WPS4734 Policy ReseaRch WoRking PaPeR 4734 The Growth of Transport Sector CO2 Emissions and Underlying Factors in Latin America and the Caribbean Govinda R. Timilsina Ashish Shrestha The World Bank Development Research Group Sustainable Rural and Urban Development Team September 2008 Policy ReseaRch WoRking PaPeR 4734 Abstract This study examines the factors responsible for the in reducing emissions in countries where the economic growth of transport sector carbon dioxide emissions activity effect is the primary driver for transport sector in 20 Latin American and Caribbean countries during carbon dioxide emissions growth. By contrast, regulatory 1980­2005 by decomposing the emissions growth policy instruments--such as vehicle efficiency standards into components associated with changes in fuel mix, and vehicle occupancy standards--would be more modal shift, and economic growth, as well as changes in effective in countries where the transportation energy emission coefficients and transportation energy intensity. intensity effect is the main driver of carbon dioxide The key finding of the study is that economic growth emissions growth. Both fiscal and regulatory policy and the changes in transportation energy intensity are instruments would be useful in countries where both the main factors driving transport sector carbon dioxide economic activity and transportation energy intensity emissions growth in the countries considered. The results effects are responsible for driving transport sector carbon imply that fiscal policy instruments--such as subsidies to dioxide emissions growth. clean fuels and clean vehicles --would be more effective This paper--a product of the Sustainable Rural and Urban Development Team, Development Research Group--is part of a larger effort in the department to study climate change and clean energy issues. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The author may be contacted at gtimilsina@worldbank.org. The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent. Produced by the Research Support Team The Growth of Transport Sector CO2 Emissions and Underlying Factors in Latin America and the Caribbean Govinda R. Timilsina* and Ashish Shrestha Development Research Group, The World Bank, 1818 H Street, NW, Washington, DC 20433, USA Key Words: Transport sector CO2 emissions, Decomposition analysis, Latin American and Caribbean countries We sincerely thank Ram M Shrestha, Soma Bhattacharya, John Nash, Laura Tlaiye, Gershon Feder, Walter Vergara and LAC Transport Cluster for their valuable comments and suggestions. The views expressed in this paper are those of the authors only, and do not necessarily represent the World Bank and its affiliated organizations. *Fax: 1 202 522 1151; e-mail: gtimilsina@worldbank.org 1. Introduction Carbon dioxide (CO2) emissions released from fossil fuel consumption1 increased from 760 million tons in 1980 to 1,327 million tons in 2005 in the Latin America and Caribbean (hereafter `LAC') region, with an average growth rate of 2.3% per year (IEA, 2007). The transport sector is one of the main contributors to CO2 emissions in the region, where its share increased from 33.1% in 1980 to 34.1% in 2005. Therefore, any attempt to address climate change in the LAC region must pay attention to transport sector emissions. The identification of key factors driving CO2 emissions is essential for the formulation of effective climate change mitigation policies and strategies. One approach to accomplish this objective is the decomposition of the growth of emissions into the possible affecting factors. The growth of emissions is often decomposed into the potential driving factors using different methods, such as the Laspeyres or Divisia methods. While studies, such as Lin et al (2007), Diakoulaki and Mandaraka (2007) and Diakoulaki et al (2006), Ebohon and Ikeme (2006) use the refined Laspeyres techniques, studies such as Liu et al (2007), Hatzigeorgiou et al (2007), Wang et al (2005) use the Arithmetic Mean Divisia Index (AMDI) and the Logarithmic Mean Divisia Index (LMDI) techniques. Most existing studies concentrate on the decomposition of national CO2 emissions and emission intensities or emissions and emission intensities of the industrial and power sectors. Examples of national CO2 emissions (or emission intensities) decomposition studies include Wu et al (2005) and Wang et al (2005) for China, Kawase et al (2006) for Japan, Rhee and Chung (2006) for Japan and South Korea; Lise (2006) for Turkey, Diakoulaki et al (2006) for Greece, Saikku et al (2008) for 27 EU member States, Lee and Oh (2006) for APEC countries, Luukkanen and Kaivo-oja (2002) for ASEAN countries; Luukkanen and Kaivo-oja (2002) for Scandinavian countries, Ebohon and Ikeme (2006) for sub-Saharan African countries, and Han and Chatterjee (1997) for nine developing countries (Brazil, Chile, Colombia, India, Korea, Mexico, Philippines, Thailand and Zambia). 1This study considers only fossil fuel consumption related CO2 emissions as our analysis is for the transport sector which emits CO2 through energy use. 2 Most of the studies decompose national CO2 emissions growth into economic growth, fuel switching and changes in emission intensity. At the sectoral level, more studies are focused on the industrial sector than any other sector. Liu et al (2007) decompose CO2 emissions growth in 36 industrial sectors in China over the period 1998-2005 to changes in emission coefficients and energy intensity, shifts in industrial structural, activity and fuel use. Yabe (2004) decomposes Japanese industrial CO2 emissions growth between 1985 and 1995 to changes in environmental and production technologies. Liaskas et al (2000) and Schipper et al (2001) attribute changes in industrial sector CO2 emissions during the 1973-1993 period to variations in output level, energy intensity, fuel mix and industrial structural in 13 EU countries. Similarly, Lin (1998) decomposes industrial CO2 emission changes in Taiwan during 1981-1991; Bhattacharyya and Ussanarassamee (2004) do the same for Thai industrial CO2 intensities during 1981-2000. Some studies concentrate on a particular industry instead of the industry sector as whole for the decomposition analysis. For example, Murtishaw et al. (2001) decompose changes in CO2 emissions from the petroleum refining, agriculture, mining and construction sectors of eight IEA countries; Kim and Worrell (2002) for the iron and steel industry in Brazil, China, India, Mexico, South Korea and the United States; Ozawa et al (2002) for the Mexican iron and steel industry, and Lee and Lin (2001) for the petrochemical industry in Taiwan. The changes in CO2 emission intensities of the power sector, another key contributor to national CO2 emissions in many countries, have also been decomposed into various factors such as shifts in electricity generation technologies and changes in fuel intensity. Shrestha and Timilsina (1996) explore the evolution of the CO2 intensity of the electricity sector in 12 selected Asian countries during the period 1980-1990 using the Divisia index decomposition approach. Nag and Kulshrestha (2000) employ Divisia decomposition to break down sectoral carbon emission intensity of power consumption in India for the period 1974-1994 to emission coefficient of power, electricity intensity, and structural shift. Furthermore, they quantify the relative influences of fuel mix, fuel intensity, and generation mix on the emission coefficient for power consumption, and therefore carbon intensity. Shrestha and Marpuang (2006) develop a decomposition framework to analyze the total economy-wide changes in CO2, SO2 and NOx emissions when power sector development follows the integrated resource planning approach instead of traditional supply-based electricity planning, and then apply it to the case of the power 3 sector in Indonesia. Limmeechokchai and Suksuntornsiri (2007) assess reductions in economy- wide CO2 emissions in Thailand from the hypothetical selection of several cleaner power generation options, including biomass power generation, hydroelectricity and integrated gasification combined cycle (IGCC), over pulverized coal-thermal technology for the undecided capacity. Note that power, industry and transport are the three major sectors responsible for fossil fuel related CO2 emissions in each country in the world. While the factors affecting CO2 emissions and emission intensities of the industry and power sectors have been analyzed in many countries, transport sector emissions and emission intensities have not been examined except in a few developed countries. Lakshmanan and Han (1997) attribute the change in transport sector CO2 emissions in the US between 1970 and 1991 to growth in people's propensity to travel, population, and GDP. Lu et al (2007) decompose changes in CO2 emissions from highway vehicles in Germany, Japan, South Korea and Taiwan during 1990-2002 into changes in emission coefficient, vehicle fuel intensity, vehicle ownership, population intensity and economic growth. Understanding the factors affecting the growth of CO2 emissions from the transport sector is critical because of its increasing prominence as a source of emissions and its relevance to the preparation of climate change mitigation strategies. Moreover, the existing literature ignores most LAC countries when analyzing the factors affecting CO2 emissions or emission intensities. This study aims to address this gap by executing a Divisia decomposition analysis of CO2 emissions from the transport sector in 20 LAC countries during the 1980-2005 period. The study attributes the growth of transport sector CO2 emissions during the period to five factors. These are: (i) fuel switching, (ii) modal shifting, (iii) change in emission coefficients, (iv) sectoral energy intensity change and (v) economic growth. Our study finds that among these five factors, two factors, namely, sectoral energy intensity change and economic growth are primarily responsible for driving transport sector CO2 emissions in most LAC countries over the last 25 years. This paper is organized as follows: Section 2 briefly highlights transport sector CO2 emissions in LAC over the last 25 years as well as changes in fuel mix, modal mix and 4 transportation energy intensity. This is followed by a discussion on methodology and data in Section 3. The main results of the study are presented in Section 4, followed by key conclusions. 