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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper is a product of the Office of the Chief Economist, Africa Region. It is part of a larger effort by the World 
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Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors may be contacted 
at andreas.kotsadam@econ.uio.no, anja.tolonen@economics.gu.se, and pchuhan@worldbank.org.  

Ghana is experiencing its third gold rush, and this paper 
sheds light on the socioeconomic impacts of this rapid 
expansion in industrial production. Using a rich data-
set consisting of geocoded household data combined 
with detailed information on gold mining activities, the 
authors conduct two types of difference-in-differences 
estimations that provide complementary evidence. The 
first is a local-level analysis that identifies an economic 
footprint area very close to a mine, and the second is a 

district-level analysis that captures the fiscal channel. The 
results indicate that men are more likely to benefit from 
direct employment as miners compared to men further 
away, and that women in mining communities may more 
likely gain from indirect employment opportunities and 
earn cash for work. Authors also find that infant mortal-
ity rates decrease significantly in mining communities, 
compared to the evolution in communities further away.
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1 Introduction 

The mining sector in Africa is growing rapidly and is the main recipient of foreign direct 

investment (World Bank 2011). The welfare effects of this sector are not well understood, 

although a literature has recently developed around this question. The main contribution of this 

paper is to shed light on the welfare effects of gold mining in a detailed, in-depth country study 

of Ghana, a country with a long tradition of gold mining and a recent, large expansion in capital-

intensive and industrial-scale production. 

A second contribution of this paper is to show the importance of decomposing the effects with 

respect to distance from the mines. Given the spatial heterogeneity of the results, we explore 

the effects in an individual-level, difference-in-differences analysis by using spatial lag models 

to allow for nonlinear effects with distance from mine. We also allow for spillovers across 

districts, in a district-level analysis. We use two complementary geocoded household data sets 

to analyze outcomes in Ghana: the Demographic and Health Survey (DHS) and the Ghana 

Living Standard Survey (GLSS), which provide information on a wide range of welfare 

outcomes. 

The paper contributes to the growing literature on the local effects of mining. Much of the 

academic interest in natural resources is focused on country-wide effects, and this research 

discusses whether the discovery of natural resources is a blessing or a curse to the national 

economy. Natural resource dependence at the national level has been linked to worsening 

economic and political outcomes, such as weaker institutions, and more corruption and conflict 

(see Frankel 2012 and van der Ploeg 2011 for an overview). While all these effects can have 

household-level implications, fewer analyses have, thus far, analyzed the geographic dispersion 

of such impacts. A recent literature on the local and subnational effects of natural resources 

contributes to the understanding of such effects (for example Aragón and Rud 2013, 2015; 

Axbard et al., 2016; Benshaul-Tolonen 2018, 2019; Caselli and Michaels 2013; Corno and de 

Walque 2012; Fafchamps et al. 2016; Kotsadam and Tolonen 2016; Loyaza et al 2013; 

Michaels 2011; von der Goltz and Barnwal 2019; Wilson 2012). A growing number of papers 

explore the mining industry, in particular, see Aragón, Chuhan-Pole, and Land (2015) for an 

overview. We contribute to this literature by showing the importance of analyzing local level 

effects in addition to district level effects in a one-country case study.  

Aragón and Rud (2013) provided the seminal work exploring the economic effects of one very 

large mine in Peru. They find that the expansion of the mine had poverty-reducing effects, but 
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only in conjunction with policies for local procurement. Moreover, some of the mining-related 

papers have focused on mining in an African context, exploring a range of outcomes, including 

HIV-transmission and sexual risk taking (Corno and de Walque 2012; Wilson 2012), women’s 

empowerment (Benshaul-Tolonen 2018), infant mortality (Benshaul-Tolonen, 2019) and labor 

market outcomes (Kotsadam and Tolonen 2016). Mining is also associated with more economic 

activity measured by nightlights (Benshaul-Tolonen, 2019; Mamo et al, 2019).  

Kotsadam and Tolonen (2016) use DHS data from Africa, and find that mine openings cause 

women to shift from agriculture to service production and that women become more likely to 

work for cash and year-round as opposed to seasonally. Continuing this analysis, Benshaul-

Tolonen (2018) explores the links between mining and female empowerment in eight gold-

producing countries in East and West Africa, including Ghana. Women in gold mining 

communities have more diversified labor markets opportunities, better access to health care, 

and are less likely to accept domestic violence. In addition, infant mortality rates decrease with 

up to 50% in mining communities, from very high initial levels (Benshaul-Tolonen, 2019). In 

a study that focuses exclusively on Ghana, Aragón and Rud (2013) explore the link between 

pollution from mining and agricultural productivity. The results point toward decreasing 

agricultural productivity because of environmental pollution and soil degradation, which could 

have negative welfare effects on households that do not engage in mining activities or in 

indirectly stimulated sectors. Lower productivity in agriculture could potentially push 

households to engage in mining-related sectors, in addition to pull factors such as higher wage 

earnings in the stimulated sectors.  

We explore the effects of mining activity on employment, earnings, expenditure, and children’s 

health outcomes in local communities and in districts with gold mining. We combine the DHS 

and GLSS with production data for 17 large-scale gold mines in Ghana. We find that a new 

large-scale gold mine changes economic outcomes, such as access to employment and cash 

earnings. In addition, it raises local wages and expenditure on housing and energy.  

An important welfare indicator in developing countries is infant mortality, and we note a large 

and significant decrease in mortality rates among young children, at both the local and district 

levels.1 We hypothesize that increased access to prenatal care is one of the mechanisms behind 

the increased survival rate.  

                                                            
1 In the 2010 Ghana population census average district size is 112,000 
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We suggest interpreting the local effects as being additional to the district-level effects; that is, 

the mine affects the mining district predominantly through the fiscal channel, and local mining 

communities mainly through employment generation, and other localized factors. Overall, the 

results are more robustly estimated at the district level than at the individual level, and we find 

no indications of positive spillover effects across districts. This is in line with a public spending 

hypothesis, where mining districts benefit more than adjacent non-mining districts through the 

fiscal revenue channel, since 10 percent of mining royalties are redistributed to mining districts.  

2 Gold mining in Ghana 

Ghana has a long tradition of gold mining and has produced a substantial portion of the world’s 

gold for over 1,000 years (see Hilson [2002] for an extensive overview of gold production in 

Ghana). During colonial British rule, the country was named the Gold Coast Colony, and gold 

production was booming. The first gold rush occurred between 1892 and 1901, and the second 

after World War I. Gold production decreased at the dawn of independence in 1957, and 

remained low until the 1980s. Over the last 20 years, Ghana has been experiencing its third gold 

rush. During this period, annual gold production has increased by 700 percent, as shown in 

Figure 1. It is the expansion that has happened during this recent gold rush that is used in this 

analysis to understand the socioeconomic effects of mining. The high international gold price 

was a driving factor in the expansion of small-scale mining, such as the 2,700% increase in gold 

mining territory around the Offin River between 2008 and 2012 (Hausermann et al., 2018). 

Between 2006 and 2012, two large-scale mines opened in Ghana, but no mine closed down 

(Table 1) possibly due to the high gold price increasing profitability and extending life length.  

The expansion across artisanal small-, medium-, and large-scale mining contributed to an 

increase in total production that rose from 541,147 oz in 1990 to 3,119,823 oz in 2009 according 

official Ghana statistics (Bloch and Owusu, 2012). This production increase led to an increased 

sector contribution to GDP from 4,83% (1990) to 5,78% (2009), alongside export value of 

US$304m in 1990, US$702m in 2000, and US$2246 m in 2008, reaching 43% of national 

exports in 2008. Mining related foreign direct investment (FDI) also rose from US$165m to 

US$762m between 1995 and 2009. Mining was the dominating sector with between 48% and 

94% of mining FDI to total FDI from 1995 to 2007, until the country saw an incredible increase 

in non-mining foreign direct investment (Bloch and Owusu, 2012), following the discovery of 

oil in 2007.  
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Figure 1 Ghana’s annual gold production and world price of gold 

 

Ghana is the second-largest gold producer in Africa after South Africa, with gold production 

averaging 77 tons per year (Gajigo, Mutambatsere, and Mdiaya 2012). In 2011, Ghana’s 

mineral sector accounted for about 14 percent of total tax revenues and 5.5 percent of the gross 

domestic product (GDP) (Bermúdez-Lugo 2011), as well as 44 percent of Ghanian exports 

(Gajigo, Mutambatsere, and Mdiaya 2012). This makes the gold mining industry one of the 

country’s most important industries, and an essential industry to study. 

Similar to gold mining in other African countries (see Gajigo, Mutambatsere, and Mdiaya 

[2012] for an overview), the sector is highly capital intensive, and direct employment 

generation is, relative to its economic importance, limited. In 2010, it was estimated that about 

20,000 Ghanaian nationals—0.08 percent of the population—were employed in large-scale 

mining (Bermudez-Lugo 2010), despite accounting for 5.5 percent of GDP. Nonetheless, the 

spillovers to other sectors of the economy may be substantial, because nonnationals also work 

in the mines and wages are relatively high. Aryee (2001) estimates that, between 1986 and 

1998, large-scale mining injected over US$300 million into the national economy from salaries 

alone. 

Beyond direct and indirect employment effects, the mining industry is connected to the wider 

economy via taxes and royalties. Ghana has been highlighted as a good example of how 

mineral-rich countries can distribute mining wealth, since a proportion of the rents are 

distributed to the local communities (Standing and Hilson 2013). The mining royalty paid by 
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mining companies in Ghana was 3 percent until 2010, which was the average rate for gold 

production in Africa (Gajigo, Mutambatsere, and Mdiaya 2012), but increased to 5 percent in 

2010 (Standing and Hilson 2013). Of this money, 80 percent goes to the general government 

budget, 10 percent goes to the administration of mining oversight, and 10 percent supports 

district administration (Garvin et al. 2009). Between 1993 and 1998, about US$17 million was 

distributed to local mining communities (Aryee 2001). While considered a model of best 

practice, there is still a worry that the beneficial effects of allocations to the districts are 

undermined by elite capture and corruption at the district level (Standing and Hilson 2013). For 

our analysis, the scheme implies that it may be necessary to conduct a district-level analysis in 

addition to the more local-level analyses. 

12 currently active mines dominate the sector, and there are an additional five suspended mines 

that have been in production in recent decades. Table 1 presents a full list of the mines, the year 

they opened, and their status as of December 2012. Company name and country are for the 

main shareowner in the mine. Most of these 17 mines have foreign ownership, such as 

Australian, Canadian, or South African, sometimes in partnership with Ghanaian firms or the 

Ghanaian state. Most are open-pit mines, although a few consist of a combination of open-pit 

and underground operations. 

