | • Procurement of pesticides or pesticide application equipment is not envisaged.
• The project will not affect pest management in any way. |
Table 1 (Contd.)

Potential World Bank Environmental Safeguard Policies and El-Ain Al-Sokhna Power Project Triggerability

<table>
<thead>
<tr>
<th>No.</th>
<th>Safeguard Policy</th>
<th>Policy Triggered?</th>
<th>Justification</th>
</tr>
</thead>
</table>
| 7. | Physical Cultural Resources | No | • Physical cultural resources are adequately examined.
• The El-Ain Al-Sokhna project is not likely to have any significant impact on physical cultural resources. |
| 8. | Natural Habitats | No | • Natural Habitats are adequately addressed and examined.
• The El-Ain Al-Sokhna project is not likely to have any significant impacts on natural habitats. |
| 9. | Projects in Disputed Areas | No | • The EDEPC/EEHC is not involved in any disputes over an area with any of its neighbors.
• The project is not situated in a disputed area.
• Any component likely to be financed as part of the project is not situated in a disputed area. |
| 10. | Projects on International Waterways | No | • Cooling water abstracted from the Suez Gulf (40-52m³/sec) is returned totally back to it. Actual water consumption is less than 0.07% of the abstracted water.
• No disturbance to the Suez Gulf waters is expected either upstream or downstream.
• Hydrological/hydraulic study is carried out and the study revealed that no impact is expected and the mixing zone is limited to 70m distance with 5°C above ambient, which diluted to 3°C at a distance between 100 and 150 m with full compliance with Egyptian Law 4/1994 and WB regulations.
• MWRI is in full agreement with EEHC regarding its plan for water abstraction. |

20. In addition to environmental impact assessment guidelines, the World Bank has established guidelines concerning air pollution and water pollution form thermal power plants (*Pollution Prevention and Abatement Handbook-Part III* (July 1998)). The guidelines were officially published in 1988; since then, several sets of revisions have been proposed, most recently on March 22, 1996. The 1988 and proposed 1996 guidelines are discussed in Chapter 6, along with the actual air and water pollution levels expected from the Power Plant. Also, the most recent update of the World Bank Guidelines, issued in 2007 has been considered.

22. Public Consultation Process has been designed in accordance with World Bank Guidance for the Preparation of a Public Consultation and Disclosure Plan (January 1996);

23. The ESIA has assessed the impacts of the construction and operation of the New El-Ain Al-Sokhna Power Plant and has also considered the cumulative air quality impacts of the plant and other existing industry in the project area, including the Suez Gulf BOOT power plant. Consideration has
also been given to the operation of the transmission line and other outside facilities. Permits will be required from the relevant Competent Administrative Authorities.

24. The ESIA report presents the full assessment of the environmental, social, health and safety impacts of the El-Ain Al-Sokhna power plant. This Executive Summary presents a short resume of the findings of the ESIA report. For further details, reference should be made to the full ESIA report.

2.2.3 African Development Bank Guidelines

25. The African Development Bank follows a policy which stipulates that "at the identification phase, the screening exercise focuses on the environmental and social dimensions of a project to categorize it in one of four categories". "Category 1 projects are those that are likely to have the most severe environmental and social impacts and require a full ESIA", which includes thermal and hydro power plants. ANNEX 7 of the Environmental and Social Assessment Procedures (ESAP) for AfDB's Public Sector Operations, published in June 2001, states that "the projects assigned to Category 1 require a full Environmental and Social Impact Assessment (ESIA), including the preparation of an ESIA Report and Environmental and Social Management Plan (ESMP). These project may also be improved by carrying out complementary studies that are not specifically required under ESAP, such as detailed gender analyses or institutional analyses. The need for such complementary studies shall be determined on a project-by-project basis during the preparation phase".

26. The African Development Bank sets out its procedures and policies with regard to conducting environmental assessment in a series of Policy and Guidelines documentation, out of them most importantly, the following documents:

- Environmental and Social Impact Assessment Procedures (ESAP) for AfDB's Public Sector Operations (June 2001).
- Handbook on Stakeholder Participation (2201).
- Environmental Assessment Guideline on Renewable and Non-renewable Energy (March 1997).
3. GENERAL SETTING OF THE SITE:
 DESCRIPTION OF THE ENVIRONMENT

27. The Al-Sokhna power plant site is located on the western coast of the Gulf of Suez, part of the Red Sea, approximately 52 km south of Suez City, and 1.6 km east of the Suez/Red Sea Highway, which runs parallel to the Gulf of Suez. The site is within the administrative boundary of the Suez governorate and its Ettaqa District. The site, also, is within the Suez industrial complex, an area being developed for industrial use. The area surrounding the site is locally known as the El-Ain Al-Sokhna area. The general site location is given in Figure 5.1 (A, B & C-Landsat image of the Suez Region).

28. The site is located in a developing industrial zone (Suez Gulf Development Corporation and El-Ain Al-Sokhna) and lies 1km south of the Al-Sokhna Port which is currently under operation. The port is being developed to be a major commercial harbour facility. Areas directly to the west and south of the proposed site are being developed with a variety of heavy and light industrial activities.

29. Land cover on the site consists primarily of bare sand, with scattered low-growing vegetation. No residences, agricultural activities or other significant land uses are located on the site or in its immediate vicinity and the arid nature of the area provides little opportunity for agricultural production.

30. The site is located some 52 km south of Suez City and is delimited by the two coordinates: Latitudes 29° 30' and 30° 00' North and Longitudes 32° 00' and 32° 30' East.

31. The annual average surface water temperature in the Suez Gulf site area is 23.6°C, with a range of 15.7°C (recorded in February) to 30.4°C (recorded in August). The highest monthly average surface water temperatures are 27.1°C in July and 28.0°C in August.

32. The project area lies within the hyperarid climatic province of Egypt characterized by a mild winter and hot summer. During 2006, the monthly average low temperature ranged between 11.5°C and 26.2°C, and the monthly average high temperature ranged between 18.6°C and 38.3°C. The high temperature exceeded 42°C in some summer days. During 2006, the average yearly temperature was around 23.9°C, and the average yearly humidity was around 52.25%. The air pressure is generally high all through the year; its minimum level occurs in August.

33. The annual average wind speed for 2006 was 4.37m/sec. Wind speeds rarely exceeded 10 meters/second. The prevailing wind direction was generally from the North and/or North Northwest for over 60% of the year.

34. The land around the Gulf of Suez is generally composed of littoral salt marsh, coastal desert plain and adjoining hills; the project area lies in the coastal desert plains, These plains extend between the littoral salt marsh belt on the seaward side and the coastal range of hills and mountains on the inland side. The coastal plain is characterized by active soil transporting
agencies (water and wind). Except for the main drainage channels or deltas of wadis, the coastal plain is mostly devoid of plant and animal life.

35. The only vegetation found on the project site is scattered low-growing bushes. Most of the site is bare sand. This type of habitat is not expected to provide adequate food or cover for large animals. The site probably is used by a limited number of invertebrates, reptiles, and birds.

36. Bird migration generally occurs during the autumn season. During this season, large numbers of raptors migrate and pass through the northern sector of this coastal plain, including the project site. Other migratory species utilize vegetated areas of the coastal plains.

37. The main transport infrastructure linking the Suez South area to the country main ports facilities is principally based on road network. The site is accessible through, at least, three main highways. The Suez/Red Sea highway runs parallel to the Gulf of Suez. The Maadi/El-Ain Al-Sokhna highway crosses the southern part of the area from northwest to southeast. The Wadi Hagul highway runs from Cairo/Suez highway southwards to connect with Maadi/El-Ain Al-Sokhna highway west of Suez Cement Factory.

38. The water resources in the project area are mainly: (1) the hallow and deep aquifers in the area; (2) Nile River, at Maadi-Helwan reach; (3) fresh Suez Canal irrigation branch, fed from Manayyef and Ismailia Canal; and desalination of Red Sea water. Rain is generally the main source of groundwater, either for surface sedimentary aquifers (Wadi Bedaaa and Wadi Gheweiba) or for structural aquifers deeply seated. It is believed that during the alluvial time, huge quantities of fresh water were kept in the porous beds and in wadi alluvium. Aquifers along the main valleys are recharged every now and then with rainwater. Percolation occurs when rainwater runs along the slopes to the Red Sea. Wadi Bedaaa and Wadi Gheweiba have the largest watershed area and rainwater flows.

39. The proposed site lies within the administrative boundary of the Suez Governorate. The Governorate of Suez has prepared an Urgent Development Plan (UDP) for land use management and planning (1993) and its update (2007), in which it sets out its policy to control development in the Suez region up to 2000.

4. PROJECT DESCRIPTION

4.1 Overview of the Power Plant

40. The power plant site will occupy an area of approximately 125,000 m², within a total allocated area of 275,000 m² rectangle-shaped piece of land and will include the following main elements:

- Supercritical steam power plant, comprising two generating units primarily fired by natural gas, at approximately 9-11 bar gauge at the interface, but also designed to run on mazout (heavy fuel oil) in emergency situations as a secondary fuel. Each unit will consist of one outdoor supercritical
steam generator for steam generation and one supercritical steam turbine generator (STG) providing 650 MWe (nominal) electrical generation capacity per unit at the 100% of the STG output case. Each STG will be fed by steam from the respective steam generator (boiler).

- Circulating water system, with the main pumps and associated piping, the intake and discharge structures, the screening system, the chlorination system and the cathodic protection system;
- Heavy fuel oil and light fuel oil storage tanks;
- Intermediate water storage, the demineralization plant and the make up water system; and
- Power will be generated at the manufacturer’s standard voltage and stepped up through main transformers to be connected to the new 500kV GIS switchgear.

41. The power plant will include the following main components:

- Boiler Unit 1 A.
- Boiler Unit 1 B.
- Auxiliary Boiler.
- Steam Turbines Unit 1 A.
- Elec. Bldg. Unit 1 A.
- Elec. Control Bldg. Unit 1 B.
- Main Transformers Unit 1 A.
- Main Transformers Unit 1 B.
- Aux. Transformers Unit 1 A.
- Aux. Transformers Unit 1 B.
- Switchyard Area.
- Diesel Generator.
- Switchgear Control Room.
- Stacks Module 1.
- Fuel Gas Receiving/Reducing Station.
- Mazout Fuel Oil Unloading Pumps.
- Sollar Oil Unloading Pumps.
- Mazout Fuel Storage Tank 1.
- Mazout Fuel Storage Tank 2.
- Sollar Oil Unloading Pumps.
- Mazout Oil Heaters/Transfer Pumps.
- Sollar oil Storage Tank.
- Water Treatment Area.
- Circulating Water fire Water Pump House.
- Circulating Water Electrical Equipment Bldg.
- Chlorine Tank/Pump.
- Condensate Water Tank.
- Condensate Water Discharge Structure.
- Condensate Water Seal Well.
- Demineralized Water Storage Tank.
- Waste Water Treatment Plant.
- Administration Building.
- Warehouse/Work Shops.
- Security office.
- Fire Station.
- Hydrogen Generation Building.
- Bottled Gas Storage/Gen. Area.
- Foam Equipment.
- Black Start Facility.

42. The power plant is designed to operate as a base load unit with the STG operating in sliding pressure mode up to approximately 60% load and at fixed pressure for higher loads.

43. The layout and main components for the power plant is presented in Figure 4.

4.2 Process Description

44. The key steps of the generating process of the proposed power plant are as follows:

- The key inputs to the generating process are natural gas or mazout oil, which will be delivered to the site via underground pipelines (gas or mazout), together with air and water.

- Natural gas (or mazout oil when natural gas is unavailable) will be mixed with air and combusted to generate steam from demineralized water to drive two turbines serving electrical generators. The combustion of the fuel is supported by injection of air. The process results in the generation of electricity and also produces hot exhaust gases.

- The steam is cycled from the boilers through the turbines to condensers. The condensers are cooled by a direct cooling system, abstracting water from, and discharging the used effluent to, the Suez Gulf. The condensate is then returned for recirculation within the boilers.

- The final exhaust gases will be discharged to the atmosphere via a flue housed in a single stack of 150 m height for each unit in accordance with emission standards set by the EEAA. The main by-products from combustion of natural gas are carbon dioxide (CO₂), water vapour, carbon
monoxide (CO) and nitrogen oxides (NOx). Sulfur dioxide (SO\textsubscript{2}) and particulates, which are typically associated with coal and oil combustion, will not be produced other than in trace quantities during natural gas firing. When mazout oil is used instead of natural gas (in emergency situations for only less than 2% of the total operating hours), SO\textsubscript{2} and particulates will also be key emissions from the power plant.
Figure 4

Layout of the Proposed Power Plant
4.3 Operational Releases from the Power Plant

45. During operation, the key releases into the environment from the power plant will comprise the following:

- Exhaust gases, will be emitted into the atmosphere, normally from the Boilers' stack as a result of fuel combustion. Emissions from the combustion of natural gas are carbon dioxide (CO₂), water vapor, carbon monoxide (CO) and nitrogen oxides (NOx). Sulfur dioxide (SO₂) and particulates, which are typically associated with coal and oil combustion, will only be produced in trace quantities during natural gas firing. In emergencies when heavy fuel oil (mazout) is used instead of gas, SO₂ and particulates will however be key emissions from the power plant.

- Heated cooling water will be discharged into the Gulf of Suez via the cooling water discharge structure at a temperature of no more than 9.6°C at the point of discharge. Process waste water will be treated and discharged into the discharge system, which includes two pathways: one to the circulating water discharge system (CWDS) and the other to the plantation irrigation network. Any oil and residual solids will be removed before discharge and the pH of discharged water maintained at between 6 and 9.

- Chlorine will be added to the cooling water system to control bacterial and algal growth on various surfaces and in the cooling water intake. The cooling water discharge will contain residual quantities of chlorine at concentrations below the World Bank standard for free chlorine of 0.2 mg/l.

- Small volumes of solid wastes will be segregated, collected and disposed of by licensed waste disposal contractors.

46. The power plant incorporates a range of measures to eliminate or reduce operational releases within its design and layout, such as low NOx burners in the boilers, oil interceptors fitted to the site drainage system and effluent treatment facilities to treat wastewater prior to discharge. As a result, the power plant is designed to meet high environmental standards and comply with the emission limits of the Arab Republic of Egypt and the World Bank.