2. Transport Sector CO2 Emissions 2.1 CO2 Emissions The transport sector has been one of the largest consumers of energy as well as one of the primary sources of CO2 emissions in LAC countries. At the regional level, the transport sector accounted for 29.3% of total energy consumption in 1980. This share exceeded 31.7% by 2005. The relatively high share of the transport sector in total energy consumption led this sector to be one of the primary sources of CO2 emissions. Table 1 presents CO2 emissions from the transport sector in LAC countries in 1980 and 2005. In 1980, the transport sector accounted for more than 40% of the total national emissions in 6 out of the 20 countries considered here. By 2005, the number of countries with transport sector emissions greater than 40% increased to 8, and the share of the transport sector in total regional CO2 emissions grew to 34.1% in 2005 from 33.1% in 1980. The transport sector in some LAC countries, such as Paraguay, Bolivia, Brazil, El Salvador, Nicaragua, Costa Rica and Ecuador exhibit very high shares (greater than 80% in Paraguay) in total national emissions. This is because most fossil fuel consumption in these countries occur in the transport sector and CO2 emissions from the power sector are very small (see Figure 1) due to pre-dominantly hydro-based electricity systems. Transport sector shares of total national CO2 emissions have increased in Costa Rica, Ecuador, Guatemala, Panama, Paraguay, Peru, Uruguay and Other Latin American countries. On the other hand, the shares have decreased in Argentina, Bolivia, Cuba, Honduras and Nicaragua. The shares of the transport sector remain almost unchanged in Brazil, Caribbean, Chile, Columbia, El Salvador, Mexico and Venezuela. Because the transport, power and industry sectors are the main contributors to national CO2 emissions, changes in the magnitude of the emissions from the other two sectors, particularly the power sector, have a considerable impact on the transport sector's share of national CO2 emissions (see Figure 1). For example, in Bolivia and Nicaragua, transport sector shares in 2005 are significantly smaller than those in 1980 as the 5 power sector shares of total national emissions increased due to the reduction of these countries' reliance on hydropower. The reverse is the case for Ecuador and Paraguay, and currently, Paraguay is reliant exclusively on hydropower for its electricity generation. Table 1: Contribution of the Transport Sector in National CO2 Emissions 1980 2005 Total CO2 Share of the Total CO2 Share of the emissions from emissions from Country transport transport fossil fuel sector in the fossil fuel sector in the consumption total (%) consumption total (%) (MtCO2) (MtCO2) Argentina 95.9 32.7 140.9 28.0 Bolivia 4.3 49.1 11.9 30.3 Brazil 178.0 41.1 329.3 42.1 Caribbeana 30.2 19.5 55.3 19.2 Chile 21.2 28.8 58.6 29.2 Colombia 33.8 34.5 59.9 33.2 Costa Rica 2.2 61.2 5.4 75.2 Cuba 28.5 21.8 23.8 8.1 Ecuador 10.6 37.6 23.4 45.5 El Salvador 1.7 50.9 5.9 49.3 Guatemala 4.2 31.9 10.5 46.1 Honduras 1.7 36.7 6.4 32.5 Mexico 212.8 32.1 389.4 33.7 Nicaragua 1.8 49.4 4.1 35.1 Panama 2.9 34.9 5.7 41.2 Paraguay 1.4 79.8 3.4 87.3 Peru 20.6 28.7 28.4 34.0 Uruguay 5.6 30.0 5.3 43.2 Venezuela 92.4 29.2 142.3 29.3 Other Latin Americab 10.0 9.9 17.2 30.9 Total 759.7 33.1 1,327.1 34.1 Source: IEA (2007) aCaribbean includes Dominican Republic, Haiti, Jamaica, Netherland Antilles, and Trinidad and Tobago. bOther Latin America includes Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, Dominica, French Guyana, Grenada, Guadeloupe, Guyana, Martinique, St. Kitts and Nevis, Anguilla, Saint Lucia, St. Vincent and Grenadines, and Surinam. Source: IEA (2007) At the regional level, total CO2 emissions from the transport sector more than doubled from 251 million tons to 453 million tons in 1980-2005 with an average annual growth rate of 2.4%. Given the size of Brazil's economy and population, it comes as no surprise that its transport sector has been the largest CO2 emitter, and also the largest consumer of energy, 6 compared to the transport sectors of other LAC countries. However, during 1989-1994, Mexico exceeded Brazil for the transport sector CO2 emissions even though its transport sector energy consumption remained below than that of Brazil's (see Figure 2). Four large economies in the region ­ Argentina, Brazil, Mexico and Venezuela ­ alone have accounted for between 76-79% of the region's CO2 emissions from transportation since 1980. Figure 1: CO2 Emission Mix by Sector Power Industry Transport Other Sectors 100% 80% 60% 40% 20% 0% 80 90 05 80 90 05 80 90 05 80 90 05 80 90 05 80 90 05 80 90 05 80 90 05 80 90 05 80 90 05 19 19 20 19 19 20 19 19 20 19 19 20 19 19 20 19 19 20 19 19 20 19 19 20 19 19 20 19 19 20 Argentina Bolivia Brazil Caribbean Chile Colombia Costa Rica Cuba Ecuador El Salvador 100% 80% 60% 40% 20% 0% 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 1980 1990 2005 Guatemala Honduras Mexico Nicaragua Panama Paraguay Peru Uruguay Venezuela Other Latin America Source: IEA (2007) 7 Figure 2: CO2 Emissions from the Transport sector Argentina Brazil Mexico Bolivia Caribbean Costa Rica Venezuela Chile Colombia Cuba Ecuador El Salvador 160 Guatemala Honduras Nicaragua 12 Panama Paraguay Peru Uruguay Other L.A. 140 10 120 100 8 80 6 60 4 40 20 2 0 0 Source: IEA (2007) 2.2. Transport Sector Fuel Mix Motor gasoline and diesel are the main fuels used in the transport sector in LAC countries (see Table 2). The comparison of fuel mix between 2005 and 1980 suggests significant substitution of gasoline with diesel in most LAC countries2. Obviously, CO2 emissions largely originate from the combustion of diesel and motor gasoline (see Table 3), but whereas the bulk of the emissions in a majority of countries came from gasoline in 1980, diesel had supplanted motor 2 The substitution of gasoline with diesel has been mostly driven by the low price of diesel relative to gasoline. The price of diesel has been maintained at a low level by the governments via price controls for socioeconomic reasons. In Mexico, for example, the state-owned oil company Pemex distributes gasoline and diesel. Although the country opened up gasoline prices to market forces in the early 1990s, prices for diesel are still set by the government. On top of the diesel price controls, the Mexican government also grants commercial motor carriers a 20 percent discount. Moreover, vehicles that run on diesel are growing in popularity due to the vehicles' superior fuel economy compared to gasoline-powered vehicles, as well as the tendency of diesel engines to last longer than gasoline engines (The Monitor, April 11, 2008). In Brazil, the price of gasoline was set at a high level, not only to reduce its use but also to finance Petrobrás's exploration effort and to subsidize other petroleum products. The prices of diesel and propane were maintained artificially low through subsidies. The low diesel price was intended to avoid a sharp increase of public transportation costs (Hudson, 1997; Reuters, May 12, 2008). In all Latin American countries considered in this study, the price of diesel is lower than that of gasoline. Whereas gasoline price in most Latin American countries is higher than that in the United States, diesel price is significantly lower (FMECD, 2007). Although diesel has a slightly higher carbon contents as compared to gasoline, the substitution of gasoline with diesel does not change CO2 emissions significantly as diesel provides better fuel economy as compared to gasoline. A comparison of diesel and gasoline shares between Table 2 and Table 3 also demonstrate this fact. 8 gasoline as the source of most of the emissions from transportation in most countries by 2005. Still, Costa Rica and Panama exhibited almost complete reliance on motor gasoline in 1980. Thus, virtually all of their transport sector CO2 emissions were from motor gasoline. However, while Costa Rica had diversified its transport sector fuel mix by 2005, Panama was still reliant exclusively on motor gasoline. The combustion of aviation fuels represented another notable source of emissions from transportation in 1980, but only in a few countries such as Bolivia, Other Latin America, Argentina and Brazil. However, the share of aviation fuel in total transport sector fuel consumption as well as in emissions declined in all countries except Argentina. Utilization of electricity for transportation was negligible in 1980 and the share of electricity has not increased significantly in any LAC countries with exception of Cuba. Even in Cuba, the increased share of electricity has not helped reduce CO2 emissions because of the high CO2 emission coefficient for electricity in that country. Although liquefied petroleum gas (LPG) was not used at all for transportation in 1980, except in Mexico, where it represented less than 1% of the fuel mix, LPG use in Mexico and Peru has increased by 2005. Similarly, natural gas was not a source of fuel for transportation in LAC countries in 1980, but several countries had incorporated it into their fuel mix by 2005, particularly in Argentina, where 19.5% of fuel for transportation is derived from natural gas, resulting in 15.8% of CO2 emissions from the transport sector in the country originating from natural gas. Finally, Brazil and Cuba, the two countries that used biofuels for transportation in 1980, were joined by Paraguay in increasing their usage of biofuels by 2005. 9 Table 2: Transport Sector Fuel Mix 1980 2005 s ne s ne tal iation or el tal iation el To Av Fuel Electricity Diesel LPG ofueliB Mot Gasoli Natural Gas dualsieR Oil or Fu To Av Fuel Electricity Diesel LPG ofueliB Mot Gasoli Natural Gas dualsieR Oil Fu Country (ktoe) % % % % % % % % (ktoe) % % % % % % % % Argentina 10,475 8.0 0.2 38.3 0.0 0.0 52.6 0.0 0.9 13,599 9.1 0.4 50.0 0.0 0.0 20.8 19.5 0.2 Bolivia 712 14.8 0.0 28.1 0.0 0.0 57.1 0.0 0.0 1,219 10.9 0.0 43.0 0.0 0.0 36.9 9.1 0.0 Brazil 25,654 6.8 0.3 49.5 0.0 5.5 34.3 0.0 3.7 52,998 5.0 0.2 50.9 0.0 13.0 26.3 3.1 1.5 Caribbean 1,975 2.9 0.0 39.5 0.0 0.0 57.6 0.0 0.0 3,579 2.5 0.0 30.9 0.0 0.0 66.7 0.0 0.0 Chile 2,040 n.a. 0.8 42.5 0.0 0.0 56.6 0.0 0.0 5,653 n.a 0.4 59.7 0.0 0.0 39.4 0.5 0.0 Colombia 3,975 n.a. 0.0 14.5 0.0 0.0 85.5 0.0 0.0 6,707 0.3 0.1 40.9 0.0 0.0 55.1 3.6 0.0 Costa Rica 440 n.a. 0.2 68.0 0.0 0.0 31.9 0.0 0.0 1,356 n.a 0.0 51.7 0.0 0.0 48.3 0.0 0.0 Cuba 2,172 n.a. 0.0 20.2 0.0 5.0 56.5 0.0 18.3 682 n.a 1.2 29.6 0.0 7.7 61.5 0.0 0.0 Ecuador 1,341 n.a. 0.0 16.1 0.0 0.0 71.2 0.0 12.3 3,537 0.1 0.0 53.7 0.0 0.0 46.2 0.0 0.0 El Salvador 285 n.a. 0.0 49.7 0.0 0.0 50.3 0.0 0.0 971 n.a 0.0 51.8 0.0 0.0 48.2 0.0 0.0 Guatemala 454 n.a. 0.0 38.7 0.0 0.0 61.3 0.0 0.0 1,614 n.a 0.0 45.5 0.0 0.0 54.5 0.0 0.0 Honduras 205 n.a. 0.0 49.4 0.0 0.0 50.6 0.0 0.0 694 n.a 0.0 50.7 0.0 0.0 49.3 0.0 0.0 Mexico 22,935 n.a. 0.2 34.5 0.7 0.0 64.6 0.0 0.0 44,296 n.a 0.2 29.2 3.5 0.0 66.9 0.0 0.2 Nicaragua 295 3.3 0.0 47.4 0.0 0.0 49.3 0.0 0.0 475 n.a 0.0 59.8 0.0 0.0 40.2 0.0 0.0 Panama 342 n.a 0.0 30.3 0.0 0.0 69.7 0.0 0.0 780 n.a 0.0 45.1 0.0 0.0 54.9 0.0 0.0 Paraguay 357 n.a 0.0 69.1 0.0 0.0 30.9 0.0 0.0 995 n.a 0.0 82.5 0.0 1.7 15.8 0.0 0.0 Peru 1,959 0.5 0.0 31.9 0.0 0.0 56.1 0.0 11.5 3,170 n.a 0.0 72.1 0.9 0.0 26.0 0.0 0.9 Uruguay 551 6.6 0.0 46.1 0.0 0.0 40.8 0.0 6.4 744 0.4 0.0 70.8 0.0 0.0 28.8 0.0 0.0 Venezuela 9,182 n.a. 0.0 14.7 0.0 0.0 82.7 0.0 2.5 14,201 n.a 0.2 15.6 0.0 0.0 84.1 0.0 0.1 Other L.A. 335 11.2 0.0 18.5 0.0 0.0 70.3 0.0 0.0 1,791 6.0 0.0 35.5 0.0 0.0 58.6 0.0 0.0 Source: IEA (2007) 10 Table 3: CO2 Emission Mix by Fuel Type in the Transport Sector 1980 2005 s ne s ne tal iation or To Av Fuel Electricity Diesel LPG ofueliB Mot Gasoli Natural Gas dualsieR Oil el tal iation or Fu To Av Fuel Electricity Diesel LPG ofueliB Mot Gasoli Natural Gas dualsieR Oil el Fu ('000 ('000 Country tCO2) % % % % % % % % tCO2) % % % % % % % % Argentina 31,391 8.0 0.5 39.7 0.0 0.0 50.9 0.0 1.0 39,516 9.3 0.5 53.4 0.0 0.0 20.8 15.8 0.2 Bolivia 2,115 14.9 0.0 29.3 0.0 0.0 55.8 0.0 0.0 3,594 11.1 0.0 45.3 0.0 0.0 36.4 7.3 0.0 Brazil 73,186 7.1 0.1 53.8 0.0 0.0 34.8 0.0 4.2 138,596 5.7 0.1 60.4 0.0 0.0 29.2 2.7 1.9 Caribbean 5,893 2.9 0.0 41.1 0.0 0.0 56.0 0.0 0.0 10,614 2.5 0.0 32.3 0.0 0.0 65.2 0.0 0.0 Chile 6,108 n.a. 1.0 44.1 0.0 0.0 54.9 