Job Search by Employed Workers

The Effects of Restrictions

Avner Bar-Ilan
and
Anat Levy

Some firms offer high wages in return for their workers' implicit commitment not to search for better jobs. Some firms that cannot afford to pay wages that guarantee lifetime attachment pay lower wages, but impose no restrictions on searches for better jobs. When the separation bond takes the form of a transfer between the employer and the employee, employment is unaffected in most cases. But when it is forfeited to a third party, employment among all types of workers falls.
Within the framework of a general equilibrium search model, Bar-Ilan and Levy study the effect of institutional restrictions on workers' job mobility.

The model generates endogenous job searches on the job and off the job with two forms of labor contracts emerging and coexisting in equilibrium.

One form of contract involves the workers' long-term commitment to the firm ("reversed tenure"): Some firms offer high wages in return for their workers' commitment not to search for better jobs.

The other is a short-term contract requiring no such commitment: Some firms that cannot afford to pay wages that guarantee lifetime attachment pay lower wages, have lower turnover costs, but impose no restrictions on searches for better jobs.

Bar-Ilan and Levy study the effects on employment of exogenous restrictions on mobility — i.e., the form of a transfer from the quitting worker, made either to the employer or to a third party. These transfers, the separation bonds, are typically the benefits lost by the quitting worker, such as vested pension. Restrictions of this type, by crowding out the firms that allow on-the-job searches for employment, directly increase unemployment.

When restrictions on workers' mobility take the form of a zero-sum transfer, there is no real effect so long as the transfer is below some bound — the worker loses nothing. When the separation bond is prohibitively large, or when it is forfeited to a third party, employment among all types of workers falls.
Job Search by Employed Workers: The Effects of Restrictions

by
Avner Bar-Ylan
Department of Economics
Tel-Aviv University

and

Anat Levy
World Bank
and Bank of Israel

This research was partially supported by funds granted to the Foerder Institute for Economic Research by the John Rauch Fund.
Table of Contents

1. Introduction 1
2. Determination of Labor Contracts 2
3. Determination of Labor Supply 6
4. Equilibrium Wage Distribution 11
5. Bond Goes to the Employer 13
6. Restricted Search and Unemployment 15
 6.1 Bond Goes to a Third Party 15
 6.2 Exogenous Bond Goes to the Employer 20
7. Unemployment Compensation 23
References 26
Figures 27
1. INTRODUCTION

The objective of this paper is to study within a general equilibrium framework the economic implications of institutional frictions to labor mobility. It thus extends theoretical analyses of this problem, such as Lazear (1990), done in a less detailed setup.

The equilibrium framework which is the basis to the model we introduce was developed by Albrecht and Axell (1984) and used by Eckstein and Wolpin (1990). The novelty of Albrecht and Axell is endogenous determination of nondegenerate wage offer distribution in a general equilibrium model. Since search on the job is not allowed, there are two wage levels in equilibrium. The lower wage should be high enough to induce the workers to accept this wage offer and lose for good the option to work at the higher wage firms.

We extend this model by permitting the individual to continue the search while working. This endogenizes the extent of the restrictions on search. In equilibrium some firms will choose to offer high wages in return for a commitment of their workers not to search for better jobs. Other firms, which cannot afford to pay the wage that guarantees lifetime attachment, pay lower wages, but impose no restrictions on search on-the-job. This characterizes two forms of labor contracts, short and long-term contracts, which coexist in equilibrium, and a wage offer distribution which amounts to three wage levels.

It is demonstrated that observed limitations on mobility of workers might be the outcome of voluntary arrangements evolved endogenously. We then proceed to study the employment effects of exogenous restrictions on mobility. These restrictions take the form of a transfer from the quitting worker made either to the employer or to a third party.

Restrictions of the latter type, by crowding out the firms which allow search on-the-job, have a direct effect of increasing unemployment. In addition, the mechanism underlying the general equilibrium model introduces negative externality on the existing firms, and reduces the proportion of the firms paying the highest wage. This increases unemployment further, not only among those who are directly involved in search on-the-job, but among other groups of workers as well.
On the other hand, there is a range of sizes of transfer made to the firm, in which the transfer has no real effect on the economy. In this region, similar to Lazear (1990), any exogenous intervention is neutralized by endogenous arrangements developed in the economy. However, this offsetting mechanism works only up to a certain exogenous transfer. Above this limit, general equilibrium forces ruin the feasibility of neutralizing arrangements. In this case unemployment increases up to the level that corresponds to Eckstein and Wolpin's (1990) version of Albrecht and Axell (1984), where any mobility of workers is blocked.

The structure of this paper is as follows. Sections 2 to 4 analyze the equilibrium assuming that the transfer goes to a third party. Section 2 derives the terms of labor contracts which emerge in equilibrium, while section 3 presents the labor supply functions implied by these contracts. The equilibrium outcome is determined in section 4. Section 5 studies the nature of the equilibrium when the transfer is assumed to go to the employer, while economic implications of exogenous restrictions on mobility are analyzed in section 6. Section 7 deals with the related question of the employment effects of unemployment compensation.

2. DETERMINATION OF LABOR CONTRACTS

Employment contracts in our model specify the wage, w_i, and a separation bond B_i, posted by workers in firms offering contract i and is forfeited in the event that they move to another firm. We first consider the case in which the forfeited bond goes to a third party. In each period an individual is allowed to search for a job. Both search on and off-the-job are allowed. Individuals searching for a job draw at random from a wage distribution which, in equilibrium, is determined endogenously.

1 The forfeited bond is added to the Θ defined below. For instance, it goes to a global fund which is distributed among all individuals. Discussion of employee's bonds can be found in Dickens et. al. (1989) and Bar-Ilan (1991).
The search strategy is optimal, in the sense that it maximizes the individual's lifetime utility. The per-period utility is additive in consumption, \(c \), and leisure, \(m \), such that \(u = c + vm \), where the consumption good \(c \) is the numeraire.\(^2\) There are two types of workers that differ in their imputed value, \(v \), of leisure. We denote the two types by \(v_0 \) and \(v_1 \) where \(v_0 < v_1 \). The fraction of the \(v_0 \) individuals is \(\beta \). In all other respects, including market productivity, all workers are identical.

The per-period utility of a working individual with leisure \(m = 0 \) is \(w + \Theta \), where \(\Theta \) is the income paid irrespective of market activity. An unemployed (\(m = 1 \)) \(v_1 \) individual derives a utility of \(v_1 + b + \Theta \) where \(b \) represents unemployment compensation.

We show below that there are three different labor contracts in equilibrium:

\[
\begin{align*}
w_0 &= v_0 + b \\
B_0 &= 0 \\
\end{align*}
\]

\[
\begin{align*}
w_1 &= v_0 + b + \frac{\gamma_2 (1-\tau) (v_1-v_0)}{1-(1-\gamma_2) (1-\tau)} \\
B_1 &\geq \frac{v_1-v_0}{1-(1-\gamma_2) (1-\tau)} \\
\end{align*}
\]

\[
\begin{align*}
w_2 &= v_1 + b \\
B_2 &\geq 0 \\
\end{align*}
\]

where \(\tau \) is the probability that the individual will not survive to the next period and \(\gamma_2 \) is the fraction of firms offering the highest wage, \(w_2 \). An individual will draw a wage offer \(w_1 \) with probability \(\gamma_1 \), where \((\gamma_0 + \gamma_1 + \gamma_2) \) is the wage offer probability and \(p = 1 - (\gamma_0 + \gamma_1 + \gamma_2) \) is the probability of not getting a wage offer.