Table 1 Gold Mines in Ghana 

Name Opening 
year 

Closing year Company Country 

Ahafo 2006 active Newmont Mining Corp. USA 
Bibiani 1998 active Noble Mineral Resources Australia 
Bogoso Prestea 1990 active Golden Star Resources USA 
Chirano 2005 active Kinross Gold Canada 
Damang 1997 active Gold Fields Ghana Ltd. South Africa 
Edikan (Ayanfuri) 1994 active Perseus Mining Australia 
Iduapriem 1992 active AngloGold Ashanti South Africa 
Jeni (Bonte) 1998 2003 Akrokeri-Ashanti Canada 
Konongo 1990 active LionGold Corp. Singapore 
Kwabeng 1990 1993 Akrokeri-Ashanti Canada 
Nzema 2011 active Endeavour Canada 
Obotan 1997 2001 PMI Gold Canada 
Obuasi 1990 active AngloGold Ashanti South Africa 
Prestea Sankofa 1990 2001 Anglogold Ashanti South Africa 
Tarkwa 1990 active Gold Fields Ghana Ltd. South Africa 
Teberebie 1990 2005 Anglogold Ashanti South Africa 
Wassa 1999 active Golden Star Resources USA 

Source: InterraRMG 2013.  
Note: Active is production status as of December 2012, the last available data point. 
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Alongside the large-scale, capital-intensive mining industry in Ghana, there is an artisanal and 

small-scale mining sector (ASM). ASM activities were legalized in 1984, when the state 

loosened its monopoly on gold mining. In Ghana, as in many other African countries, the sector 

is an important employer (ILO 1999). It is estimated that around 1 million people in Ghana 

support themselves with revenues from ASM activities. 

The sector is associated with several hazardous labor conditions, however. This includes child 

labor, mercury exposure, and risk of mine collapse (Hilson 2009). The ASM and the large-scale 

mining sector sometimes thrive side by side, but sometimes competing interests lead to conflict 

between the two sectors, such as around Prestea, where domestic galamsey miners (informal 

small-scale miners) have been in conflict with the multinational concession owner (Hilson and 

Yakoleva 2007). 

In this analysis, we focus solely on large-scale mining. We understand, however, that small- 

and large-scale operations may be geographically correlated. Assuming that the start of a large-

scale mine does not affect the likelihood or viability of artisanal and small-scale mining, it is 

not a threat to our identifying assumptions. However, should ASM respond to large-scale 

activities, either by increasing or decreasing activity in the close geographic area, we will end 

up estimating the impact of these sectors jointly. In a later stage, should the opportunity arise, 

we encourage researchers to try to disentangle the effects of small-scale and large-scale mining. 

3 Data 

To conduct this analysis, we combine different data sources using spatial analysis. The main 

mining data is a dataset from InterraRMG covering all large-scale mines in Ghana, explained 

in more detail in section 3.1. This dataset is linked to survey data from the DHS and GLSS, 

using spatial information. Geographical coordinates of enumeration areas in GLSS are from 

Ghana Statistical Services (GSS).2 Point coordinates (global positioning system [GPS]) for the 

surveyed DHS clusters3 allow us to match all individuals to one or several mineral mines. We 

do this in two ways. 

First, we calculate distance spans from an exact mine location given by its GPS coordinates, 

and match surveyed individuals to mines. These are concentric circles with radiuses of 10, 20, 

and 30 kilometers (km), and so on, up to 100 km and beyond. In the baseline analysis where 

                                                            
2 The data was shared by Aragón and Rud (2013) 
3 Both the DHS and GLSS enumeration area coordinates have a 1-5 km offset. The DHS clusters have up to 
10km displacement in 1% of the cases.  
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we use a cutoff distance of 20 km, we assume there is little economic footprint beyond that 

distance. Of course, any such distance is arbitrarily chosen, which is why we try different 

specifications to explore the spatial heterogeneity by varying this distance (using 10 km, 20 km, 

through 50 km) as well as a spatial lag structure (using 0 to 10 km, 10 to 20 km, through 40 to 

50 km distance bins).4  

Second, we collapse the DHS mining data at the district level.5 The number of districts has 

changed over time in Ghana, because districts with high population growth have been split into 

smaller districts. To avoid endogeneity concerns, we use the baseline number of districts that 

existed at the start of our analysis period, which are 137. Eleven of these districts have industrial 

mining. Because some mines are close to district boundaries, we additionally test whether there 

is an effect in neighboring districts. 

3.1 Resource data 

The Raw Materials Data are from InterraRMG (2013). The data set contains information on 

past or current industrial mines. All mines have information on annual production volumes, 

ownership structure, and GPS coordinates on location. We complete this data with exact 

geographic location data from MineAtlas (2013), where satellite imagery shows the actual mine 

boundaries, which allows us to identify and update the center point of each mine. The 

production data and ownership information are double-checked against the companies’ annual 

reports. 

For Ghana, this exercise results in 17 industrial mines tracked over time. We have annual 

production levels from 1990 until 2012. As mentioned, Table 1 shows the mining companies 

active in Ghana during recent decades, with opening and closing years (although some were 

closed in between, and are not presented in the table). Figure 2 shows the geographic 

distribution of these mines. 

Figure 2 Gold mines and DHS clusters in Ghana 

Panel A Gold mines and 20 km buffer zones Panel B Gold mines, DHS clusters, and 100 km buffer zones 

                                                            
4 The distances are radii from mine center point, and form concentric circles around the mine.   
5 The DHS and the GLSS data are representative at the regional level, and not at the district level. Since the 
regional level is too aggregated, we do the analysis at the district level, but note that the sample may not be 
representative. 
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Note: Panel A shows the location of the gold mines that were active during the study period. Around each circle, 
a 20-km radius is marked. These 40-km-wide areas are the baseline treatment areas in the analysis. Panel B shows 
the 100-km treatment areas and the distribution of the DHS clusters. Road data is an alternative way of defining 
distance from mines, but time series data on roads is not available.  

3.2 Household data 

We use microdata from the DHS, obtained from standardized surveys across years and 

countries. We combine the respondents from all four DHS standard surveys in Ghana for which 

there are geographic identifiers. The total data set includes 19,705 women (of which 12,392 

live within 100 km of a mine) aged 15–49 from 137 districts. They were surveyed in 1993, 

1998, 2003, and 2008,6 and live in 1,623 survey clusters. Since the DHS surveys focus on 

women, the surveys of women will be the main source of data. However, we also use the 

surveys of men, which give us data from the same four survey years, but with a total number of 

12,294 individuals, of which 7,491 men live within 100 km of a mine. In addition, the DHS 

data collect records of all children born within the five years prior to the surveying. Of the 

12,174 children born to the surveyed women within the last five years, 6,888 were born to 

women currently residing within 100 km of a mine. See Appendix table 1 for definition of 

outcome variables. 

We complement the analysis with household data from the GLSS collected in the years—1998–

99, 2004–05, and 2012–13. These data are a good complement to the DHS data, because they 

                                                            
6 The first mines were opened in 1990, prior to the first household survey. Ten mines were opened after the first 
DHS in 1993. There is less variation in the data set using GLSS where the first households were surveyed in 
1998, i.e. 8 years after the first mine opened. However, the DHS data include births recorded from 1987, which 
is prior to all mine openings. 



10 
 

have a stronger focus on all households’ members, rather than focusing only on women and 

young children. In addition, they provide more detailed information on labor market 

participation, such as exact profession (where, for example, being a miner is a possible 

outcome), hours worked, and a wage indicator. The data estimate household expenditure and 

household income. Wages, income, and expenditure can, however, be difficult to measure in 

economies where nonmonetary compensation for labor and subsistence farming are common 

practices. 

4 Empirical Strategies 

4.1 Individual-level difference-in-differences  

Time-varying data on production and repeated survey data allow us to use a difference-in-

differences approach.7 However, due to the spatial nature of our data and the fact that some 

mines are spatially clustered, we use a strategy developed by Benshaul-Tolonen (2018). The 

difference-in-difference model compares the treatment group (close to mines) before and after 

the mine opening, while removing the change that happens in the control group (far away from 

mines) over time under the assumption that such changes reflect underlying temporal variation 

common to both treatment and control areas.  

We limit the data to include households within 100 km of a mine location and estimate the 

following: 

Yivt = β0 + β1 ꞏ activet + β2 ꞏ mine + β3 ꞏ  activet * mine + αd + gt + λXi + εivt,               (1) 

where the outcome of an individual i in cluster v, and for year t is regressed on district and year 

fixed effects, a dummy for whether the respondent lives within 20 km of a mine (which is a 

current or future mine8), a dummy for whether the mine is active at the time of the survey 

(active), an interaction term between active mines and living close to a mine (activet * mine), 

and a vector of individual-level control variables. Mine is the terminology chosen to capture a 

known gold resource in the ground, regardless of whether it is being extracted or not. In all 

regressions, we also control for living in an urban area, years of education, and age.  

                                                            
7 We have not done a synthetic control approach because of limited ability to explore pretreatment trends. 
8 A current or future mine could also be called a deposit. We have chosen against this terminology as there may 
be known deposits in Ghana that never started actively producing. Such deposits are not included in our dataset 
and thus not in the analysis. In addition, deposits may be considered all existing geological deposits whether or 
not known to man, or those that have been discovered. The latter being truly exogenous, while known deposits 
and “mines” according to our definitions are not truly exogenous.  



11 
 

The choice of district – rather than cluster – fixed effect is informed by the understanding that 

meaningful time-invariant factors - such as mining laws, level of development, local political 

institutions, norms regarding environment, women’s participation in the labor market, etc. - that 

influence exploitation of the mine happens at the district level. Including district fixed effects, 

we control for various institutional and cultural factors at the district level that are stable over 

time. Including district fixed effects also ensures that we are not only capturing effects from 

transfers or the fiscal system as we compare individuals within the same districts. With this 

method we capture the geographic spillover effects in the vicinity of the mine. Moreover, cluster 

fixed effects are not possible because of clusters are not repeatedly sampled over time. 

However, since the estimation is at individual level, all standard errors are clustered at the DHS 

cluster level. 

The sample is restricted to individuals living within 100 km of a deposit location (mine), so 

many parts of Northern Ghana where there are few gold mines are not included in the analysis. 

The sample restriction is created by using the time-stable continuous distance measure that we 

calculate from each mine location to each DHS cluster. This is also the distance measure that 

we use to create the “mine” dummy, which captures whether the cluster lies within 20 km of a 

known gold deposit. Note that we only consider deposits that have been in production at some 

point until December 2012. 