5. ANALYSIS OF ALTERNATIVES

5.1 Current Situation ("No Action" Option)

47. The no action alternative to the proposed El-Ain Al-Sokhna power plant would result in the demand for electricity exceeding supply, with an increasing deficit as demand increases in the future. Hence the lack of a secure and reliable electricity generation and supply system, would have significant social and economic implications including constraining existing and future economic development and restricting socio-economic development. As a result, the "no action" option is not considered to be a viable or acceptable alternative to the proposed project.
5.2 Alternative Technologies and Fuels

48. On the basis of security of supply, response to demand and economic advantages, the EEHC has specified that the Al-Sokhna project should be a two gas/oil-fired supercritical steam cycle units of 650 MWe nominal generating capacity each. The EEHC's rationale for choosing this technology in preference to other electricity generating technologies as follows:

49. The EEHC generation expansion plan includes provision of the following:

- gas/oil-fired steam units;
- gas/oil-fired combined cycle units;
- gas/oil-fired simple cycle combustion turbine units;
- pumped storage;
- wind farms; and
- integrated solar-thermal generating units.

50. Other possible options include "importing electricity", "rehabilitation of existing power plants", "transmission and distribution investment" and "IPPs".

51. These technological alternatives constrained by the following:

- **Importing electricity**: Egypt is interconnected to Libya and Jordan and is exporting electricity to both countries. Interconnection to Libya has a capacity of 300 MWe, and that of Jordan has a capacity of 350 MWe, which was increased to 450 MWe in 2006. Libya and Jordan are currently paying 4 US$/kWh for the Egyptian power supply. As they are net importers, there is currently not much scope for electricity imports to Egypt from the interconnected networks. In addition, the cost of electricity in both countries is much higher than that of Egypt, making it an uncompetitive alternative. There is currently no south border connection to Sudan, although there is an ongoing activities in the context of the Nile Basin Initiative (NBI) whereby Egypt could potentially import hydroelectric power starting approximately in 2012, if the price is competitive. However, considering the abundance of natural gas and thus the low cost electricity provision in Egypt, it will be difficult for imported electricity to be competitive.

- **Renewable energy**: Current world market cost of wind based electricity is 5.9-7.38 US$/kWh, whilst is 2.1 US$/kWh with current grant financing for wind projects, which is higher than the cost from natural gas thermal plants. Therefore, renewable energy is not competitive unless further subsidies are provided.
- **Rehabilitation of existing power plants**: EEHC has concluded that the rehabilitation option is cost effective in seven of its existing power plants, and these sites have already been or will be rehabilitated. However, these efforts are not enough to cope with the growing demand for electricity.

- **Transmission and distribution investments**: EEHC has developed a transmission and distribution (T&D) development plan and the T&D system is optimized for the current load requirements and generation capacity. To meet the demand growth for the fast track period and medium term expansion, a T&D investment plan has been developed. New electricity generation capacity is required in the network; therefore, strengthening of T&D capacity alone will not replace the need for the generation capacity. Furthermore, T&D losses are at a relatively low level, around 10% on average, and reducing the losses further would not free up the amount of electricity supply required.

- **BOOTs/IPP**: Three BOOT projects (650 MWe each) have been built in Egypt in late 1990's and early 2000's. The government is encouraging private sector participation in order to attract private investment. However, given the worldwide reduction in investor's interest in the power sector, private financing for power generation in the near term is still unlikely.

52. **Consistent with the generation expansion plan, the EEHC has stipulated that the El-Ain Al-Sokhna should be gas/oil-fired supercritical steam units of a net 2x650 MWe generating capacity. The reasons for the selection of this technology are as follows:**

53. The steam cycle (SC) technology, which fires natural gas as a main fuel and mazout as a back-up fuel, has been used for decades in Egypt. The plant efficiency is around 46% with 600 MWe size drumless type super-critical steam cycle, which exceeds the similar sub-critical unit efficiency with at least 4% ratio. The investment cost of Steam Cycle Super-critical plant, based on recent worldwide market experience, is around $ 1700/kWe (EPC basis with multiple packages). The application of large scale (750MWe) gas turbine combined cycle (CC) technology, which fires natural gas as a main fuel and diesel fuel as a back-up fuel, has been operational since 2004. Plant efficiency exceeds 50% and the investment cost, based on recent worldwide market experience, is around $760/kWe (EPC basis with multiple packages). Given that CC plants show lower investment cost and higher plant efficiency, there should be a distinguished rationale to justify why the SC technology has been selected for the proposed project. The reasons are the following:

- **Operational flexibility**: The EEHC plans to operate large scale (i.e., 750 MWe) CC plants at 100% full flat base-load with a possibility of reducing operations to 50% once a week. This is because the cycling capacity of large-scale CC plants is still to be confirmed (frequent start and stop, and partial load operation capacity). Consequently, SC plants are required to take the role of reducing the load, while CC plants keep 100% full load. EEHC therefore sets the maximum proportion of CC in the generation mix to be 30-35%. As a result, the Electric Generation Expansion Analysis System (EGEAS) model...
selected the proposed El-El-Ain Al-Sokhna SC plant as the most viable option based on this generation mix criteria. If the CC technology were selected, it would exceed the limit of CC in the generation mix, requiring CC plant cycling operation beyond what it is capable of.

- **Grid stability**: SC turbine has bigger inertia and is therefore more stable to network disturbances. When the CC ratio is too high in the generation mix, CC may overreact to the disturbances and interfere with each other, which could cause load instability.

- **Unforeseen risk of new technology**: Applying a new technology to the Egyptian specific climate and environment may have unforeseen risks. For example, recently, dust and humidity caused a quick filter pressure drop in the Cairo North plant, commissioned in May 2004, which was not expected when the CC plant was designed.

- **Fuel flexibility**: SC plants use mazout as a back-up fuel, easily available domestically, while CC plants use imported diesel oil. The ability to "dual-fuel" the power plant (with natural gas or mazout) will provide security of electricity supply in the event that gas supplies are unavailable for any reason.

- **Local manufacturing capacity**: In Egypt only 30% of CC plants are manufactured locally, in comparison to about 40-45% of SC plants manufactured locally. Therefore, the use of SC technology creates more local employment and requires less foreign exchange.

54. Given this rationale, existing and planned generating capacity using gas/oil-fired combined cycle units is already considered sufficient by the EEHC and further reliance on this particular technology is not preferred for reasons of security of supply, response to demand and economics. As shown in Table 3-1, almost 27% of installed capacity in 2006/2007 was provided by combined cycle technology. The new combined cycle units at New Kureimat and El-Atf, Sidi Krir and New Talkha will add more 3000 MWe to the installed capacity within the next 2 years. Also, declared combined cycle additions of Nuweiba on the Gulf of Aqaba will increase the combined cycle capacity by another 750 MWe within the same period. The EEHC is implementing a process of meeting and generating increased demand through the provision of conventional steam generation plants in order to generate sufficient demand to install further CCGT capacity in the future. This will result in increased potential to incorporate more CCGT capacity.

55. Hence, with the current policy to limit CC to 30-35% in the generation mix (as identified by EGEAS), and with urgent need of supply capacity with load following capability, SC technology has been identified as the most viable option for the El-Ain Al-Sokhna project. This will ensure operational flexibility, network stability, fuel flexibility, local job creation, and avoid unforeseen risks of applying new technologies too rapidly in Egypt.

56. Natural gas has been selected as the main fuel for the power plant and compared to other fossil fuels generating technologies, steam turbine
generators have a relatively low emissions of carbon dioxide (CO_2), moderate emission level of nitrogen oxides (NOx), and lowest emissions, almost traces, of sulfur dioxide (SO_2) and particulates.

5.3 Power Plant Design

There are a wide variety of potential designs for the proposed power plant. On the basis of the key design features selected for the power plant, together with the adoption of general good practices within its overall design and layout, fuel and chemical storage facilities and pollution monitoring equipment, the power plant minimizes its potential impacts on the environment whilst ensuring safe, secure and efficient operation. Key aspects of the design, which have been compared with alternatives, are as follows:

- the stack has been designed to maximize buoyancy and dispersion of emissions and its height (150 m) exceeds good engineering practice;
- the steam generators will be equipped with low NOx burners, minimizing emissions of NOx which is the key pollutant associated with combustion of natural gas;
- direct cooling water will be used to maximize generating efficiency, minimizing visual impact, noise emissions and the potential for visible vapor plumes or ground fogging. Alternatives such as cooling towers and air cooled condensers (open, whilst using less water, result in lower generating efficiencies and also result in impacts such as vapor plumes, visual and noise impacts). The availability of water is not considered an issue for this project given the use of water from the Suez Gulf;
- cooling water will be supplied from a sustainable water supply, namely the Suez Gulf, and the intake and outfall structures can be constructed and operated without significant impacts.

5.4 Alternative Sites

The EEHC designated the proposed El-Ain Al-Sokhna site for power plant construction from a group of three alternative sites, namely: Safaga, Sharm esh-Sheikh and El-Ain Al-Sokhna. The site area was allocated to the Egyptian Electricity Authority (EEA) (today, EEHC) by the Government of Egypt (Presidential Decree no. 299 of the year 1999, issued on 21 September 1999) and EEHC has given rights of use of the site to EDEPC. In selecting the required site, consideration was given to the following criteria:

Economic Factors:

- capital costs;
- operation and maintenance costs;
- requirement for natural gas;
- requirement for cooling water;
• demand loads for electricity; and
• requirements for electricity transmission lines and sub-stations.

Non-economic Factors:

• potential environmental impacts; and
• site development.

59. Potential environmental impacts have been examined for all sites. Screening level assessment during feasibility study indicated that the level of environmental impact will be relatively constant for all three sites.

60. Following negotiations with the concerned authorities, the planned location of El-Ain Al-Sokhna power plant was found to be the most cost effective site for the following reasons:

• minimal additional infrastructure would be required;
• desirable benefits for development of the site area; and
• no workers' colony is required as a local workforce is available.

61. In addition, the power plant will be constructed and operated on a land originally dedicated for power generation activity, thus it will not include any land take. Also, the power plant site will bring socio-economic benefits to the wider Suez Region, through employment opportunities, supply contracts and the effects of project expenditure within the local economy.

6. KEY FINDINGS OF THE ENVIRONMENTAL IMPACT ASSESSMENT

6.1 Introduction

62. A thorough assessment of the impacts of the proposed plant has been carried out based on information provided by EEHC, EDEPC and their sub-consultants. A combination of quantitative and qualitative assessment techniques, ranging from computer and/or physical modeling for air, water, noise and traffic impacts to ecological and aquatic surveys and visual evaluation, have been undertaken. The results of the assessment work have been compared with the environmental standards set by the Government of the Arab Republic of Egypt and the World Bank, whichever is the more stringent.

63. The following items are examined in the corresponding sub-sections of the ESIA Study Report:

- Air Quality;
- Aquatic Environment;
- Noise and Vibration;
- Flora and Fauna;
- Land use, Landscape and Visual Impacts;
- Soils, Geology and Hydrology;
- Traffic;
- Socio-economics and Socio-cultural Effects;
- Archaeology, Historical and Cultural Heritage;
- Natural Disaster Risks;
- Major Accident Hazards;
- Solid Waste Management;
- Public Health Effects;
- Occupational Health and Safety; and
- Associated Infrastructure.

64. *Table 2* presents environmental, health and safety issues relating to construction and operation of El-Ain Al-Sokhna power project.

65. For each of these items, a concise description and evaluation of the significance of potential impacts of the project is presented in the ESIA study report. Where modeling has been undertaken, a description of the model as well as corresponding maps summarizing the results of the assessment are provided.

66. Where potentially significant adverse impacts are identified, possible mitigation measures are suggested wherever possible, to ameliorate the impact to an acceptable level. Where identified, beneficial or positive impacts/effects of the project are also highlighted.

67. The conclusions of the assessment are that (with suitable mitigation measures described in *Tables 4, 5, 6 and 7*) the project is in compliance with the environmental requirements of both the Government of Egypt and the World Bank with respect to stack emissions of the new power plant, ambient air quality, discharge quality and noise. *Table 3* provides with a summary of anticipated impacts in relation to the Egyptian and World Bank environmental guidelines for stack emissions, ambient air quality, liquid effluent and noise. The following discussion highlights some of the key considerations and results of the assessment.
Table 2

Environmental, Health and Safety Issues Relating to Construction and Operation of El-Ain Al-Sokhna Power Project

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Potential Impacts During Construction</th>
<th>Potential Impacts During Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Dust from construction activities. Traffic-related air quality impacts.</td>
<td>Impacts of emissions from stacks on ambient air quality. Traffic-related air quality impacts. Global warming potential.</td>
</tr>
<tr>
<td>Noise and Vibration</td>
<td>Noise from construction activities.</td>
<td>Noise from power plant operations on surrounding land uses.</td>
</tr>
<tr>
<td>Soils, Geology and Hydrogeology</td>
<td>Effects on soils and geological features. Soil contamination. Effects on groundwater.</td>
<td>Soil contamination. Effect on groundwater</td>
</tr>
<tr>
<td>Flora and Fauna</td>
<td>Loss of habitat or species due to landtake. Disturbance or damage to adjacent habitat of species.</td>
<td>Disturbance or damage to adjacent habitat. Effects of structures on bird migration routes.</td>
</tr>
<tr>
<td>Major Accident Hazards</td>
<td>Risk to third-party hazardous industry.</td>
<td>Risk to third-party hazardous industry. Risk to power plant of third-party hazardous industry.</td>
</tr>
</tbody>
</table>
6.2 Air Quality

Construction Dust

68. Construction activities will result in locally high levels of dust. This may affect nearest receptors or sensitive environments which lie in the immediate boundaries of the power plant. Existing concentrations of airborne dust are already high in this industrial area. Potential impacts from dust emissions on site will be significantly reduced by careful management and the implementation of mitigation measures to reduce dust generation.

Stack Emissions and Background Air Quality

69. The power plant will burn natural gas as its primary fuel. As a result, the principle pollutant during normal operation will be NOx. During emergency operation (and for not more than 2% of operating time), the burning of heavy fuel oil will result in emissions of particulate matter and SO2 along with trace amounts of other pollutants. Emissions from the plant will meet Egyptian and World Bank Guidelines.