For the wage distribution \((w_i, \gamma_i)\) to be an equilibrium, the highest wage, \(w_2 \), should be the pure reservation wage of the \(v_1 \) individual, i.e. \((v_1 + b)\). The wage \(w_2 \) will not be larger than \((v_1 + b)\) since a higher wage does not increase the labor supply, but increases wage expenditures, and therefore must

\(^2\) The notation in this section follows closely that of Albrecht and Axell (1984).
reduce profits. Similarly, \(w_2 < (v_1 + b) \) will not attract any \(v_1 \) individual. The bond \(B_2 \) can take any nonnegative value, since \(i \) does not enter the profit function of the firms, and a worker with wage \(w_2 \) will never quit. Thus \(w_2 = v_1 + b ; B_2 \geq 0 \), as in (1c).

Any wage below \(w_2 \) can attract workers of type \(v_0 \) only. We show below that for this case, two types of contracts exist in equilibrium. The first is a lifetime contract in which the firm offers high wages and the worker makes a commitment not to quit, i.e. there exists a "reversed tenure," given to the firm by its employees in return for a wage premium. The second type of labor contract is a short term contract in which the worker is allowed to search on-the-job and quit in case he finds a better job. In equilibrium a worker is indifferent between the two types of labor contracts.

When a \(v_0 \) individual rejects a wage \(w < w_2 \) offered to him in order to search for a \(w_2 \) job, then his lifetime expected utility \(V^* \) is:

\[
V^* = v_0 + b + \theta + (1 - \tau) \left[\frac{\gamma_2 (w_2 + \theta)}{\tau} + (1 - \gamma_2) V^* \right]. \tag{2}
\]

When the \(v_0 \) worker accepts the \(w \) job offer and continues searching on-the-job for the \(w_2 \) contract, then his expected lifetime utility is:\(^3\)

\[
V^* = w + \theta + (1 - \tau) \left[\frac{\gamma_2 (w_2 + \theta)}{\tau} - B \gamma_2 + (1 - \gamma_2) V^* \right]. \tag{3}
\]

\(^3\) Implicit in equation (3) is the assumption of a costless search, whether the worker is employed or not. A possible extension is to allow for a non-symmetric search cost, where it is more costly to search while working.
where $B \geq 0$ is the separation bond posted by the worker when he accepts the \(w \) contract and is forfeited when he quits and accepts the \(w_2 \) offer. If the worker accepts and keeps the \(w \) job for life, then:

$$V^* = \frac{w + \theta}{\tau} \quad (4)$$

In equilibrium the worker should be indifferent between the three alternatives. This is equivalent to the reservation wage property which states that wage offers are determined such that individuals are indifferent to whether accepting or rejecting them. Equating \(V^* \) from equations (2) and (4), together with equation (1c), gives the wage of the lifetime contract, \(w_1 \), as:

$$w_1 = v_0 + b + \frac{\gamma_2 \left(1 - \tau \right) \left(v_1 - v_0 \right)}{1 - \left(1 - \gamma_2 \right) \left(1 - \tau \right)} . \quad (5)$$

Equating \(V^* \) from equations (2) and (3) yields:

$$w = v_0 + b + (1-\tau)\gamma_2 B . \quad (6)$$

Equation (6) represents all the labor contracts \((w, B)\) which keep the worker indifferent between accepting and rejecting a contract which allows search on-the-job. When the separation bond increases, for a given \(\gamma_2 \), the worker must be compensated by a higher wage. Since \(w \), but not \(B \), enters the profit function of firms, the profit maximizing labor contract is zero separation bond and the lowest possible wage, that is:

$$w_0 = v_0 + b; \quad B_0 = 0 . \quad (7)$$
We have found in equation (5) the lowest wage w_i which can induce a lifetime commitment on the part of the employees. The separation bond supporting this commitment, B_1, must not be smaller than the value given by equation (6) after substitution of w_i, that is:

$$B_1 \geq \frac{v_1 - v_0}{1 - (1 - \gamma_2) (1 - \gamma)}.$$

We have thus identified the possibility of the existence of three different labor contracts. The (w_2, B_2) contract offers a wage which is high enough to attract and keep all types of workers, since it clearly dominates all other contracts from the workers' point of view. The other contracts, (w_0, B_0) and (w_1, B_1), are equivalent for the employees since the expected lifetime utility derived from both contracts is the same. The (w_1, B_1) is a lifetime contract in which the worker agrees, for a wage premium, to keep the same job for as long as he lives. On the other hand, the wage w_0 is low and equals the pure reservation wage of the v_0 worker, but he or she can move to a job that yields a higher expected lifetime utility. Any wage w, $w_0 < w < w_1$, will not be supported in equilibrium since, with this wage, the only possible contract is a short-term one; given that, the firm would rather offer a wage w_0. Since in this case the cost of search is the same when employed or not, the worker is willing to accept a job that compensates for the value of foregone leisure and then continues to search.

3. DETERMINATION OF LABOR SUPPLY

Firms set the wage rate in order to maximize profits. A higher wage may increase the labor supply to a firm for three reasons. First, as in Albrecht and Axell (1984), a high enough wage might induce the v_1 individuals, who value leisure highly, to accept a wage offer instead of rejecting it and staying at home. Second, a high wage can induce workers to implicitly sign a lifetime contract with the firm; and
third, a higher wage may induce \(v_0 \) workers who search on the job to accept more lucrative labor contract.

Firms are heterogeneous with linear production technology, as in Albrecht and Axell. The output per worker, \(\lambda \), is constant for each firm and is distributed across firms with a cumulative distribution function \(A(\lambda) \), where the parameter \(\lambda \) takes values on \([0,1]\). The profit \(\pi(w;\lambda) \) of a firm with productivity \(\lambda \) which offers a wage \(w \) is \((\lambda - w)\ell(w)\), where \(\ell(w) \) is the labor supply, which, in our model, is identical to the employment level.