All households are thus within 100 km of one, or several, gold deposits. To ascertain whether 

there is any gold production in these potential mining sites, we construct an indicator variable 

active, which takes a value of 1 if there is at least one mine within 100 km that was extracting 

gold in the year the household was surveyed, and 0 otherwise. While the mine dummy captures 

some of the special characteristics of mining areas (for example, whether mines tend to open in 

less urban areas), the active dummy captures long-range spillovers of mining. 

The treatment effect that we are mostly interested in is captured with the active*mine 

coefficient. The coefficient for β3 tells us what the effect of being close to an actively producing 

mine is. Since the inclusion of the three dummies (active, mine, and active*mine) captures the 

difference between close and far, and before and after mine opening, we have created a 

difference-in-differences estimator. 

Panel B of figure 2 shows this strategy in a map, where the small blue circles show the treatment 

areas, and the 100-km-radius green circles show the geographic areas that constitute the control 

group. As is common in difference-in-differences analysis, the estimation relies on treatment 
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and control groups being on similar trajectories before mine opening. This assumption is 

discussed below when we investigate the balance of treatment and control areas. In particular, 

we test for differences in outcomes in areas where mining has not started and compare this to 

areas farther away.  

While we cannot show the exogeneity of the opening year to local socioeconomic variables, 

this assumption has been made in previous literature (e.g. Aragon and Rud, 2015; Benshaul-

Tolonen, 2018, 2019; Kotsadam and Tolonen, 2016, von der Goltz and Barnwal, 2019). In 

addition, Benshaul-Tolonen (2018, 2019) who explore gold mining, in particular, point to (i) 

the rapid increase in large-scale gold mining that occurred during the recent mineral price 

supercycle, (ii) the dominance of large multinational firms who are not relying on local labor 

market conditions, (iii) and their lower reliance on local infrastructure compared with bulkier 

metals and minerals, as gold mining firms may fly out their resources. Despite this, the 

assumption of exogenous opening year or exact location remain untested.  

In a second method, we use a spatial lag model. Such a model allows for nonlinear effects with 

distance. We divide the plane into 10-km distance bins and estimate the model with a full set 

of distance bin dummies. 

𝑌   𝛽  𝛽 𝑚𝑖𝑛𝑒  𝛽 𝑎𝑐𝑡𝑖𝑣𝑒 ∙ 𝑚𝑖𝑛𝑒  ∝  𝑔 𝜆𝑋 𝜀   2  

for d ∈ {0–10, 10–20, …, 80–90}.  
 

This method, in addition to varying the cutoff point in the baseline estimation strategy, allows 

us to identify in more detail the spatial structure of the data. Using this method, we can support 

our choice of baseline cutoff distance. 

Two limitations to both individual level analysis are that (i) clusters are not repeatedly sampled, 

so cluster fixed effects cannot be included, (ii) the data is not representative below the regional 

level and no weighting can be undertaken to ensure representability.  

 

4.2 District-level analysis 

While the estimation strategy in (1) captures some spillovers beyond the 20 km, and strategy 

(2) maps the economic footprint of the mine up to 100 km, it does not capture district-level 
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treatment. District level is an additional interesting level of analysis, since it captures effects 

through the fiscal channel, and has previously been employed in, for example, Loyaza, Mier y 

Teran, and Rigolini (2013) to measure income inequality across mining districts in Peru. With 

Ghana’s tax-sharing rules, district tax income and royalties increase with expansion in gold 

extraction (for more information, see section 2). In the district-level analysis, we first use mine 

openings as the independent variable, and then we use a richer specification with production 

levels. Given the spatial location of mines near district borders, we additionally analyze spatial 

spillovers from mining districts to neighboring districts. 

4.2.1 Difference-in-differences at the district level 

The first approach is similar to the local-level approach, only an individual is defined as being 

treated by a mine opening if she or he lives in a district with at least one active mine. In total, 

our mines are located in 11 mining districts (see figure 3). For districts with several mines, we 

define the whole district as active whenever at least one mine is active. Later, we will also 

consider district total annual production (tons of gold extracted), and thereby the effect of the 

intensity of production is recognized. 

Figure 3 District-level analysis in Ghana 
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Note: This figure shows the mine locations and the district in which the mines are located. 
 
The baseline specification is shown in the following equation: 

𝑌   𝛽 𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡  ∝  𝑔 𝜆𝑋 𝜀             3  

The outcome for individual i in district d in time period t is regressed on district and year fixed 

effects, an indicator for whether the individual lived in an active mine district at the time of the 

interview, and time varying individual-level factors. Even though the treatment is defined at the 

district level, we use individual-level data to be able to control for individual- level factors and 

explore heterogeneity at the individual level. The standard errors are, however, clustered at the 

district level to take into account the interdependence induced by the higher-level treatment. 

Since the treatment variable is at the same level as our district fixed effects, the β1 coefficients 

are directly interpretable as difference-in-differences estimates. That is, they capture the 

difference between mining districts and nonmining districts before and after mining starts. 

In estimating the district-level effects of mine openings on birth outcomes, we control for birth-

year fixed effects instead of survey-year fixed effects, as we are interested in the effect of 

mining at birth. In investigating the effects on birth outcomes and infant mortality, we further 

classify a child as treated if he or she is born in a district with active mining during the birth 

year (in contrast to whether the mine is active when the mother was interviewed). We also 

include controls for the age of the child in the survey year in the child and birth outcome 

regressions (but, naturally, not in the infant mortality regressions). 

5. Results using individual-level difference-in-differences strategy 

In this section, we present results using the two difference-in-differences strategies. Since the 

individual analysis contains district fixed effects, the two strategies are complementary. While 

the district-level analysis informs us about differences across and within districts over time, the 

local-level analysis gives us the additional impact at the very local level. This means that any 

differences in effects across district and local analysis should not be interpreted as 

inconsistencies, but rather as differential and additional impacts. 

In a difference-in-differences setting, it is important that the sample is balanced, assuming that 

the treatment and control groups are on similar trajectories. Table 2 shows the summary 

statistics for the women’s surveys across four different groups, close and far away, and before 

and during the mine’s production phase. Columns 1 and 3 show mean values of the population 

that live far away from mines, before and during mining respectively. Columns 2 and 4, in 
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contrast, show the univariate regression coefficients using OLS, highlighting the difference 

between the population living close (e.g. Column 2) and far away (e.g. Column 1) before 

mining.  

In the pre-period, women in communities that are close to mines are less urban, poorer, have 

more children and are less likely migrants. In contrast, women are of similar age, have similar 

education and occupation (but slightly more likely earning cash). Note that these are raw mean 

values not controlling for any regional and individual differences. Overall, these differences are 

in line with previous research finding that large-scale mines tend to open in more rural and less 

developed communities (Benshaul-Tolonen, 2018; Kotsadam and Tolonen, 2016).  

In active mining communities, women are still less likely to live in urban areas (although the 

gap between mining and non-mining areas may be smaller) than in non-mining communities, 

but more likely to have some education. The difference-in-difference estimation strategy 

assumes similar trends over time across the treatment (close to mines) and control group (far 

away from mines), in absence of the gold mining expansion. While this assumption cannot be 

tested using our dataset, previous analyses have found evidence for parallel pre-trends in infant 

mortality and night lights (Benshaul-Tolonen, 2019) for gold mining countries in West and East 

Africa (including Ghana). The baseline differences in observable characteristics – in particular, 

lower levels of economic development preceding the mine opening - indicate that a cross-

sectional approach using only the post-period may not be sufficient to understand the impact of 

gold mining on socio-economic variables.  

Table 2 Summary statistics for women’s survey  

 (1) (2)  (3)                 (4)  

 Before mining    During Mining 

 >20 km <20 km  >20 km <20 km 

 Mean Coefficient  Mean Coefficient 

      
Woman Characteristics     
Age 28.79 0.836  28.95 -0.352 

Total children 2.18 0.417*  2.56 -0.035 

Wealth 3.85 -0.619**  3.33 -0.028 

Nonmigrant 0.32 0.123**  0.33 -0.028 

Urban 0.62 -0.300**  0.49 -0.150** 

No education 0.17 -0.045  0.20 -0.042** 

<3 years education 0.77 0.035  0.74 0.045** 
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Woman occupation     
Earns cash 0.90 0.059**  0.89 0.007 

Works all year 0.88 -0.047  0.88 0.023 

Not working 0.25 -0.021  0.24 -0.015 

Agriculture 0.19 0.055  0.25 0.011 

Service & sales 0.39 0.057  0.35 0.016 

Professional 0.05 -0.028  0.04 -0.010 

Manual 0.11 -0.063***  0.12 -0.003 
 Note: Column (1) is a sample at 20 to 100 km from a nonactive mine. 
Column (2) difference for sample at 0-20 km from an nonactive, compared with column (1) 
Column (3) is a sample within 20 to 100 km of an active mine. 
Column (4) difference for sample at 0-20 km of an active mine, compared with Column (3)  
*** p<0.01, **p<0.05, *p<0.1. Univariate regression model.  
  

Appendix Table A2 also shows selected child health outcomes as summary statistics across the 

four treatment groups. We note that, once again, the sample looks quite balanced in the first 

three columns, although children seem to be worse off in communities close to mines that have 

not started producing, evidenced by the fact that infant mortality is 8 percent compared to 7 

percent farther away, and 6 percent in communities with active mines. The anthropometrics 

height-for-age (stunting or chronic malnutrition), weight-for-age (wasting or acute 

malnutrition), and weight-for-height (underweight) show that the children living in mining 

communities before the mine started operating have the lowest scores of all four groups. The 

outcomes seem to improve with mining, although not enough to offset the initial adverse 

situation. 

To test for exogeneity, we run regressions using baseline individual-level data to explore 

changes in observable characteristics among women (the main part of the sample). Table 3 

shows that there are no significant effects of the mine opening on the age structure, migration 

history, marital status, fertility, or education, using the difference-in-difference specification 

with a full set of controls. If anything, it seems that women in active mining communities are 

marginally older, more likely to never have moved, and more likely to be or have been in a 

cohabiting relationship or married. Given the women’s slightly higher age, it is not surprising 

to find that they have higher fertility and lower schooling (assuming that schooling has 

increased over time in Ghana). All these estimates are, however, insignificant. 

Table 3 Observable characteristics in the DHS individual data 

    non- ever currently ever total any schooling 
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age migrant married cohabiting divorced fertility woman partner 

active*mine 0.263 0.028 0.025 0.018 -0.003 0.030 -0.036 -0.003 
  (0.510) (0.042) (0.027) (0.029) (0.017) (0.115) (0.031) (0.030) 

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age (not column 1), and years of education (not columns 6 and 7). Active is 
active status of mine in the survey year. *** p<0.01, **p<0.05, *p<0.1. 
 