0.0 0.0 17,091 n.a. 0.5 61.2 0.0 0.0 37.8 0.4 0.0 Colombia 11,650 n.a. 0.0 15.3 0.0 0.0 84.6 0.0 0.0 19,880 n.a. 0.0 42.8 0.0 0.0 54.0 2.8 0.0 Costa Rica 1,335 n.a. 0.0 69.5 0.0 0.0 30.5 0.0 0.0 4,074 n.a. 0.0 53.4 0.0 0.0 46.6 0.0 0.0 Cuba 6,210 n.a. 0.0 21.9 0.0 0.0 57.3 0.0 20.7 1,935 n.a. 4.7 32.4 0.0 0.0 62.9 0.0 0.0 Ecuador 3,991 n.a. 0.0 16.7 0.0 0.0 69.5 0.0 13.4 10,645 n.a. 0.0 55.3 0.0 0.0 44.6 0.0 0.0 El Salvador 856 n.a. 0.0 51.4 0.0 0.0 48.6 0.0 0.0 2,917 n.a. 0.0 53.5 0.0 0.0 46.5 0.0 0.0 Guatemala 1,353 n.a. 0.0 40.3 0.0 0.0 59.7 0.0 0.0 4,832 n.a. 0.0 47.2 0.0 0.0 52.8 0.0 0.0 Honduras 616 n.a. 0.0 51.1 0.0 0.0 48.9 0.0 0.0 2,085 n.a. 0.0 52.4 0.0 0.0 47.6 0.0 0.0 Mexico 68,232 n.a. 0.4 36.0 0.6 0.0 63.0 0.0 0.0 131,057 n.a. 0.5 30.6 3.1 0.0 65.6 0.0 0.2 Nicaragua 885 3.3 0.0 49.0 0.0 0.0 47.7 0.0 0.0 1,434 n.a. 0.0 61.4 0.0 0.0 38.6 0.0 0.0 Panama 1,013 n.a. 0.0 31.7 0.0 0.0 68.3 0.0 0.0 2,334 n.a. 0.0 46.8 0.0 0.0 53.2 0.0 0.0 Paraguay 1,085 n.a. 0.0 70.5 0.0 0.0 29.5 0.0 0.0 3,004 n.a. 0.0 84.8 0.0 0.0 15.2 0.0 0.0 Peru 5,888 0.5 0.0 32.9 0.0 0.0 54.2 0.0 12.4 9,661 n.a. 0.0 73.4 0.8 0.0 24.8 0.0 1.0 Uruguay 1,665 6.6 0.0 47.4 0.0 0.0 39.1 0.0 6.9 2,265 0.4 0.0 72.1 0.0 0.0 27.5 0.0 0.0 Venezuela 26,991 n.a. 0.0 15.5 0.0 0.0 81.7 0.0 2.8 41,649 n.a. 0.2 16.6 0.0 0.0 83.2 0.0 0.1 Other L.A. 987 11.3 0.0 19.5 0.0 0.0 69.2 0.0 0.0 5,334 6.0 0.0 37.0 0.0 0.0 57.0 0.0 0.0 Source: IEA (2007) 11 2.3. Modal Mix3 in the Transport Sector Road was the predominant mode of transportation in LAC countries in 1980, especially in El Salvador, Guatemala, Honduras and Panama, where it was the only mode of transportation (see Tables 4 and 5). Because every country, except Argentina, Chile and Columbia, has increased their reliance on road transportation since then, this distribution was even more prominent in 2005. Road transport accounted for more than 90% of transport sector fuel consumption and CO2 emissions in 18 out of the 20 countries in 2005. A few countries utilized domestic air transport, e.g., Uruguay, Brazil, Argentina, Other Latin America, and especially Bolivia (where it accounted for about 15% of the fuel consumption and CO2 emissions in 1980), but the share of air transport in total transport sector fuel consumption and CO2 emissions declined in all LAC countries by 2005 with the exception of Argentina. Rail has not been an important mode of transportation in any of the countries since 1980, but Cuba experienced a dramatic increase in the share of CO2 emissions from rail transport despite rail only accounting for 1.2% of fuel consumption for transportation in 2005 due to its use of electricity for rail transport and its high emission coefficient for electricity production. Inland waterways represented a significant mode of transportation in a few LAC countries in 1980 (Cuba, Ecuador and Peru). However, there has been a decline in fuel consumption and CO2 emissions from inland waterways transportation in these countries, particularly Cuba and Peru, where inland waterways went from being responsible for, respectively, 22.6% and 11.5% of CO2 emissions in 1980 to almost none in 2005. The general shift towards road transportation in LAC was accompanied by reduced reliance on domestic air and inland waterways. 3Ideally modal mix should be measured in terms of transport services (e.g., passenger kilometers, ton kilometers or any other equivalent unit) generated by each type of transportation mode. However, due to the lack of data, the study uses total fuel consumption by mode as a surrogate to illustrate modal mix. In energy literature, this is a common practice to measure modal mix in the transportation sector (see e.g., EIA, 2007; IEA, 2004) 12 Table 4: Modal Mix for Fuel Consumption in Transport Sector 1980 2005 Domestic Inland Domestic Inland Total Air Waterways Rail Road Total Air Waterways Rail Road Country (ktoe) % % % % (ktoe) % % % % Argentina 10,475 8.0 0.9 0.2 90.9 13,599 9.1 0.2 0.4 90.3 Bolivia 712 14.8 0.0 1.7 83.4 1,219 10.9 1.1 0.4 87.6 Brazil 25,654 6.8 6.4 2.6 84.2 52,998 5.0 2.1 1.3 91.6 Caribbean 1,975 2.9 0.0 0.0 97.1 3,579 2.5 0.0 0.0 97.5 Chile 2,040 0.0 5.3 1.3 93.3 5,653 0.0 6.2 0.4 93.4 Colombia 3,975 0.0 0.8 0.5 98.6 6,707 0.6 3.0 0.5 95.9 Costa Rica 440 0.0 2.6 0.2 97.3 1,356 0.0 0.2 0.0 99.8 Cuba 2,172 0.0 23.3 2.9 73.8 682 0.0 0.0 1.2 98.8 Ecuador 1,341 0.0 16.3 0.4 83.3 3,537 0.0 10.1 0.0 89.9 El Salvador 285 0.0 0.0 0.0 100.0 971 0.0 0.0 0.0 100.0 Guatemala 454 0.0 0.0 0.0 100.0 1,614 0.0 0.0 0.0 100.0 Honduras 205 0.0 0.0 0.0 100.0 694 0.0 0.0 0.0 100.0 Mexico 22,935 0.0 0.0 2.9 97.1 44,296 0.0 1.9 1.6 96.4 Nicaragua 295 3.3 2.8 0.0 93.9 475 0.0 3.0 0.0 97.0 Panama 342 0.0 0.0 0.0 100.0 780 0.0 0.0 0.0 100.0 Paraguay 357 0.0 0.9 0.0 99.1 995 0.0 0.0 0.0 100.0 Peru 1,959 0.5 11.5 0.0 88.0 3,170 0.0 0.9 0.0 99.0 Uruguay 551 6.6 6.4 0.0 86.9 744 0.4 0.0 0.0 99.6 Venezuela 9,182 0.0 0.0 2.5 97.5 14,201 0.0 0.0 0.3 99.7 Other Latin America 335 11.2 2.2 0.0 86.6 1,791 6.0 0.0 0.0 94.0 Based on the available data and following normal practices in energy accounting systems, the study considers four modes of transportation: road, rail, water and air. If data is available, road transportation, which is the primary mode for providing transportation services as well as energy consumption and associated emissions, can be disaggregated further into auto, bus etc. Source: IEA (2007) 13 Table 5: Modal Mix for CO2Emissions from Transportation 1980 2005 Domestic Inland Domestic Inland Total Air Waterways Rail Road Total Air Waterways Rail Road ('000 ('000 Country tCO2) % % % % tCO2) % % % % Argentina 31,391 8.0 1.0 0.5 90.6 39,516 9.3 0.2 0.5 90.0 Bolivia 2,115 14.9 0.0 1.8 83.2 3,594 11.1 1.2 0.4 87.3 Brazil 73,186 7.1 7.1 2.6 83.2 138,596 5.7 2.6 1.3 90.3 Caribbean 5,893 2.9 0.0 0.0 97.1 10,614 2.5 0.0 0.0 97.5 Chile 6,108 0.0 5.5 1.5 93.0 17,091 0.0 6.4 0.5 93.1 Colombia 11,650 0.0 0.9 0.6 98.5 19,880 0.6 3.1 0.5 95.9 Costa Rica 1,335 0.0 2.6 0.0 97.4 4,074 0.0 0.2 0.0 99.8 Cuba 6,210 0.0 26.2 3.2 70.7 1,935 0.0 0.0 4.7 95.3 Ecuador 3,991 0.0 17.6 0.4 82.0 10,645 0.0 10.4 0.0 89.6 El Salvador 856 0.0 0.0 0.0 100.0 2,917 0.0 0.0 0.0 100.0 Guatemala 1,353 0.0 0.0 0.0 100.0 4,832 0.0 0.0 0.0 100.0 Honduras 616 0.0 0.0 0.0 100.0 2,085 0.0 0.0 0.0 100.0 Mexico 68,232 0.0 0.0 3.2 96.8 131,057 0.0 2.0 1.9 96.0 Nicaragua 885 3.3 2.9 0.0 93.8 1,434 0.0 3.1 0.0 96.9 Panama 1,013 0.0 0.0 0.0 100.0 2,334 0.0 0.0 0.0 100.0 Paraguay 1,085 0.0 0.9 0.0 99.1 3,004 0.0 0.0 0.0 100.0 Peru 5,888 0.5 12.4 0.0 87.1 9,661 0.0 1.0 0.0 99.0 Uruguay 1,665 6.6 6.9 0.0 86.5 2,265 0.4 0.0 0.0 99.6 Venezuela 26,991 0.0 0.0 2.8 97.2 41,649 0.0 0.0 0.3 99.7 Other Latin America 987 11.3 2.2 0.0 86.5 5,334 6.0 0.0 0.0 94.0 Source: IEA (2007) . 14 3. Methodology and Data 3.1 Methodology Total CO2 emission from the transport sector in a country in year t (CO2t) is the summation of CO2 emissions from all fuels used in all transport modes in that year, i.e., CO2t = CO2ijt (1) ij where, CO2ijt = CO2 emissions from fuel i in transportation mode j in year t In order to decompose the emission to the potential factors affecting it, Equation (1) can be expressed as: CO2t = CO 2ijt × FCijt × FCjt × FCt ×GDPt (2) ij FCijt FCjt FCt GDPt where, FCijt = consumption of fuel i (e.g., gasoline, diesel, fuel oil, natural gas, electricity) in transportation mode j (e.g., road, rail, domestic air and inland water) in year t FCjt = total fuel consumption in transportation mode j in year t FCt = total fuel consumption in the transportation sector in year t GDPt = Gross domestic product in year t Ideally Equation (2) should be replaced with the following equation, CO2t = CO 2ijt × FCijt × FCjt × TSjt × TSt ×GDPt (3) ij FCijt FCjt TSjt TSt GDPt where, TSjt = transport services (e.g., passenger kilometers, tons kilometers or any equivalent measurement representing transport services4) provided by transport mode j in year t 4Includes transport services provided to all sectors (e.g., households, industry, government). 15 TSt = total transport services in year t Since transportation service data needed for the study (i.e., 20 LAC countries for 25 years between 1980 and 2005) are not available, the study uses Equation (2) instead of Equation (3). Note that Equation (3) can be expanded further to differentiate passenger and freight transportation, this would, however, complicates further in obtaining the necessary data. Equation (2) can also be rewritten as: CO2t = ECijt × FMijt × MM jt × EIt × EAt (4) ij where, ECijt = emission coefficient of fuel i used in transportation mode j in year t (= CO2ijt/FCijt) FMijt = share of fuel i in transportation mode j (fuel mix) in year t (= FCijt/FCjt) MMjt = share of mode j in total transport sector fuel consumption (modal mix) in year t (= FCjt/FCt) EIt = transportation energy intensity in year t (= FCt/GDPt) EAt = economic activity in year t (= GDPt) Note that Equation (4) implicitly assumes the same energy intensity (e.g., kj per passenger kilometer or kj per ton kilometer) across the different modes of transport. This is a strong assumption. This does however, not affect the results of this particular study as modal shifting is insignificant in all countries considered over the study horizon. Following Shrestha and Timilsina (1996) and Boyd et al. (1987), the change in transport sector CO2 emission between year t and t-1 can be decomposed using the general Divisia index approach as: ln CO2t = ln EIt + ln EAt CO2t -1 EIt -1 EAt -1 + [wijt ln ~ MM jt + wijt ×ln ~ ECijt + w~ijt ×ln FMijt (5) ] ij MM jt -1 ECijt-1 ij FMijt -1 16 where wijt = (wijt+wijt-1)/2 ~ (6) with wijt = ECijt × FMijt × MM jt ECijt . (7) ×FMijt ×MMjt ij This study uses the logarithmic mean Divisia index (LMDI) approach (Ang et al. 1998; Ang and Liu, 2001) instead of the general Divisia index approach. The preference of LMDI approach to the general Divisia index approach is based on the fact that the former provides a residual-free decomposition. Moreover, the LMDI can accommodate the occurrence of zero values in the data set5. Using LMDI, the change in the transport sector CO2 emissions from year t-1 to t is expressed as: CO2t = exp[ w~ ×ln ECijt ]×exp[ w~ ×ln FMijt ] CO2t-1 ij ij ij ECijt-1 ij FMijt-1 (8) ×exp[ w~ ×ln MMijt EIt EAt ij ij MMijt -1]× EIt × -1 EAt -1 In Equation (8) wijt is defined differently from that in Equation (6); following Ang (2005) ~ wijt is now given as: ~ wijt = ~ CO2ijt - CO2ijt -1 CO2t - CO2t -1 (9) lnCO2ijt - lnCO2ijt -1 lnCO2t - lnCO2t -1 The first term in the right hand side of Equation (8) represents the emission coefficient (EC) effect. Note that only the coefficient of electricity is changing due to variations in electricity generation mix over time. Emission coefficients (i.e., carbon contents) for other fuels are assumed to be constant over time. The second and third terms represent the fuel mix (FM) or fuel 5In this approach zero values are replaced with a small positive constant. Wood and Lenzen (2006) contend that this strategy is not necessarily robust if applied to a data set containing a large number or zeros and small values and recommend the use of analytical limits proposed in Ang et al (1998). However, while Ang and Liu (2007) concur that the use of analytical limits is superior on theoretical grounds, they demonstrate that the small value strategy is generally robust for index decomposition analyses when a sufficiently small value is utilized. 