In equilibrium firms will be distributed either as in figure 1 or as in figure 2. The curve \(\pi(w;\lambda) \) cuts the horizontal axis at the point \(\lambda = w_1 \), and its constant slope is \(\ell(w) \). Since \(w_0 < w_1 < w_2 \) and as we show below, \(\ell(w_0) < \ell(w_1) < \ell(w_2) \), the functions \(\pi(w;\lambda) \), \(i = 0, 1, 2 \), are as depicted in figures 1 and 2. The situation depicted in figure 1 presents four groups of firms. The least productive firms, when \(\lambda \) satisfies \(0 \leq \lambda < w_0 \), cannot afford to pay the lowest wage rate \(w_0 \), the pure reservation wage of the \(v_0 \) individuals. These firms would be inactive, and their fraction in the population, denoted by \(p \), is \(p = A(w_0) \). A second group of firms offers the wage rate \(w_0 \), but does not restrict the search of its employees for a better job. The fraction of firms in this group, \(\gamma_0 \), is \(\gamma_0 = A(\lambda_0^*) - A(w_0) \), where \(\lambda_0^* \) is defined by \(\pi(w_0;\lambda_0^*) = \pi(w_1;\lambda_0^*) \). The third group of firms offer \(v_0 \) individuals a premium for a lifetime contract in the form of a wage \(w_1 > w_0 \). The fraction of firms in this group is \(\gamma_1 = A(\lambda_1^*) - A(\lambda_0^*) \) where \(\lambda_1^* \) is defined by \(\pi(w_1;\lambda_1^*) = \pi(w_2;\lambda_1^*) \). Finally, the most productive firms offer the highest wage \(w_2 \), and the fraction \(\gamma_2 \) of firms in this group is \(\gamma_2 = 1 - A(\lambda_1^*) \).

In the equilibrium described in figure 2 there are two types of active firms. In this case the "loyalty" wage premium is so high such that the \((w_1,B_1)\) contract is not a profit maximizing policy for any firm. This situation happens when \(\lambda_1^* \leq \lambda_0^* \), whereas when \(\lambda_1^* > \lambda_0^* \) there will be three types of active

4 The structure of the supply side bears some similarity to that of Lucas and Prescott (1974).
firms in equilibrium. In the equilibrium of figure 2 we have \(\gamma_0 = A(\lambda_2^*) - A(w_0) \), \(\gamma_1 = 0 \), and \(\gamma_2 = 1 - A(\lambda_2^*) \), where \(\lambda_2^* \) is defined by \(\pi(w_0; \lambda_2^*) = \pi(w_2; \lambda_2^*) \).

We now turn to the derivation of the labor supply and the unemployment rate. In each period there are \(k \) individuals and \(n \) (active and inactive) firms in the economy. The constant probability of death per period is \(\tau \), and therefore \(k \) individuals are born and die in every period.

Denote the ratio of individuals to firms, \(k/n \), by \(\mu \). The number of individuals who accept a job within a \(w_0 \) firm in each period is:

\[
\tau \mu \beta [1 + p(1-\tau) + p^2(1-\tau)^2 + \ldots] = \frac{\tau \mu \beta}{1 - p(1-\tau)}.
\]

The first term is the number of \(v_0 \) individuals per firm entering the economy. The second expression denotes \(v_0 \) surviving individuals who searched unsuccessfully in the previous period, and so on. The labor supply \(\ell(w_0) \) is therefore:

\[
\ell(w_0) = \frac{\tau \mu \beta}{1 - p(1-\tau)} (1 + (1-\tau)(1-\gamma_2) + (1-\tau)^2(1-\gamma_2)^2 + \ldots) \quad (9)
\]

\[
\ell(w_0) = \frac{\tau \mu \beta}{[1 - p(1-\tau)] [1 - (1-\tau)(1-\gamma_2)]} \quad (10)
\]

The second term in equation (9) denotes the surviving individuals who accepted a \(w_0 \) job offer in the previous period and did not get a \(w_2 \) offer currently, and so on.

The number of acceptances per period for \(w_0 \) and \(w_1 \) firms is identical. The attrition rate of workers in \(w_1 \) firms is, however, a result of death only, since the implicit contract of \(w_1 \) firms is lifetime contract. Hence \(\ell(w_1) \) is:
Individuals of type v_1 accept jobs only within firms which offer a w_2 wage. The number of acceptances per period of v_1 individuals is

$$\tau \mu (1-\beta)[1 + (1-\tau)(1-\gamma_2) + (1-\tau)^2(1-\gamma_2)^2 + ...] = \frac{\tau \mu (1-\beta)}{1 - (1-\tau)(1-\gamma_2)}$$

Again, the first term denotes newborn v_1 individuals, the second expression those who searched unsuccessfully in the previous period, and so on. Since workers in w_2 firms stay in their firm as long as they are alive, the labor supply of v_1 individuals to each w_2 firm is

$$\frac{\mu (1-\beta)}{1 - (1-\tau)(1-\gamma_2)}$$

In addition, each v_0 individual who is offered wage w_2 as his first job offer, accepts this offer and never quits. This is identical to the labor supply to w_1 firms, $\ell(w_1)$. Moreover, v_0 individuals working in w_0 firms search on the job for w_2 jobs. For any w_0 firm, the number of workers moving to w_2 firms in each period is $\ell(w_0)(1-\gamma_2)$. Multiply this by γ_0/γ_2 to get $\ell(w_0)(1-\gamma_2)\gamma_0$ as the number of workers moving from w_0 firms to each w_2 firm in any period. Since these workers are also loyal to their new firm, the extra supply of labor via this channel is $\ell(w_0)(1-\gamma_2)\gamma_0/\tau$. Summing the three sources of labor supply to w_2 firms, we have

$$\ell(w_2) = \frac{\mu (1-\beta)}{1 - (1-\tau)(1-\gamma_2)} + \ell(w_1) + \frac{\gamma_0}{\tau} (1-\tau) \ell(w_0)$$

where $\ell(w_2) \geq \ell(w_1) \geq \ell(w_0)$.

$$\ell(w_i) = \frac{\tau \mu \beta}{1 - \beta (1-\tau)} \left[1 + (1-\tau) + (1-\tau)^2 + ... \right] = \frac{\mu \beta}{1 - \beta (1-\tau)}$$ (11)
In order to derive the unemployment rate, notice that in every period there are \(r k(1-\beta)(1-\gamma_2) \) individuals of type \(v_1 \) who search for the first time, \(r k(1-\beta)(1-\gamma_2)^2(1-\tau) \) who search for the second time, and so on. Total number of \(v_1 \) individuals searching while unemployed is:

\[
\frac{r k (1 - \beta) (1 - \gamma_2)}{1 - (1 - \gamma_2) (1 - \tau)} \]

The expression for \(v_0 \) individuals is similar, with the obvious replacement of \((1-\beta)\) by \(\beta\) and \((1-\gamma_2)\) by \(p\). The total number of unemployed \(v_0 \) individuals is therefore \(r k p /[1-p(1-\tau)] \). The unemployment rate \(S \) is

\[
S = \frac{\tau \beta p}{1 - p (1 - \tau)} + \frac{\tau (1 - \beta) (1 - \gamma_2)}{1 - (1 - \gamma_2) (1 - \tau)} .
\]

The unemployment rate among \(v_0 \) individuals, \(S_0 \), is

\[
S_0 = \frac{\tau p}{1 - p (1 - \tau)}
\]

while \(S_1 \), the unemployment rate among \(v_1 \) workers, is:

\[
S_1 = \frac{\tau (1 - \gamma_2)}{1 - (1 - \gamma_2) (1 - \tau)}
\]

Since \(p = 1 - (\gamma_0 + \gamma_1 + \gamma_2) < 1 - \gamma_2 \), we have \(S_0 < S_1 \).
4. EQUILIBRIUM WAGE DISTRIBUTION

Up until now we have established the existence of three types of labor contracts and the associated labor supply. We now turn to the endogenous derivation of the fraction of firms offering each contract, which completes the determination of the equilibrium in the economy.