5.1 Employment outcomes 

Using the difference-in-differences approach (equation 1), we estimate results on occupation, 

child health, and inequality. First, panel A of table 4 indicates that women in active mining 

communities (active*mine) are insignificantly more likely to work in service and sales and less 

in agriculture, and 1.7 percentage points less likely to work as professionals (statistically 

significant). There is no change in the likelihood that she is not working. These 5 categories 

stem from the same occupational variable in the DHS data, and are mutually exclusive. The 

surveyed individual is told to report their main occupation. The coefficients can therefore be 

interpreted as relative increases of each specific sector. Women are more likely to earn cash for 

work, and the likelihood increases by 5.4 percentage points, which is equal to a 6 percent 

increase.  

While the directionality of the occupational outcomes is broadly in line with previous results 

(Kotsadam and Tolonen, 2016, for 29 African countries, and Benshaul-Tolonen, 2018, for 8 

African gold-producing countries), the estimates are largely insignificant, potentially due to a 

limited sample size. Two categories have positive, albeit insignificant, coefficients: services 

and manual labor. The (insignificant) estimate for service jobs9 is equivalent to 6.7% increased 

employment, and manual labor 10.2%, alongside which the likelihood that a woman earns cash 

for her work increases with 6%.   

For men (panel B of table 4), the estimates point toward an increase in agriculture, services, 

and professional (all statistically insignificant estimates), but a decreased likelihood of working 

in manual labor. Results for men in panel B are largely insignificant, and it is worthwhile noting 

that the sample size is only slightly above 50% than the women sample size due to DHS 

sampling frame.  

Table 4 OLS estimates women’s and men’s occupation in the DHS individual-level analysis 

  Occupation 

                                                            
9 Service sector jobs in the wake of structural transformation has been found important in 
increasing women’s work hours and reduce the gender wage gap (Ngai and Petrongolo, 
2017). 
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agri- service profess- manual not   earns works  
culture sales ional labor working cash all year 

PANEL A: Women  
       

active*mine -0.025 0.024 -0.017* 0.012 0.006 0.054** -0.013  
(0.039) (0.031) (0.009) (0.021) (0.023) (0.026) (0.033) 

mine -0.025 0.056* -0.001 -0.012 -0.018 -0.069*** -0.012  
(0.031) (0.029) (0.008) (0.018) (0.020) (0.022) (0.024) 

active 0.014 -0.000 -0.006 0.009 -0.016 -0.037** -0.007  
(0.015) (0.016) (0.006) (0.011) (0.012) (0.015) (0.016)         

Observations 12,176 12,176 12,176 12,176 12,176 9,262 7,085 

R-squared 0.350 0.103 0.124 0.024 0.234 0.095 0.042 

Mean of dep var. 0.237 0.358 0.045 0.117 0.739 0.891 0.877         

                

PANEL B: Men  
       

active*mine 0.050 0.020 0.027 -0.069* 0.006 -0.013 -0.015  
(0.051) (0.020) (0.026) (0.036) (0.023) (0.028) (0.051) 

mine -0.060 0.002 0.000 0.041 -0.018 -0.009 0.066*  
(0.042) (0.016) (0.020) (0.030) (0.020) (0.028) (0.039) 

active 0.000 0.002 -0.001 -0.029 -0.016 -0.107*** -0.025  
(0.021) (0.014) (0.015) (0.020) (0.012) (0.039) (0.028)         

Observations 7,157 7,157 7,157 7,157 7,157 4,374 2,794 

R-squared 0.290 0.415 0.084 0.183 0.076 0.107 0.104 

Mean of dep var. 0.328 0.111 0.137 0.214 0.209 0.928 0.841 

                

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. Active is active status of mine in the survey year. 
*** p<0.01, **p<0.05, *p<0.1. Results for women’s partners also available upon request. OLS = ordinary least 
squares. The women and men samples have different sampling frames and therefore we are not analyzing these 
results jointly. 
 

Two further caveats should be noted: (i) with many variables tested, such evidence should not 

be given too much weight, (ii) number of sampled men in the treatment category is quite small. 

Out of 7,157 sampled med, only 484 men live close to active mines. A bigger treated sample 

would provide more reliable results.10   

 
 
5.2 Child health 

We explore effects on child health, such as size at birth, infant mortality, anthropometrics, and 

incidence of cough, diarrhea, and fever. Panel A and Panel B use different variable definitions 

                                                            
10 Results for sampled women’s partners are similar. 
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because of the nature of the data. Panel A uses three variables that reflect conditions around the 

year of birth of the child. Note that women report their birth history, in what year the child was 

born, and the baby’s health. She reports this information in the survey year, but retroactively, 

recollecting the year of birth. Therefore, we deem that the birth year mining activity is more 

relevant than the survey year mining activity for the outcomes in Panel A. In particular, we test 

if an active mine nearby in the birth year of the child influences the baby’s size at birth, infant 

mortality, and the number of antenatal visits. In Panel B we use the main specification of mining 

activity in the survey year, as these variables are more reflective of current conditions in the 

survey year than past conditions around the time of the birth.  

Panel A of table 5 shows that infants in active mine communities are less likely to be born large, 

and that the mother had insignificantly fewer prenatal visits. However, infant mortality 

decreases by 4 percentage points. Splitting the sample by gender, we note that this decrease is 

only statistically significant for boys at an effect size of 6.6 percentage points.  

Table 5 OLS estimates of birth outcomes, infant survival, and child health in the DHS individual-
level analysis 
 

PANEL A                                  size at birth                        infant mortality (<12months)                  antenatal visits  
small average large   all boys girls   # visits at least 1 

active*mine 0.022 0.053 -0.075* 
 

-0.041* -0.066** -0.020 
 

-0.151 -0.007  
(0.028) (0.041) (0.041) 

 
(0.022) (0.030) (0.035) 

 
(0.331) (0.028) 

mine -0.010 0.071** -0.061** 
 

0.004 0.008 0.001 
 

0.153 0.000  
(0.019) (0.028) (0.030) 

 
(0.015) (0.020) (0.024) 

 
(0.241) (0.019) 

active -0.010 0.054** -0.044 
 

0.002 0.014 -0.012 
 

0.012 0.002  
(0.016) (0.026) (0.027) 

 
(0.014) (0.022) (0.018) 

 
(0.209) (0.012)            

Observations 6,771 6,771 6,771 
 

5,356 2,718 2,638 
 

5,704 5,704 
R-squared 0.031 0.054 0.059 

 
0.135 0.160 0.152 

 
0.186 0.062 

Mean of dep var. 0.136 0.359 0.505 
 

0.073 0.08 0.066 
 

5.79 0.941            

PANEL B in the last 2 weeks, had:         
fever          cough        diarrhea 

  anthropometrics (WHO) in sd 
ht/a              wt/a            wt/ht 

  has                             
health card 

active*mine -0.035 -0.061* 0.042 
 

-3.532 -5.208 -0.641 
 

0.014    
(0.037) (0.033) (0.027) 

 
(11.472) (9.283) (8.948) 

 
(0.027) 

 

mine -0.002 -0.006 -0.038 
 

-0.828 3.481 3.853 
 

-0.006 
 

 
(0.031) (0.028) (0.024) 

 
(10.385) (8.574) (7.468) 

 
(0.022) 

 

active 0.023 -0.003 -0.033** 
 

-1.904 5.265 9.433* 
 

0.009 
 

 
(0.020) (0.020) (0.016) 

 
(5.942) (5.304) (5.183) 

 
(0.012) 

 
           

Observations 6,246 6,257 6,262 
 

5,627 5,627 5,727 
 

6,378 
 

R-squared 0.024 0.043 0.024 
 

0.136 0.080 0.036 
 

0.084 
 

Mean of dep var. 0.211 0.221 0.164 
 

-101.6 -60.3 -16.7 
 

0.913 
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Note: In panel A, active is status of mine in birth year; in panel B, active is active status of mine in survey year. 
Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and district 
fixed effects, urban dummy, age, and years of education. *** p<0.01, **p<0.05, *p<0.1. OLS = ordinary least 
squares. 
 
An active mine is associated with a decrease in cough among children under age five (panel B 

of table 5), and children are also (insignificantly) more likely to have a health card. An active 

mine is associated with insignificant decreases in the anthropometrics measures (World Health 

Organization measures in standard deviations), such as height-for-age and weight-for-age. 

However, the standard errors for these coefficients are very large relative to the estimated 

coefficients, which is why the effects are imprecisely estimated. 

5.3 Spatial heterogeneity of results  

Thus far we have used a cutoff distance of 20 km. Panel A of figure 4 shows that the largest 

treatment effect for services for women is found within 10 km of a mine, with an 8 percentage 

point increase in the probability that a woman works in the service sector. This is equivalent to 

a 22 percent increase in service sector participation. However, this effect is only statistically 

significant at the 10 percent level, possibly due to the small sample size within that distance. 

This is in contrast to the dummy for 0-20 km which is insignificant, pointing highly localized 

effects on service sector employment for women. Using distance bin of 30 km, we estimate 

zero treatment effect on the probability of service sector employment. Panel B of figure 4 shows 

the results for cash-earning opportunities, and similarly, we estimate positive treatment effects 

within 20 km.   

In panel C of Figure 4, infant mortality is re-estimated using different distance spans. The 

decrease in child mortality decreases almost linearly with the increase in distance bins, an 

indication that the effects are only found close to a mine. The largest drop, and the only 

significantly negative drop, is found for the distance bin 0–20 km. 

Figure 4 Varying the cutoff distance: Service sector employment, cash earnings, and infant 
mortality 
 
Panel A Service and sales               Panel B Cash earnings                        Panel C Infant mortality 
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Note: Figure 4 shows the main treatment coefficients using the baseline estimation strategy (with DHS individual-
level data; see table 4 for more information), but with different distance cutoffs (10 km, 20 km, 30 km, 40 km, and 
50 km). *** p<0.01, **p<0.05, *p<0.1. 
 

The results above suggest substantial heterogeneity in outcomes and highlights the importance 

to explore spatial heterogeneity in the results. In the following sections we explore plausible 

explanations for these outcomes.  

5.4 Difference-in-differences at the district level  

The results for female employment in the district-level analysis are shown in table 6. 

Agricultural work decreases for women in mining districts and manual work increases. 

Following from this, the likelihood that a woman is working year-round increases.11 This is 

similar to what we saw in the individual-level regressions, but the results are now statistically 

significant. 