70. In order to analyze the potential impacts of the plant's emissions during normal operation (firing gas) on ambient air quality in the project area, dispersion modeling has been undertaken.

71. The assessment indicates that the highest concentrations for each of the averaging periods under consideration (hourly, daily, annual) are found to the north-north-west, north-west, and south-south-west of the site, respectively. This is because the winds are exposed to the atmospheric prevailing conditions, although they are overwhelmingly from the north and northwest for most of the time. Maximum annual concentration of NOx emissions in the ambient atmosphere due to operation of both of the Al-Sokhna power plant and the Suez Gulf BOOT power plant will not exceed 44.8 µg/m³ (highest annual maximum is 44.8 µg/m³ at the location [-141.5m, -658.8m]) and the maximum daily reaches 130 µg/m³ at a distance of 271.2 m north-west the origin point intermediating the stacks. Also, Maximum "One-hour Average" concentration of NOx emissions in the ambient atmosphere reaches 322.1µg/m³ at the location [-141.5m, 461.2m] (see Figure 5). It is recommended that an air quality monitoring system composed of 2 or 3 monitoring stations will be utilized. The monitoring station equipped with meteorological monitoring system will be located near to, or within, the power plant site, the other one or two stations will be located one down wind within the designated area of maximum predicted pollutant concentration and the other (if any) upwind.
Figure 5

El-Ain Al-Sokhna Air Quality Monitoring Locations
Table 3

Environmental Impacts and Environmental Guidelines

<table>
<thead>
<tr>
<th>Impact Area</th>
<th>Predicted Max. Concentration from Al-Sokhna Power Plant</th>
<th>Existing Ambient Air Quality (Effect of All Surrounding Industries)</th>
<th>Cumulative Air Quality Impact of both the Al-Sokhna & Suez Gulf Power Plants and Surrounding Industries</th>
<th>Egyptian Standard</th>
<th>World Bank Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack emissions (100% load) when firing Natural Gas</td>
<td>NOx ≤ 300 mg m^{-3}</td>
<td>300 mg m^{-3} $^{\text{a}}$</td>
<td>120 mg m^{-3}</td>
<td>200 mg m^{-3} $^{\text{b}}$</td>
<td>50 mg m^{-3}</td>
</tr>
<tr>
<td>SO$_{2}$ ≤ 300 mg m^{-3}</td>
<td>$2,500$ mg m^{-3} $^{\text{a}}$</td>
<td>$2,000$ mg m^{-3} $^{\text{b}}$</td>
<td>$2,000$ mg m^{-3} $^{\text{b}}$</td>
<td>50 mg m^{-3}</td>
<td></td>
</tr>
<tr>
<td>TSP – General (all sizes) ≤ 50 mg m^{-3}</td>
<td>200 mg m^{-3} $^{\text{a}}$</td>
<td>200 mg m^{-3} $^{\text{b}}$</td>
<td>50 mg m^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack emissions (100% load) when firing Heavy Fuel Oil (<2% of total annual operating time)</td>
<td>NOx – oil firing ≤ 300 mg m^{-3}</td>
<td>300 mg m^{-3} $^{\text{a}}$</td>
<td>400 mg m^{-3}</td>
<td>150 mg m^{-3} $^{\text{b}}$</td>
<td>150 mg m^{-3} $^{\text{b}}$</td>
</tr>
<tr>
<td>SO$_{2}$ – oil firing $\leq 2,000$ mg m^{-3}</td>
<td>$2,500$ mg m^{-3}</td>
<td>$2,000$ mg m^{-3} $^{\text{b}}$</td>
<td>$2,000$ mg m^{-3} $^{\text{b}}$</td>
<td>50 mg m^{-3}</td>
<td></td>
</tr>
<tr>
<td>TSP – General (all sizes) ≤ 50 mg m^{-3}</td>
<td>200 mg m^{-3} $^{\text{a}}$</td>
<td>200 mg m^{-3} $^{\text{b}}$</td>
<td>50 mg m^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Level Concentration (when firing Natural Gas)</td>
<td>NOx – 1 hour</td>
<td>295.5 µg m^{-3}</td>
<td>12.69 µg m^{-3}</td>
<td>334.79 µg m^{-3}</td>
<td>400 µg m^{-3}</td>
</tr>
<tr>
<td>NOx – 24 hours</td>
<td>3.00 µg m^{-3}</td>
<td>7.49 µg m^{-3}</td>
<td>137.49 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
</tr>
<tr>
<td>NOx – 1 year</td>
<td>38.9 µg m^{-3}</td>
<td>1.02 µg m^{-3}</td>
<td>45.52 µg m^{-3}</td>
<td>100 µg m^{-3}</td>
<td>100 µg m^{-3}</td>
</tr>
<tr>
<td>SO$_{2}$ – 1 hour</td>
<td>Trace</td>
<td>12.42 µg m^{-3}</td>
<td>12.42 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
</tr>
<tr>
<td>SO$_{2}$ – 24 hours</td>
<td>Trace</td>
<td>7.33 µg m^{-3}</td>
<td>7.33 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
</tr>
<tr>
<td>SO$_{2}$ – 1 year</td>
<td>Trace</td>
<td>0.90 µg m^{-3}</td>
<td>0.90 µg m^{-3}</td>
<td>60 µg m^{-3}</td>
<td>60 µg m^{-3}</td>
</tr>
<tr>
<td>PM$_{10}$ – 24 hours $^{\text{a}}$</td>
<td>Trace</td>
<td>462 µg m^{-3}</td>
<td>462 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
<td>150 µg m^{-3}</td>
</tr>
<tr>
<td>PM$_{10}$ – 1 year</td>
<td>Trace</td>
<td>62.64 µg m^{-3}</td>
<td>62.64 µg m^{-3}</td>
<td>70 µg m^{-3}</td>
<td>50 µg m^{-3}</td>
</tr>
<tr>
<td>Liquid Effluent</td>
<td>pH</td>
<td>6–9</td>
<td>6–9</td>
<td>6–9</td>
<td>6–9</td>
</tr>
<tr>
<td>BOD</td>
<td><50 mg l^{-1}</td>
<td><60 mg l^{-1}</td>
<td><60 mg l^{-1}</td>
<td><60 mg l^{-1}</td>
<td><60 mg l^{-1}</td>
</tr>
<tr>
<td>Chromium</td>
<td><0.5 mg l^{-1}</td>
<td>1 mg l^{-1}</td>
<td>0.5 mg l^{-1}</td>
<td>0.5 mg l^{-1}</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td><0.5 mg l^{-1}</td>
<td>1.5 mg l^{-1}</td>
<td>0.5 mg l^{-1}</td>
<td>0.5 mg l^{-1}</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td><1 mg l^{-1}</td>
<td>1.5 mg l^{-1}</td>
<td>1.0 mg l^{-1}</td>
<td>1.0 mg l^{-1}</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td><1 mg l^{-1}</td>
<td>5 mg l^{-1}</td>
<td>1.0 mg l^{-1}</td>
<td>1.0 mg l^{-1}</td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td><5 mg l^{-1}</td>
<td>15 mg l^{-1}</td>
<td>10 mg l^{-1}</td>
<td>10 mg l^{-1}</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td><50 mg l^{-1}</td>
<td><60 mg l^{-1}</td>
<td>50 mg l^{-1}</td>
<td>50 mg l^{-1}</td>
<td></td>
</tr>
<tr>
<td>Residual Chlorine (total) $^{\text{b}}$</td>
<td><0.2 mg l^{-1}</td>
<td><0.2 mg l^{-1}</td>
<td><0.2 mg l^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Increase (${^\circ}C$)</td>
<td>$<0.0{^\circ}C$ at point of discharge and $<3{^\circ}C$ within 300 m.</td>
<td>$<0.0{^\circ}C$ at point of discharge above ambient mixing zone up to $3{^\circ}C$</td>
<td>$<3{^\circ}C$ at edge of mixing zone $^{\text{b}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise $^{\text{c}}$</td>
<td>Daytime (max.)</td>
<td>Max. <58.1 dB(A)</td>
<td>70 dB(A) $^{\text{b}}$</td>
<td>70 dB(A) $^{\text{b}}$</td>
<td></td>
</tr>
<tr>
<td>Night time (max.)</td>
<td>Max. <55 dB(A)</td>
<td>60 dB(A) $^{\text{b}}$</td>
<td>70 dB(A) $^{\text{b}}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Egyptian standards for NOx are expressed in terms of NO$_{2}$.

(2) Ambient air quality monitoring results measured by the NRC air quality monitoring equipment in Al-Sokhna area during May 2008.

(3) The PM$_{10}$ concentrations resulting from the power plant itself only are traced.

(4) "Chlorine shocking" may be preferable in certain circumstances, which involves using high chlorine levels for a few seconds rather than a continuous low level release. The maximum value is 2 mg l^{-1} for up to 2 hours, which must not be more frequent than once in 24 hours (and the 24 hour average should be 0.2 mg l^{-1}).

(5) The effluent should result in a temperature increase of no more than $5{^\circ}C$ at the edge of the zone where initial mixing and dilution take place. Where this zone is not defined, use 100 m from the point of discharge when there are no sensitive aquatic ecosystems within this distance.

(6) There are no sensitive receptors for noise within 150 m of the power plant. The area has been categorised as "industrial area" with respect to Egyptian ambient noise standards and "industrial commercial" with respect to World Bank guidelines.
6.3 Aquatic Environment

72. Cooling water and process water for power plant operation will be drawn from the Suez Gulf via an intake structure. The quantity of the cooling water that will be returned back to the Suez Gulf is about 46 m³/sec. Process water that will be abstracted from the Suez Gulf is about 0.07% of this quantity. Potable water will be supplied to the power plant via Suez potable water system. Cooling water will be returned to the Suez Gulf via a discharge structure whilst waste process water will be disposed of after treatment via discharge system, which includes two pathways: plantation irrigation network and Circulating Water Discharge System (CWDS). Sanitary waste water will be disposed of -after treatment- via plantation irrigation network. No ground water or other surface water will be used during power plant construction and operation. The Contractors will be responsible for relevant water/toilet facilities during construction and the need to provide appropriate services will be specified in their contracts. The key potential impacts of the power plant on the aquatic environment will therefore be impacts to the aquatic flora and fauna during power plant construction and operation.

73. The aquatic environment surrounding the project site is characterized by generally fair water quality. The aquatic flora is characterized by poor biodiversity and no sensitive ecosystems. No commercial fishing and very limited fishing activity occurs in the vicinity of the project.

74. During construction of the power plant dredging and construction of the intake and discharge structures could lead to potential impacts on physical aquagraphy, water quality and removal of, or disturbance to, aquatic habitats, flora and fauna. Given that the area of impact is very localised, losses are in many cases temporary and field survey data available do not indicate significant or sensitive habitats, the impacts of power plant construction on the aquatic environment are not considered to be significant. In addition, good site management and engineering practices during construction will ensure that any residual impacts are reduced to a minimum.

75. Power plant operation will result in a heated plume of waste cooling water being discharged into the Suez Gulf. Process water will be disposed of to the discharge system (identified above). All discharges of process water will be treated prior to discharge to ensure that the Egyptian and World Bank waste water quality guidelines are met. Treatment includes neutralization, oil separation, flocculation and filtration.

76. The returned cooling water will be released at a temperature of no more than 9.6°C at the point of discharge. Thermal modeling of the discharge plume shows that, at full load operation, the point at which the plume has decreased in temperature to 5°C above ambient, lies at approximately 70 m
from the point of discharge. The mixing zone has been defined by the HRI/MWRI to be 150 m from the point of discharge.

77. The temperature of the returned cooling water at the point of discharge conforms to the Egyptian Standard, and the discharge as modeled satisfies the World Bank standard of a maximum increase of 3°C above ambient at the edge of the mixing zone (100 m from the point of discharge). In addition, the area affected by the highest temperature increases and therefore where aquatic ecology is likely to be most affected, is localized and the aquatic habitats in this area have been found to already be relatively impoverished. Outside this area, more marginal increases in the Suez Gulf water temperature are likely to create new or improved habitats for flora and fauna.

74. Physical aquagraphy, Al-Sokhna Shoreline access, fishing and navigation are not predicted to be significantly affected by the presence of the intake and discharge structures.

6.4 Noise Impacts

78. The construction of the Al-Sokhna power plant is expected to generate a maximum noise level of 59 dB(A) during the day at the fence of the power plant and 57 dB(A) at night. These worst-case construction noise levels are both within Egyptian and World Bank\(^{(1)}\) guidelines, and for most of the construction periods, the noise levels will be lower than these values. There are no residential receptors within 1000 m of the plant.

79. Construction traffic on local roads will also generate additional noise, however noise levels on local roads predicted for peak construction activity (during 2010-2012) is expected to be only 0.3dB(A) above ambient levels. This magnitude of increase is generally not perceptible to the human ear, consequently no construction traffic impacts are predicted.

80. The potential noise emissions from the Al-Sokhna plant during operation have been modeled to provide noise contours in the area around the site. The predicted operational noise levels at the site boundary and at all receptors are below the Egyptian and World Bank guidelines during daytime and night-time.

\(^{(1)}\) There are no World Bank Guidelines for demolition and construction noise, therefore Operational noise guidelines are applied here.
6.5 Flora and Fauna

81. No areas protected for their conservation value are located on, or in the vicinity of, the project area. The proposed site itself and the surrounding land is poorly vegetated with much of the area having been dominated by sands and sabkha. Given that the potential impacts of construction and operation on power plant area likely to be localized and good site management practices will be implemented, no significant effects are predicted.

6.6 Land Use, Landscape and Visual Impacts

82. The land use at the project site is industrial land. There is no loss of this land to the power plant development, as this land is dedicated for a power generation activity since 1999, therefore there is not significant land use impacts due to the AI-Sokhna power project.

83. The surrounding land use is generally industrial. As the land is highly industrialized with almost no vegetation, all existing views will be insignificantly influenced by the power plant and given the surrounding industrial context, particularly the existing Suez Gulf power plant and industrial facilities of AI-Sokhna port, the visual intrusion of the power plant will be minimal.

84. Visual impacts of the power plant from the residential (tourist) areas to the north and south are also not expected to be significant given the long distance of their locations from the site and orientation of the facilities. The potential landscape and visual impacts of the project are therefore expected to be minor and not significant.