Recall that the cutoff productivity \(\lambda_0^* \) is defined by \(\pi(w_0; \lambda_0^*) = \pi(w_1; \lambda_0^*) \), or

\[
\lambda_0^* = w_1 + \frac{(w_1 - w_0) \ell(w_0)}{\ell(w_1) - \ell(w_0)} \tag{16}
\]

Similarly, we have

\[
\lambda_1^* = w_1 + \frac{(w_2 - w_1) \ell(w_1)}{\ell(w_2) - \ell(w_1)} \tag{17}
\]

\[
\lambda_2^* = w_1 + \frac{(w_2 - w_0) \ell(w_0)}{\ell(w_2) - \ell(w_0)} \tag{18}
\]

Substituting the labor supply functions yields

\[
\lambda_0^* = v_1 + b \tag{19}
\]

\[
\lambda_1^* = v_1 + b + \frac{(v_1 - v_0) \beta \tau}{\beta \gamma_0 (1 - \tau) + (1 - \beta) [1 - p (1 - \tau)]} > \lambda_0^*. \tag{20}
\]

Since \(\lambda_1^* > \lambda_0^* \) for all parameter values, there cannot be two wage levels in equilibrium, and the cutoff productivity \(\lambda_2^* \) and figure 2 are irrelevant. This can be summarized as a proposition:
PROPOSITION 1: There are three possible types of equilibria in the economy. When \(v_0 + b > 1 \), there will be no active firms; when \(v_0 + b \leq 1 \) and \(\lambda^*_1 > 1 \), the only labor contract offers a wage \(w_0 = v_0 + b \); when \(\lambda^*_1 \leq 1 \), all three labor contracts described in equation (1) will coexist.

When \(v_0 + b > 1 \) the participation rate in the whole labor market is zero. The case \(\lambda^*_1 > 1 \) means that there is no firm which finds it optimal to offer a wage which is high enough to induce the \(v_1 \) individuals to work. In this case one group of individuals will never participate in the job market. Since this degenerate situation is not very interesting, we focus from now on on the case where \(\lambda^*_1 \leq 1 \). Notice also that both \(\lambda^*_0 \) and \(\lambda^*_1 \) are functions of exogenous parameters only. This is because \(p = A(w_0) = A(v_0 + b) \) and \(\gamma_0 = A(\lambda^*_0) - A(w_0) = A(v_1 + b) - A(v_0 + b) \).

Our model shares some common predictions with other studies which allow search on the job, such as Burdett (1978) and Mortensen (1986). In particular, we provide a general equilibrium explanation for the observed negative association between the propensity to separate from a job and the wage earned, a result found also by Burdett using a partial equilibrium model. The mechanism underlying this result is, however, somewhat different. In Burdett (1978) workers have a weaker incentive to quit when the wage is higher, since the payoff for additional search is lower, given exogenous wage distribution. In our model, employees of \(w_2 \) firms do not quit for a similar reason, since the probability of finding a higher paying job is zero. In addition, a unique feature of our model is the fact that the intermediate wage, \(w_1 \), is voluntarily conditional upon not quitting. The highest wage, \(w_2 \), is therefore not attractive to \(w_1 \) workers since it should be discounted by the value of their separation bond, \(B_1 \). Quitting in our model occurs from the lowest wage firms only, which implies the negative relation between quit rate and the wage earned.\(^5\)

\(^5\) A related, but different result is derived by Burdett and Mortensen (1980) which show that wage differentials reflect the compensation required for a difference in layoff probabilities. In our model the duration of time in the job increases with the wage, since it reflects commitment on the part of the employees, not layoffs.
Another prediction made here is a positively sloped wage-experience profiles for part of the population, that is, \(v_0 \) individuals who start at a low wage \(w_0 \) and eventually find a higher-paying job \(w_2 \). This provides an alternative explanation to the standard argument of accumulated human capital while employed, which can also generate the upward sloping earnings profile.

Our model has also the flavor of combining implicit contracts and search, as in Burdett and Mortensen (1980) and Mortensen (1986). There is a tendency in our labor market to generate employee-employer relationships that can last for some time, and appeal to some segments of the work force.

5. BOND GOES TO THE EMPLOYER

We now study the equilibrium when the assumption that the forfeited separation bond goes to a third party is replaced by the assumption that the bond goes to the employer. To that end, the following proposition can be stated:

PROPOSITION 2: The resulting equilibrium does not change when the separation bond goes to the employer and not to a third party. The only difference might occur for the nominal terms of the \((w_0, B_0)\) labor contract.

PROOF: The assumption that the bond goes to the employer might make a difference for firms offering the \(w_0 \) wage, since these firms can now collect the \(B_0 \) bond of their quitting employees. Since a separation bond \(B_0 > 0 \) requires a higher wage \(w_0 \), given by equation (6), in order to induce workers to take the \((w_0, B_0)\) contract rather than continue searching, equation (1a) should be replaced by (1a'):

6 A similar result was found also by Burdett (1978).
Any combination \((w_0, B_0)\) satisfying \((1a')\) yields the same lifetime expected utility \(V^*\), given, for instance, by equation (2). Similarly, the profit \(\pi(w_0; \lambda)\) is the same for all \((w_0, B_0)\) contracts of equation (1a'). This is obvious since \((1-\tau)\gamma_2 \ell(w_0)\) workers move to \(w_2\) firms from any \(w_0\) firm in each period, and we have:

\[
\pi(w_0; \lambda) = (\lambda - w_0) \ell(w_0) + (1 - \tau)\gamma_2 \ell(w_0)B_0 = (\lambda - v_0 - b) \ell(w_0).
\]

Clearly, changing the assumption about the party collecting the bond does not have an impact on \(w_1\) and \(w_2\) firms, whose workers never quit. Hence the equilibrium depicted in figure 1 does not change. The distribution of firms, labor supply and all equations derived in the previous sections still hold, except for equation (1a). Notice that when \(B_0\) attains or exceeds its upper bound \((v_1 - v_0)/[1-(1-\gamma_2)(1-\tau)]\) of (1a'), workers will never quit since they are better off at the \(w_0\) firm rather than accepting a \(w_2\) job offer and paying the separation bond \(B_0\). In this case the \((w_0, B_0)\) labor contract becomes a lifetime contract, yielding a lower profit than \((\lambda - v_0 - b) \ell(w_0)\) to the firm. Hence \(B_0\) must be lower than its upper bound in equation (1a').