Table 6 Effects of mine opening at the district level on female employment 

  (1) (2) (3) (4) (5) (6) (7) 

not agri- service profess- manual earns works 

working culture or sales ional work cash all year 
 

              

Active district 0.019 -0.085** 0.034 -0.018** 0.050** -0.021 0.054*  
(0.027) (0.042) (0.030) (0.008) (0.020) (0.049) (0.032) 

        

Observations 19,226 19,226 19,226 19,226 19,226 19,270 15,991 

R-squared 0.207 0.327 0.128 0.137 0.037 0.213 0.278 

                

 
Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. Active is active status of mine in the survey year. 
*** p<0.01, **p<0.05, *p<0.1. 
 

                                                            
11 Working year-round is derived from a question if the woman works occasionally, all year or seasonally. 
Agricultural work also decreases for the partners of the women (results are available upon request). 
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Investigating the district-level effects on children’s health and birth outcomes in table 7, we 

note a higher number of prenatal visits and an increase in attendance of a midwife in panel A. 

These results are highly statistically significant and the effects are economically significant. A 

mine opening increases the number of prenatal visits by 0.76 and increases the probability that 

the birth was preceded by a prenatal visit supervised by a midwife by 12.5 percentage points. 

In column 6 of panel A, we see that mine openings in a district reduce child mortality. The 

probability of an infant dying before 12 months of age is reduced by 8.5 percentage points. 

Given the importance of child mortality for human welfare, we strongly encourage future 

research to investigate the mechanisms behind these striking results. Since the share of prenatal 

visits supervised by a midwife also increases with mine openings, the results potentially speak 

to the importance of midwives for reducing infant mortality. 

Table 7 Effects of mine opening at the district level on birth outcomes and child health 

  (1) (2) (3) (4) (5) (6) 

antenatal at least 1 doctor midwife has health died 
PANEL A. # visits antenatal attended attended card 12 months 

active 
district 

0.759*** 0.026 0.055 0.125*** 0.039 -0.085*** 
 

(0.244) (0.022) (0.115) (0.033) (0.059) (0.031) 

N 9,245 9,245 9,462 9,462 11,047 9,270 

R-square 0.242 0.121 0.160 0.154 0.161 0.138 

              
small 

at birth, the child was 
average 

           
large 

                
height 

                
weight 

             
weight 

PANELB. size size size for age for age for height 

active 
district 

0.066 0.078 -0.148 -6.333 -23.676** -20.080 
 

(0.057) (0.085) (0.090) (18.753) (9.364) (13.428) 

N 11,837 11,007 11,007 9,646 9,646 9,851 

R-square 0.041 0.061 0.060 0.199 0.163 0.073 

                                                  in the last 2 weeks, had 
PANEL C. fever cough diarrhea 

   

active 
district 

0.016 0.010 0.058 
      

 
(0.057) (0.035) (0.036) 

   

N 10,849 10,883 10,887 
   

R-square 0.052 0.046 0.055       

 
Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. Active is active status of mine in the survey year. 
Panel b, columns 1, 2, and 3 show size at birth. Panel B, columns 4, 5, and 6 show anthropometrics (new WHO) 
in standard deviations. *** p<0.01, **p<0.05, *p<0.1. 
 
The effects on child health are, however, not all positive. We note, particularly, a statistically 

significant decrease in weight-for-age, but the other two measures are also negative (panel B of 
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table 7). Low weight-for-age is an indicator for acute malnutrition, whereas height-for-age is 

an indicator for chronic malnutrition. This could indicate that mining districts are less food 

secure.12 Table 7 shows that there are no effects on illness in the last two weeks. 

 

6. Distributional effects, mechanisms and robustness 

6.1 Decomposing results by migration status 

We argue that one source of heterogeneity is to consider when exploring socio-economic 

impacts and distributional effects of large-scale mining is migration status. First because mining 

may cause inward migration of individuals that are different from the previous local population. 

While it has its limitations, disaggregating the effects between nonmigrants and migrants may 

shed some light on the effect on the initial population. Second, to understand the distributional 

effects of mining we argue that migration status may be an important factor.  

In the analysis, we distinguish between nonmigrants (where the woman respondent report being 

born in the locality) and migrants (born elsewhere). We note several caveats with this analysis, 

the first being that we cannot follow migrant households before the migration decision. 

Therefore, we cannot make any causal claims on changes in this group over time. We compare 

migrant households in mining communities with migrant households elsewhere, and the null 

hypothesis would be similar trajectory over time. If we reject the null, we cannot distinguish 

between selective migration to mining communities and the impact of the mining. The 

nonmigrant analysis can plausibly reflect similar households over time, with the limitation of 

selective outward migration. We believe inward migration to mining areas to be more common 

than outward migration (in line with Fafchamps et al., 2016).  

Diarrhea is a major concern in many developing countries. Diarrheal diseases are, in part, a 

matter of infrastructure, where access to clean water and proper sanitation are important 

determinants. To further understand the effects on diarrhea, we look at the difference between 

migrants and nonmigrants and the effects by distance (Figure 5). There are, in fact, large 

differences between the migrant and the nonmigrant populations. Among nonmigrants, a mine 

opening is associated with large decreases in incidence, whereas for migrants, the opposite is 

true. Considering all children between 0 km and 20 km of an active mine, children born to 

                                                            
12 In table 5 we saw very small insignificant changes in nutritional status.  



24 
 

migrant mothers are 6.9 percentage points more likely to have suffered from diarrheal diseases 

in the two weeks prior to the start of the survey. 

To further understand these effects, we decompose them by distance bins in a spatial lag model 

(bottom two graphs in figure 5). It becomes evident that, from a high-level incidence (dashed 

line) among the original local population (panel A of figure 5), the mine has brought substantial 

reductions in diarrheal incidence (as shown by the blue line). In the migrant population, the 

incidence is actually higher after mine opening than before, and the likelihood increases by 6.9 

percentage points. The spatial lag model in panel B of figure 5 reveals that much of the effect 

is driven by a spike in incidence 10 to 20 km away from the mine center point. If more migrants 

move to the area because of the mine, they will be less settled, and health outcomes can 

deteriorate, on average, within that population. Nevertheless, we should be careful in 

interpreting the effects this way. The mine-induced migration, which we partly capture here, 

could be different from the migration happening further away. The deteriorating status of 

migrants can thus in part be because a less-well-off part of the population chooses to migrate to 

mining areas, not that they are made worse off because of the mine activities. 

We also explored a decomposition of the anthropometric results along the migration division, 

but we found no important differences. 

 

Figure 5 Diarrheal incidence among children under 5 by migration status 

 Panel A Nonmigrants         Panel B Migrants 
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Note: Figure 5 shows the main treatment coefficients (active*mine) using the baseline estimation strategy (with 
DHS individual-level data; see table 4 for more information) in the top panel, but with different cutoffs (10 km, 
20 km, 30 km, 40 km, and 50 km). *** p<0.01, **p<0.05, *p<0.1. The bottom panel shows the result using a 
spatial lag model that divided the plane into different treatment bins (0–10, 10–20, 20–30, 40–50) and compares 
them with farther away. Panel A shows the result for nonmigrants, and panel B shows the result for migrants. 
 
 

6.2 Access to infrastructure and health care 

Another source of heterogeneity is asset ownership and access to infrastructure. Table 8 shows 

that fewer households have electricity in active mining communities, but they spend less time 

fetching water and are more likely to own a radio (all estimates are statistically insignificant, 

however). There is no change in the likelihood of having a flush toilet. Moreover, it seems that 

households are  just as likely to  have access to a pit toilet as not having a toilet (and instead 

use a bucket, bush, and so forth). 

Table 8 OLS estimates for ownership of assets and access to infrastructure 

                                              water access                                                         household has      
in 

minutes 
less          

10 min 
away 

 
                

electricity 
             

radio 
flush 
toilet 

pit 
toilet 

no 
toilet 

         
active*mine -1.485 0.039 

 
-0.095* 0.054 0.005 -0.015 0.010  

(1.933) (0.048) 
 

(0.056) (0.036) (0.023) (0.033) (0.027) 
mine -0.134 -0.013 

 
0.099* 0.005 0.010 -0.012 0.002 
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(1.805) (0.039) 

 
(0.054) (0.029) (0.021) (0.029) (0.021) 

Active 0.007 0.001 
 

0.050** 0.034** -0.032 0.054** -0.023  
(1.012) (0.026) 

 
(0.024) (0.017) (0.021) (0.026) (0.022)          

Observations 9,790 9,790 
 

12,226 12,216 12,227 12,227 12,227 
R-squared 0.128 0.180 

 
0.453 0.148 0.208 0.171 0.095 

mean of dep var 0.407 14.84 
 

0.565 0.652 0.151 0.732 11.6 
                  

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. Active is active status of mine in the survey year. 
*** p<0.01, **p<0.05, *p<0.1. OLS = ordinary least squares. 
 
Overall, we estimated in table 8 that a household’s access to electricity decreased when a mine 

became active. This finding is surprising if we assume that electricity infrastructure is seldom 

destroyed, so that with time, access has generally been increasing.13  

Figure A1 (Annex)  further decomposes the effect, and panel Aa of the figure confirms that the 

coefficient for electricity access is negative using the treatment distance 20 km. However, with 

a treatment distance of 10 km, the effect is marginally positive and insignificant. If we use a 

treatment distance of 50 km, we no longer see a significant effect. In panel Ab, the results are 

replicated using a spatial lag model, meaning that we allow for nonlinear effects with distance. 

In reality, it seems like the electricity rate is much higher before a mine (dashed line) than with 

an active mine (the blue line). However, when the results are decomposed by migrant status in 

panel Ac of figure A1 (Annex) we find that migrants are driving the lower electricity rate. In 

fact, among nonmigrants, the electricity rate is higher 0–10 km from an active mine, although 

it is slightly lower 10–20 km away.14  

6.3 Distributional effects on wealth and inequality  

Table 9 presents the effects of mining on asset wealth and on asset wealth inequality. Wealth 

data are available in the form of a wealth index, but only for the two last DHS surveys. 

Following Fenske (2015) and Flatø and Kotsadam (2014), we calculate inequality by means of 

a Gini coefficient (recoding the wealth variable to be positive only, and using the command 

                                                            
13 It is also possible that mining companies compete with households for electricity if supply cannot be increased 
in the short run. 
 
14 In panels Ba, Bb, and Bc of Appendix figure A1, we analyze access to radio. We learn that access to 
radio is higher close to active mines, and that this seems true according to both the first method (Ba), 
according to the spatial lag model (Bb), and for both migrants and nonmigrants (Bc). The difference in 
effects between electricity and radio access might be due to electricity being more dependent on public 
infrastructure, and that electricity access may come with a time lag to other development indicators 
such as employment and access to radio, since a battery radio can be bought and used instantly, and 
easily moved. 
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fastgini15 in STATA). We do this for both the cluster and district level. None of the effects of 

mining are statistically significant, but they point to increased asset wealth. 