6.7 Soils, Geology and Hydrology

85. Due to the characteristics of the soils and geology of the site, in particular the lack of any sensitive features, and the mitigation measures proposed as part of the construction and operation of the power plant, no significant impacts are predicted to occur. In addition, preliminary land surface investigations confirmed the site as being uncontaminated.

6.8 Traffic

86. The assessment of traffic and transport covers the changes in traffic conditions in terms of delay and congestion during construction and operation.

87. The greatest potential for traffic impacts to occur arises during a short period at peak construction. There is some potential for increased congestion on the main roads to the power plant, however the impacts will only occur during the peak construction phase and during peak hours. The overall impact is therefore predicted to be insignificant. Mitigation measures will be put in place to reduce the potential for impacts to arise.
During operation, a small number of workers and HGVs are associated with operating the power plant and no impacts are predicted to occur.

6.9 Socio-economics and Socio-cultural effects

It is anticipated that the power plant will provide a net positive socio-economic impact through the provision of employment opportunities and attraction of economic investment into the area. In addition, the use of local labor (95% during construction), will maximize these positive impacts through the development of the local skill base and will also generate increased demand for local services, materials and products.

In addition to the area specifically designated for the plant, there are large empty spaces next to the power plant site. All activities related to the construction of the new plant will therefore take place within the area belonging to the EDEPC, i.e. there will be no off-site activities or associated land acquisition during construction.

As indicated in the main document, scientific research has shown that certain species of the fish grow considerably faster in warmer water.

The effects on the fisheries of warmer water returned to the Suez Gulf from similar power plants along the sea coasts are well known. Experience from about 10 other power plants located on the shorelines of both of the Mediterranean and Red seas that have operated in Egypt for a number of years indicates that the overall impacts on fisheries of slightly warmer water actually are positive, and consultations with the fishermen indicate that the catches in these areas have increased rather than decreased. Since this is part-time, small-scale fisheries no statistics are available, but after many years the warmer water around the various points of discharge, is clearly perceived by the fishermen to have positive effects (More details are presented in "consultation with the fishermen" given in Volume III, Annex C).

In line with this recognition, discussions have already been initiated between the EEHC and the General Authority for Fishery Development with a view to jointly take advantage of this, e.g. establishing a fry collection station near the edge of the mixing zone.

6.10 Archaeology, Historic and Cultural Heritage

No available information was found which identified any archaeological, historic or cultural remains on the site or in the surrounding area. Consequently, no impact is predicted to occur on any known archaeological, historic or cultural resources.

EDEPC have incorporated mitigation measures into the construction program to ensure that any potential finds of significance are recorded and are accorded the required protection in consultation with Supreme Council for Antiquities.
6.11 Natural Disaster Risks

96. An assessment of the risks to the power plant from seismic activity has concluded that given the engineering measures incorporated into the design of the power plant, the potential environmental impacts of a seismic event during power plant operation are not anticipated to be significant.

97. Furthermore the power plant will be designed to conform to the Uniform Building Code Zone 2 seismic criteria, according to US regulations for earthquake. These design criteria are therefore considered sufficient to withstand the level of seismic activity experienced in the area.

98. The risks of flooding during power plant construction and operation were also examined. However, site drainage will be constructed to minimize any risks of contaminated water reaching the surroundings and to properly drain the site, no significant flood risk impacts are anticipated.

6.12 Major Accident Hazards

99. Given the wider land surrounding the Al-Sokhna power plant and the measures incorporated into the design of the plant to minimize the risk from fire and explosion, the plant is not anticipated to pose a potential risk of any significance to any third party facilities.

6.13 Solid and Hazardous Waste Management

100. The management of wastes during construction and operation of the power plant will include mitigation measures to collect and store waste on-site, record all consignments of solid or contaminated waste for disposal and periodically audit waste contractors and disposal sites to ensure that disposal is undertaken in a safe and environmentally acceptable manner according to the rules set by Law 4/1994 and the Governorate of Suez.

101. Private sector contractor will be assigned via general bidding process and the contract will include detailed environmental procedures, according to Law 4/1994 and Governorate of Suez regulations, for disposing debris materials. The contract covers all fees required.

102. During construction and operation, all wastes including debris waste, general waste, packaging waste, commercial wastes, raw-water pre-treatment sludge, tank sludge and interceptor sludge will be disposed of by licensed waste contractors according to the rules set by Law 4/1994 and the Governorate of Suez.

103. Solid and hazardous waste management is not predicted to cause any significant impacts.
6.14 Occupational Health and Safety

104. With the provision of a high standard of health and safety management on site, construction and operation of the power plant in accordance with good industry practice, the occupational health and safety risks associated with construction and operation of the power plant will be minimized and are not significant.

6.15 Associated Infrastructure

105. Connections to existing gas and electrical facilities will be the responsibility of "City Gas", EETC and the EDEPC respectively. In regard to the gas connection with the gas reducing station of the site and oil pipeline to the oil tanks on the site no environmental or social impacts are anticipated.

106. EEHC has already submitted a request to City Gas for their needs for the new plant which will necessitate a bigger diameter pipeline, or an additional pipeline, which will follow the same existing pipeline.

107. The electricity generated by the proposed power plant will be exported via the 500 and 220 kV electricity transmission system. The power plant will be connected to the 500 kV switchyard via step-up transformers.

108. The electricity generated by the proposed El-Ain Al-Sokhna power plant will be exported by the EETC electricity network, via two transmission systems, double circuit 220 kV and 500 kV lines. The first will be connected to the unified network upward direction towards Suez city with approximately 40 km length, while the second will be extended to the west direction, approximately 90 km until it meets the 500 kV transmission line connecting El-Kureimat and El-Tebbin 500 kV substations. Construction and operation of this infrastructure will be the responsibility of the EETC. No routes have as yet been defined.

109. Although the transmission lines are not part of the loan, their potential environmental and social impacts have been considered, as this component would not have been required without the power plant itself. Mitigation measures are given in Table 7 of this Executive Summary.

Also, although land take or resettlement will not be associated to the power interconnecting lines (because the areas in question are largely uninhabited public desert land and only one proposed alternative routing has already been identified), a Resettlement Policy Framework (RPF) is prepared separately as part of this ESIA in order to satisfy the World Bank requirements for such cases and provide specific answer to questions relating to the potential triggering of WB-OP 4.12.

110. EETC and EDEPC will submit Screening Form B to the EEAA concerning this interconnection. No significant impacts are anticipated.
6.16 Global Impacts

111. Natural gas has been selected as the main fuel for the power plant. Compared to other fossil fuel generating technologies, gas fired steam generators have a relatively low emissions of carbon dioxide (CO₂), moderate emission levels of nitrogen oxides (NOₓ) and the lowest emission levels (almost traces) of sulfur dioxide (SO₂) and particulates.

112. The greenhouse effect is caused by the build-up of carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O) and chlorofluorocarbons (CFCs) in the atmosphere. Water vapor and ozone (O₃) can also act as greenhouse gases. For power generation processes, CO₂ is the key emission of concern, as methane and CFCs are not emitted by power plants and none of the other greenhouse gases are emitted in sufficient quantities from power generation to be considered important in terms of the greenhouse effect.

113. The efficiency of the proposed steam power plant is 45% with natural gas, with associated CO₂ emissions of 0.55kg/kWh. This compares with the efficiency of a typical CCGT power plant of 53-54%.

114. Emissions of carbon dioxide are estimated to be up to 3,500 kilotonnes per year (expressed as CO₂). This assumes that the plant operates for the whole year and consumes around 120 tonnes of gas per hour. The emissions of CO₂ from fuel burning in Egypt amounted to around 220,620 kilotonnes in 2004/2005 (Ref: EEAA: Second National Communication, not published yet). Fuel combustion will account for most of Egypt's CO₂ emissions from all sources. Hence, the power plant as proposed will emit up to around 1.59% of the total Egyptian CO₂ emissions in 2004/2005. This is an upper estimate as the plant will not operate 100% of the year or at full load 100% of the time.

115. Natural gas, which is the main fuel to be used in the Al-Sokhna plant, contains very low concentrations of sulfur or particulate matter, therefore the potential for emissions of SO₂ and particulates from the electricity generating process is also very low. Fuel oil however, leads to greater emissions of SO₂ and particulates, due to the relatively high sulfur content of these fuels and the generation of ash during their combustion.

116. Natural gas fuel also has the significant benefit of being able to be delivered by an existing pipeline (even though it may be enlarged in capacity).

7. ENVIRONMENTAL MITIGATION AND MONITORING: THE ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN (ESMP)

7.1 Enhancement and Mitigation Plan

117. The Environmental and Social Management Plan (ESMP) includes mitigation measures, design of monitoring programs where appropriate, and
specification of management measures (including institutional responsibility and training requirements).

118. The mitigation measures represent a synthesis of those measures which are part of the basic power plant design and those that have been recommended in Section 6 of the ESIA report for both the construction and operational phases of the power plant. The mitigation measures discussed in this section are summarized in the following three Tables, together with respective environmental monitoring and management arrangements. It should be noted that many of the mitigation measures presented below for the construction phase, will be carried forward into plant Operation.

119. All the mitigation, monitoring and management measures proposed below and in Section 8 of the ESIA report (the Environmental and Social Management Plan (ESMP)), will be adopted by the Project Company and imposed as conditions of contract on the contractor and any sub-contractors employed to build or operate any part of the power plant. Since many of the mitigation measures presented are considered an essential, integrated component of the construction and operation works, it is not possible to separate the specific costs of their implementation from the overall construction costs.

120. Mitigation measures introduced into the design and construction phase of the power plant will be carried forward into the operational phase by the EDEPC Company. Many of the mitigation measures, as described in Sections 4 and 6 of the ESIA report, have already been integrated into the design of the power plant in order to minimize any operational impacts on the environment. Mitigation measures such as low NOx burners, noise silencers and water discharge controls are for example integral to the design of the power plant.

121. The key features of the ESMP relate to air quality, aquatic discharge and implementation of good site management practice. The ESMP is summarized in Tables 4, 5, 6 and 7 which relate to construction and operational phases respectively. Table 8 summarizes the cost of ESMP which will require to be included in the project financial plan.
Table 4
Institutional Arrangements for El-Ain Al-Sokhna Power Project

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Type and Frequency of Reporting/Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Budget in US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutional capacity to address environmental and social issues</td>
<td>Establishment of the Environmental Management Unit (EMU), construction phase. Basic training of persons employed to operate the monitoring activities. Basic induction training for all employees on good construction and site management practice.</td>
<td>Prior to starting construction. Ongoing training</td>
<td>Quarterly to EEHC Environmental Management (EEM) and EEHC Chairman</td>
<td>PMU / EMS</td>
<td>EDEPC Project Manager in collaboration with POESCO Site Manager</td>
<td>Training programs Compliance with ESMP</td>
</tr>
<tr>
<td>Operation Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutional capacity to address environmental and social issues</td>
<td>Establishment of the Environmental Management Unit (EMU), operation phase. Basic training of persons employed to operate the monitoring activities. Induction, specific and refresher training for all employees on good operation management practice. Training methods, facilities & manuals</td>
<td>Prior to starting operation. Ongoing training</td>
<td>Quarterly to EEHC & EEHC Environmental Management (EEM)</td>
<td>PMU / EMS</td>
<td>EDEPC Project Manager in collaboration with POESCO Site Manager</td>
<td>Training programs Compliance with ESMP</td>
</tr>
</tbody>
</table>

Notes:
(*) EDEPC responsibility means that training and capacity building activities are included in the company organizational structure and budget.
Table 5

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Dust emissions caused by construction activities, construction vehicle movements, and transport of friable construction materials</td>
<td>Implementation of good site practices including: - appropriate siting and maintenance of stockpiles of friable materials so as to minimize dust blow; - minimizing drop heights for material transfer activities such as unloading of friable materials; - construction phase to begin with construction of access roads; - roads will be kept damp via a water bowser; - roads will be compacted and graveled if necessary; - site roads will be maintained in good order; - regulation of site access; - sheeting of entries transporting friable construction materials and spoil; - enforcement of vehicle speed limits on unmetalled roads to <35 km/h.</td>
<td>Before construction and during construction</td>
<td>Before Construction and during Construction until 6 Months ahead of Commissioning. Initiate baseline air quality survey of main pollutants, particularly NOx, SO2, CO, TSP and PM10 using third party measurements on a quarterly basis.</td>
<td>EDEPC Project Manager in collaboration with PGESCo Site Manager</td>
<td>Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the PMU/EMS and the Assistant Plant Manager.</td>
<td>Dust levels (TSP, PM10), NOx, SO2, CO levels.</td>
<td>Quarterly reporting of summary results (or more if requested) and submitted to the EEHC and any other concerned authority (e.g. EEEA, WB, ADB, etc.).</td>
<td>EDEPC/PMU responsible for management of the air quality monitoring system. Submission of annual summary reports to EEHC and any other concerned authority.</td>
<td>Mitigation Measures, Management time and costs (included in construction costs)</td>
</tr>
<tr>
<td>Issue/Impact</td>
<td>Mitigation Measures</td>
<td>Implementation Schedule</td>
<td>Monitoring</td>
<td>Responsibility</td>
<td>Indicators</td>
<td>Type and Frequency of Reporting/monitoring</td>
<td>Management and Training</td>
<td>Indicative Cost Estimate (US$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic Environment Drilling and construction of the intake structure and</td>
<td>The following measures will be taken:</td>
<td>During construction of</td>
<td>Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the PMU / EME and the Assistant Plant Manager.</td>
<td>EDFPC Project Manager in collaboration with PGESCO Site Manager</td>
<td>Actual parameters to be measured.</td>
<td>EDFPC/PMU to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practice.</td>
<td>Mitigation Measures: Management time and costs (induced in construction cost). Water quality measurement costs (between US$ 30-40K).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>water discharge structure.</td>
<td>+ Construction Method Statement to be produced by the Contractor.</td>
<td>intake and discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Drilled areas limited to minimum area required;</td>
<td>structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Disposal of dredged sediments to an agreed site.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ All works will be made clearly visible using flags, beacons and/or signals;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Shore area will be reinstated following construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 5 (Contd.)