17 switching and the modal mix (MM) or modal shift effects, respectively. Finally, the fourth and fifth terms represent the transportation energy intensity (EI) effect and the economic activity (EA) effect, respectively. The study carries out decomposition analysis on an annual basis over the twenty five years period between 1980 and 2005. 3.2 Data This paper uses transport sector energy consumption data by fuel type and mode from the International Energy Agency (IEA). Fuels included are biofuel (i.e., ethanol), natural gas, liquefied petroleum gases (LPG), motor gasoline, aviation fuels (i.e., aviation gasoline, kerosene and jet fuel), diesel oil, residual fuel oil, and electricity. The use of coal for transportation is negligible in LAC countries, and so the study excludes it. The modes of transportation considered are domestic aviation, road, rail and domestic water transport6. The study excludes energy consumption in oil and gas pipeline transport. Emission coefficients are based on the carbon contents of fuels and are obtained from Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) for all fuels except electricity. Emission coefficients for electricity are derived using IEA data on electricity output and CO2 emissions from electricity production (IEA, 2007a, 2007b, 2007c). While CO2 emission factors for other transportation fuels (e.g., gasoline, diesel etc.) remain the same throughout the study period, CO2 emission factors for electricity vary with time. This is because, the carbon content of a fossil fuel is not expected to change over time, but CO2 emission coefficients of an electricity grid change over time as the electricity generation mix and thereby the input fuel mix for electricity generation changes every year. Moreover, the CO2 emission coefficient of a particular fossil fuel is the same for all countries, whereas the coefficient for electricity varies across the countries depending on their electricity generation mix. CO2 emissions are estimated by type of fuel and mode, using the corresponding fuel consumption and associated emission factors. Data on gross domestic product (GDP), 6In energy statistics, energy consumption by international aviation and maritime transportation are not considered part of national energy consumption. These are treated separately under their international conventions (i.e., International Civil Aviation Organization and International Maritime Organization). 18 expressed at 2000 constant dollar measured in purchasing power parity, are also taken from the IEA (IEA, 2007f, 2007g). Data for "Other Latin America" are taken directly from the IEA at the aggregate level. Caribbean data are either the summation of the data for the constituent countries (e.g., GDP, fuel consumption) or their weighted average (e.g., CO2 coefficients of electricity). 4. Results and Discussion All countries in LAC, with the exception of Cuba, experienced significant growth in transportation sector CO2 emissions during the 1980-2005 period. However, there remain significant differences in the magnitude of emissions growth and the factors driving it. Figure 3 summarizes the results of the decomposition of transport sector CO2 emissions growth into fuel switching, modal shifting and changes in emission coefficients7, transportation energy intensity, and economic activity (or GDP). Detailed results for each country considered are presented in the Appendix. 7Only the emission coefficients of electricity changes due to different electricity generation mix over time; emission coefficients of other fuels remain constant throughout the study period. 19 Figure 3: Factors Affecting CO2 Emissions Growth in LAC Countries Country 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Overall Argentina EA Bolivia EI Brazil EA Caribbean EI Chile EI & EA Colombia EI & EA Costa Rica EA Cuba EI Ecuador EI El Salvador EI & EA Guatemala EI Honduras EI Mexico EI & EA Nicaragua EI & EA Other L.A. EI Panama EI Paraguay EI Peru EA Uruguay EA Venezuela EI & EA EI EA EI-EA FM-EA FM-EI Note: Overall factor selected if it is a main factor in at least 40% (10 out of 25 years) of the study period. The modal mix effect, as defined in this study, considers only four modes: road, rail, water and air, and does not appear to influence emission growth. If necessary data is available to further disaggregate road transportation into auto, bus etc., modal mix might be found to influence CO2 emission growth. 20 As illustrated in Figure 3, the energy intensity effect is found to be pre-dominant in influencing the growth of transportation sector CO2 during the 1980-1990 period. Conversely, the economic activity effect is the primary factor driving transportation sector CO2 emissions during the 1991-1998 period. Both energy intensity and economic activity effects are responsible for CO2 emission growth in the transport sector during the 1999-2005 period. The economic activity effect (i.e., change in GDP) is the primary factor in the growth of transportation sector CO2 emissions in Argentina, Brazil, Costa Rica, Peru and Uruguay. On the other hand, the transportation energy intensity effect is found to be the main driver of transport sector CO2 emissions change in Bolivia, the Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay. In the remaining LAC countries (i.e., Chile, Colombia, El Salvador, Mexico, Nicaragua, and Venezuela), both the economic activity effect and transportation energy intensity effect are found responsible for their transport sector CO2 emission growth. Although fuel switching is a common phenomenon in many LAC countries during the 1980-2005 period (see Table 2), interestingly, the fuel switching effect is not found to play a role in driving transport sector CO2 emissions in these countries. This is because the substitution occurred between diesel and gasoline, but their CO2 emission coefficients are not significantly different Figures 4 (a) ­ (e) present indexed time-series charts of the decomposition results for Argentina, Brazil, Costa Rica, Peru and Uruguay, where the economic activity effect is found to be the principal driver of transport sector CO2 emission growth. In all five of these countries, the pattern of CO2 emission growth looks similar: almost stagnant until 1990, sharp increase between 1990 and 1998, drop thereafter until 2002 and increase again after 2002. This pattern is consistent with the economic performance of these countries during the period as economic growth was stagnant during the 1980s, gradually increased in the 1990s until the economic crisis of the late 1990s, and then recovered after 2002. 21 Figure 4: Transport Sector CO2 Emissions Growth and Driving Factors in Argentina, Brazil, Costa Rica, Peru and Uruguay. a) Argentina b) Brazil 1.5 CO2 CO2 Fuel Mix 1.8 Fuel Mix 1.4 Modal Mix Modal Mix Emission Coefficient Emission Coefficient 1.3 Energy Intensity 1.6 Energy Intensity GDP GDP 1.2 1.4 1.1 1.2 1 1 0.9 0.8 0.8 c) Costa Rica d) Peru 1.8 3.1 CO2 CO2 Fuel Mix 1.7 Fuel Mix Modal Mix 1.6 Modal Mix 2.6 Emission Coefficient Emission Coefficient Energy Intensity 1.5 GDP Energy Intensity GDP 2.1 1.4 1.3 1.6 1.2 1.1 1.1 1 0.9 0.6 0.8 e) Uruguay 1.7 CO2 Fuel Mix Modal Mix 1.5 Emission Coefficient Energy Intensity GDP 1.3 1.1 0.9 0.7 The study finds that economic growth has been responsible for the growth of transport sector CO2 emissions in Argentina, Brazil, Costa Rica, Peru and Uruguay, 22 although the fuel mix effect is also found to contribute slightly to the change in CO2 emissions in some years in Brazil. These countries are not expected to slow down their economic growth to control their CO2 emissions because they have neither mandatory nor voluntary commitments to reduce CO2 emissions under the Kyoto Protocol. Thus, the main strategy to limit the growth of CO2 emissions in the transport sector in these countries in the future would likely be the decoupling (or weakening) of the growth of CO2 emissions from economic growth, which has not been the case historically. Rapid switching to clean fuels and shifting over to public transportation, including rail and water transportation, could help achieve this objective. Policy instruments such as subsidies to public transportation, clean fuels and clean vehicles would be helpful in triggering the fuel switching and modal shifting activities. Although regulatory instruments such as fuel economy standards could also help reduce CO2 emissions, such instruments, however, act only indirectly (e.g., through the improvement of transportation energy intensity, which is not found to be the main factor for driving CO2 emission growth in these countries). Indexed time-series charts of the decomposition results for Bolivia, Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay, where transport sector CO2 emission changes were primarily driven by changes in transportation energy intensity, are presented in Figures 5(a) to 5(i). With the exception of a few years, such as 1990-1993 and 2002-2005, the energy intensity effect is increasing in all of these eight countries. The reason for this is that the growth of energy consumption in the transport sector of each of these countries is outpacing GDP growth during the study period. Table 6 shows that the magnitude of the average annual growth rate of transport sector energy consumption is greater than that of GDP in Bolivia, the Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay. Although further studies are needed to precisely determine the causes of 23 increases in the transportation energy intensities8, possible reasons could be an increase in the non-productive usage of transport services, traffic congestion, etc. Since transportation energy intensity is the primary factor driving transport sector CO2 emissions in these countries, policy instruments that could help reduce transportation energy intensity, such as vehicle efficiency or fuel economy standards and vehicle occupancy standards, would be more effective in slowing transport sector CO2 emission growth in these countries. 8In order to determine the reasons for transportation energy intensity change, this indicator itself can be decomposed into its driving factors, such as fuel efficiency of transportation by mode and transport service intensity of the economy. 