We have thus come to the apparently surprising conclusion that whether the bond goes to a third party or to the employer does not make any real difference. The conventional wisdom is that payments made to a third party are necessarily distorting. What we see here is that in a general equilibrium context, and when the bond is determined endogenously, the same equilibrium is attained irrespective of the nature of the bond. When the bond is assumed to go to a third party, workers and firms circumvent this constraint by writing contracts in which either the bond is zero, as in (1a), or the bond is never paid, as in (1b) and (1c). When the bond goes to the firm, both sides can agree upon a menu \((w_0, B_0)\) of wages
and bonds, given by equation (1a'), which is neutral in its effect on workers and firms. We can now proceed to the determination of the equilibrium when the separation bond is not determined endogenously, but is rather enforced exogenously by some institutional or other arrangement.

6. RESTRICTED SEARCH AND UNEMPLOYMENT

Lazear (1990) presents the theoretical arguments for and against job security provisions at the firm level. He concludes that "It is also true that severance pay effects are neutral only when payment made by the firm is received by the worker. There can be no third-party intermediary receiving any of the payment. If this occurs, then incentives are necessarily distorted." (Lazear, 1990, p.702).

Lazear's conclusion that severance pay made by the employer to the employee is neutral with respect to its effect on employment, is based upon the ability to contract around this constraint, in the form of the worker "buys" his job from the firm. If this is not possible, then any kind of severance pay is distortionary, as in Gavin (1986).

We study here the possible distortionary effects of separation bonds. Since whether the firm has to pay the worker when they split or vice versa should not make any difference, severance pay and separation bonds being analogous. We can therefore extend the analysis of exogenous restrictions on separation of workers and firms to a general equilibrium framework. In particular, we would like to understand whether the market generates ways to offset these restrictions, such that there are circumstances in which the imposition of restrictions on separation does not have any real effect, as obtained by Lazear (1990) in a partial equilibrium framework.

6.1. Bond Goes to a Third Party

Assume initially that a prohibitively large separation bond, going to a third party when forfeited, is exogenously imposed. Clearly, there is some bond B^* (calculated below) such that for any bond B, $B \geq B^*$, all separation is blocked. In this case, our model reduces to that of Eckstein and Wolpin (1990),
which is a version of Albrecht and Axell (1984) when individuals can draw job offers from active or inactive firms, i.e., \(p > 0 \). In this case there are no firms which pay the low wage \(w_0 \). Instead, the lowest wage possible is \(w_1 \), which compensates the workers for the lost option to work at the high wage \(w_2 \).

It is straightforward to show, either directly or using Eckstein and Wolpin, that with no search on-the-job the labor supply is

\[
q(w_1) = \frac{\mu \beta}{1 - \hat{p}(1 - \tau)}
\]

\[
q(w_2) = q(w_1) + \frac{\mu(1 - \beta)}{1 - (1 - \hat{\gamma}_2) (1 - \tau)}
\]

where the expressions for \(\hat{\gamma}_1 \), \(\hat{\beta}_1 \) and \(w_2 \) are given in equation (1), and a "hat" denotes the restricted separation model. Notice that \(w_2 \), but not \(w_1 \), is numerically identical in the two models, because \(\hat{\gamma}_2 \neq \gamma_2 \). The fraction of firms paying \(\hat{\omega}_1 \) and \(w_2 \) is:

\[
\hat{\gamma}_1 = A(\hat{\lambda}_1^*) - A(\hat{\omega}_1)
\]

\[
\hat{\gamma}_2 = 1 - A(\hat{\lambda}_1^*)
\]

and \(\hat{p} = A(\hat{\omega}_1) \) is the probability of not drawing a job offer from an active firm in a given period.

The cutoff productivity \(\hat{\lambda}_1^* \) that distinguishes between \(\hat{\omega}_1 \) and \(w_2 \) firms is:
\[\lambda_1^* = v_1 + b + \frac{(v_1 - v_0) \beta \tau}{(1 - \beta) [1 - p (1 - \tau)]} \]

(25)

The expressions for the unemployment rate in the whole population, \(\hat{S} \), and among \(v_0 \) and \(v_1 \) individuals, \(\hat{S}_0 \) and \(\hat{S}_1 \), respectively, are the same as in equations (13), (14), and (15). The unemployment rate increases with \(\hat{p} \) and decreases with \(\hat{\gamma}_2 \). Since \(p = A(w_0) < \hat{p} = A(\lambda_1^*) \) and \(\gamma_2 > \hat{\gamma}_2 \) (since \(\lambda_1^* \leq \hat{\lambda}_1^* \)), then \(\hat{S}_0 < \hat{S}_0 \) and \(\hat{S}_1 < \hat{S}_1 \), where \(S_0 \) and \(S_1 \) correspond to zero exogenous bond, as in sections (2)-(4). That is, relative to the unconstrained search unemployment, imposing binding separation bonds increase unemployment for both groups of individuals.

Assume now that the exogenous separation bond \(B \) satisfies \(0 \leq B < B' \). For these values of \(B \) there are three wage levels in equilibrium, and the model is basically the one presented in sections (2)-(4), with the following changes. The wage \(w_0 \) and the bond \(B_0 \) take the lowest possible values, which are the values that maximize profit, i.e. from equation (6):

\[w_0 = v_0 + b + (1 - \tau)\gamma_2 B \quad B_0 = B . \]

(1a''')

The cutoff productivity \(\lambda_0^* \) has to change accordingly. Substituting \(w_0 \) of \((1a'''') \) in equation (16) yields:

\[\lambda_0^* = v_1 + b - \tau B . \]

(19'')

The expressions for \((w_1, B_1), (w_2, B_2), \lambda_1^*, \gamma_0, \gamma_1, \gamma_2, S_0, \) and \(S_1 \) all stay as in sections (2)-(4), even though the numerical solution is, of course, different. Taking the total derivative with respect to \(B \) we obtain:

\[\frac{d \lambda_1^*}{dB} = \frac{(v_1 - v_0) \beta \tau (1 - \tau) [(1 - \tau) a(w_0) \gamma_2 + \beta \tau a(\lambda_0^*)]}{[(1 - \beta) (1 - p (1 - \tau)) + \beta \gamma_0 (1 - \tau)]^2 + (v_1 - v_0) \beta \tau (1 - \tau)^2 a(w_0) a(\lambda_1^*) B} \geq 0 \]
\[\frac{d\gamma_2}{dB} = -a(\lambda_1^*) \frac{d\lambda_1^*}{dB} \leq 0 \]

\[\frac{dS_1}{dB} = \frac{-\tau}{[1 - (1 - \tau)(1 - \gamma_2)]^2} \frac{d\gamma_2}{dB} \geq 0 \]

The larger the exogenous bond \(B \) is, the higher the unemployment rate among \(v_1 \) individuals, \(S_1 \). This rise in \(S_1 \) takes place as long as \(B < B^* = \min (\hat{B}_1) = (v_1 - v_0)/(1 - (1 - \hat{\gamma}_2)(1 - \tau)) \), as presented by the curve "acd" in figure 3. Points a and c represent the unemployment levels corresponding to the unconstrained case of our model, and to the constrained model of Albrecht and Axell (1984), respectively. As long as \(B < B^* \), there are firms with productivity \(\lambda \) which is larger or equal to \(w_0 \) in equation (1a'') and smaller than \(\hat{\phi}_1 \) (which is \(w_1 \) in (1b) for \(\gamma_2 = \hat{\gamma}_2 \)), that can make positive profit offering \((w_0, B_0)\) contract, but lose money offering an \((\hat{\phi}_1, \hat{B}_1)\) contract. Therefore, as long as \(B < B^* \) there will be some \(w_0 \) firms with productivity \(\lambda \) distributed on the range \((w_0(B), \lambda_0)\). When \(B \geq B^* \) the economy will consist of firms offering lifetime contracts \((\hat{\phi}_1, \hat{B}_1)\) and \((w_2, B_2)\) only. Any marginal increase in \(B \) above \(B^* \) does not change the unemployment rate further.