Table 9 OLS estimates for wealth and inequality in the DHS individual-level analysis 

                                      Wealth Gini 

  wealth 
index 

cluster 
level 

district 
level 

active*mine 7,290 -0.004 0.004  
(12,849) (0.013) (0.018) 

mine 9,922 0.011 0.006 
 

(8,676) (0.013) (0.016) 

active 7,854 -0.006 0.034** 
 

(9,016) (0.010) (0.017) 
     

Observations 4,909 4,909 4,909 

R-squared 0.613 0.227 0.548 

          

 
Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. Active is active status of mine in the survey year. 
*** p<0.01, **p<0.05, *p<0.1. OLS = ordinary least squares. 
 
 
 

6.4 Bottom 40% of the population 

To understand the welfare effects of the bottom 40 percent of the population in the income 

scale, we split the sample according to the wealth score provided by DHS. Given the data 

structure, which is repeated cross-section, we cannot follow a particular household that was 

identified as belonging to the bottom 40 percent in the initial time period. Instead, we identify 

the bottom 40 percent in four groups: far away, before mine or during mine, and close to mine, 

before mine or during mine. The summary statistics for selected main outcomes are presented 

in table 10. As the table shows, the bottom 40 percent in mining communities are more likely 

engaging in agriculture than the bottom 40 percent elsewhere. This could illustrate that 

agricultural workers are overrepresented among the less well-off in mining communities. 

However, women in this group still more often work in services than women did before in the 

same communities. 

                                                            
15 Fastgini is a user-written command in STATA that helps calculate the gini coefficient.  
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Table 10 Summary statistics for bottom 40% of women 

  (1)                    (2)   (3)                (4) 

far from a mine 
before                during 

  close to a mine 
before             during 

not working 0.188 0.183  0.200 0.162 
service & sales 0.340 0.203 

 
0.179 0.222 

professional 0.018 0.005 
 

0.014 0.006 

agriculture 0.362 0.530 
 

0.490 0.539 

manual labor 0.091 0.079 
 

0.117 0.072 

earning cash 0.876 0.855 
 

0.879 0.901 

work all year 0.852 0.859 
 

0.879 0.838 

                

Note: Column (1) is bottom 40% of sample at 20 to 100 km from a nonactive mine. 
Column (2) is bottom 40% of sample at 20 to 100 km from an active mine. 
Column (3) is bottom 40% of sample within 20 km of a nonactive mine. 
Column (4) is bottom 40% of sample within 20 km of an active mine. 

 
Regression results comparing these four groups are presented in panel B (urban) of Annex table 

3. The results suggest that women in the bottom 40 percent are more likely agricultural workers 

in mining communities than elsewhere, but also more often service sector workers. They are 

less likely to work in manual labor, less likely to work all year, but more likely to earn cash for 

work. This indicates, possibly, that the economy becomes more reliant on cash as a mine starts 

producing. It is possible that the difference from the main results presented in table 4 indicates 

that agricultural workers are overrepresented among the bottom 40 percent in mining 

communities. However, given the issues associated with doing this analysis with repeated cross-

section, we should be cautious in interpreting these results. 

 
6.5 Heterogeneous results, sensitivity and intensity of mining 

In panel B (urban) of table A3 (Annex), we interact our treatment variables (active*mine, mine, 

active) with an indicator variable for whether the locality is urban. This allows us to pick up 

potential differential effects across urban compared to rural localities. None of the treatment 

effects are statistically significantly different between rural and urban areas.16 In panel C, we 

have constructed a new treatment variable #active*mines that counts the number of actively 

producing mines within 20 km. Women are sampled within 20 km of one mine (593 women), 

within 20 km of two mines (137 women), and within 20 km of three mines (64 women).  The 

                                                            
16 Few of the other interaction coefficients are also statistically significant. The interaction between urban*mine 
is significant, and women in urban localities with a future mine are 12 percentage points less likely to be 
working in agriculture. 
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mean value of the independent variable is 0.085 - that is, on average women are close to 0.085 

mines. Conditional on being close to a mine, the main independent variable is 1.33 - that is, a 

woman sampled close to a mine is close to 1.33 mines on average. Panel C of table A3 shows 

the effects on women’s labor market participation. We note that the estimates are similar in 

direction as before, where mines are positively associated with service and sales jobs and with 

cash earnings, but negatively associated with agriculture and professional jobs. 

Panel D of table A3 shows the results if we drop the part of the sample that lives 20 km to 40 

km away from a mine, and if we drop those that are sampled two years before mine opening. 

The rationale for this is to have a cleaner control group, since those that live just outside our 20 

km cutoff distance may also be “treated” by the mine, and the investment phase of the mine 

that precedes initial production can generate substantial employment. Overall, the effects do 

not change much except making the cash earnings coefficient larger and more significant. The 

increase in cash earning opportunities is estimated at 7.5 to 7.8 percentage points compared 

with 5.4 in the baseline estimation. 

6.6 Employment and wages using the GLSS 

The DHS data do not provide detailed information regarding how much an individual earns for 

work, or her wage rate, but the GLSS does collect such data. First, we try to replicate the results 

estimated with the DHS data. Panel A of table 11 indicates that agriculture becomes less 

important in mining communities for women (statistically insignificant), who mainly shift into 

services and sales (statistically insignificant, except for strategy 2). Men are more likely to work 

as miners (statistically significant across all strategies). 
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Table 11 Using GLSS: Employment on extensive and intensive margin and wages 

  (1) 
worked 

last  year 

(2) 
work 7 
days 

(3) 
hours 

worked 
per week 

(4) 
agri- 

culture 

(5) 
service 

and sales 

(6) 
miner 

Panel A: Women              

1. baseline  
      

active*mine -0.067* -0.032 3.565 -0.075 0.074 0.025  
(0.040) (0.038) (3.140) (0.064) (0.054) (0.016) 

2. drop 20-40 km 
      

active*mine -0.062 -0.039 3.849 -0.076 0.094* 0.026*  
(0.040) (0.039) (3.359) (0.064) (0.057) (0.015) 

3. drop 2 years before 
      

active*mine -0.067* -0.031 3.565 -0.087 0.080 0.024  
(0.040) (0.038) (3.140) (0.065) (0.055) (0.016) 

4. mine FE 
      

active*mine -0.067 -0.012 8.560* -0.084 0.104 0.025*  
(0.051) (0.048) (5.125) (0.075) (0.065) (0.015) 

5. mine clustering 
      

active*mine -0.067* -0.032 3.565 -0.075 0.074 0.025  
(0.032) (0.036) (3.521) (0.081) (0.080) (0.022)        

Mean dep var. 0.727 0.673 40.39 42.32 0.391 0.005 

Panel B: Men             

1. baseline  -0.086** -0.055 3.705 -0.058 -0.032 0.125*** 
active*mine (0.041) (0.039) (3.460) (0.066) (0.036) (0.043)        

2. drop 20-40 km 
      

active*mine -0.094** -0.062 3.893 -0.064 -0.031 0.126***  
(0.042) (0.040) (3.842) (0.066) (0.038) (0.042) 

3. drop 2 years before 
      

active*mine -0.094** -0.062 3.708 -0.071 -0.026 0.125***  
(0.041) (0.039) (3.459) (0.067) (0.036) (0.043) 

4. mine FE 
      

active*mine -0.123** -0.094* 8.233 -0.068 -0.049 0.113**  
(0.057) (0.051) (5.425) (0.075) (0.044) (0.045) 

5. mine clustering 
      

active*mine -0.086*** -0.055** 3.705 -0.058 -0.032 0.125**  
(0.025) (0.025) (2.898) (0.086) (0.032) (0.051)        

Mean dep var 0.715 0.705 45.71 0.491 0.259 0.028 

 
Note: The table uses GLSS data for Ghana for the survey years 1998, 2005, 2012. The sample is restricted to 
women and men aged 15–49. Robust standard errors clustered at the village or neighborhood level in parentheses 
(except if otherwise stated). All regressions control for year and district fixed effects, urban dummy, age, and years 
of education. Active is active status of mine in the survey year. The treatment distance is defined to 20 km. Rows 
2 drop sample between 20 to 40 km of a mine, and rows 3 drop sample that was surveyed two years before mine 
opening. *** p<0.01, **p<0.05, *p<0.1. FE = fixed effects. 
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To show the robustness of these results, we have tried three alternative strategies for each of 

the outcomes. In row 2, we drop the sample that lives 20 to 40 km away, since they might be 

affected by the mine; in row 3, we drop the sample that was surveyed two years prior to mine 

opening; in row 4, we add closest mine fixed effects; and in row 5 we cluster on the closest 

mine. The coefficients do not change much, even if some magnitudes become bigger and the 

estimates more significant. However, as in the results using DHS data, these estimates are not 

precisely measured – few are statistically significant because the standard errors appear large. 

Women are 7.4 to 10.4 percentage points more likely to work in service or sales if they live 

close to a mine (depending on the estimations in panel A columns 4, only one statistically 

significant estimate). Women close to mines are 2.5 to 2.6 percentage points more likely to 

work in mining (only one statistically significant estimate).  

Men, on the other hand, (results shown in panel B of table 12), are significantly more likely to 

work in mining, and insignificantly less in agriculture or service and sales. The likelihood that 

a man works in mining increases by 11.3 to 12.6 percentage points, which is more than a 400 

percent increase in likelihood from the mean value which is 2.8%. For both men and women, 

the results are indicative of changes in labor force participation on the extensive and intensive 

margin. Fewer people work, as indicated by columns (1) and (2) (significant for men), but those 

who work, work more hours than before (column 3, albeit insignificant). It should be noted that 

the sample sizes are limited and these estimates may suffer from lack of power.  

Annex figure 2 presents the results graphically and shows the spatial structure for a subset of 

the variables. The likelihood of a woman working in services decreases with distance from 

mine, and log wages are higher within 10 to 20 km of an active mine. Men are, intuitively, more 

likely to work as miners if they reside close to an active mine, and the correlation decreases 

with distance. Wages for men are also higher close to active mines (panel D). Beyond 40 km, 

the estimated effects are close to zero. 

Table 12 shows that log annual wages are higher close to mines (column 1), and that most of 

the increase is driven by the increase in wage rates for women (column 2). Women, however, 

have lower wages before the mine, and a smaller share of women earn wages. Globally, it is 

considered that the historic expansion in service sector employment (which in this context 

increased significantly within 10 km) has played a pivotal role in reducing the gender wage and 

hour gap (Ngai and Petrongolo, 2017).  
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Despite the possible gains in wages for wage earners, we note a decrease in the regionally 

deflated total household expenditure (column 5), and a decrease in per capita expenditure on 

food and nonfood items (column 4). The increase in wages but decrease in total expenditure 

can possibly be explained by rising prices and wages in mining communities, where everyone 

has to pay the higher prices but only some (those who earn wages), benefit from a rise in wage 

rate.  