Construction Impact Mitigation, Monitoring and Management Measures

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Type and Frequency of Reporting / monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
</table>
| Contamination of the aquatic environment as a result of construction activities on land e.g. spills, disposal of liquid wastes, surface run-off, exposure of contaminated soils (see also under "Soils and Hydrology") | Mitigation activities will include the following:
- no discharge of effluents into the Suez Gulf - all effluents shall be collected and removed off site for treatment by approved firms;
- development of a site drainage plan which reduces flow velocity and sediment load;
- protection of temporary stockpiles of soil from erosion by using a reduced slope angle where practical, sheeting and by incorporating sediment traps in drainage ditches;
- maintenance of well kept construction site. | During construction | Continuous visual inspection will be conducted. | Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the PMU/EMS and the Assistant Plant Manager. | EDEPC Project Manager in collaboration with PSE Scotia Site Manager. | Fluid effluents within the site,
Soil erosion,
Surface water run-off,
Sewage effluents,
Earth, mud and debris deposits on roads. | Quarterly reporting of summary results (or more if requested) and submitted to the EEDC and any other concerned authority (e.g. EEIA, WR, ADQ, etc.), if required. | EDEPC/PMU to ensure all contractors and sub­­contractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices. | Management time and costs (included in construction cost). |
Table 5 (Contd.)
Construction Impact Mitigation, Monitoring and Management Measures

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>Implementation of good site practices including:</td>
<td>During construction</td>
<td>Monthly monitoring and supervision by PMU/EMS is required to ensure the implementation of good site management practices by all contractors during construction.</td>
<td>EDEPC Project Manager in collaboration with PGCSCa Site Manager.</td>
<td>Noise complaints register to identify concerns. Check validity using noise measuring devices.</td>
<td>PMU/EMS will produce a Quarterly reporting of summary results (or more if requested) and submitted to the EEHC and any other concerned authority (e.g. IIEA, WB, ATM, etc.), if required.</td>
<td>EDEPC/PMU to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices.</td>
</tr>
<tr>
<td>Flora and Fauna Site Clearance:</td>
<td>Good site management practices will be observed to ensure that disturbance of habitats off-site are minimized. Specific mitigation measures include restricting personnel and vehicles to within construction site boundaries, lay down areas and access roads.</td>
<td>During construction</td>
<td>Periodic inspection and supervision by PMU/EMS is required to ensure the implementation of good site management practices by all contractors during construction.</td>
<td>EDEPC Project Manager in collaboration with PGCSCa Site Manager.</td>
<td>Good conservation of floral wealth.</td>
<td>Quarterly reporting of flora species conserved or planted, if any.</td>
<td>EDEPC/PMU to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices.</td>
</tr>
<tr>
<td>Issue/Impact</td>
<td>Mitigation Measures</td>
<td>Implementation Schedule</td>
<td>Monitoring</td>
<td>Responsibility</td>
<td>Monitoring Indicators</td>
<td>Type and Frequency of Reporting/monitoring</td>
<td>Management and Training</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Soils and Hydrology</td>
<td>Site clearance, excavation and disposal of material, exposure of potentially contaminated soils, spillage or leakage of substances on land, movement of equipment and vehicles on site, the potential for impacts are largely dependent on management of the construction site and activities. The following mitigation measures will be implemented.</td>
<td>- Development of effective site drainage systems; - Restriction of access only to construction site areas; - Monitoring and control of spill; - Disposal of waste materials unsuitable for reuse on-site (e.g., for landscaping) at appropriately licensed sites; - Provision of oil and suspended solid interceptors; - Management of excavations during construction to avoid the generation of drainage pathways to underlying aquifers; - Provision of impermeable bases in operational areas to prevent absorption of spillages.</td>
<td>During construction.</td>
<td>Implementation of Good Site Management practices shall be the responsibility of all contractors on site under the supervision of the PMU/EMIS and the Assistant Plant Manager.</td>
<td>- Site drainage; - Access only to construction site areas; - Spills; - Waste materials; - Oil waters; - Drainage pathways; - Potential spillage in operational areas.</td>
<td>Quarterly reporting of summary results (or more if requested) and submitted to the EESC and any other concerned authority (e.g., EEEA, WB, ADB etc.), if required.</td>
<td>EDEPC/PMU to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices.</td>
</tr>
</tbody>
</table>

Any additional features (e.g., bunding, interceptors etc.) may incur additional costs of between US$30-50K, dependent on the measure.
**Table 5 (Contd.)
Construction Impact Mitigation, Monitoring and Management Measures**

Issue/Impact	Mitigation Measures	Implementation Schedule	Monitoring	Responsibility	Monitoring Indicators	Type and Frequency of Reporting/monitoring	Management and Training	Indicative Cost Estimate (US$)	
Traffic and Transport	Standard good practice measures will be implemented as follows:	During construction.	Implementation	EEMPC Project Manager in collaboration with PGESCO Site Manager.	Increased congestion and travel time (compared to reasonable daily commute)	Three times per month. Quarterly reporting of summary results (or more if requested) and submitted to the EEMPC and any other concerned authority (e.g., EEAA, WBD, ACDB etc.), if required.	Management time	Management time	EEMPC/PMU to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices
Table 5 (Contd.)

Construction Impact Mitigation, Monitoring and Management Measures

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-Economic Environment Positive impacts identified.</td>
<td>All activities related to the construction of the new plant will take place within the area belonging to EDEPC, i.e. there will be no off-site activities or associated land acquisition during construction. The entire labor force will be daily commuters, thus no worker housing or associated facilities will be erected on site during construction. The contractors will be responsible for relevant temporary water / toilet facilities during construction and the need to provide appropriate services will be specified in their contracts. Public and Industry Relations will be maximized through open dialogue between EDEPC (through the Assistant Plant Manager who has direct responsibility for EHS (Liaison) and local authority, public and industry representatives.</td>
<td>During construction.</td>
<td>Record local employment provided by the project.</td>
<td>PMU/EMS and the Assistant Plant Manager</td>
<td>EDEPC Project Manager in collaboration with PGESCO Site Manager.</td>
<td>Workers satisfaction as measured by staff interviews and complaints submitted.</td>
<td>Editing a special report</td>
<td>Responsibility of EDEPC/PMU</td>
</tr>
<tr>
<td>Issue/Impact</td>
<td>Mitigation Measures</td>
<td>Implementation Schedule</td>
<td>Monitoring</td>
<td>Responsibility</td>
<td>Monitoring Indicators</td>
<td>Type and Frequency of Reporting/monitoring</td>
<td>Management and Training</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Archaeology</td>
<td>Potential change in archaeological remains during construction.</td>
<td></td>
<td>Supervision of construction activities.</td>
<td>Construction contractors.</td>
<td>Chance finds (see annex II)</td>
<td>Daily inspection</td>
<td>EDEPC/PMU to ensure that all workers on site are aware of the importance of archaeological remains and must report any potential finds immediately.</td>
<td>Mitigation measures require management time. Should chance finds occur, protection & excavation could add significantly to the cost.</td>
</tr>
<tr>
<td></td>
<td>The project site does not lie on, or in the immediate vicinity of any known archaeological areas of interest. If remains are found EDEPC is committed to: ceasing activities and consulting Antiquities authority; protection in situ if possible; excavation of areas where protection not feasible; preparation of a Chance Finds Procedure and Method Statement.</td>
<td></td>
<td></td>
<td>PMUEMS and the Assistant Plant Manager will allocate responsibilities in accordance with the Chance Finds Procedure.</td>
<td>EDEPC Project Manager in collaboration with PGESICO Site Manager.</td>
<td>Quarterly reporting of summary results (or more if requested) submitted to the EEHC and any other concerned authority (eg. EEA, WB, ADB etc.), if required.</td>
<td>EDEPC/PMU to ensure that all workers on site receive training in emergency preparedness and response procedures.</td>
<td>Relevant costs are included within the construction costs.</td>
</tr>
<tr>
<td>Natural Disasters</td>
<td>Flash flooding.</td>
<td></td>
<td>During construction. No monitoring measures are envisaged.</td>
<td>PMUEMS and the Assistant Plant Manager.</td>
<td>EDEPC Project Manager in collaboration with PGESICO Site Manager.</td>
<td>Quarterly reporting of summary results (or more if requested) submitted to the EEHC and any other concerned authority (eg. EEA, WB, ADB etc.), if required.</td>
<td>EDEPC/PMU to ensure that all workers on site receive training in emergency preparedness and response procedures.</td>
<td>Relevant costs are included within the construction costs.</td>
</tr>
</tbody>
</table>
**Table 5 (Contd.)
Construction Impact Mitigation, Monitoring and Management Measures**

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Waste Management</td>
<td>Good practice measures such as the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• all waste taken off-site will be undertaken by a licensed contractor and EDEPC will audit disposal procedure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• collection and segregation of wastes and safe storage,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• recording of consignments for disposal,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• prior agreement of standards for storage, management and disposal with relevant authorities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>During construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Periodic inspection is required to ensure the implementation of good management practices during construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the PMU/EMS and the Assistant Plant Manager.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDEPC Project Manager in collaboration with PGESCo Site Manager.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management contract in place.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional transfer station.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quarterly reports from management contractor to EDEPC and then to EEHC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>These reports are to be submitted to any other concerned authority (e.g. ESIA, WB, ADB, etc.), if required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDEPC/PMU to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management time plus costs (< US$ 20k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 (Contd.)

Construction Impact Mitigation, Monitoring and Management Measures

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
</table>
| **Occupational Health & Safety** | Good local and international construction practice in Environment, Health and Safety (EHS) will be applied at all times and account will be taken of local customs, practices and attitudes. Measures include:
 - Implementation of EHS procedures as a condition of contract all contractors and sub-contractors;
 - Clear definition of the EHS roles and responsibilities of all construction companies and staff;
 - Management, supervision, monitoring and record-keeping as set out in plant's operational manual;
 - Pre-construction and operation assessment of the EHS risks and hazards;
 - Completion and implementation of Fire Safety Plan prior to commissioning any part of the plant;
 - Provision of appropriate training on EHS issues for all workers;
 - Provision of health and safety information;
 - Regular inspection, review and recording of EHS performance; and
 - Maintenance of a high standard of housekeeping at all times. | During construction. | Daily inspection is required to ensure the implementation of EHS Policies, plans and practices during construction. | Implementation of Good Site Management practices and the EHS policies shall be the responsibility of all contractors on site under supervision of the PMU/EMS and the Assistant Plant Manager. | EDEPC Project Manager in collaboration with PGIES Co Site Manager. | Daily inspection
 - Quarterly reporting of summary results (or more if requested) and submitted to the EHC and any other concerned authority (e.g. EIAA, WR, ARID, etc.), if required. | EDEPC/PMU to ensure all contractors and sub-contractors for workers on site include reference to the requirements of the ESMP and are aware of the EHS policies and practices.
 - Contractors are responsible for ensuring that a Fire Safety Plan, which conforms to NFPA 250, is prepared and implemented prior to commissioning of any part of the plant under supervision of PMU/EMS and the Assistant Plant Manager. | |

Mitigation measures will require management time plus costs of up to US$ 50K for the implementation of EHS Plans.
Table 6
Operational Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality Emissions from stack are not expected to exceed standards.</td>
<td>Mitigation measures have already been included in the design of the plant and, given EDEPC/SPP/EMS's experience with similar fuels, additional measures are proposed. EDEPC/SPP/EMS will however demonstrate the validity of the conclusions drawn in the ESIA report.</td>
<td>During first three years of operation.</td>
<td>Automatic monitoring of stack emissions for NOx, SOx, particulate matter and carbon monoxide (CO) via test ports installed in the main stacks.</td>
<td>The analyzer stations will be owned and operated by EDEPC/SPP/EMS, Assistant Plant Manager.</td>
<td>Stack emissions (at least PM10, NOx, SOx and CO).</td>
<td>Continuous Hourly data acquisition.</td>
<td>Records must be kept and summary data (including any exceedances of the Egyptian and World Bank standards) will be submitted to the Government, ADB and WB on annual basis (or more frequently if required).</td>
<td>Automatic stack monitors included in the project cost. Management time for compilation of reports and performance monitoring included in operation cost.</td>
</tr>
</tbody>
</table>
Table 6 (Contd.)

Operational Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic Environment: Discharge of</td>
<td>The design of the intake and cooling water structures have already incorporated</td>
<td>Lifetime of the plant</td>
<td>EDEPC/SPPH/EMS Assistant Plant Manager</td>
<td>Monthly reports from EDEPC/SPPH/EMS to EEHC</td>
<td>Records will be kept and compared on regular basis against Egyptian, ADB and World Bank standards and impacts predicted in ESIA</td>
<td>Management time for implementation of site management practices included in operation cost. All costs are included in operation cost.</td>
<td></td>
</tr>
<tr>
<td>process and cooling water.</td>
<td>measures to reduce impacts. In addition, good site management practices including the</td>
<td></td>
<td>EEHC Environmental Management &</td>
<td>Continuous monitoring of water quality etc.</td>
<td>Summary reports (with any exceptions identified) will be submitted to the Government, ADB and WB etc. on annual review basis (or more frequently if required).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>following will be implemented:</td>
<td></td>
<td>Shores Sector.</td>
<td>Monthly monitoring of heavy metals and other pollutants.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* neutralization, of separation, flocculation and filtration of any contaminated</td>
<td></td>
<td></td>
<td>3-monthly monitoring of the plume.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>water before discharge;</td>
<td></td>
<td></td>
<td>Annual monitoring of benthic ecosystem (over a 3 year period).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* discharge to the intake area and the cooling water before discharge to the</td>
<td></td>
<td></td>
<td>Weekly monitoring of fish catches on intake screens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* maintenance of the discharge and intakes to the intake area and cooling water</td>
<td></td>
<td></td>
<td>(over a 1 year period).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the event of any leak or spillage.</td>
<td></td>
<td></td>
<td>Reports are to be available to any of the concerned authorities (GPEA, WB, ADB, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* disposal of solid waste or waste water into the discharge structures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* regular maintenance of the drainage system to ensure efficient operation;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* all discharges will comply with local Egyptian and World Bank guidelines.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In addition, EDEPC/SPPH/EMS will demonstrate the validity of the conclusions drawn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the ESA report. If pollutant concentrations in the discharge or impacts to the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>surrounding aquatic environment are found to be above local and World Bank standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or unacceptable, options for further mitigation will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ESIA for El-Ain Al-Sokhna Thermal Power Project No 1312