Studying the effect of the exogenous bond \(B \) on the unemployment rate \(S_0 \) of \(v_0 \) individuals we obtain:

\[\frac{dS_0}{dB} = \frac{\tau}{[1 - (1 - \tau)p]^2} \frac{dp}{dB} \]
\[\frac{dp}{dB} = a(w_0) (1 - \tau) \left[\gamma_2 - a(\lambda_1) B \frac{d\lambda_1}{dB} \right] = \]

\[a(w_0) (1 - \tau) \gamma_2 \frac{\beta \tau a(\lambda_0)}{(1 - \tau) a(w_0)} \]

\(\gamma_2 + \frac{\beta \tau a(\lambda_0)}{(1 - \tau) a(w_0)} \frac{(1 - \beta) (1 - p (1 - \tau)) + \beta \gamma_0 (1 - \tau)}{(v_1 - v_0) \beta \tau (1 - \tau)^2 a(w_0) a(\lambda_1) B} \]

Hence, the convergence of \(S_0 \) from the unrestricted level corresponding to \(B = 0 \) to the higher level of the constrained model of Eckstein and Wolpin, is not necessarily monotonic.

The intuition behind the eventual reduction in unemployment as the separation bond decreases is as follows. Restrictions on separation or search on-the-job, whether institutional, moral or other, as in Albrecht and Axell (1984) and Eckstein and Wolpin (1990), force firms to pay for the lost option to search. However, this represents an unexploited profit opportunity. Firms whose productivity is lower than the wage \(w \), that includes the option value, but higher than the leisure reservation wage \(w_0 \), can make positive profits by offering a lower wage than \(w_1 \), but also freedom to continue the search. Thus, when the restrictions on search are relaxed, more firms with short-term labor contracts will be able to compete in the market place. This tends to lower unemployment among the \(v_0 \) individuals who are less selective in terms of job acceptances.
Although none of the \(v_1 \) individuals will accept a job within the \(w_0 \) firms which became active when the restrictions on search were lifted, these new firms reduce unemployment also among the \(v_1 \) workers indirectly, via the general equilibrium mechanism. Workers in \(w_0 \) firms search for \(w_2 \) jobs, with higher lifetime utility, rather than \(w_1 \) firms, which do not raise their utility. The transition of workers from \(w_0 \) to \(w_2 \) firms raise the labor supply of \(v_0 \) individuals to \(w_2 \) firms relative to \(w_1 \) firms. Hence, \(w_1 \) firms which with the restricted search were marginally better off paying \(w_1 \) rather than \(w_2 \), would be willing to pay the higher wage \(w_2 \), realizing that with unrestricted search the gain in labor supply of paying the higher wage is larger. Since there are more firms that can pay the reservation wage of the \(v_1 \) individuals, the unemployment among them falls. Notice that the increase in \(\gamma_2 \) with unrestricted search drives the wage \(w_1 \) up, \(dw_1/d\gamma_2 > 0 \). In order to induce individuals to take the \(w_1 \) job when the probability of a \(w_2 \) job is higher, the wage premium in \(w_1 \) should be larger. The increase in \(w_1 \), when the wage \(w_2 \) does not change, contributes also to the switch of the marginal \(w_1 \) firms to the \(w_2 \) category. Again, unemployment among \(v_1 \) individuals falls with search on-the-job of the \(v_0 \) individuals.

6.2. Exogenous Bond Goes to the Employer

Suppose now that a separation bond \(B_1 \), going to the employer when forfeited, is exogenously imposed. As long as the bond \(B \) is smaller than \((v_1-v_0)/(1 - (1-\gamma_2)(1-\tau)) \), where \(\gamma_2 \) is the ratio of firms offering \(w_2 \) wage in the unconstrained equilibrium, the imposition of \(F \) does not change the equilibrium, as implied by section 5 in the context of endogenous bonds. The terms of the labor contracts are:

\[
\begin{align*}
\frac{w_0}{v_0} &= v_0 + \beta + (1-\tau) \gamma_2 B_0 \quad \frac{v_1-v_0}{1-(1-\gamma_2)(1-\tau)} > B_0 \geq B \quad (1a''') \\
w_2 &= v_1 + b \quad B_2 \geq B \quad (1c''')
\end{align*}
\]
while \((w_1, B_1)\) is given by equation (1b).

The unemployment rate is therefore constant at levels \(S_0\) and \(S_1\) for exogenous bond \(B\), \(0 \leq B < (v_1 - v_0)/(1 - (1-\gamma_2)(1-\tau))\). Similarly, the unemployment rate is constant at levels \(\hat{S}_0 > S_0\) and \(\hat{S}_1 > S_1\) when \(B\) satisfies \(B \geq (v_1 - v_0)/(1 - (1-\hat{\gamma}_2)(1-\tau))\), as shown by "abcd" in figure 3.

When the exogenous bond satisfies:

\[
B \in \left[\frac{v_1 - v_0}{1 - (1 - \gamma_2)(1 - \tau)}, \frac{v_1 - v_0}{1 - (1 - \hat{\gamma}_2)(1 - \tau)} \right]
\]

the equilibrium is not well defined. To understand why this is the case, consider a bond \(B_i = (v_1 - v_0)/(1 - (1-\gamma_2)(1-\tau))\). In this case the contract \((w_0, B_0)\) is identical to the \((w_1, B_1)\) contract. Employees of the \((w_0, B_0)\) firms will therefore not quit, which implies that \((w_0, B_0)\) firms will either cease being active or offer the \((w_1, B_1)\) lifetime contract. The resulting equilibrium is the one of Eckstein and Wolpin (1990) with all contracts in the economy as lifetime contracts, and when the ratio of \(w_2\) firms is \(\hat{\gamma}_2 < \gamma_2\) and with \((\hat{w}_1, \hat{B}_1)\) contract which satisfies \(\hat{w}_1 < w_1\), \(\hat{B}_1 > B_1\). But once this happens, there is an incentive for all firms previously offering the \((w_0, B_0)\) contract, to offer a contract \((w_0(B), B)\) where \(B_1 < B < \hat{B}_1\). In this case \((w_0(B), B)\) employees do quit when they are offered a \(w_2\) wage and the firm collects the bond \(B\). This policy maximizes profit for all firms which offered \((w_0, B_0)\) previously, since it yields the same profit as earlier. But if all these firms offer the \((w_0(B), B)\) contract, we are back in the initial situation; employees will not have the incentive to quit and firms will cease being active and so on.