24 Figure 5: Transport Sector CO2 Emissions Growth and Driving Factors in Bolivia, Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay a) Bolivia b) Caribbean 1.8 CO2 2 CO2 Fuel Mix Fuel Mix 1.6 Modal Mix 1.8 Modal Mix Emission Coefficient Emission Coefficient Energy Intensity Energy Intensity 1.4 GDP 1.6 GDP 1.2 1.4 1 1.2 0.8 1 0.6 0.8 c) Cuba d) Ecuador 2.8 CO2 1.6 2.6 Fuel Mix Modal Mix 1.4 2.4 Emission Coefficient 2.2 Energy Intensity 1.2 GDP 2 1 1.8 0.8 1.6 CO2 Fuel Mix 1.4 0.6 Modal Mix Emission Coefficient 1.2 0.4 Energy Intensity 1 GDP 0.2 0.8 e) Guatemala f) Honduras CO2 3.8 CO2 3.3 Fuel Mix Fuel Mix Modal Mix Modal Mix Emission Coefficient 3.3 Emission Coefficient 2.8 Energy Intensity Energy Intensity GDP 2.8 GDP 2.3 2.3 1.8 1.8 1.3 1.3 0.8 0.8 25 Figure 5 (continued): Transport Sector CO2 Emissions Growth and Driving Factors in Bolivia, Caribbean, Cuba, Ecuador, Guatemala, Honduras, Other Latin America, Panama and Paraguay g) Other Latin America h) Panama 5.3 CO2 CO2 4.8 Fuel Mix Fuel Mix Modal Mix 2.8 Modal Mix 4.3 Emission Coefficient Emission Coefficient Energy Intensity Energy Intensity 3.8 GDP 2.3 GDP 3.3 2.8 1.8 2.3 1.8 1.3 1.3 0.8 0.8 i) Paraguay 3.3 CO2 Fuel Mix 2.8 Modal Mix Emission Coefficient Energy Intensity 2.3 GDP 1.8 1.3 0.8 Table 6: Average Annual Growth Rate of GDP and Transport Sector Energy Consumption for the 1980-2005 Period (%) Country GDP Energy Consumption Bolivia 2.18 2.44 Caribbean 2.49 2.60 Cuba 1.53 -3.12 Ecuador 2.61 4.19 Guatemala 2.51 5.48 Honduras 3.03 5.27 Other Latin America 2.84 7.86 Panama 3.51 3.62 Paraguay 2.20 4.60 Source: IEA (2007) 26 The study finds that both economic activity and transportation energy intensity effects are responsible for transport sector CO2 emission growth in Chile, Colombia, El Salvador, Mexico, Nicaragua, and Venezuela. The indexed time-series charts of the decomposition results for these countries are presented in Figure 6(a) to 7(f). Although both effects influence transport sector CO2 emissions most of the time during the study period, exceptions are noted in some years. For example, the energy intensity effect does not significantly affect transport sector CO2 emission after 2003 in all of these countries, with the exception of Columbia and Nicaragua. Both the economic activity and energy intensity effects are driving CO2 emissions gradually upwards between the mid-1980s to 2000 in Chile and El Salvador, while CO2 emissions remained almost unchanged during the 1980s and then increased gradually in the 1990s along with energy intensity and economic activity effects in Costa Rica, Nicaragua and Venezuela. In Mexico, the energy intensity effect is the main driving factor for CO2 emissions growth in the 1980s, but then the economic activity effect becomes the main contributor in the 1990s. Figure 6: Transport Sector CO2 Emissions Growth and Driving Factors in Chile, Colombia, El Salvador, Mexico, Nicaragua, and Venezuela a) Chile b) Colombia 2.8 2 CO2 CO2 2.6 Fuel Mix Fuel Mix Modal Mix 1.8 Modal Mix 2.4 Emission Coefficient Emission Coefficient 2.2 Energy Intensity Energy Intensity 1.6 GDP GDP 2 1.8 1.4 1.6 1.2 1.4 1.2 1 1 0.8 0.8 27 Figure 6 (continued): Transport Sector CO2 Emissions Growth and Driving Factors in Chile, Colombia, El Salvador, Mexico, Nicaragua, and Venezuela c) El Salvador d) Mexico 2 CO2 3.3 CO2 Fuel Mix Fuel Mix Modal Mix 1.8 Modal Mix Emission Coefficient 2.8 Emission Coefficient Energy Intensity Energy Intensity 1.6 GDP GDP 2.3 1.4 1.8 1.2 1.3 1 0.8 0.8 e) Nicaragua f) Venezuela 1.8 1.6 CO2 CO2 1.7 Fuel Mix 1.5 Fuel Mix Modal Mix 1.6 Modal Mix Emission Coefficient 1.4 Emission Coefficient 1.5 Energy Intensity Energy Intensity 1.3 GDP 1.4 GDP 1.3 1.2 1.2 1.1 1.1 1 1 0.9 0.9 0.8 0.8 Note that energy intensity is declining in Columbia, Mexico and Venezuela in the 1990s, which appears to be unusual as transportation congestion has increased in the urban centers of these countries. The decreasing trend in energy intensity can be attributed to the relatively faster growth of economic activity as compared to energy consumption. This is also evident from figures 6(b), 6(d) and 6(f), where drops in energy intensity in the 1990s are accompanied by sharp increases in the economic activity effect. Since economic growth and increased transportation energy intensity are responsible for the sectoral CO2 emissions growth in Chile, Colombia, El Salvador, Mexico, Nicaragua and Venezuela, policy instruments, such as taxes on dirty fuels and 28 subsidies to public transportation, clean fuels and clean vehicles would be needed to induce switching over to clean fuels and shifting over to public transportation (including rail and water transportation). Moreover, policy instruments, such as vehicle efficiency standards, vehicle occupancy standards, congestion charges, investments on road maintenance and congestion reduction would be required to reduce transportation energy intensity and thereby reduce transport sector CO2 emissions in these countries. 5. Conclusions This study examines the growth of transport sector CO2 emissions and determines the underlying factors in 20 Latin American and Caribbean countries over 25 years between 1980 and 2005. To identify the driving factors, the study decomposes the emission growth to fuel switching, modal shifting, economic growth and changes in emission coefficients and transportation energy intensity using the logarithmic mean Divisia index (LMDI) approach. The study finds that economic growth and change in transportation energy intensity are the principal drivers of transport sector CO2 emission growth in Latin American and Caribbean countries, whereas fuel switching, modal shifting and change in emission coefficients are not found to have a sizeable influence on the growth of transport sector CO2 emissions in those countries. The economic activity effect (i.e., GDP growth) is found to be driving transport sector CO2 emissions in most years in the study horizon in Argentina, Brazil, Costa Rica, Peru and Uruguay. On the other hand, the transportation energy intensity effect is found to be the main driver of CO2 emissions change in Bolivia, Caribbean, Cuba, Ecuador, Guatemala, Honduras, Panama, Paraguay and "Other Latin America." In the remaining LAC countries (i.e., Chile, Colombia, El Salvador, Mexico, Nicaragua, and Venezuela), both the economic activity effect and transportation energy intensity effect are found responsible for transport sector CO2 emissions growth. The results also suggest some policy conclusions. In order to limit the growth of CO2 emissions, emissions growth should first be decoupled from economic growth, 29 which has not been the case historically. This can be done via rapid switching to clean fuels, shifting to public transportation (including rail and water transportation), and an increase in transportation energy efficiency through vehicles efficiency improvements, road maintenance, and the reduction of traffic congestion. Fiscal instruments such as emission taxes and subsidies for clean fuels and clean vehicles would be more effective in slowing CO2 emission growth in countries where the economic activity effect is the primary driver for transport sector CO2 emission growth. On the other hand, regulatory instruments such as fuel economy standards and vehicle occupancy standards would be more effective in countries where the transportation energy intensity effect is the main driver for CO2 emission growth. Both fiscal and regulatory policy instruments would be useful in countries where both economic activity effect and transportation energy intensity effect are responsible for driving transport sector CO2 emissions growth. References Ang, B.W., 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33 (7), 867-871. Ang, B.W., Liu, F. L., 2001. A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy 26 (6), 537-548. Ang, B.W., Liu, N., 2007. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 35 (1), 238-246 Ang, B.W., Zhang, F.Q., Choi, K.H., 1998. Factorizing changes in energy and environmental indicators through decomposition, Energy 23 (6), 489-495. Bhattacharyya S.C., Ussanarassamee, A., 2004. Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000. Energy Economics 26 (5), 765- 781. Chang, Y.F., Lin, S.J., 1998. Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach. Energy Policy 26 (1), 5-12. Diakoulaki, D., Mandaraka, M., 2007. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. 30 Energy Economics 29 (4), Modeling of Industrial Energy Consumption, Pages 636- 664. Diakoulaki, D., Mavrotas, G., Orkopoulos, D., Papayannakis, L., 2006. A bottom-up decomposition analysis of energy-related CO2 emissions in Greece. Energy 31 (14), 2638-2651. Ebohon, O.J., Ikeme, A.J., 2006. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries. Energy Policy 34 (18), 3599-3611. Ediger, V.S., Huvaz, O., 2006. Examining the sectoral energy use in Turkish economy (1980­2000) with the help of decomposition analysis. Energy Conversion and Management, 47 (6), 732-745. Energy Information Administration (IEA), 2007. International Energy Outlook 2007. US Department of Energy, Washington, DC. Federal Ministry of Economic Cooperation and Development (FMECD), 2007. International Fuel Prices, 2007, Fifth Edition, FMECD, Germany. Han, X., Chatterjee, L., 1997. Impacts of growth and structural change on CO2 emissions of developing countries. World Development, 25 (3), 395-407. Hatzigeorgiou, E., Polatidis, H., Haralambopoulos, D., 2008. CO2 emissions in Greece for 1990-2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy 33 (3), 492-499. Hudson, R.A. (ed.), 1997. Brazil: A Country Study. Washington: GPO for the Library of Congress. http://countrystudies.us/brazil. IEA, 2007. International Energy Agency (IEA) Database Vol. 2007, Release 01: (a) CO2 Emissions from Fuel Combustion; (b) Energy Balances of Non-OECD Member Countries ­ Extended Balances (c) Energy Balances of OECD Member Countries - Extended Balances; (d) Energy Statistics of Non-OECD Countries - Basic Energy Statistics; (e) Energy Statistics of OECD Countries - Basic Energy Statistics; (f) Energy Balances of Non-OECD Member Countries ­ Indicators; (g) Energy Balances of OECD Member Countries ­ Indicators. http://caliban.sourceoecd.org/vl=213511/cl=25/nw=1/rpsv/iea_database.htm. 31 IEA, 2004. 30 years of energy use in IEA countries. International Energy Agency (IEA), Paris. p. 123. IPCC, 2006. Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC). pp. 3-16. Kaivo-oja, J., Luukkanen, J., 2004. The European Union balancing between CO2 reduction commitments and growth policies: decomposition analyses. Energy Policy 32 (13), 1511-1530. Kander, A., Lindmark, M., 2006. Foreign trade and declining pollution in Sweden: a decomposition analysis of long-term structural and technological effects, Energy Policy 34 (13), 1590-1599. Kawase, R., Matsuoka, Y., Fujino, J., 2006. Decomposition analysis of CO2 emission in long-term climate stabilization scenarios. Energy Policy 34 (15), 2113-2122. Kim, Y., Worrell, E., 2002. International comparison of CO2 emission trends in the iron and steel industry. Energy Policy 30 (10), 827-838. Kwon, T.H., 2005. Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000). Ecological Economics 53 (2), 261-275. Lakshmanan, T., Han, X., 1997. Factors underlying transportation CO2 emissions in the USA: a decomposition analysis. Transportation Research Part D 2(1), 1-15. Lee, C.F., Lin, S.J., 2001. Structural decomposition of CO2 emissions from Taiwan's petrochemical industries. Energy Policy 29 (3), 237-244. Lee, K., Oh, W., 2006. Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method. Energy Policy 34 (17), 2779-2787. Liaskas, K., Mavrotas, G., Mandaraka, M., Diakoulaki, D., 2000. Decomposition of industrial CO2 emissions: The case of European Union. Energy Economics 22 (4), Pages 383-394. Limmeechokchai, B., Suksuntornsiri, P., 2007. Assessment of cleaner electricity generation technologies for net CO2 mitigation in Thailand. Renewable and Sustainable Energy Reviews 11 (2), 315-330. Lin J., Zhou, N., Levine, M., Fridley D. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan. Energy Policy 36 (3), 954-970. 32 Lise, W., 2006. Decomposition of CO2 emissions over 1980-2003 in Turkey. Energy Policy 34 (14), 1841-1852. Liu, L.C., Fan, Y., Wu. G., Wei, Y.M., 2007. Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy 35 (11), 5892-5900. Lu, I.J., Lin, S.J., Lewis, C., 2007. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Policy 35 (6), 3226-3235. Luukkanen, J., Kaivo-oja, J., 2002a. ASEAN tigers and sustainability of energy use-- decomposition analysis of energy and CO2 efficiency dynamics. Energy Policy 30 (4), 281-292. Luukkanen, J., Kaivo-oja, J., 2002b. A comparison of Nordic energy and CO2 intensity dynamics in the years 1960-1997. Energy 27 (2), 135-150. Mukhopadhyay, K., Forssell, O., 2005. An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996- 1997. Ecological Economics 55 (2), 235-250. Munksgaard, J., Pedersen, K.A, Wien, M., 2000. Impact of household consumption on CO2 emissions. Energy Economics 22 (4), 423-440. Murtishaw, S., Schipper, L., Unander, F., Karbuz, S., Khrushch, M., 2001. Lost carbon emissions: the role of non-manufacturing "other industries" and refining in industrial energy use and carbon emissions in IEA countries. Energy Policy 29 (2), 83-102. Nag, B., Kulshreshtha, M., 2000. Carbon emission intensity of power consumption in India: A detailed study of its indicators. Energy Sources 22 (2), 157-166(10). Okushima, S., Tamura, M., 2007. Multiple calibration decomposition analysis: Energy use and carbon dioxide emissions in the Japanese economy, 1970-1995. Energy Policy 35 (10), 5156-5170. Ozawa, L., Sheinbaum, C., Martin, N., Worrell, E., Price, L., 2002. Energy use and CO2 emissions in Mexico's iron and steel industry. Energy 27 (3), 225-239. Paul, S., Bhattacharya, R.N., CO2 emission from energy use in India: a decomposition analysis. Energy Policy 32 (5), 585-593. 33 Rhee, H.C., Chung, H.S., 2006. Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis. Ecological Economics 58 (4), 788-800. Saikku, L., Rautiainen, A., Kauppi, P.E., 2008. The sustainability challenge of meeting carbon dioxide targets in Europe by 2020. Energy Policy 36 (2), 730-742. Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S., Unander, F., 2001. Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995. Energy Policy 29 (9), 667-688. Shrestha, R.M., Marpaung, C.O.P., 2006. Integrated resource planning in the power sector and economy-wide changes in environmental emissions, Energy Policy 34 (18), 3801-3811. Shrestha, R.M., Timilsina, G.R., 1996. Factors affecting CO2 intensities of power sector in Asia: a Divisia decomposition analysis. Energy Economics 18 (4), 283-293. Sun, J. W., 2000. An analysis of the difference in CO2 emission intensity between Finland and Sweden. Energy, Volume 25 (11), 1139-1146. Wang, C., Chen, J., Zou, J., 2005. Decomposition of energy-related CO2 emission in China: 1957-2000. Energy 30 (1), 73-83. Wood, R., Lenzen, M., 2006. Zero-value problems of the logarithmic mean divisia index decomposition method. Energy Policy 34 (12), 1326-1331. World Bank, 2007. Growth and CO2 emissions: how do different countries fare? Environment Department. The World Bank. Washington, D.C. Wu, J.H., Chen, Y.Y., Huang, Y.H., 2007. Trade pattern change impact on industrial CO2 emissions in Taiwan. Energy Policy 35 (11), 5436-5446. 34 Appendix CO2 Emissions Change and Contributing Factors Argentina CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.00280 -0.00014 -0.00020 -0.00026 0.06198 -0.05858 EI 1982 0.00377 0.00090 0.00069 -0.00040 0.05338 -0.05081 EI 1983 0.00413 0.00114 -0.00009 -0.00004 -0.03488 0.03800 EA 1984 -0.05057 -0.00047 0.00014 -0.00044 -0.07166 0.02187 EI 1985 -0.13336 -0.00050 -0.00052 -0.00046 -0.05303 -0.07885 EI, EA 1986 0.08913 0.00148 -0.00049 0.00020 0.01221 0.07573 EA 1987 0.02281 -0.00015 0.00030 -0.00023 -0.00579 0.02868 EA 1988 -0.05626 0.00051 0.00014 0.00168 -0.03269 -0.02589 EI, EA 1989 0.00037 -0.00100 -0.00019 -0.00005 0.07953 -0.07791 EI 1990 0.02513 -0.00215 -0.00015 -0.00136 0.05307 -0.02427 EI 1991 0.05113 -0.00088 -0.00044 0.00016 -0.06691 0.11920 EA 1992 0.06935 -0.00349 0.00018 -0.00028 -0.03982 0.11275 EA 1993 0.06456 -0.00135 -0.00010 -0.00032 0.00896 0.05737 EA 1994 0.06540 -0.00150 0.00013 -0.00008 0.01014 0.05671 EA 1995 0.04743 0.00049 0.00004 -0.00048 0.07625 -0.02886 EI 1996 0.05064 0.00060 0.00088 0.00092 -0.00546 0.05370 EA 1997 0.03012 0.00035 -0.00014 -0.00043 -0.04761 0.07794 EA 1998 0.05696 0.00028 0.00017 0.00018 0.01857 0.03777 EI, EA 1999 -0.03451 -0.00112 -0.00009 0.00024 0.00089 -0.03443 EA 2000 -0.00978 -0.00160 0.00028 -0.00031 -0.00023 -0.00792 EA 2001 -0.12337 -0.00507 -0.00029 -0.00096 -0.07199 -0.04505 EI, EA 2002 -0.07629 -0.00419 -0.00028 -0.00013 0.04362 -0.11530 EA 2003 0.01724 -0.00755 -0.00020 0.00024 -0.05985 0.08460 EA 2004 0.06804 -0.00279 0.00014 0.00065 -0.01638 0.08644 EA 2005 0.04528 0.00002 -0.00021 -0.00016 -0.04219 0.08781 EA 35 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Bolivia CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.04408 0.00001 0.00004 0.00000 0.01445 -0.05858 EA 1982 -0.19708 0.00004 -0.00003 0.00000 -0.14626 -0.05084 EI, EA 1983 0.02242 -0.00388 0.00005 0.00000 -0.01170 0.03795 EA 1984 -0.02221 0.00001 0.00018 0.00000 -0.04427 0.02188 EI 1985 0.00721 -0.00035 -0.00011 0.00000 0.08656 -0.07890 EI 1986 0.06214 0.00468 -0.00020 0.00000 -0.01797 0.07563 EA 1987 0.11016 0.00039 -0.00022 0.00000 0.08132 0.02868 EI, EA 1988 0.00490 0.00038 -0.00002 0.00000 0.03043 -0.02590 EI 1989 0.04962 0.00079 0.00002 0.00000 0.12674 -0.07792 EI 1990 0.03056 0.00138 0.00088 0.00000 0.05238 -0.02408 EI 1991 0.05620 0.00248 -0.00022 0.00000 -0.06527 0.11920 EA 1992 -0.01220 0.00042 0.00003 0.00000 -0.12546 0.11279 EI 1993 0.03894 0.00124 -0.00005 0.00000 -0.01964 0.05738 EA 1994 0.04066 -0.00043 0.00003 0.00000 -0.01559 0.05666 EA 1995 0.10336 0.00110 0.00003 0.00000 0.13109 -0.02886 EI 1996 0.13906 -0.00508 -0.00008 0.00000 0.09065 0.05358 EI, EA 1997 -0.03068 -0.00227 -0.00041 0.00000 -0.10584 0.07785 EI, 1998 0.00823 0.00164 0.00005 0.00000 -0.03122 0.03776 EA 1999 0.02388 0.00136 -0.00003 0.00000 0.05697 -0.03442 EI 2000 -0.09909 -0.00175 -0.00039 0.00000 -0.08903 -0.00792 EI 2001 0.01647 0.00279 -0.00018 0.00000 0.05891 -0.04505 EI 2002 -0.01995 -0.00002 0.00001 0.00000 0.09541 -0.11534 EA 2003 0.15902 -0.00029 -0.00018 0.00000 0.07487 0.08463 EI, EA 2004 0.08318 -0.00095 -0.00007 0.00000 -0.00224 0.08644 EA 2005 -0.00059 -0.00972 0.00010 0.00000 -0.07790 0.08693 EI 36 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Brazil CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.00100 0.00277 0.00228 0.00012 0.05238 -0.05854 EA 1982 0.00171 -0.02358 0.00078 -0.00013 0.07547 -0.05083 EI 1983 -0.06686 -0.03394 0.00017 -0.00015 -0.07093 0.03801 FM, EI 1984 -0.01906 -0.02992 -0.00078 0.00004 -0.01026 0.02187 FM, EI 1985 0.03387 -0.02651 0.00265 -0.00004 0.13665 -0.07888 EI 1986 0.10016 -0.02039 -0.01011 0.00051 0.05444 0.07572 EI, EA 1987 -0.01670 -0.00215 -0.00297 -0.00015 -0.04009 0.02866 EI 1988 0.00389 -0.00768 -0.00205 -0.00013 0.03964 -0.02590 EI 1989 0.03994 -0.00226 -0.00707 -0.00012 0.12721 -0.07782 EI 1990 0.03174 0.02612 -0.00093 -0.00005 0.03087 -0.02427 FM, EI 1991 0.04540 0.00143 -0.00097 0.00003 -0.07438 0.11928 EA 1992 0.00757 0.00578 -0.00033 0.00005 -0.11072 0.11279 EA 1993 0.03923 -0.00173 0.00101 -0.00007 -0.01735 0.05737 EA 1994 0.04493 -0.00211 -0.00214 -0.00006 -0.00747 0.05671 EA 1995 0.10121 0.01063 -0.00019 0.00005 0.11959 -0.02886 EI 1996 0.08748 0.00604 0.00091 0.00002 0.02673 0.05378 EI, EA 1997 0.05943 0.01535 -0.00184 0.00005 -0.03208 0.07795 EA 1998 0.05971 0.01039 0.00074 0.00000 0.01080 0.03777 EA 1999 -0.01568 -0.00126 -0.00031 0.00019 0.02013 -0.03443 EA 2000 0.01519 0.01589 -0.00015 0.00005 0.00731 -0.00792 FM, EI 2001 0.02158 0.01832 0.00037 0.00015 0.04782 -0.04508 FM, EI 2002 0.01570 -0.01157 -0.00042 -0.00015 0.14313 -0.11529 EI 2003 -0.03983 0.00227 -0.00251 -0.00005 -0.12417 0.08463 EI 2004 0.07978 -0.00450 -0.00011 0.00005 -0.00211 0.08644 EA 2005 0.00919 -0.01108 0.00083 -0.00001 -0.06836 0.08781 EA 37 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors The Caribbean CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.04168 -0.00157 0.00001 0.00000 -0.06207 0.02195 EI 1982 -0.00024 0.00284 0.00000 0.00000 -0.01077 0.00769 EI 1983 0.03274 -0.00130 -0.00001 0.00000 0.02845 0.00560 EI 1984 0.02370 -0.00158 0.00000 0.00000 0.03130 -0.00602 EI 1985 -0.03790 -0.00394 -0.00002 0.00000 -0.01398 -0.01997 EI, EA 1986 -0.00660 -0.00107 -0.00003 0.00000 -0.01591 0.01040 EI 1987 0.10541 -0.00040 -0.00001 0.00000 0.06020 0.04563 EI, EA 1988 -0.07301 0.00145 0.00001 0.00000 -0.08586 0.01139 EI 1989 0.10605 -0.00229 -0.00002 0.00000 0.07556 0.03280 EI, EA 1990 -0.10081 0.00152 0.00000 0.00000 -0.08187 -0.02047 EI 1991 -0.01301 0.00135 -0.00025 0.00000 -0.03813 0.02401 EI 1992 0.06063 0.00053 -0.00005 0.00000 0.05184 0.00831 EI 1993 -0.02548 -0.00107 0.00005 0.00000 -0.04582 0.02135 EI 1994 0.12410 0.00423 -0.00002 0.00000 0.10554 0.01434 EI 1995 0.11492 -0.00155 -0.00001 0.00000 0.09071 0.02578 EI 1996 0.08133 0.00061 -0.00001 0.00000 0.03123 0.04950 EI, EA 1997 0.09171 0.00032 -0.00001 0.00000 0.04165 0.04975 EI, EA 1998 0.08975 -0.00020 -0.00001 0.00000 0.03613 0.05383 EI, EA 1999 0.05334 -0.00018 0.00000 0.00000 -0.00214 0.05566 EA 2000 0.05797 -0.00124 -0.00001 0.00000 0.00455 0.05466 EA 2001 -0.05262 0.00125 0.00001 0.00000 -0.08119 0.02731 EI 2002 0.00515 0.00024 0.00001 0.00000 -0.03306 0.03797 EA 2003 -0.03195 -0.00178 0.00001 0.00000 -0.03902 0.00883 EI 2004 0.04010 -0.00071 0.00000 0.00000 0.02105 0.01976 EI, EA 2005 -0.01527 -0.00118 0.00001 0.00000 -0.08150 0.06741 EI 38 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Chile CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.06512 0.00010 0.00001 -0.00040 0.12398 -0.05857 EI 1982 -0.04201 -0.00138 0.00038 -0.00215 0.01195 -0.05081 EA 1983 0.01124 0.00188 -0.00005 -0.00048 -0.02810 0.03800 EA 1984 -0.00093 0.00059 0.00028 0.00097 -0.02464 0.02188 EI 1985 -0.01379 0.00151 0.00004 -0.00153 0.06508 -0.07888 EA 1986 0.02661 -0.00061 0.00030 -0.00060 -0.04828 0.07580 EA 1987 0.06535 0.00077 -0.00025 -0.00058 0.03673 0.02868 EI, EA 1988 0.13277 0.00081 0.00018 0.00267 0.15501 -0.02590 EI 1989 0.07168 -0.00033 -0.00047 0.00358 0.14680 -0.07790 EI 1990 0.02693 -0.00143 0.00091 0.00114 0.05051 -0.02421 EI 1991 0.07559 0.00032 0.00109 -0.00398 -0.04101 0.11918 EA 1992 0.05623 -0.00019 -0.00076 -0.00241 -0.05315 0.11274 EA 1993 0.08719 0.00140 -0.00036 0.00004 0.02873 0.05737 EI, EA 1994 0.11257 0.00019 -0.00011 0.00136 0.05441 0.05672 EI, EA 1995 0.08127 0.00040 -0.00026 0.00015 0.10983 -0.02886 EI 1996 0.08873 0.00023 0.00038 0.00129 0.03304 0.05379 EI, EA 1997 0.04441 0.00034 -0.00013 0.00052 -0.03431 0.07799 EA 1998 0.04087 0.00038 -0.00042 0.00045 0.00269 0.03777 EA 1999 0.02864 0.00045 -0.00041 0.00052 0.06251 -0.03442 EI 2000 0.01867 0.00091 -0.00031 -0.00162 0.02761 -0.00792 EI 2001 -0.05606 0.00073 0.00023 -0.00102 -0.01092 -0.04508 EA 2002 0.03827 0.00076 -0.00005 0.00003 0.15284 -0.11532 EI 2003 -0.01102 0.00093 -0.00018 0.00023 -0.09667 0.08467 EI 2004 0.02491 -0.00030 0.00031 0.00087 -0.06240 0.08643 EA 2005 0.05578 0.00204 -0.00010 0.00024 -0.03418 0.08778 EA 39 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Colombia CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.01325 0.00008 -0.00007 0.00000 0.07182 -0.05858 EI 1982 0.04556 0.00023 -0.00002 0.00000 0.09619 -0.05084 EI 1983 0.04847 0.00040 0.00002 0.00000 0.01004 0.03802 EA 1984 0.03329 -0.00022 -0.00002 0.00000 0.01165 0.02188 EI, EA 1985 0.03348 -0.00004 0.00002 0.00000 