HB - 10 August 2008

E S - Page 54 of 80
<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (USD)</th>
</tr>
</thead>
</table>
| Noise | Specific design mitigation measures to minimize noise impacts include:
+ steam turbine generators, air compressors, pumps and emergency diesel engines are enclosed in buildings;
+ air compressors are equipped with silencers;
+ noisy outdoor equipment are designed to a noise limit of 90 dB (A) at 1 m.
In addition, plant workers will be provided with protective wear in plant areas with high noise levels. The plant will operate in accordance with internationally accepted health and safety measures. | During first year of operation. | When the plant is fully operational, noise audit measurements are to be carried out at noise sources and at the fenceline of the power plant as well as at noise receptors around the plant. | EDEPC/SPP/EMS, Third party audit supervised by Assistant Plant Manager | EEHC Environmental Management & Studies Sector. | Power plant compliance with ESMP. | Quarterly to EDEPC and EEHC. Monthly reporting of summary results (or more if required) and submitted to the EEHC and any other concerned authority (e.g. ESAA, WBB, etc.), if required. | Should any complaints be received regarding noise, these will be logged and the Assistant Plant Manager will investigate problem. EDEPC/SPP/EMS to ensure that all employees are given basic induction training on the requirements of the ESMP, good site management practices and H&S procedures. The Assistant Plant Manager will ensure implementation of procedures. | Minimal costs (up to USD 10K per annum) required for provision of protective wear (included in operation cost). No further mitigation or monitoring costs envisaged with the exception of management time. Noise audit USD '10-20K' (included in operation cost). |
|--|--|-------------------------|------------------------|-------------------------------------|---|--------------------------|------------------------------|
| Flora and Fauna Disturbance to habitats as a result of noise, vehicle and personnel movements | The following mitigation measures will be implemented:
 - restrict personnel and vehicle movements to access roads and within boundaries of site only, and
 - control of noise during operation. | Lifetime of the plant. | No monitoring is envisaged. | EDEPC/SPP/EMS
 Assistant Plant Manager | EEHC
 Environmental Management & Studies Sector. | Good plantation | Yearly | EDEPC/SPP/EMS
 to ensure that all employees are given basic induction training on the requirements of the ESMP, good site management practices and H&S procedures. The Assistant Plant Manager will ensure implementation of procedures. | Management time |

| Visual Impact
Visual image of power plant from surrounding areas. | The visual effect of the power plant will be improved through:
 - creation of landscaped boundary along the fringe of the power plant
 - Ficus elaeocarpa var-decora and Ficus nitida will be propagated and the resulting plants will be used for decorating and landscaping the site when completing the new power plant. One may obtain 200-300 individual plants from a single tree. | Lifetime of the plant. | No monitoring is envisaged. | EDEPC/SPP/EMS
 Assistant Plant Manager | EEHC
 Environmental Management & Studies Sector. | Improved visual image | Considered management of landscaped areas to maximize visual image and habitat creation.
 EDEPC/SPP/EMS
 to contract a suitable firm to manage landscaped areas. | Approx. US$ 25-30K for landscaping measures
 (included in operation cost) |
Table 6 (Contd.)
Operational Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil and Hydrology Spillage of oils,</td>
<td>Good site management measures as described under Aquatic Environment will minimize</td>
<td>Lifetime of the plant</td>
<td>The Assistant Plant Manager will</td>
<td>EDEPC/SPP/EMS, Assistant Plant</td>
<td>Quality of bunds and drainage systems.</td>
<td>6-monthly reports from management</td>
<td>Management time</td>
<td>Management time</td>
</tr>
<tr>
<td>chemicals or fuels on site.</td>
<td>describe under Aquatic Environment will minimize any potential risks. As part of</td>
<td></td>
<td>continuously monitor application</td>
<td>Manager.</td>
<td>Efficiency of operation.</td>
<td>to EEHC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>this, regular checks of bunds and drainage systems will be undertaken to ensure</td>
<td></td>
<td>of ESMP and good site management</td>
<td></td>
<td></td>
<td>Annual reporting of summary results</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>containment and efficient operation.</td>
<td></td>
<td>practices and take corrective action if</td>
<td></td>
<td></td>
<td>(or more if requested) and submitted to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>required.</td>
<td></td>
<td></td>
<td>the EEHC and any other concerned authority (e.g. FF/A, WRI, etc.), if</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Waste</td>
<td>Good practice measures undertaken during the construction phase will be continued</td>
<td>Lifetime of the plant</td>
<td>Continuous monitoring is required</td>
<td>EDEPC/SPP/EMS, Implementation of</td>
<td>Management contract in place.</td>
<td>3-monthly reports from management</td>
<td>EDEPC/SPP/EMS, to ensure all</td>
<td>Management time and costs (USD 10k per annum) (included in operation cost)</td>
</tr>
<tr>
<td></td>
<td>into the operation phase (see Table 6).</td>
<td></td>
<td>to ensure the implementation of</td>
<td>Good Site Management practices.</td>
<td>Functional transfer station.</td>
<td>to EEHC.</td>
<td>employees are given basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>good management practices during</td>
<td></td>
<td></td>
<td>Annual reporting of summary results (or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>operation.</td>
<td></td>
<td></td>
<td>more if requested) and submitted to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEHC and any other concerned authority (e.g. FF/A, WRI, etc.),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>if required.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 (Contd.)

Operational Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/ monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational Health and Safety, Risks and Hazards</td>
<td>Standard international practice on EHS issues shall be employed on site. The mitigation measures summarized in construction management Table apply. In addition, the following measures will be undertaken: • Provision of training in use of protection equipment and chemical handling • Use of protective equipment • Clear marking of work site hazards and training in recognition of hazard symbols • Installation of vapour detection equipment and control systems • Development of site emergency response plans.</td>
<td>Lifetime of the plant</td>
<td>Regular on-site training, Regular staff checks, system checks and field tests of emergency procedures by on-site management.</td>
<td>EDEPC/SPP/EMS Assistant Plant Manager</td>
<td>EEHC Environmental Management & Studies Sector.</td>
<td>Management procedures in place, Workers health and safety measured by incidents, injuries and illnesses, Monthly reports from management to EEPC, Annual reporting of summary results (or more if requested) and submitted to the EEPC and any other concerned authority (e.g. IREAO, WBD, etc.), if required.</td>
<td>EDEPC/SPP/EMS to ensure that all employees are given basic induction training on HSE policies and procedures, Emergency Preparedness and Response Plan and a Spills Response Plan. The Assistant Plant Manager is responsible for ensuring that the site emergency response plan is complete and implemented prior to commissioning any part of the power plant.</td>
<td>Management time and costs (< US$ 15k per annum) (included in operation cost)</td>
</tr>
</tbody>
</table>

ESIA for El-Ain Al-Sokhna Thermal Power Project No 1312
HB - 10 August 2008
E.S - Page 58 of 80
<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>• Utilize appropriate clearing techniques, e.g., hand clearing versus mechanized clearing.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures.</td>
<td>Egyptian Electricity Transmission Company (EETC)</td>
<td>EEHC management and human resources involved (negative land use, ecological damage)</td>
<td>Weekly (during construction)</td>
<td>Environmental training and assessment for ROW maintenance techniques, including the proper use of chemical and mechanical clearing methods.</td>
<td>Included in construction and operation cost.</td>
</tr>
<tr>
<td>Habitat fragmentation or disturbance.</td>
<td>• Select ROW to avoid important natural areas such as sensitive habitats.</td>
<td></td>
<td></td>
<td>EDEPC Project Manager in collaboration with PGESCo Site Manager.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased access to sensitive lands.</td>
<td>• Maintain habitat (i.e., native vegetation) beneath lines.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 (Contd.)
Transmission System Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runoff and sedimentation from grading for access roads, tower pads, and substation facilities, and alteration of hydrological patterns due to maintenance roads.</td>
<td>• Select ROW to avoid impacts to water bodies, floodplains, and wetlands. • Install sediment traps or screens to control runoff and sedimentation. • Minimize use of till dirt. • Use ample culverts. • Design drainage ditches to avoid affecting nearby lands.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures. Short-term monitoring to assure that negative land use and/or ecological impacts are avoided and proper mitigation measures are employed. Occurs along the line as it is constructed. Monitoring of ROW maintenance activities to assure proper control methods.</td>
<td>Egyptian Electricity Transmission Company (EETC) EDEPC / PMU / EMS</td>
<td>Effects on environmental and human resources involved (negative land uses, ecological damage) Degree to which they are affected.</td>
<td>Weekly (during construction). Maintenance time (during operation)</td>
<td>Environmental training and management will be warranted for ROW maintenance techniques, including the proper use of chemical and mechanical clearing methods. Training will be conducted by EETC and EDEPC/PMU with assistance from environmental consultant. Staff workers should have an understanding of the rational for the recommended mitigation and monitoring that they may be implementing.</td>
<td>Included in construction and operation cost.</td>
</tr>
<tr>
<td>Loss of land use and population relocation due to placement of towers and substations.</td>
<td>• Select ROW to avoid important social, agricultural, and cultural resources. • Utilize alternative tower designs to reduce ROW width requirements and minimize land use impacts. • Adjust the length of the span to avoid site-specific tower pad impacts. • Manage resettlement in accordance with World Bank & ADBI procedures. • Utilize mechanical clearing techniques, grazing and/or selective chemical applications. • Select herbicides with minimal undesired effects. • Do not apply herbicides with broadcast aerial spraying. • Maintain naturally low-growing vegetation along ROW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical contamination from chemical maintenance techniques.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 (Contd.)

Transmission System Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Monitoring Indicators</th>
<th>Type and Frequency of Reporting/monitoring</th>
<th>Management and Training</th>
<th>Indicative Cost Estimate (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avian hazards from transmission lines and towers.</td>
<td>• Select ROW to avoid important bird habitats and flight routes.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures.</td>
<td>Egyptian Electricity Transmission Company (EETC)</td>
<td>Effects on environmenta l and human resources involved (negative land uses, ecological damage)</td>
<td>Weekly (during construction). Maintenance time (during operation)</td>
<td>Environmental training and management will be warranted for ROW maintenance techniques, including the proper use of chemical and mechanical clearing methods. Training will be conducted by EETC and EDEPC/PMU with assistance from environmental consultant. Staff workers should have an understanding of the rational for the recommended mitigation and monitoring that they may be implementing.</td>
<td>Included in construction and operation cost.</td>
</tr>
<tr>
<td>Aircraft hazards from transmission lines and towers.</td>
<td>• Select ROW to avoid airport flight paths.</td>
<td></td>
<td>Short-term monitoring to assure that negative land use and/or ecological impacts are avoided and proper mitigation measures are employed.</td>
<td>EDEPC / PMU / EMS</td>
<td>Degree to which they are affected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced effects from electromagnetic fields.</td>
<td>• Select ROW to avoid areas of human activity.</td>
<td></td>
<td>Occurs along the line as it is constructed.</td>
<td>Site Manager.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaired cultural or aesthetic resources because of visual impacts.</td>
<td>• Select ROW to avoid sensitive areas, including tourist sites and vistas.</td>
<td></td>
<td>Monitoring of ROW maintenance activities to assure proper control methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Construct visual buffers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use lower voltage DC system, or underground cable to reduce or eliminate visual impacts of lines, structures, and ROWs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue/Impact</td>
<td>Mitigation Measures</td>
<td>Implementation Schedule</td>
<td>Monitoring</td>
<td>Responsibility</td>
<td>Indicative Cost Estimate (US$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect Induced secondary development during construction in the surrounding area. Increased access to sensitive lands.</td>
<td>• Provide comprehensive plans for handling induced development. • Construct facilities to reduce demand. • Provide technical assistance in land use planning and control to local governments. • Route ROW away from sensitive lands. • Provide access control.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures. Short-term monitoring to assure that negative land use and/or ecological impacts are avoided and proper mitigation measures are employed. Occurs along the line as it is constructed. Monitoring of ROW maintenance activities to assure proper control methods.</td>
<td>Egyptian Electricity Transmission Company (EETC) EDEPC / PMU / EMS</td>
<td>Weekly (during construction). Maintenance time (during operation)</td>
<td>Included in construction and operation cost.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Table 7 (Contd.)**

Transmission System Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Induced secondary development during construction in the surrounding area. Increased access to sensitive lands.</td>
<td>• Provide comprehensive plans for handling induced development. • Construct facilities to reduce demand. • Provide technical assistance in land use planning and control to local governments. • Route ROW away from sensitive lands. • Provide access control.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures. Short-term monitoring to assure that negative land use and/or ecological impacts are avoided and proper mitigation measures are employed. Occurs along the line as it is constructed. Monitoring of ROW maintenance activities to assure proper control methods.</td>
<td>Egyptian Electricity Transmission Company (EETC) EDEPC / PMU / EMS</td>
<td>Weekly (during construction). Maintenance time (during operation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Induced secondary development during construction in the surrounding area. Increased access to sensitive lands.</td>
<td>• Provide comprehensive plans for handling induced development. • Construct facilities to reduce demand. • Provide technical assistance in land use planning and control to local governments. • Route ROW away from sensitive lands. • Provide access control.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures. Short-term monitoring to assure that negative land use and/or ecological impacts are avoided and proper mitigation measures are employed. Occurs along the line as it is constructed. Monitoring of ROW maintenance activities to assure proper control methods.</td>
<td>Egyptian Electricity Transmission Company (EETC) EDEPC / PMU / EMS</td>
<td>Weekly (during construction). Maintenance time (during operation)</td>
</tr>
</tbody>
</table>

*Table 7 (Contd.)