Columns 6 through 9 of table 12 look at nondeflated expenditure measures for food, housing, 

health and education, and household energy.17 We confirm that total household expenditure on 

food decreases (compared with the per capita deflated measure in column (4)), but find that 

households spend more money on housing, transport, and communication, and household 

energy, such as electricity and gas. The electricity and gas expenditure is only for those who 

have any positive expenditure on these, and we saw earlier that electricity access changes with 

the mine. This confirms that, among those who spend anything on electricity, they spend more 

on it in mining communities. 

Table 12 Using GLSS: Household income and expenditure 

  (1) (2) (3) (4) (5) (6)            (7)              (8) (9) 

ln ln ln ln   household level ln expenditure   

wages wages wages pc total                               health hh 

all women men exp. exp. food        housing     education energy 

active*mine 0.520** 0.694*** 0.391 -0.178* -0.126 -0.069 0.316** -0.168 0.297**  
(0.226) (0.241) (0.238) (0.093) (0.089) (0.095) (0.139) (0.199) (0.119)                   

Observations 6,226 2,914 3,312 7,522 7,522 7,396 7,420 6,541 4,752 

R-squared 0.121 0.128 0.118 0.959 0.964 0.963 0.933 0.837 0.950                   

controls 
         

individual Y Y Y 
      

hh head 
   

Y Y Y Y Y Y 

hh size 
    

Y Y Y Y Y 

district fe Y Y Y Y Y Y Y Y Y 

year fe Y Y Y Y Y Y Y Y Y                   

deflated N N N Y Y N N N N 

mean (ln) 15.30 15.29 15.31 13.04 14.19 13.42 10.88 10.74 9.52 

Note: (1) Annual wages and salaries for individuals in all ages (nondeflated). 
(2) Annual wages and salaries for women in all ages (nondeflated). 
(3) Annual wages and salaries for men in all ages (nondeflated). 
(4) Real per capita annual food and nonfood expenditure (regionally deflated). 

                                                            
17 Additional results for recreation and transport and communication are available upon request. The expenditure 
on the three measures increased in mining communities. 
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(5) Total annual regionally adjusted household expenditure (local currency, regionally deflated). 
(6) Total food expenditure (nondeflated). 
(7) Total housing expenditure (nondeflated). 
(8) Total health and education expenditure (nondeflated). 
(9) Total household energy expenditure (gas and electricity) (nondeflated). 
*** p<0.01, **p<0.05, *p<0.1. All regressions control for year and district fixed effects, urban dummy, age, and 
years of education. 
 
 

7. Robustness for district-level estimations  

7.2 Using production levels  

We continue by exploring the effects of mining intensity as proxied by district-level production 

volumes. The estimation will be similar to equation (2), but we replace the indicator variable 

for being an active mining district with annual gold production in the district: 

𝑌   𝛽 𝑔𝑜𝑙𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  ∝  𝑔 𝜆𝑋 𝜀             4  

The measure of gold production is in 10 tons of gold produced, and 𝑔𝑜𝑙𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  is 

either gold_year_district, which equals the total production of all mines in a district in the 

different survey years, or gold_period_district, which equals total production for the years 

before the survey. For the 1993 survey, the period is 1990–93, for 1998 it is 1994–98, and so 

on. 

Using production levels instead of an indicator of having any production in the district has the 

advantage of capturing the intensity of mining production. Since it is somewhat unclear when 

mining production spills over to other types of employment, we use two measures of mining 

production. Panel A of table 13 shows the results of mining production in the period before the 

survey, including the survey year, on female employment, and we see that mining production 

leads to less agricultural employment but more employment in services and sales, as well as in 

professional work. Panel B shows that the effects are larger but not as precisely estimated for 

the yearly measure. That they are larger is not surprising, since a 10-ton increase one year is 

much more than a 10-ton increase over a longer time period. The precision is also probably 

lower since it is unclear what year the production spills over to other activities. In any case, we 

see that the effects are similar across these two specifications.18 

                                                            
18 The effects for infant health and infant mortality are also stronger when we add production levels (results 
available upon request). 
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Table 13 Effects of gold production at the district level on employment 

Panel A: Using production in the previous period         
  (3) 

not 
working 

(4) 
agri- 

culture 

(5) 
service or 

sales 

(6) 
profess- 

ional 

(7) 
manual 
work 

(1) 
earns 
cash 

(2) 
works all 

year  
              

gold  period 0.003 -0.009** 0.003* 0.004*** -0.002 -0.001 0.008** 
district (0.004) (0.004) (0.002) (0.002) (0.004) (0.002) (0.003)         

observations 19,175 19,175 19,175 19,175 19,175 19,270 15,991 
R-squared 0.207 0.327 0.127 0.137 0.037 0.213 0.278 
PANEL B. Using production in the same year 
  (3) (4) (5) (6) (7) (1) (2)  

not agri- service profess- manual earns works  
working culture or sales ional work cash all year         

gold year 0.012 -0.033 0.020 0.019* -0.018 -0.010 0.041*** 
district (0.022) (0.025) (0.013) (0.011) (0.015) (0.009) (0.008)         

observations 19,175 19,175 19,175 19,175 19,175 19,270 15,991 
R-squared 0.207 0.327 0.128 0.137 0.037 0.213 0.278 

 
Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. *** p<0.01, **p<0.05, *p<0.1. 
 
7.3 Investigating spillovers 

The districts are small, and some mines are located in border regions. We thus expect there to 

be spillovers across district borders. For example, a mine can change demand for labor, 

agricultural produce, and services across the district border, and induce reallocation of work 

across districts. We explore neighbor spillovers by estimating the following equation: 

 

𝑌   𝛽 𝑔𝑜𝑙𝑑_𝑝𝑟𝑜𝑑  𝛽 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑔𝑜𝑙𝑑_𝑝𝑟𝑜𝑑  ∝  𝑔 𝜆𝑋 𝜀             5  

 

That is, we add gold production for the mining districts to their neighbors, and β2 measures the 

effects of gold production in these districts, as well. That is, if β2 is statistically and 

economically significant, it would imply that increased production in a neighboring district has 

spillover effects on the district in question. 

In Annex table 4, we have added the gold production of the mining areas to their neighbors and 

we estimate the spillover effects of mining production in a district on employment in adjacent 

districts. As before, panel A shows effects of increasing production in the previous period, and 
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panel B shows the effects of increased production in the survey year. There is no evidence of 

spillovers in the sense that there is a similar effect in neighboring districts. In fact, most 

coefficients point in the opposite direction for mining and neighboring districts indicating, if 

anything, a shift in employment from neighboring districts to the producing ones. 

 
8 Conclusions 

Ghana has a long history of gold production and has recently been experiencing its third gold 

rush, during which annual gold production skyrocketed. It was the first gold rush the country 

has experienced as an independent nation, and it brings hope of improving the lives of its 

citizens. Natural resource extraction is often argued to have detrimental effects on countries, 

however, and the so-called natural resource curse may imply that resource wealth is harmful to 

social development and inclusive growth. We use rich geocoded data with information on 

households and mining production over time to evaluate the gold boom at the local and district 

levels in difference-in-differences analyses. 

Men benefit from direct job creation within the mining sector, and women seem to benefit from 

indirectly generated jobs in the service sector (statistically significant within 10 km from a 

mine). Women are more likely to earn cash and less likely to work in agriculture after mine 

openings. We find similar results when we analyze the effects at the district level and when we 

use production levels instead of openings and closings of mines. We interpret this as there being 

additional effects of being very close to a mine (within 20 km), beyond the effects from being 

in a mining district. No spillovers into neighboring districts are detected. 

The results are in accordance with the results in Kotsadam and Tolonen (2016), who find similar 

effects on occupation in mining communities across the whole of Sub-Saharan Africa, and with 

Aragón and Rud (2013), who find that agricultural productivity in Ghana is reduced by mining 

production nearby. We find no statistically significant results on wealth and inequality, although 

the results point toward increases in both. The effects on infrastructure are ambiguous; we 

cannot detect any better access to flush toilets and radios, and the effects on electricity access 

are negative. Further decomposing these effects, we learn that migrant households are less 

likely to have access to electricity (compared with the change among migrant households living 

further away), whereas nonmigrant households that never moved might gain better access to 

electricity (compared with the change among nonmigrant households living further away). 
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Applying the same strategies to analyze child health and birth outcomes, we find both positive 

and negative effects of mining activity. Mining activity appears to marginally reduce the 

anthropometric status (short-term malnutrition) of children in mining districts, which could 

point to less food security. These results are in sharp contrast to the improvements in birth 

attendance and the decrease in infant mortality observed in mining communities and mining 

districts. A child in a mining district born after a mine has become active has had more prenatal 

visits and is less likely to die as an infant. This result is similar to what Benshaul-Tolonen 

(2019) finds for a larger sample of gold-producing countries in Africa. Despite substantial 

reductions in diarrheal diseases, the analysis highlights that migrant children are more likely to 

suffer from diarrheal diseases. The effects on the migrant community should be interpreted with 

care, however, since it may be that less-well-off people choose to migrate to mining 

communities and that the mine activities do not make them any less or better off. In addition, 

mine closure or downscaling could lead to deterioration in local employment conditions and 

health care access, as has been observed in Tanzania (Rhee et al., 2018).  

The analysis shows that mining has created structural shifts in labor markets, and that it has 

reduced infant mortality rates. However, along with increased wage rates, we find that 

household level expenditure on housing and energy increases. In addition, the migrant 

population may have lower living standards with less electricity and a higher disease burden 

among children. We have no information where the migrant population moved from, and we 

cannot tell whether they have migrated to the area to benefit from the industry, or whether they 

were part of a relocation program due to the mining. One caveat is that these observed 

differences among migrant households in mining communities and non-mining communities 

could stem from untestable selection, as we do not observe the migrant households before the 

migration. Regardless of the motivation behind the migration decision, the policy 

recommendation is to ensure policies are in place to ensure sustainable living conditions in this 

group. 