Thus, the number of active firms when the bond is constrained to the region between \(B_1\) and \(\hat{B}_1\), is not uniquely determined. Instead there is a dynamics of firms changing their optimal policy in response to changing market conditions.
The reason underlying this phenomenon here and not in the case where the bond goes to a third party is as follows. In the latter case, raising the bond lowers the profitability of the \((w_0, B_0)\) policy and therefore gradually forces \((w_0, B_0)\) firms out of the market; firms with lowest productivity \(\lambda\) are the first to exit. No such gradual reduction of profits happens when the firm collects the forfeited bond. Therefore, there is no clear distinction of the nature of the firms who are eventually forced out.

We can now relate our work to the body of literature which deals with the separation of workers and firms. The first issue is the possible existence of a mechanism which neutralizes outside intervention in the nature of the labor contract. According to Lazear (1990), mechanism of this type exists when the intervention takes the form of a financial transfer between the sides of the contract, whereas Gavin (1986) and Emerson (1988) do not consider this possibility. As we observe here, an offsetting mechanism is endogenously evolved in a general equilibrium model. The wage rises with the exogenous bond \(B\), as in (1a''), such that the effect of \(B\) on the economy is completely neutralized.

However, although from the point of view of a single firm or worker this offsetting mechanism is feasible for any bond \(B\), general equilibrium forces impose an upper bound on the size of the bond \(B\) which can be neutralized. When the imposed \(B\) exceeds a certain value, the wage of the contract \((w_0(B_0), B_0 = B)\) is so attractive relative to the best market alternative \((w_2, B_2)\), such that workers never quit. But this implies that a \((w_0(B_0), B_0 = B)\) contract will not exist, since it is profitable only when the worker quits and the firm collects the bond when he is offered a \((w_2, B_2)\) contract.

We thus conclude that even in a general equilibrium model, there exists a range of values that the separation bonds take, without having any real effect on the economy. This is the case when the forfeited bond goes to the firm. However, when the bond is large enough, distortionary effects occur.

When the separation bond goes to a third party, any intervention restricting the mobility of workers between jobs, reduces employment. In this case, unlike the previous one, the imposition of the exogenous bond must reduce the combined welfare of the firm and its employees, and therefore no arrangement between them can neutralize the effects of the bond. When the bond rises, unemployment increases up
to the level in which workers' mobility is completely restricted, i.e. the level obtained by Albrecht and Axell (1984) and Eckstein and Wolpin (1990). At this point, the effect of an additional increase in the size of the bond on the employment level is null.

7. UNEMPLOYMENT COMPENSATION

The effect of a rise in unemployment compensation on employment can be summarized as follows:

PROPOSITION 3: When unemployment compensation rises, employment among \(v_0\) individuals falls; a sufficient condition for a decrease in employment of \(v_1\) individuals is \(a'(\lambda) \leq 0\), i.e., nonincreasing density of firm-specific productivities.

PROOF:

\[
\frac{dS_0}{db} = \frac{\tau}{[1-(1-\tau)p]^2} \frac{dp}{db}
\]

Since \(p = A(w_0)\) and \(w_0 = v_0 + b\), then \(dw_0/db = 1\) and \(dp/db = a(w_0) \geq 0\), the density of the productivity index at the point \(w_0\). Thus the unemployment rate \(S_0\) among \(v_0\) individuals rises as a result of the decrease in the number of active firms. The effect of a higher \(b\) on \(v_1\) employment is given by the following equations:

\[
\frac{dS_1}{db} = \frac{\tau}{[1-(1-\tau)(1-\gamma_2)]^2} \frac{d\gamma_2}{db}
\]
\[
\frac{d\gamma_2}{db} = -a(\lambda_1^*) \frac{d\lambda_i}{db}
\]

\[
\frac{d\lambda_i^*}{db} = 1 + \frac{(v_1 - v_0) \{ \beta \tau (1 - \beta_i (1 - \tau) a(w_0) - \beta (1 - \tau) [a(\lambda_0^*) - a(w_0)] \})}{(\beta \gamma_0 (1 - \tau) + (1 - \beta) [1 - p (1 - \tau)])^2}
\]

This is positive when \(a'(\lambda) \leq 0\) which ensures that \(a(\lambda_0^*) \leq a(w_0)\). Only when \(a(\lambda_0^*) = a(w_0)\) is much larger than \(a(w_0)\), then \(d\lambda_i^*/db\) can be negative which makes \(ds/db\) negative; i.e., a decrease in the unemployment among \(v_1\) individuals when the unemployment compensation \(b\) rises. We thus conclude that a higher \(b\) increases unemployment among \(v_0\) workers always, and increases unemployment among \(v_1\) workers in most cases. To understand how the reversed result might arise, notice that the change in the proportion \(\gamma_0\) of \(w_0\) firms is:

\[
\frac{d\gamma_0}{db} = a(\lambda_0^*) \frac{d\lambda_0^*}{db} - a(w_0) \frac{dw_0}{db} = a(\lambda_0^*) - a(w_0)
\]

When this number happens to be very large there will be a large increase in the number of \(w_0\) firms. This is good news for \(w_2\) firms, since the labor supply \(\ell(w_2)\) to these firms rises when more workers eventually move from \(w_0\) to \(w_2\) firms. This can increase the number of \(w_2\) firms, and reduces \(S_1\), since the mobility of workers adds to the profitability of the \(w_2\) firms. Again, there is a positive contribution to the employment of \(v_1\) workers as a result of the mobility of their \(v_0\) colleagues.

Suppose now that the increase in unemployment compensation is selective, and given only to \(v_0\) individuals. The comparative statics of this exercise can be summarized as:
\[\frac{dp}{db} = a(w_0) > 0 \]

\[\frac{d\lambda_1^*}{db} = \frac{-\beta \tau}{\beta \gamma_0 (1-\tau) + (1-\beta) [1-p(1-\tau)]} \left(1 - \frac{a(w_2)(v_1-v_0)(1-\tau)}{\beta \gamma_0 (1-\tau) + (1-\beta) [1-p(1-\tau)]} \right) \]

Once again, we get an unambiguous fall in \(v_0 \) employment when the selective unemployment compensation increases. This is in contrast with the result obtained by Eckstein and Wolpin (1990) where the unemployment rate \(\bar{S}_0 \) does not necessarily rise with a (general or selective) increase in unemployment compensation. The first term in \(d\lambda_1^*/db \) is negative, and therefore represents a rise in the proportion \(\gamma_2 \) of \(w_2 \) firms and a decrease in the unemployment rate \(S_1 \) among \(v_1 \) workers. This term appears also in Albrecht and Axell (1984), and it arises since \(w_2 \) does not change while \(w_1 \) increases with a selective rise in \(b \), and therefore it is relatively more profitable to be a \(w_2 \) firm. The other term in \(d\lambda_1^*/db \) represents a rise in \(p \) and a fall in \(\gamma_0 \) (\(d\gamma_0/db = -a(w_0) \)) when \(b \) increases selectively. This lowers the labor supply and profits of \(w_2 \) firms, and therefore increases unemployment among \(v_1 \) individuals.