Transmission System Impact Mitigation, Monitoring and Management

<table>
<thead>
<tr>
<th>Issue/Impact</th>
<th>Mitigation Measures</th>
<th>Implementation Schedule</th>
<th>Monitoring</th>
<th>Responsibility</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Induced secondary development during construction in the surrounding area. Increased access to sensitive lands.</td>
<td>• Provide comprehensive plans for handling induced development. • Construct facilities to reduce demand. • Provide technical assistance in land use planning and control to local governments. • Route ROW away from sensitive lands. • Provide access control.</td>
<td>During Construction and Operation</td>
<td>Visual inspections of the materials being used, the construction practices and mitigation measures. Short-term monitoring to assure that negative land use and/or ecological impacts are avoided and proper mitigation measures are employed. Occurs along the line as it is constructed. Monitoring of ROW maintenance activities to assure proper control methods.</td>
<td>Egyptian Electricity Transmission Company (EETC) EDEPC / PMU / EMS</td>
<td>Weekly (during construction). Maintenance time (during operation)</td>
</tr>
</tbody>
</table>
Table 8

Summary of Implementation Cost of the ESMP

| No. | Phase of Implementation | Cost in US$ | |
|-----|-------------------------|-------------|
| | | Measures | Monitoring |
| 1 | Construction Phase | 120 K | 1638 K |
| 2 | Operation Phase | 70 | 20 |
| | **Sub. Total** | **190 K** | **1658 K** |
| | **Total** | **1848 K** | |

122. Table 8 shows that the total implementation cost of the Environmental and Social Management Plan is about US$ 1.848 million, which amounts to about 0.083% of the total project cost.

7.2 MONITORING PROGRAM

Stack Emissions

123. Stack emissions will be monitored continuously during plant operation at a representative point in the stack. Operational monitoring of stack emissions shall comprise monitoring the levels of: Oxides of Nitrogen; Sulfur Dioxide; Carbon Monoxide; and Total Suspended Particles and PM$_{10}$.

124. The automatic monitoring system used will be linked in the controlling room to an alarm system to warn when emission limits (as stated in Section 2) for each pollutant are being approached.

125. Concentrations will be recorded as hourly rolling averages and reports on stack emissions monitoring will compare recorded emissions against predicted levels and Egyptian and WB, AfDB guidelines (as given in Section 2). Reports will be submitted to the EEAA, the WB, AfDB and any other concerned authority on an annual basis (or as required).

Ambient Air Quality - Validation of Modeling Predictions Using Continuous NOx, SO$_2$ and TSP Analyzer

126. The use of a continuous NOx, SO$_2$, CO and TSP analyzer allows for baseline air quality monitoring on a continuous basis. The provision of two continuous monitors (or three: one at the site, one upwind and the third downwind) will provide the basis for "validating" the predictions made in the ESIA. The monitors will also include a weather station providing data on air temperature, wind speed, wind direction and mixing heights on a continuous
basis. These monitors shall, also, be connected electronically, if possible, to the EEAA ambient monitoring system.

127. The construction and operational monitoring of air quality around the Al-Sokhna power project will include the parameters summarized in Table 9.

Aquatic Environment

128. Monitoring of impacts of the power plant on the aquatic environment will include monitoring of the quality of the discharge water, Suez Gulf shoreline and benthic sediments, ambient water quality and the impact on aquatic flora and fauna. The survey techniques and areas will be comparable to the survey undertaken by both of the Hydraulics Research Institute and the National Research Center during May-June 2008. The survey will include the area affected by the thermal plume (i.e. 100-150 m from the discharge point).
Table 9

<table>
<thead>
<tr>
<th>Item</th>
<th>Monitoring Parameters</th>
<th>Sampling Frequency</th>
<th>Monitoring Locations</th>
<th>Indicative Cost Estimate (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Dust emissions caused by construction activities, construction vehicle movements, and transport of friable construction materials.</td>
<td>NO₂, SO₂, CO, TSP and PM₁₀</td>
<td>Quarterly during most of the construction period. Continuous monitoring during 6 months ahead of commissioning.</td>
<td>Measurement cost: US$70K Approx. US$ 1000-1500K</td>
</tr>
<tr>
<td>Noise</td>
<td>Decibels (dB) A</td>
<td>Monthly</td>
<td>6 locations minimum: at nearest residences</td>
<td>Management time and costs (US$ 10K)</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Emissions from stack are not expected to exceed standards.</td>
<td>Automatic monitoring of stack emissions for NOₓ, SO₂, particulate matter and carbon monoxide (CO) via test ports installed in the main stack. In addition, conduct surrogate performance monitoring.</td>
<td>Continuous and/or 24 hour average Continuous and/or passive samples every 2/4 weeks</td>
<td>2 locations minimum: at maximum predicted pollution concentration and downwind. Third location, if any, will be 1 km upwind. Included in the plant operation</td>
</tr>
<tr>
<td>Noise</td>
<td>Bi-annually to annually</td>
<td>5-10 sites at nearest receptors and fence around the plant</td>
<td>Noise audit US$ 10-20K (included in operation cost) Third party (e.g. NRC) Measuring instruments and equipment.</td>
<td></td>
</tr>
</tbody>
</table>
129. The operational monitoring of cooling water and effluent discharge will include the parameters summarized in Table 10 below.

Table 10

<table>
<thead>
<tr>
<th>Issue</th>
<th>Parameter</th>
<th>Method</th>
<th>Frequency of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality</td>
<td>Temperature & pH of all discharged water</td>
<td>Continuous automatic monitor in discharge structure</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td>COD, TSS, Oil & Grease, residual chlorine of effluent</td>
<td>Sample taken from water in discharge structure and submitted for lab. Analysis</td>
<td>Daily</td>
</tr>
<tr>
<td></td>
<td>Heavy metals & other pollutants of effluent</td>
<td>As above</td>
<td>Monthly</td>
</tr>
<tr>
<td>Ambient Water Quality</td>
<td>Temperature, pH, COD, BOD, TOC, DO, TSS, oil & grease, residual chlorine of effluent</td>
<td>Grab sampling and analysis within the area predicted to be affected by the discharge plume</td>
<td>3-monthly</td>
</tr>
<tr>
<td>Flora & Fauna (1)</td>
<td>Benthic flora & fauna</td>
<td>Transect sampling (following same method as in baseline monitoring) within a 2 km radius of the discharge point</td>
<td>Annual</td>
</tr>
<tr>
<td>Entrainment (2)</td>
<td>Fish entrainment on screens</td>
<td>Removal and analysis of any debris caught in intake screens</td>
<td>Weekly</td>
</tr>
</tbody>
</table>

Notes:
(1) To be undertaken for the first 3 years of plant operation.
(2) To be undertaken for the first year of plant operation.

Abbreviations:
COD: Chemical Oxygen Demand
BOD: Biological Oxygen Demand
TOC: Total Organic Carbon
DO: Dissolved Oxygen
TSS: Total Suspended Solids

130. Monitoring data will be analyzed and reviewed at regular intervals and compared with Egyptian and World Bank guidelines (as given in Section 2). Records of monitoring results will be kept in a suitable format and will be reported (in summary format with any exceptions identified) to the responsible government authorities, the WB and AfDB or any other concerned authority as required. As a result, the project company, in discussion with the EEA, EEHC, the WB and the AfDB or any other concerned authority, will review the need to implement any additional mitigation features, such as provision of further water treatment facilities on site and also on the need to continue monitoring.

Waste Monitoring

131. Wastes generated on site and collected for disposal by skilled firms will be referenced, weighed and recorded. Environmental audits will be
undertaken which will assess the quality and suitability of on- and off-site waste management procedures.

8. PUBLIC CONSULTATION AND DISCLOSURE

132. In order to ensure that the views and interests of all project stakeholders are taken into accounts, public consultation has been carried out according to the EEAA guidelines which require coordination with other government agencies involved in the EIA, obtaining views of local people and affected groups. This consultation has been undertaken as part of the Environmental Impact Assessment process.

133. The objectives of consultation and disclosure are to ensure that all stakeholders and interested parties, are fully informed of the proposed project, have the opportunity to voice their concerns and that any issues resulting from this process are addressed in the EIA and incorporated into the design and implementation of the project.

134. The adopted methodology for the public consultation, which conforms with the WB & AfDB requirements, comprises four elements, namely:

Phase I
- discussions with local stakeholders and interested parties during preparation of the environmental documents for local permitting requirements;
- discussions with local stakeholders during the scoping meeting organized in the Suez Governorate, and preparation of this ESIA-Report;

Phase II
- the organization of a Public Meeting in the Suez Governorate, and
- on-going consultation through an “open-door” policy during construction and operation of the power plant.

135. As far as public disclosure is concerned, major initiatives to inform the public and interested parties about the Al-Sokhna Power project include the following:
- press advertisement describing the project and inviting interested parties to attend the public meeting and review the Draft Final ESIA Report;
- distribution of an invitation and Arabic copy of the Non Technical Summary describing the context of the power plant, the technology employed, the impact on the environment, the mitigation measures and the ESMP; and
- disclosure of the Draft Final ESIA Report locally and the Executive Summary, including ESMP via the Infoshop.

136. The full methodology for consultation and disclosure is presented in the project's Public Consultation and Disclosure Activities (PCDA), given in Annex D. The purpose of the activities is to establish the process by which EDEPC/SPP will consult and involve stakeholders in the planning, development, construction and operation of the power plant.
137. During the preparation of an ESIA-Report for local permitting requirements, ECG, EEHC and EDEPC undertook consultations with a variety of organizations to assist them in the identification of environmental and social concerns and the overall development of the project. These stakeholders included the Egyptian Electricity Holding Company (EEHC), East Delta Electricity Production Company (EDEPC), Egyptian Environmental Affairs Agency (EEAA), the Suez Governorate and the District Council of Ettaqa Zone, Egyptian General Authority for Shore Protection, Hydraulics Research Institute and local population leaders.

138. The purpose of these consultations was primarily to provide information regarding the project, identify published and non-published sources of relevant data and information relating to the site and surrounding area, obtain views on the scope of the project, and open channels for ongoing discussions.

139. A scoping session for this ESIA undertaken by ECG in collaboration with the EEHC and EDEPC, took place on Wednesday, 2 June 2008 during which a wide selection of personnel from different orientations contributed actively to its activities.

139. The key objectives of this consultation were to identify primary and secondary stakeholders, ensure that they had received sufficient information about the project during earlier ECG/EEHC/EDEPC consultation activities and to identify their immediate concerns.

140. In addition to the scoping meeting, several mini-meetings were held with some particular affected stakeholders for taking their viewpoints into consideration.

141. Mini-meetings were held with fishermen on the Suez area, Regional Branch of the Egyptian Environmental Affairs Agency (EEAA), Suez Governorate officials, Local People’s Council’s leaders, General Authority for Fish Resources Development and some active NGOs in Suez zone, namely the Environment Protection Society, El-Kheir Society, Specific Federation of Civil Societies in Suez and Association of Tourism Investors in Suez.

142. The key environmental issues raised during this consultation process are summarized in Table 11 and these issues were subsequently taken into account in the preparation of ESIA documentation both for local permitting requirements and this ESIA report.

143. The main results of phase 1 consultation was to successfully raise the level of local awareness about the plant, to identify the immediate local concerns and to seek stakeholder involvement in the implementation of the project.
Table 11

Key Issues Raised During ESIA Scoping Meeting

<table>
<thead>
<tr>
<th>Key issue discussed</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Project</td>
<td>All parties consulted expressed their overall approval for the project. Local stakeholders commented that the power plant will be central to securing power supply for the industrial and commercial activities in the area and will benefit the local economy through labor opportunities.</td>
</tr>
<tr>
<td>Social and Economic Impact</td>
<td>Local stakeholders and council leaders considered the social and economic impact of the plant to be wholly positive. There was an emphasize on the necessity of hiring most of the plant workers from the Suez Region because many of project's employment in the Suez Region have been drawn from the outside of the area.</td>
</tr>
<tr>
<td>Waste water discharge and the aquatic environment</td>
<td>All local stakeholders expressed concern about the quality and quantity of water in the Suez Gulf Al-Sokhna segment and the quality of water which will be discharged from the power plant. It was however acknowledged that there are no significant aquatic ecosystems close to the power plant. The suggestion was made that treated sanitary wastewater could be used for irrigation of landscaped areas and treated industrial wastewater would be directed to the circulating water discharge system.</td>
</tr>
<tr>
<td>Cooling Water</td>
<td>El-Tagamoaa Party representative and representative of the National Institute for Oceanographic Studies & Fisheries raised the issue of algae suppression at the intake structure using chlorine with dosage designed for cold waters & not for local Egyptian waters. There was a recommendation to PEGSCO's representatives to review and check chlorine dosage system on the basis of local Egyptian marine environment.</td>
</tr>
</tbody>
</table>
| Air Quality | There was big concern over the following issues:
* compliance with air quality standards and the effect that non-compliance and subsequent plant closure could have on security of employment in the area;
* accumulated effects of the relatively degraded air quality in the Ettaqa atmosphere and the impact of the power project;
* back-up heavy fuel oil is prohibited in residential areas, but El-Ain Al-Sokhna, as identified in several physical planning schemes for Suez Region, belongs to an industrial setting.
* Impact of four power plants located all together on the Gulf of Suez (Oyoun Moussa, Ettaqa, Suez Gulf & El-Ain Al-Sokhna) on air quality in the Suez region. |
| Ecology of the Site | There was significant attention to keeping a landscape area inside the power plant fence. |
| Shoreline & Seabed Morphology | Some parties expressed their fears of causing damaging effects due to sedimentation and erosion processes associated with cooling water abstraction and discharge. |
| Environmental Compliance | An underlying concern expressed by all local stakeholders was compliance with environmental regulations. Assurances from EDEPC are sought to the effect that EDEPC will guarantee implementation of the environmental compliance measures which will be stated in the Environmental and Social Management Plan. |
144. Phase II of the public consultation and disclosure process included the disclosure of information about the project (advertisement, invitation including a copy of the Non-Technical Summary, in Arabic, and public access to the Draft Final ESIA Report) and organization of a public meeting.

145. A public meeting will be held in the Suez Governorate on Wednesday, 6th August 2008. The aim of the meeting is to present and explain the results of the Draft Final ESIA Report to local stakeholders, to provide them with the opportunity to raise any further or additional concerns and to ensure that all issues are taken into account in the Final ESIA Report and corresponding ESMP.

146. The key environmental issues that will be raised during this public consultation meeting will be summarized also in Table 11.

Ongoing Consultation and Disclosure

147. Sokhna Power Plant's (SPP's) Assistant Plant Manager, who is responsible for the Environment, Safety and Quality Assurance program for the plant, will have full responsibility for implementing and supervising the ESMP. This role includes ongoing communication with local industrial and commercial interests, local authorities and other interested parties. An “open door” policy will be adopted to allow stakeholders to voice ongoing concerns.

148. The process and results of the public consultation activities held to date are documented in the ESIA, Chapter 9 and Annexes A, B, C and D.