These district level findings should be placed in the context of seminal work by Caselli and 

Michaels (2010) who found weak increases in living standards in Brazilian municipalities after 

increase in off-shore oil revenue accruing to municipalities, alongside increased illegal activity 

by mayors (Caselli and Michaels, 2010). We estimate district level effects on living standards 

(in mining districts, but no spillovers to adjacent districts, in line with Mamo et al, 2019), but 

do not have further information on public spending by sector to put these effects in context to 

expected changes. Political outcomes such as clientelism, corruption and reelection of local 
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politicians that have been linked to mining activities in other countries such as Peru 

(Maldonado, 2017) and India (Asher and Novosad, 2018), such as clientelism, corruption and 

reelection of local politicians were not analyzed within the context of Ghana. We encourage 

future analysis along similar lines. 

A few caveats should be noted. As the gold mining industry in Ghana matures further, it will 

be important to determine the long sustainability of these economic effects. This paper does not 

tease out the effect of mine closure on local socio-economic conditions, an aspect that warrants 

future focus. Moreover, lack of clearly estimated effects both in the individual level and district 

level analysis could stem from limited sample sizes. We encourage future analysis to use more 

rounds of data to ensure consistent results. Lastly, for the health and employment effects that 

we observe, we cannot determine if they stem from changes in the market-based economy, from 

corporate social responsibility policies or public spending. Future studies should try to carefully 

disentangle the mechanisms at play. 
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Annex  
 

Table A1. Variable definitions 
 
Characteristics 
total children  Total lifetime fertility 
wealth  Household wealth index score 
non-migrant   Respondent was born in the location and has never moved 
migrant   Any respondent who has ever moved in their life  
urban  The household lives in urban area 
  
Woman’s occupation   
not working  Was not working in last 12 months 
service & sales Works in services or sales 
professional  Works as a professional 
agriculture  Works in agriculture 
manual labor  Works in manual labor 
earning cash  Earns cash for work (0= not paid, in kind) 
works all year Works all year (0= seasonally, occasionally) 
  
Woman’s education   
3 years education At least 3 years of education 
no education  No education 
  
Child health   
first 12 months Child died within 12 months from birth  
diarrhea  Child had diarrhea in last 2 weeks 
cough  Child had cough in last 2 weeks 
fever  Child had fever in last 2 weeks 
  
Child anthropometrics   
ht/age (st dev.) Height for age (standard deviation) 
wt/age (st dev.) Weight for age (standard deviation) 
wh/ht (st dev.) Weight for height (standard deviation) 
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Table A2 Summary statistics for children’s surveys 

  (1)              (2) (3)                   (4) 

far from a mine 
before          during 

close to a mine 
before           during 

infant mortality  
    

first 12 months 0.07 0.07 0.08 0.06  
    

child health  
    

diarrhea 0.17 0.17 0.13 0.17 
cough 0.24 0.22 0.22 0.18 

fever 0.20 0.21 0.24 0.20      

child anthropometrics  
    

ht/age (st dev.) -94.43 -104.88 -127.04 -115.76 
wt/age (st dev.) -90.80 -100.16 -114.28 -103.48 

wh/ht (st dev.) -40.29 -45.24 -47.816 -40.52 

     

Sample size (child at birth) 3709 2204 661 314 

                Note: Column (1) is a sample at 20 to 100 km from a nonactive mine. 
               Column (2) is a sample at 20 to 100 km from an active mine. 
               Column (3) is a sample within 20 km of a nonactive mine. 
               Column (4) is a sample within 20 km of an active mine. 
               Infant mortality considers mine active status in birth year. 
               ht/age = height-to-age; wt/age = weight-to-age; wh/ht = weight to height; st. dev. = standard deviation. 
 
 

 
Table A3. Heterogeneous effects for bottom 40%, with urban locality interactions, intensity of 
mining, and timing of opening 

         Woman’s occupation 

  agri- 
culture 

service 
sales 

profess- 
ional 

manual 
labor 

not 
working 

earns 
cash 

works 
all year 

PANEL A: Bottom 40%  
       

active*mine 0.033 0.029 -0.004 -0.078** 0.020 0.089*** -0.083*  
(0.068) (0.048) (0.019) (0.038) (0.059) (0.034) (0.044) 

Mine -0.009 0.044 0.006 0.018 -0.058 -0.065** 0.012 
 

(0.057) (0.040) (0.010) (0.038) (0.046) (0.032) (0.036) 

Active 0.068 -0.071* -0.008 0.014 -0.003 -0.052 -0.064* 
 

(0.041) (0.038) (0.007) (0.025) (0.031) (0.048) (0.036) 
        

Observations 2,536 2,536 2,536 2,536 2,082 2,083 2,536 

PANEL B: Urban  
       

active*mine -0.037 0.022 -0.013 0.019 0.009 0.062** -0.014 
 

(0.044) (0.034) (0.010) (0.023) (0.025) (0.028) (0.034) 

Mine -0.005 0.046 -0.002 -0.018 -0.022 -0.068*** -0.011 
 

(0.033) (0.031) (0.008) (0.020) (0.022) (0.023) (0.026) 

Active 0.007 -0.005 -0.008 0.012 -0.007 -0.046** 0.004 
 

(0.024) (0.021) (0.005) (0.015) (0.015) (0.021) (0.022) 
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active*mine*urban 0.074 0.004 -0.022 -0.038 -0.018 -0.041 -0.002 
 

(0.054) (0.058) (0.024) (0.037) (0.042) (0.052) (0.052) 

active*urban 0.011 0.009 0.002 -0.006 -0.015 0.015 -0.019 
 

(0.025) (0.025) (0.010) (0.017) (0.019) (0.021) (0.023) 

mine*urban -0.121*** 0.052 0.006 0.040 0.024 -0.004 0.001 
 

(0.043) (0.045) (0.017) (0.029) (0.033) (0.043) (0.045) 

Urban -0.240*** 0.130*** 0.009 0.033** 0.068*** 0.013 0.026 
 

(0.023) (0.023) (0.008) (0.016) (0.018) (0.018) (0.022) 
        

Observations 12,176 12,176 12,176 12,176 12,176 9,262 7,085 

PANEL C. Intensity  -0.026 0.039* -0.020*** 0.005 0.001 0.038* -0.010 
#active*mines        

 
(0.028) (0.024) (0.007) (0.017) (0.020) (0.021) (0.021) 

Mines -0.023 0.047 0.001 -0.009 -0.016 -0.063*** -0.012 
 

(0.030) (0.028) (0.008) (0.018) (0.020) (0.021) (0.023) 

Active 0.014 -0.001 -0.006 0.009 -0.016 -0.037** -0.007 
 

(0.015) (0.016) (0.006) (0.011) (0.012) (0.015) (0.016) 
        

Observations 12,176 12,176 12,176 12,176 12,176 9,262 7,085 

PANEL D. Robustness  
       

1. Drop 20-40 km        

active*mine -0.040 0.020 -0.024** 0.017 0.026 0.078*** 0.023  
(0.043) (0.030) (0.009) (0.022) (0.024) (0.028) (0.040) 

2. Drop 2 years before  
       

active*mines -0.013 0.025 -0.018* 0.002 0.003 0.075*** -0.028 

  (0.040) (0.030) (0.009) (0.021) (0.024) (0.028) (0.037) 

Note: Robust standard errors clustered at the DHS cluster level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. *** p<0.01, **p<0.05, *p<0.1. Panel A is limited 
to bottom 40% in the income distribution, panel B uses urban interaction, and panel C has a count variable for 
active mines. Panel D1 drops sample between 20 and 40 km away, and D2 drops individual samples two years 
before mine opening. 151 women are sampled within 20 km from an active mine and in an urban area, and 246 
women are sampled within 20 km from a mine regardless of its activity status and in an urban area.  
 

 

Table A4 Spillovers on employment across districts 

Panel A: Using production in the previous period         

  (1) (2) (3) (4) (5) (6) (7) 

not agri- service profess- manual earns works 

VARIABLES working culture or sales ional work cash all year 

gold  period 0.004 -0.009** 0.003* 0.004*** -0.002 0.001 0.006 

District (0.004) (0.004) (0.002) (0.002) (0.004) (0.003) (0.004) 
        

neighbor -0.004 0.005 -0.001 -0.002*** 0.001 0.008* -0.002 

gold production (0.004) (0.004) (0.004) (0.001) (0.003) (0.004) (0.004)         

observations 19,175 19,175 19,175 19,175 19,175 14,852 11,568 
R-squared 0.207 0.327 0.127 0.137 0.037 0.146 0.255 

        

Panel B: Using production in the same year 
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  (1) (2) (3) (4) (5) (6) (7) 
 

not agri- service profess- manual earns works 

VARIABLES working culture or sales ional work cash all year 

gold  period 0.012 -0.033 0.020 0.019* -0.018 -0.001 0.028 
District (0.022) (0.024) (0.013) (0.011) (0.015) (0.015) (0.022) 

        

neighbor -0.042** 0.036 0.007 -0.009** 0.008 0.020 0.013 

gold production (0.017) (0.025) (0.021) (0.004) (0.010) (0.025) (0.019)         

observations 19,175 19,175 19,175 19,175 19,175 14,852 11,568 
R-squared 0.207 0.327 0.128 0.137 0.037 0.146 0.255 

Note: Robust standard errors clustered at the district level in parentheses. All regressions control for year and 
district fixed effects, urban dummy, age, and years of education. *** p<0.01, **p<0.05, *p<0.1. 
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Figure A1. Access to infrastructure: Varying the cutoff and spatial lag model 

Panel A Household has electricity  Panel B Household has radio 

a. Varying cutoff   a. Varying cutoff 

 

b. Spatial lag model   b. Spatial lag model 

 

c. Spatial lag model by migration status  c. Spatial lag model by migration status 

 

Note: The figure shows the main treatment coefficients (active*mine) using the baseline estimation strategy (with 
DHS individual-level data; see table 4 for more information) in panel A, but with different distance cutoffs (10 
km, 20 km, 30 km, 40 km, or 50 km). *** p<0.01, **p<0.05, *p<0.1. Panels Ab, Ac, Bb, and Bc show the result 
using spatial lag models, which divided the plane into different treatment bins (0–10, 10–20, 20–30, 40–50) and 
compares them with farther away distances. Panel B shows the result for all individuals, and panel C shows the 
main treatment result (active mine) when the sample has been split into migrants and nonmigrants. 
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Figure A2 Using GLSS: Employment and wages 

Panel A Woman working in services  Panel B Log wages (woman) 

 

Panel C Man working in mining  Panel D Log wages (man) 

 

Note: The four panels show the regression results from four spatial lag models using the GLSS sample. The sample 
is restricted to women (top two) and men (bottom two) aged 15–49. The solid lines are the coefficient for 
active*mine for 7 distance bins (0–10 km, 10–20 km, … 60–70 km) compared with a control group (80–100 km) 
away. The regressions also control for mine location at the same distances. See table 11 for control variables. 

 