The net effect on \(S_1 \) can therefore be positive or negative, depending on the parameters' values.\(^7\) Note that as long as the bond is determined endogenously, the analysis of the effect of a rise in unemployment compensation on unemployment remains the same regardless of whether the bond, when forfeited, goes to the employer or to a third party.

\(^7\) It is interesting to note that although our model extends the works of Albrecht and Axell (1984) and Eckstein and Wolpin (1990), the comparative statics in their models is much more tedious than here. For example, the unemployment rate among \(v_0 \) individuals in Eckstein and Wolpin, \(\bar{S}_0 \), depends positively on \(\hat{p} = A(\hat{w}_1) \), and not on \(p = A(w_0) \) as in our model. Since \(\hat{w}_1 \), unlike \(w_0 \), depends also on the endogenous variable \(\gamma_2 \), the derivative of \(\hat{p} \) with respect to \(b \) is quite complicated.
REFERENCES

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Contact for paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution, Abatement, and Endogenous Growth</td>
<td>Frederick van der Ploeg</td>
<td></td>
<td>33935</td>
</tr>
<tr>
<td>WPS1151 Is Growth Bad for the Environment?</td>
<td>Jos Verbeek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPS1153 North American Free Trade Agreement: Issues on Trade in Financial Services for Mexico</td>
<td>Alberto Musalem</td>
<td>July 1993</td>
<td>P. Infante</td>
</tr>
<tr>
<td>WPS1153 North American Free Trade Agreement: Issues on Trade in Financial Services for Mexico</td>
<td>Dimitri Vittas</td>
<td></td>
<td>37664</td>
</tr>
<tr>
<td>WPS1153 North American Free Trade Agreement: Issues on Trade in Financial Services for Mexico</td>
<td>Asli Demirgö-Kunt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPS1154 Options for Pension Reform in Tunisia</td>
<td>Dimitri Vittas</td>
<td>July 1993</td>
<td>P. Infante</td>
</tr>
<tr>
<td>WPS1154 Options for Pension Reform in Tunisia</td>
<td></td>
<td></td>
<td>37664</td>
</tr>
<tr>
<td>WPS1155 The Regulation and Structure of Nonlife Insurance in the United States</td>
<td>Martin F. Grace</td>
<td>July 1993</td>
<td>P. Infante</td>
</tr>
<tr>
<td>WPS1155 The Regulation and Structure of Nonlife Insurance in the United States</td>
<td>Michael M. Barth</td>
<td></td>
<td>37664</td>
</tr>
<tr>
<td>WPS1157 Intertemporal and Interspatial Comparisons of Income: The Meaning of Relative Prices</td>
<td>Sultan Ahmad</td>
<td>July 1993</td>
<td>E. O-Reilly-Campbell</td>
</tr>
<tr>
<td>WPS1157 Intertemporal and Interspatial Comparisons of Income: The Meaning of Relative Prices</td>
<td></td>
<td></td>
<td>33707</td>
</tr>
<tr>
<td>WPS1158 Population Growth, Externalities, and Poverty</td>
<td>Nancy Birdsall</td>
<td>July 1993</td>
<td>E. Hornsby</td>
</tr>
<tr>
<td>WPS1158 Population Growth, Externalities, and Poverty</td>
<td>Charles Griffin</td>
<td></td>
<td>35742</td>
</tr>
<tr>
<td>WPS1159 Stock Market Development and Financial Intermediary Growth: A Research Agenda</td>
<td>Ross Levine</td>
<td></td>
<td>38526</td>
</tr>
<tr>
<td>WPS1160 Equity and Bond Flows to Asia and and Latin America: The Role of Global and Country Factors</td>
<td>Punam Chuhan</td>
<td>July 1993</td>
<td>R. Vo</td>
</tr>
<tr>
<td>WPS1160 Equity and Bond Flows to Asia and and Latin America: The Role of Global and Country Factors</td>
<td>Stijn Claessens</td>
<td></td>
<td>31047</td>
</tr>
<tr>
<td>WPS1160 Equity and Bond Flows to Asia and and Latin America: The Role of Global and Country Factors</td>
<td>Nlandu Mamingi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPS1161 Increasing Women's Participation in the Primary School Teaching Force and Teacher Training in Nepal</td>
<td>Molly Maguire Teas</td>
<td>July 1993</td>
<td>L. Maningas</td>
</tr>
<tr>
<td>WPS1161 Increasing Women's Participation in the Primary School Teaching Force and Teacher Training in Nepal</td>
<td></td>
<td></td>
<td>80380</td>
</tr>
<tr>
<td>WPS1162 The Slovenian Labor Market in Transition: Issues and Lessons Learned</td>
<td>Samo Hribar-Milic</td>
<td></td>
<td>39019</td>
</tr>
<tr>
<td>WPS1163 Domestic Distortions and International Trade</td>
<td>James E. Anderson</td>
<td>July 1993</td>
<td>D. Gustafson</td>
</tr>
<tr>
<td>WPS1163 Domestic Distortions and International Trade</td>
<td>J. Peter Neary</td>
<td></td>
<td>33714</td>
</tr>
<tr>
<td>Title</td>
<td>Author</td>
<td>Date</td>
<td>Contact for paper</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>WPS1164 Power, Distortions, Revolt, and Reform in Agricultural Land Relations</td>
<td>Hans P. Binswanger, Klaus Deininger, Gershon Feder</td>
<td>July 1993</td>
<td>H. Binswanger 31871</td>
</tr>
<tr>
<td>WPS1165 Social Costs of the Transition to Capitalism: Poland, 1990-91</td>
<td>Branko Milanovic</td>
<td>August 1993</td>
<td>R. Martin 39026</td>
</tr>
<tr>
<td>WPS1166 The Behavior of Russian Firms in 1992: Evidence from a Survey</td>
<td>Simon Commander, Leonid Liberman, Cecilia Ugaz, Ruslan Yemtsov</td>
<td>August 1993</td>
<td>O. del Cid 35195</td>
</tr>
<tr>
<td>WPS1167 Unemployment and Labor Market Dynamics in Russia</td>
<td>Simon Commander, Leonid Liberman, Ruslan Yemtsov</td>
<td>August 1993</td>
<td>O. del Cid 35195</td>
</tr>
<tr>
<td>WPS1168 How Macroeconomic Projections in Policy Framework Papers for the Africa Region Compare with Outcomes</td>
<td>Rashid Faruqee</td>
<td>August 1993</td>
<td>N. Tannan 34581</td>
</tr>
<tr>
<td>WPS1169 Costs and Benefits of Debt and Debt Service Reduction</td>
<td>Eduardo Fernandez-Arias</td>
<td>August 1993</td>
<td>R. Vo 33722</td>
</tr>
<tr>
<td>WPS1170 Job Search by Employed Workers: The Effects of Restrictions</td>
<td>Avner Bar-Ilan, Anat Levy</td>
<td>August 1993</td>
<td>D. Ballantyne 37947</td>
</tr>
</tbody>
</table>