149. All issues have been taken into account and addressed in the ESIA through assessment and the inclusion of mitigation, management and monitoring requirements which are detailed within the ESMP.

9. RESPONSIBILITIES AND INSTITUTIONAL ARRANGEMENTS

9.1 Environmental Management Organization

During Design and Construction

150. Suitably qualified and experienced contractors will be responsible for the detailed design and construction of the power plant. Construction workers will be required to demonstrate appropriate skills, qualifications and/or experience prior to employment.

151. During construction, Project Management Unit / Environmental Management Staff (PMU/EMS) and the Assistant Plant Manager in collaboration with PGESCO Site Manager will ensure that all contracts with Contractors and sub-contractors stipulate all construction management measures (as given in this ESMP), operational design criteria and environment, health and safety standards which must be implemented at the project site.
152. Implementation of these measures will be enforced by PMU/EMS and the Assistant Plant Manager and supervised by the Assistant Plant Manager, supported by EDEPC Project Manager in collaboration with PGESCo Site Manager, who will have direct responsibility for the Environment, Safety and Quality Assurance program on site during construction and operation. The Assistant Plant Manager is responsible for ensuring that construction works comply with the requirements of the ESMP and all environmental permits. His key roles will be to:

- assume the interface with authorities for environmental authorizations and permits;
- act as the Assistant Plant Manager for local authorities, industrial and commercial interests and any other interested parties;
- ensure that mitigation measures to reduce impacts during the construction phases are implemented;
- ensure that monitoring to be undertaken during construction is implemented;
- ensure compliance with the environmental and social management plan; and
- ensure that health and safety requirements are respected.

During Power Plant Operation

153. During operation, direct responsibility for environmental compliance and the implementation of the mitigation, management and monitoring measures described in this Summary and in Section 7 of the Main Report, will continue to be with the Plant Environmental Staff under direct supervision of the Assistant Plant Manager. This position, will report directly to the Chairman/General Manager of EDEPC/SPP.

154. The Assistant Plant Manager will be based at the site and will be responsible for recruiting, training and managing his staff. He will be responsible for implementing the mitigation and management measures described above and for monitoring and record keeping of the following:

- stack emissions;
- air quality;
- noise emissions;
- quality of water discharge; and
- waste management.

155. In his role, the Assistant Plant Manager will also be responsible for maintaining any pollution control equipment and for developing and implementing procedures for safe handling and storage of any hazardous materials used on site.
156. Chemicals used during plant operation are process-related. Hazardous chemicals to be used include chlorine (5500 kg/hr), sulfuric acid (7000 kg/day infrequency once per day). Handling, storage and application of these chemicals will be used under strict regulations of handling hazardous materials stipulated by Law 4/1994.

157. The Assistant Plant Manager will also have lead responsibility for maintaining a written Environmental Register with respect to environmental impacts as required under Egyptian and World Bank guidelines. The written records will identify the characteristics of discharges and emissions, details of periodic testing including results, procedures for follow-up environmental safety actions and the person in charge of this follow-up. Should any prescribed standards be breached, EDEPC/SPP, through the Assistant Plant Manager, will immediately inform the EEAA and disclose the procedures being taken to rectify non-conformity.

158. Results of environmental monitoring as described above, shall be recorded and submitted to the EEAA, EEHC and to any other party (i.e. WB, AfDB etc.) as required. The EEAA, WB and AfDB are entitled to audit the project company in order to ensure conformity with environmental standards and requirements.

159. In addition, the project company must keep a record of any significant environmental incidents occurring at the plant including accidents and occupational illnesses, spills, fires and other emergencies. The Assistant Plant Manager will be responsible for ensuring that these records are maintained up to date and are available on site.

9.2 Environmental Training

160. The Project Company will ensure that the power plant is manned 24 hours a day, 7 days per week. All staff employed at the plant will be trained in the following:

- general operation of the power plant;
- specific job roles and procedures;
- occupational health and safety; and
- contingency plans and emergency procedures.

161. Training will include:

- induction training on appointment;
- specialist training (as required for their prescribed job role); and
- refresher training as required.

162. The training program will be designed to ensure that appropriate skilled staff are used to operate the power plant at all times. Aspects of occupational health and safety and emergency procedures are described below.
163. In addition to this environmental training for all staff employed at the plant, special environmental training will be given to the staff employed for the EMU. They will receive training in the following:

- day-to-day monitoring activities;
- monitoring the stack emissions;
- collection and analysis of air quality data;
- monitoring the water effluents;
- collection and analysis of water quality information;
- use of monitoring equipment, operation and maintenance;
- industrial hygiene;
- occupational health and safety; and
- emergency and contingency procedures.

9.3 Occupational Health and Safety

164. EDEPC/SPP will establish and integrate policies and procedures on occupational health and safety into the operation of the power plant which meet the requirements of Egyptian and World Bank guidelines as given in Section 2 of the report. The policies and procedures will also be designed to comply with all manufacturers safety data sheets for chemical storage and usage, so as to provide a safe and healthy working environment.

165. Occupational health and safety programs will be supported by staff training for the power plant and the appointment of the Assistant Plant Manager. The training will include, but will not be limited to, the following:

- general area safety;
- specific job safety;
- general electrical safety;
- handling of hazardous materials;
- entry into confined spaces;
- hearing conservation;
- repetitive stress disorders;
- Code of Safe Practices;
- use of personal protective equipment; and
- first-aid.

166. The training will include induction courses when staff are first employed at the power plant, with specialist and refresher training as required by the job role. Training will be updated annually and occupational health and safety procedures will be included within the Operations Manual for the power plant.

167. The safety record at the power plant will be reviewed each month at a formal meeting, led by the Assistant Plant Manager, where the agenda items, comments and attendance will be recorded and kept on file.
168. In addition, periodic safety audits will be conducted to verify compliance with safe working practices, which will comprise physical inspections, review of plant records and interviews with staff. The audits will assign responsibility for any corrective action necessary to mitigate a potential hazard and allow the tracking of the completion of the corrective measure.

9.4 Emergency Procedures and Accident Response

169. Instructions on emergency measures necessary to safeguard employees and the wider environment will be prepared as part of the Operations Manual for the power plant.

Accident Response

170. As part of the preparation of emergency procedures and the plans for accident response arrangements, the project company will carry out the following:

- review industry-specific and Egyptian and World Bank standards and regulations;
- establish general guidelines on potential safety and accident risks;
- prepare job-specific operating instructions where appropriate;
- establish safety and security notices for hazardous materials;
- prepare specific emergency operating instructions;
- provide protective equipment (including clothing, air and ear protection etc.) as required;
- evaluate information and feedback from employees; and
- record and investigate all accidents, injuries and incidents.

171. Contingency plans and emergency procedures are being developed to cover events due to operational failures, natural causes and acts of third parties. The plans and procedures will cover, as a minimum, the following:

- fire;
- explosion;
- bomb alerts;
- leaks and spills of hazardous materials;
- structure or equipment failures;
- injuries and illnesses;
- risk from natural disasters (wind, sandstorm, earthquake); and
- third-party risks (potential impacts of an accident occurring at another industrial facility which may impact upon the power plant).
Oil Spill Contingency Plan

172. As Good practice and part of the ESMP, EDEPC/PMU/EMS will prepare an Oil Spill Contingency Plan to be ready for implementation by the start of construction activities.

173. Heavy fuel oil will be delivered to the site by road and stored in:
 • two 45,000 m³ tanks for the mazout oil (oil no. 6).

174. Light fuel oil will be delivered to the site by road and stored in:
 • one 2,000 m³ tank for the light fuel oil (oil no. 2 / sollar).

175. These tanks are surrounded contained within separate retention area which is designed to contain 110% of one tank.

176. The plan will cover the following activities.
 • delivery;
 • handling;
 • spills; and
 • cleanup.

176. The plan will detail procedures, responsibilities, chains of command, information flows, monitoring and documentation. Table 4 presents institutional arrangements for El-Ain Al-Sokhna power project.

10. IMPLEMENTATION SCHEDULE AND REPORTING

177. Environmental and social management and monitoring activities will be implemented (according to the ESMP), following the same project schedule, as all activities are mainstreamed in the project design. Achievements/problems will be reported in the project quarterly progress reports and should be timely addressed by the project management and the Bank.

11. CONCLUSIONS

178. The Project Company proposes to develop a new thermal power plant of total capacity 2x650 MWe at the area reserved for the Al-Sokhna Power Plant on land owned by the EDEPC Company. The site is an Industrial Setting and does not contain significant residential environmental sensitivity of importance.

179. The key environmental issues associated with the power plant are as follows:
 • Emission of oxides of nitrogen to the air;
 • Generation and disposal of liquid effluents including cooling water; and
 • Emission of noise.
180. The Environmental and Social Impact Assessment has evaluated the potential environmental impacts during construction and operation of the proposed power plant. In particular, the potential impacts of the flue gas emissions to the air, generation and disposal of liquid effluents including cooling water; and the emissions of noise have been assessed using sophisticated modeling techniques, which include consideration of the ambient background environment and the characteristics of the releases or emissions, and predicts the potential impacts which may occur.

181. The assessment indicates that no significant environmental impacts will occur as a result of the construction or operation of the power plant and, when taken together, the overall environmental and social impact will not be significant.

12. REFERENCES AND CONTACTS

References and Documents Consulted

5. Geological Survey of Egypt (1983): Geological Map of Suez Area; Scale 1:2,000,000.

17. UNESCO (1979): *Predicting Effects of Power Plant Once-through Cooling on Aquatic Systems; Paris.*

27. Egyptian Electricity Authority (EEA) (July 1991): *2x600 MWe Gas/Oil Thermal Power Plant Environmental Assessment for El-Kureimat; Final Report, Stone & Webster Engineering Corporation, USAID Grant No. 263-01 02.*

30. Commercial Services Corporation (CSC) (June 2008): *Physical Environmental Setting of the Planned Site of Al-Sokhna Thermal Power Project.*

32. Prof. Dr. Kamal T. Hindy and Others (May 2008): *Study of Solid Air Pollutants in Selected Points at the Al-Sokhna Thermal Power Plant Site; National Research Center, State Ministry of Scientific Research.*

34. EEAA, GOS & DANIDA (2005): Environmental Profile of Suez Governorate.

38. MB Consultant (June 2008): Noise Prediction for El-Ain Al-Sokhna Power Project; Ain Shams University, Faculty of Engineering.

41. Dr. Aly Nasser Hassan (June 2008): Marine Ecological Baseline and Impact Assessment Study for the El-Ain Al-Sokhna Power Station; Institute of Environmental Studies & Research, Ain Shams University.

42. Prof. Dr. Osama A. Aly (June 2008): Assessment of Water Quality Along Selected Sites for the Construction of Electric Generation Station at El-Ain Al-Sokhna, National Research Center.

Contacts

182. Key persons contacted for comments or further information include the following:

- Chairman of the EEHC: Dr. Mohamed Awad
- Executive Board Member for Planning, Research and Service Companies Affairs: Dr. Kamel Yassin
- Chairman of EDEPC: Eng. Tarek Yousef Ali
- Managing Director for Environmental Management and Studies; EEHC: Eng. Maher Aziz Bedrous
- Project Manager of ECG: Eng. Hassan El-Banna
Annex 1

CHANCE FIND PROCEDURES

Chance find procedures will be used as follows:
(a) Stop the construction activities in the area of the chance find;
(b) Delineate the discovered site or area;
(c) Secure the site to prevent any damage or loss of removable objects. In cases of removable antiquities or sensitive remains, a night guard shall be present until the responsible local authorities and the equivalent take over;
(d) Notify the supervisory Engineer who in turn will notify the responsible local authorities and the General Authority of Antiquities immediately (within 24 hours or less);
(e) Responsible local authorities and the General Authority of Antiquities would be in charge of protecting and preserving the site before deciding on subsequent appropriate procedures. This would require a preliminary evaluation of the findings to be performed by the archeologists of the General Authority of Antiquities (within 72 hours). The significance and importance of the findings should be assessed according to the various criteria relevant to cultural heritage; those include the aesthetic, historic, scientific or research, social and economic values;
(f) Decisions on how to handle the finding shall be taken by the responsible authorities and the General Authority of Antiquities. This could include changes in the layout (such as when finding an irremovable remain of cultural or archeological importance) conservation, preservation, restoration and salvage;
(g) Implementation for the authority decision concerning the management of the finding shall be communicated in writing by the General Authority of Antiquities; and
(h) Construction work could resume only after permission is given from the responsible local authorities and the General Authority of Antiquities concerning safeguard of the heritage.

These procedures must be referred to as standard provisions in construction contracts, when applicable. During project supervision, the Site Engineer shall monitor the above regulations relating to the treatment of any chance find encountered are observed.
Annex II

LIST OF EIA AND SOCIAL ASSESSMENT TEAM MEMBERS

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td>Eng. Hassan El-Banna</td>
</tr>
<tr>
<td>Atmospheric Dispersion Modeling Specialist</td>
<td>ECG Air Quality Dept.</td>
</tr>
<tr>
<td>Socio-economic Specialist</td>
<td>ECG Socio-economic Studies Dept.</td>
</tr>
<tr>
<td>Solid & Hazardous Waste Management Specialist</td>
<td>ECG Waste Management Dept.</td>
</tr>
<tr>
<td>Ecologist</td>
<td>Dr. Ali Nasser Hassan</td>
</tr>
<tr>
<td>Air Quality Measurements</td>
<td>National Research Center</td>
</tr>
<tr>
<td>Water Quality Measurements</td>
<td>National Research Center</td>
</tr>
<tr>
<td>Egypt National Institute of Transport (ENIT)</td>
<td>Dr. Abdallah Wahdan and the team</td>
</tr>
<tr>
<td>MB. Consultant</td>
<td>Consulting team of the Firm</td>
</tr>
<tr>
<td>CSC Consulting Firm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geological Special team</td>
</tr>
<tr>
<td>EcoConServe</td>
<td></td>
</tr>
<tr>
<td>Hydraulics Research Institute</td>
<td>Eng. Ibrahim El-Dessouki and the team</td>
</tr>
<tr>
<td>EEHC Supervisor</td>
<td></td>
</tr>
<tr>
<td>Head of Environment Management and Studies Sector</td>
<td>Eng. Maher Aziz Bedrous</td>
</tr>
</tbody>
</table>