0.11241 -0.07890 EI 1986 0.01883 0.00012 0.00001 0.00000 -0.05711 0.07581 EA 1987 0.03077 -0.00151 0.00001 0.00000 0.00359 0.02867 EA 1988 0.08472 0.00093 0.00010 0.00000 0.10951 -0.02582 EI 1989 -0.14366 -0.01588 -0.00450 0.00000 -0.05169 -0.07159 EI, EA 1990 0.17059 0.02717 -0.00343 0.00000 0.16912 -0.02227 EI 1991 0.04442 0.00158 -0.00009 0.00000 -0.07630 0.11924 EA 1992 0.05219 -0.00199 0.00001 0.00000 -0.05855 0.11273 EA 1993 0.01366 0.00099 0.00004 0.00000 -0.04474 0.05737 EA 1994 -0.07098 -0.00100 0.00298 0.00000 -0.12953 0.05657 EI 1995 0.17815 -0.00091 0.00004 0.00000 0.20788 -0.02886 EI 1996 0.02542 0.00121 -0.00002 0.00000 -0.02955 0.05378 EA 1997 0.05272 0.00190 -0.00239 0.00000 -0.02438 0.07759 EA 1998 -0.02173 0.00043 0.00000 0.00001 -0.05996 0.03778 EI 1999 -0.11474 -0.00019 0.00000 -0.00008 -0.08003 -0.03444 EI, EA 2000 -0.02741 0.00357 0.00005 0.00006 -0.02318 -0.00791 EI, EA 2001 0.04760 0.00655 0.00011 -0.00002 0.08587 -0.04490 EI 2002 -0.11960 -0.00619 -0.00009 -0.00001 0.00175 -0.11506 EA 2003 0.02677 0.00198 -0.00025 -0.00003 -0.05934 0.08441 EA 2004 0.13217 0.00193 0.00011 -0.00003 0.04400 0.08616 EI, EA 2005 -0.01953 0.00071 0.00005 0.00000 -0.10798 0.08769 EI 40 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Costa Rica CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.12383 0.00030 -0.00097 -0.00005 -0.06454 -0.05858 EI, EA 1982 -0.11502 -0.00168 0.00081 -0.00001 -0.06331 -0.05083 EI, EA 1983 0.03568 0.00000 -0.00104 -0.00003 -0.00127 0.03802 EA 1984 0.06715 -0.00072 0.00058 -0.00008 0.04548 0.02188 EI, EA 1985 0.02699 0.00025 0.00047 0.00001 0.10516 -0.07890 EI 1986 0.09121 0.00004 0.00014 0.00000 0.01522 0.07581 EA 1987 0.05506 -0.00296 0.00021 0.00012 0.02902 0.02866 EI, EA 1988 0.12115 0.00115 0.00015 0.00001 0.14573 -0.02590 EI 1989 0.06863 0.00011 -0.00105 -0.00012 0.14762 -0.07792 EI 1990 -0.05312 -0.00131 -0.00013 0.00002 -0.02742 -0.02428 EI, EA 1991 0.03819 -0.00230 0.00018 0.00026 -0.07919 0.11924 EA 1992 0.38868 -0.00553 0.00113 0.00037 0.28083 0.11188 EI, EA 1993 0.02997 0.00141 0.00002 -0.00009 -0.02874 0.05737 EA 1994 0.05006 0.00155 -0.00003 0.00016 -0.00832 0.05671 EA 1995 -0.00007 0.00056 0.00028 0.00000 0.02795 -0.02886 EA 1996 0.00555 -0.00086 0.00003 0.00000 -0.04740 0.05379 EA 1997 0.02472 -0.00007 0.00013 0.00000 -0.05332 0.07798 EA 1998 0.10220 -0.00064 -0.00005 0.00000 0.06512 0.03776 EI, EA 1999 0.04066 -0.00092 0.00011 0.00000 0.07591 -0.03444 EI 2000 -0.03392 -0.00312 0.00070 0.00000 -0.02359 -0.00791 EI 2001 0.06392 0.00090 0.00008 0.00000 0.10804 -0.04509 EI 2002 0.09915 0.00219 -0.00062 0.00000 0.21280 -0.11522 EI 2003 0.01769 0.00032 0.00001 0.00000 -0.06731 0.08468 EA 2004 0.08425 0.00180 0.00008 0.00000 -0.00406 0.08643 EA 2005 0.03076 0.00282 -0.00091 0.00000 -0.05823 0.08708 EA 41 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Cuba CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.01753 -0.00083 -0.00432 0.00000 0.08122 -0.05855 EI 1982 0.04450 -0.00969 0.00657 0.00000 0.09828 -0.05066 EI 1983 -0.14266 -0.00809 -0.00314 0.00000 -0.16934 0.03790 EI 1984 0.01125 0.00087 -0.01027 0.00000 -0.00115 0.02180 EA 1985 0.32040 0.04849 -0.00485 0.00000 0.35361 -0.07686 EI 1986 0.00407 -0.00316 -0.00280 0.00001 -0.06575 0.07578 EA 1987 0.02180 -0.00048 -0.00110 0.00001 -0.00530 0.02867 EA 1988 0.03907 0.00389 0.00044 -0.00001 0.06065 -0.02590 EI 1989 0.05346 0.00430 -0.00118 -0.00001 0.12827 -0.07792 EI 1990 -0.69000 -0.06500 -0.04585 0.00022 -0.55756 -0.02181 EI 1991 -0.35484 -0.02322 0.00240 -0.00001 -0.45302 0.11902 EI 1992 -0.36143 -0.02791 0.00000 0.00261 -0.44888 0.11276 EI 1993 -0.22635 0.01052 0.00432 0.00378 -0.30234 0.05737 EI 1994 -0.03671 -0.01059 0.00023 0.00147 -0.08453 0.05670 EI 1995 0.08744 0.01831 0.00421 0.00111 0.09267 -0.02886 EI 1996 0.06002 0.00526 -0.00361 -0.00099 0.00559 0.05377 EA 1997 0.14655 0.01592 -0.00095 0.00007 0.05360 0.07790 EI, EA 1998 -0.03523 0.01229 0.00608 0.00198 -0.09335 0.03777 EI 1999 -0.03551 -0.00813 0.00616 -0.00536 0.00627 -0.03444 EA 2000 -0.04287 -0.00859 0.00405 -0.00035 -0.03006 -0.00792 EI 2001 -0.01518 0.00062 0.00055 -0.00156 0.03029 -0.04509 EA 2002 -0.02446 -0.00339 0.00151 0.00486 0.08789 -0.11533 EA 2003 0.07064 0.00333 -0.00248 0.00200 -0.01678 0.08457 EA 2004 -0.07145 0.01331 0.00159 -0.00562 -0.16717 0.08645 EI 2005 -0.00617 0.00474 -0.00045 -0.00128 -0.09699 0.08781 EI 42 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Ecuador CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.13711 0.00333 0.00397 0.00000 0.18811 -0.05830 EI 1982 0.03264 0.00183 -0.00133 0.00000 0.08294 -0.05081 EI 1983 0.02271 0.00087 0.00484 0.00000 -0.02095 0.03795 E 1984 0.11401 0.00125 0.00284 0.00000 0.08806 0.02186 EI 1985 0.06011 0.00116 0.00040 0.00000 0.13731 -0.07876 EI 1986 0.03150 0.00095 -0.00178 0.00000 -0.04344 0.07577 EA 1987 -0.03569 -0.00007 0.00078 0.00000 -0.06507 0.02868 EI 1988 0.18930 -0.00160 -0.00275 0.00000 0.21949 -0.02584 EI 1989 -0.03288 -0.00051 -0.00297 0.00000 0.04836 -0.07776 EA 1990 0.02684 0.00035 -0.00335 0.00000 0.05391 -0.02408 EI 1991 0.05712 -0.00012 -0.00125 0.00000 -0.06065 0.11913 EA 1992 -0.02555 -0.00146 -0.00063 0.00000 -0.13584 0.11237 EI 1993 0.01352 0.00044 -0.00001 0.00000 -0.04431 0.05739 EA 1994 0.01766 0.00162 0.00000 0.00000 -0.04060 0.05664 EA 1995 0.01746 0.00065 0.00004 0.00000 0.04562 -0.02885 EI 1996 0.15304 0.00355 0.00043 0.00000 0.09533 0.05374 EI, EA 1997 0.02486 0.00017 0.00002 0.00000 -0.05332 0.07799 EA 1998 0.00126 -0.00028 -0.00003 0.00000 -0.03621 0.03778 EA 1999 -0.10309 -0.00050 -0.00006 0.00000 -0.06810 -0.03444 EI, EA 2000 0.15441 0.00038 0.00004 0.00000 0.16191 -0.00792 EI 2001 0.07477 -0.00006 -0.00001 0.00000 0.11992 -0.04509 EI 2002 0.05094 -0.00131 -0.00015 0.00000 0.16773 -0.11533 EI 2003 0.03144 -0.00009 -0.00001 0.00000 -0.05314 0.08468 EA 2004 -0.00770 0.00323 0.00037 0.00000 -0.09767 0.08637 EI 2005 -0.02478 -0.00023 -0.00002 0.00000 -0.11234 0.08782 EI 43 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors El Salvador CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.06018 0.00133 0.00000 0.00000 -0.00294 -0.05857 EA 1982 0.03856 0.00019 0.00000 0.00000 0.08921 -0.05084 EI 1983 0.01068 -0.00114 0.00000 0.00000 -0.02619 0.03801 EA 1984 0.03686 0.00046 0.00000 0.00000 0.01453 0.02188 EI, EA 1985 0.08667 0.00112 0.00000 0.00000 0.16444 -0.07889 EI 1986 -0.01327 0.00003 0.00000 0.00000 -0.08911 0.07581 EI 1987 0.10788 0.00036 0.00000 0.00000 0.07883 0.02868 EI, EA 1988 0.07253 0.00028 0.00000 0.00000 0.09815 -0.02590 EI 1989 0.04664 0.00049 0.00000 0.00000 0.12407 -0.07792 EI 1990 0.06565 0.00223 0.00000 0.00000 0.08769 -0.02427 EI 1991 0.08679 0.00123 0.00000 0.00000 -0.03372 0.11928 EA 1992 0.14608 -0.00164 0.00000 0.00000 0.03494 0.11277 EA 1993 0.08880 -0.00038 0.00000 0.00000 0.03179 0.05739 EI, EA 1994 0.06286 -0.00064 0.00000 0.00000 0.00677 0.05672 EA 1995 0.12943 0.00075 0.00000 0.00000 0.15755 -0.02886 EI 1996 -0.00965 -0.00127 0.00000 0.00000 -0.06216 0.05379 EI 1997 0.01761 -0.00066 0.00000 0.00000 -0.05972 0.07798 EA 1998 0.07094 -0.00103 0.00000 0.00000 0.03419 0.03778 EI, EA 1999 0.12912 0.00229 0.00000 0.00000 0.16126 -0.03443 EI 2000 -0.03166 0.00081 0.00000 0.00000 -0.02454 -0.00792 EI 2001 0.00613 -0.00024 0.00000 0.00000 0.05145 -0.04509 EI 2002 -0.02997 0.00075 0.00000 0.00000 0.08463 -0.11534 EA 2003 0.08479 -0.00247 0.00000 0.00000 0.00261 0.08464 EA 2004 0.05548 -0.00124 0.00000 0.00000 -0.02972 0.08644 EA 2005 0.02745 -0.00001 0.00000 0.00000 -0.06035 0.08782 EA 44 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Guatemala CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.07421 0.00121 0.00000 0.00000 -0.01685 -0.05857 EA 1982 -0.07023 -0.00033 0.00000 0.00000 -0.01906 -0.05084 EI, EA 1983 -0.03971 -0.00269 0.00000 0.00000 -0.07501 0.03800 EI 1984 0.08362 0.00114 0.00000 0.00000 0.06060 0.02188 EI, EA 1985 0.03600 0.00127 0.00000 0.00000 0.11362 -0.07889 EI 1986 -0.04003 0.00094 0.00000 0.00000 -0.11678 0.07580 EI 1987 0.15388 -0.00751 0.00000 0.00000 0.13271 0.02868 EI 1988 0.08554 0.00019 0.00000 0.00000 0.11125 -0.02590 EI 1989 0.04495 0.00528 0.00000 0.00000 0.11758 -0.07791 EI 1990 0.07865 0.00045 0.00000 0.00000 0.10248 -0.02428 EI 1991 0.05206 -0.09933 0.00000 0.00000 0.03240 0.11899 EA 1992 0.05539 0.04708 0.00000 0.00000 -0.10443 0.11275 FM, EA 1993 0.09763 0.05729 0.00000 0.00000 -0.01703 0.05738 FM, EA 1994 0.06530 0.00006 0.00000 0.00000 0.00852 0.05672 EA 1995 0.22066 -0.00055 0.00000 0.00000 0.25008 -0.02886 EI 1996 -0.00007 -0.00232 0.00000 0.00000 -0.05152 0.05377 EI 1997 0.06324 0.00070 0.00000 0.00000 -0.01545 0.07798 EA 1998 0.17307 -0.00018 0.00000 0.00000 0.13546 0.03778 EI 1999 0.04059 -0.00054 0.00000 0.00000 0.07556 -0.03444 EI 2000 0.07143 -0.00034 0.00000 0.00000 0.07969 -0.00792 EI 2001 0.06320 0.00005 0.00000 0.00000 0.10824 -0.04509 EI 2002 0.07084 0.00234 0.00000 0.00000 0.18380 -0.11530 EI 2003 -0.00721 0.00059 0.00000 0.00000 -0.09248 0.08468 EI 2004 -0.00214 -0.00017 0.00000 0.00000 -0.08842 0.08645 EI 2005 0.05039 0.00038 0.00000 0.00000 -0.03781 0.08782 EA 45 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Honduras CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.02607 0.00151 0.00000 0.00000 0.08314 -0.05857 EI 1982 0.02061 0.00161 0.00000 0.00000 0.06983 -0.05083 EI 1983 0.12050 0.00110 0.00000 0.00000 0.08139 0.03801 EI, EA 1984 0.04697 0.00050 0.00000 0.00000 0.02459 0.02188 EI, EA 1985 0.01241 0.00008 0.00000 0.00000 0.09123 -0.07890 EI 1986 0.12012 0.00104 0.00000 0.00000 0.04328 0.07580 EI, EA 1987 0.07343 -0.00031 0.00000 0.00000 0.04506 0.02868 EI, EA 1988 0.05649 0.00130 0.00000 0.00000 0.08109 -0.02590 EI 1989 0.09447 0.00005 0.00000 0.00000 0.17233 -0.07792 EI 1990 -0.07290 -0.00116 0.00000 0.00000 -0.04746 -0.02428 EI, EA 1991 -0.00359 -0.00093 0.00000 0.00000 -0.12195 0.11928 EI 1992 0.12863 -0.00114 0.00000 0.00000 0.01698 0.11279 EA 1993 0.12635 -0.00053 0.00000 0.00000 0.06949 0.05739 EI, EA 1994 0.15267 -0.00018 0.00000 0.00000 0.09613 0.05672 EI, EA 1995 0.07234 0.00005 0.00000 0.00000 0.10116 -0.02887 EI 1996 -0.09524 0.00052 0.00000 0.00000 -0.14956 0.05379 EI 1997 0.09826 -0.00218 0.00000 0.00000 0.02248 0.07796 EA 1998 0.10046 -0.00089 0.00000 0.00000 0.06357 0.03778 EI, EA 1999 0.11591 0.00131 0.00000 0.00000 0.14904 -0.03444 EI 2000 -0.04696 -0.00161 0.00000 0.00000 -0.03742 -0.00792 EI 2001 0.13811 0.00271 0.00000 0.00000 0.18047 -0.04507 EI 2002 0.04925 0.00146 0.00000 0.00000 0.16312 -0.11533 EI 2003 -0.01647 -0.00021 0.00000 0.00000 -0.10095 0.08468 EI 2004 -0.08656 -0.00084 0.00000 0.00000 -0.17216 0.08644 EI 2005 -0.01168 -0.00225 0.00000 0.00000 -0.09721 0.08779 EI 46 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Mexico CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.10977 -0.00049 -0.00009 -0.00041 0.16933 -0.05857 EI 1982 -0.00319 -0.00081 -0.00008 0.00008 0.04845 -0.05084 EA 1983 -0.11358 -0.00036 0.00006 0.00013 -0.15141 0.03800 EI 1984 0.04835 -0.00206 -0.00002 -0.00003 0.02863 0.02184 EI, EA 1985 0.00792 -0.00062 -0.00001 -0.00015 0.08759 -0.07889 EI 1986 -0.01077 -0.00044 -0.00016 0.00035 -0.08631 0.07580 EI 1987 0.02585 -0.00085 0.00140 0.00017 -0.00354 0.02867 EA 1988 0.01814 0.00101 -0.00169 -0.00014 0.04484 -0.02589 EI 1989 0.09440 -0.00131 0.00038 -0.00008 0.17332 -0.07791 EI 1990 0.07260 0.00195 -0.00040 -0.00006 0.09535 -0.02425 EI 1991 0.07172 0.00054 -0.00081 -0.00001 -0.04729 0.11928 EA 1992 0.01541 0.00023 0.00000 -0.00022 -0.09740 0.11280 EA 1993 0.02091 0.00015 -0.00003 0.00000 -0.03661 0.05739 EA 1994 0.01751 -0.00137 0.00011 0.00048 -0.03841 0.05671 EA 1995 -0.03711 0.00052 0.00005 -0.00054 -0.00828 -0.02886 EA 1996 -0.02708 0.00028 0.00016 -0.00001 -0.08130 0.05379 EI 1997 0.02145 0.00100 -0.00066 0.00017 -0.05704 0.07798 EA 1998 0.02958 -0.00026 0.00032 0.00051 -0.00878 0.03778 EA 1999 -0.00162 -0.00026 -0.00022 -0.00011 0.03337 -0.03441 EA 2000 0.05018 -0.00087 0.00001 0.00005 0.05891 -0.00792 EI 2001 0.01695 -0.00054 -0.00025 0.00002 0.06280 -0.04509 EI 2002 0.03493 -0.00038 -0.00005 -0.00011 0.15082 -0.11534 EI 2003 0.06057 0.00012 -0.00014 0.00002 -0.02411 0.08468 EA 2004 0.07568 0.00086 0.00112 -0.00035 -0.01156 0.08561 EA 2005 0.05416 0.00061 0.00000 -0.00006 -0.03421 0.08781 EA 47 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Nicaragua CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.01202 0.00262 0.00011 0.00000 0.06784 -0.05855 EI 1982 -0.05039 0.00058 0.00004 0.00000 -0.00018 -0.05084 EA 1983 0.02681 0.00237 0.00013 0.00000 -0.01368 0.03799 EA 1984 -0.03729 -0.00072 -0.00008 0.00000 -0.05837 0.02188 EI 1985 -0.02275 0.00009 0.00002 0.00000 0.05604 -0.07890 EA 1986 0.10584 0.00009 -0.00002 0.00000 0.02997 0.07581 EI, EA 1987 0.03086 0.00043 -0.00002 0.00000 0.00176 0.02868 EA 1988 -0.13668 -0.00031 0.00005 0.00000 -0.11053 -0.02589 EI 1989 -0.13403 0.00327 0.00016 0.00000 -0.05962 -0.07783 EI, EA 1990 0.03434 -0.00055 -0.00003 0.00000 0.05920 -0.02428 EI 1991 0.08109 -0.00058 -0.00034 0.00000 -0.03713 0.11913 EA 1992 0.13485 -0.00127 0.00021 0.00000 0.02318 0.11274 EA 1993 0.02773 0.00096 0.00046 0.00000 -0.03104 0.05735 EA 1994 0.06302 0.00224 0.00115 0.00000 0.00306 0.05657 EA 1995 0.09625 0.00143 -0.00010 0.00000 0.12378 -0.02886 EI 1996 0.04788 0.00101 0.00017 0.00000 -0.00708 0.05379 EA 1997 0.05451 0.00068 -0.00016 0.00000 -0.02398 0.07798 EA 1998 0.08456 -0.00080 -0.00022 0.00000 0.04781 0.03777 EI, EA 1999 0.04527 -0.00006 -0.00046 0.00000 0.08020 -0.03441 EI 2000 0.03049 -0.00054 0.00028 0.00000 0.03865 -0.00791 EI 2001 0.01228 -0.00133 0.00019 0.00000 0.05850 -0.04508 EI 2002 0.03932 -0.00070 -0.00005 0.00000 0.15541 -0.11534 EI 2003 -0.00387 0.00090 -0.00045 0.00000 -0.08893 0.08461 EI 2004 -0.06314 -0.00277 -0.00038 0.00000 -0.14633 0.08635 EI 2005 0.00427 -0.00047 0.00029 0.00000 -0.08333 0.08778 EA 48 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Panama CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.02337 0.00385 0.00000 0.00000 0.07804 -0.05851 EI 1982 -0.00892 0.00043 0.00000 0.00000 0.04150 -0.05084 EA 1983 -0.01881 -0.00058 0.00000 0.00000 -0.05625 0.03802 EI 1984 0.02493 0.00063 0.00000 0.00000 0.00243 0.02188 EA 1985 0.02149 0.00143 0.00000 0.00000 0.16260 -0.12891 EI 1986 0.05228 0.00020 0.00000 0.00000 -0.02372 0.07581 EA 1987 0.03067 0.00013 0.00000 0.00000 0.00185 0.02868 EA 1988 -0.07891 0.00176 0.00000 0.00000 -0.05478 -0.02589 EI, EA 1989 0.02961 0.00074 0.00000 0.00000 0.10680 -0.07792 EI 1990 0.06428 0.00020 0.00000 0.00000 0.08836 -0.02428 EI 1991 0.07872 0.00152 0.00000 0.00000 -0.04207 0.11927 EA 1992 0.07660 -0.00070 0.00000 0.00000 -0.03549 0.11279 EA 1993 0.09266 -0.00024 0.00000 0.00000 0.03551 0.05739 EI, EA 1994 0.07899 -0.00016 0.00000 0.00000 0.02242 0.05672 EI, EA 1995 0.07554 0.00091 0.00000 0.00000 0.10349 -0.02886 EI 1996 0.04243 -0.00010 0.00000 0.00000 -0.01126 0.05379 EA 1997 0.07350 0.00002 0.00000 0.00000 -0.00451 0.07799 EA 1998 0.10673 -0.00015 0.00000 0.00000 0.06910 0.03778 EI, EA 1999 -0.01879 -0.00253 0.00000 0.00000 0.01816 -0.03442 EA 2000 -0.02228 0.00012 0.00000 0.00000 -0.01447 -0.00792 EI, EA 2001 0.11839 0.00688 0.00000 0.00000 0.15645 -0.04495 EI 2002 0.08498 0.00019 0.00000 0.00000 0.20014 -0.11535 EI 2003 0.18873 0.00534 0.00000 0.00000 0.09887 0.08452 EI, EA 2004 -0.16030 -0.00694 0.00000 0.00000 -0.23954 0.08618 EI 2005 -0.12185 -0.00215 0.00000 0.00000 -0.20748 0.08779 EI 49 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Paraguay CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 -0.02587 -0.00914 0.00000 0.00000 0.04182 -0.05856 EA 1982 -0.01444 -0.01302 -0.00011 0.00000 0.04951 -0.05082 EA 1983 -0.03919 0.00356 0.00014 0.00000 -0.08087 0.03798 EI 1984 0.12940 -0.00679 -0.00014 0.00000 0.11447 0.02187 EI 1985 0.04268 0.01018 0.00034 0.00000 0.11098 -0.07882 EI 1986 0.01850 -0.00762 -0.00218 0.00000 -0.04712 0.07542 EA 1987 0.09899 -0.00623 -0.00001 0.00000 0.07655 0.02868 EI, EA 1988 0.10755 0.00327 -0.00003 0.00000 0.13021 -0.02589 EI 1989 0.03366 -0.00050 -0.00015 0.00000 0.11221 -0.07790 EI 1990 0.03198 0.00330 0.00153 0.00000 0.05134 -0.02420 EI 1991 -0.06588 -0.00640 -0.00008 0.00000 -0.17868 0.11928 EI 1992 0.18564 0.00508 -0.00025 0.00000 0.06805 0.11276 EI, EA 1993 0.22353 0.00797 0.00012 0.00000 0.15807 0.05738 EI, EA 1994 0.12144 0.00752 0.00017 0.00000 0.05710 0.05664 EI, EA 1995 0.13596 0.00387 -0.00009 0.00000 0.16104 -0.02886 EI 1996 0.00867 0.00206 0.00000 0.00000 -0.04719 0.05379 EA 1997 0.11725 0.00592 0.00001 0.00000 0.03334 0.07798 EI, EA 1998 0.04690 0.00136 0.00000 0.00000 0.00776 0.03778 EA 1999 -0.00203 -0.00242 0.00000 0.00000 0.03481 -0.03442 EA 2000 -0.21731 0.00581 0.00008 0.00000 -0.21527 -0.00792 EI 2001 0.06539 0.00138 0.00000 0.00000 0.10910 -0.04509 EI 2002 0.05749 0.00103 0.00000 0.00000 0.17180 -0.11533 EI 2003 0.06360 0.00005 0.00000 0.00000 -0.02114 0.08468 EA 2004 -0.00240 0.00190 0.00000 0.00000 -0.09073 0.08643 EI 2005 -0.10343 -0.01803 0.00000 0.00000 -0.17320 0.08780 EI 50 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Peru CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.12389 -0.00042 0.00070 0.00000 0.18219 -0.05857 EI 1982 -0.02179 -0.00061 -0.00371 0.00000 0.03330 -0.05075 EA 1983 -0.09506 0.00054 -0.00062 0.00000 -0.13299 0.03801 EI 1984 0.01676 0.00190 -0.00031 0.00000 -0.00670 0.02187 EA 1985 -0.06478 0.00086 0.00033 0.00000 0.01292 -0.07889 EA 1986 0.05759 0.00018 -0.00127 0.00000 -0.01711 0.07579 EA 1987 0.14567 0.00057 0.00060 0.00000 0.11582 0.02868 EI 1988 0.02316 0.00110 -0.00074 0.00000 0.04870 -0.02589 EI 1989 -0.09033 0.00233 -0.00043 0.00000 -0.01436 -0.07788 EA 1990 0.06005 0.00124 -0.00165 0.00000 0.08472 -0.02425 EI 1991 -0.13073 -0.00049 -0.00144 0.00000 -0.24796 0.11916 EI 1992 0.07674 0.00320 -0.00053 0.00000 -0.03860 0.11267 EA 1993 0.01971 0.00190 -0.00011 0.00000 -0.03945 0.05737 EA 1994 0.13250 0.00206 0.00180 0.00000 0.07206 0.05658 EI, EA 1995 0.06976 0.00196 -0.00084 0.00000 0.09747 -0.02884 EI 1996 0.06140 -0.00103 0.00012 0.00000 0.00852 0.05379 EA 1997 0.00029 0.00265 -0.00013 0.00000 -0.08014 0.07791 EA 1998 0.01853 -0.00065 0.00007 0.00000 -0.01862 0.03774 EA 1999 0.05709 0.00044 0.00050 0.00000 0.09057 -0.03443 EI 2000 -0.01237 0.00179 -0.00026 0.00000 -0.00597 -0.00792 EI, EA 2001 -0.06921 0.00053 -0.00018 0.00000 -0.02448 -0.04509 EI, EA 2002 -0.01473 -0.00056 -0.00012 0.00000 0.10129 -0.11534 EA 2003 0.05442 0.00216 -0.00022 0.00000 -0.03215 0.08463 EA 2004 0.12935 0.00240 0.00000 0.00000 0.04054 0.08641 EI, EA 2005 -0.05266 -0.00093 -0.00016 0.00000 -0.13938 0.08780 EI 51 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Uruguay CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.03571 -0.00025 0.00000 0.00000 0.09454 -0.05858 EI 1982 0.01344 -0.00015 -0.00032 0.00000 0.06475 -0.05084 EI 1983 -0.01475 0.00028 -0.00051 0.00000 -0.05250 0.03798 EI 1984 -0.03401 0.00069 0.00040 -0.00011 -0.05685 0.02188 EI 1985 0.01850 0.00060 -0.00064 -0.00028 0.09770 -0.07889 EI 1986 0.00872 0.00100 -0.00098 -0.00004 -0.06705 0.07578 EA 1987 0.01963 -0.00371 0.00349 -0.00042 -0.00830 0.02857 EA 1988 0.03566 -0.00016 0.00005 -0.00006 0.06172 -0.02590 EI 1989 -0.05511 0.00095 0.00030 -0.00006 0.02160 -0.07789 EA 1990 0.03127 0.00078 0.00008 -0.00015 0.05484 -0.02428 EI 1991 0.05609 -0.00001 -0.00006 -0.00070 -0.06241 0.11928 EA 1992 -0.01628 -0.00165 0.00000 -0.00005 -0.12713 0.11256 EI 1993 0.06969 -0.00011 0.00000 0.00008 0.01232 0.05739 EA 1994 0.01457 -0.00051 0.00001 -0.00008 -0.04156 0.05672 EA 1995 0.03344 0.00022 0.00000 -0.00001 0.06210 -0.02887 EI 1996 0.03912 0.00050 0.00009 -0.00008 -0.01516 0.05377 EA 1997 -0.07631 0.00000 -0.00001 0.00011 -0.15439 0.07799 EI 1998 0.02107 0.00024 0.00000 0.00007 -0.01701 0.03778 EA 1999 -0.00009 -0.00175 -0.00033 -0.00010 0.03648 -0.03440 EA 2000 0.02901 -0.00041 -0.00003 -0.00005 0.03742 -0.00792 EI 2001 0.07516 -0.00038 0.00000 0.00051 0.12013 -0.04509 EI 2002 -0.02992 0.00001 0.00001 -0.00003 0.08544 -0.11535 EA 2003 0.01271 -0.00100 0.00000 -0.00023 -0.07073 0.08466 EA 2004 0.02822 0.00175 0.00001 0.00000 -0.05993 0.08639 EA 2005 0.11821 0.00106 0.00000 -0.00014 0.02949 0.08780 EA 52 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Venezuela CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.02607 0.00151 0.00000 0.00000 0.08314 -0.05857 EI 1982 0.02061 0.00161 0.00000 0.00000 0.06983 -0.05083 EI 1983 0.12050 0.00110 0.00000 0.00000 0.08139 0.03801 EI, EA 1984 0.04697 0.00050 0.00000 0.00000 0.02459 0.02188 EI, EA 1985 0.01241 0.00008 0.00000 0.00000 0.09123 -0.07890 EI 1986 0.12012 0.00104 0.00000 0.00000 0.04328 0.07580 EI, EA 1987 0.07343 -0.00031 0.00000 0.00000 0.04506 0.02868 EI, EA 1988 0.05649 0.00130 0.00000 0.00000 0.08109 -0.02590 EI 1989 0.09447 0.00005 0.00000 0.00000 0.17233 -0.07792 EI 1990 -0.07290 -0.00116 0.00000 0.00000 -0.04746 -0.02428 EI, EA 1991 -0.00359 -0.00093 0.00000 0.00000 -0.12195 0.11928 EI 1992 0.12863 -0.00114 0.00000 0.00000 0.01698 0.11279 EA 1993 0.12635 -0.00053 0.00000 0.00000 0.06949 0.05739 EI, EA 1994 0.15267 -0.00018 0.00000 0.00000 0.09613 0.05672 EI, EA 1995 0.07234 0.00005 0.00000 0.00000 0.10116 -0.02887 EI 1996 -0.09524 0.00052 0.00000 0.00000 -0.14956 0.05379 EI 1997 0.09826 -0.00218 0.00000 0.00000 0.02248 0.07796 EA 1998 0.10046 -0.00089 0.00000 0.00000 0.06357 0.03778 EI, EA 1999 0.11591 0.00131 0.00000 0.00000 0.14904 -0.03444 EI 2000 -0.04696 -0.00161 0.00000 0.00000 -0.03742 -0.00792 EI 2001 0.13811 0.00271 0.00000 0.00000 0.18047 -0.04507 EI 2002 0.04925 0.00146 0.00000 0.00000 0.16312 -0.11533 EI 2003 -0.01647 -0.00021 0.00000 0.00000 -0.10095 0.08468 EI 2004 -0.08656 -0.00084 0.00000 0.00000 -0.17216 0.08644 EI 2005 -0.01168 -0.00225 0.00000 0.00000 -0.09721 0.08779 EI 53 Appendix (Cont'd) CO2 Emissions Change and Contributing Factors Other Latin America CO2 Factors Influencing the CO2 Emissions Change Main Year Emissions Fuel Modal Emission Energy Economic Influencing Change Mix Mix Coefficient Intensity Activity Factors 1981 0.04995 -0.00043 0.00052 0.00000 0.10840 -0.05854 EI 1982 0.04636 -0.00167 0.00005 0.00000 0.09880 -0.05082 EI 1983 -0.00308 0.00087 -0.00058 0.00000 -0.04136 0.03799 EI 1984 0.06995 -0.00477 0.00001 0.00000 0.05293 0.02178 EI, EA 1985 0.03297 -0.00047 0.00160 0.00000 0.11053 -0.07869 EI 1986 -0.12682 0.00051 -0.00035 0.00000 -0.20198 0.07500 EI 1987 0.28718 0.00276 -0.00018 0.00000 0.25594 0.02865 EI 1988 0.06220 0.00044 -0.00038 0.00000 0.08803 -0.02589 EI 1989 0.12036 -0.00058 0.00063 0.00000 0.19818 -0.07788 EI 1990 0.04502 -0.00071 0.00010 0.00000 0.06991 -0.02428 EI 1991 0.02894 0.00196 0.00001 0.00000 -0.09226 0.11922 EA 1992 -0.00210 -0.00050 -0.00009 0.00000 -0.11430 0.11279 EI 1993 0.02240 0.00063 -0.00007 0.00000 -0.03555 0.05739 EA 1994 0.05262 0.00025 -0.00007 0.00000 -0.00429 0.05672 EA 1995 0.06021 -0.00041 -0.00009 0.00000 0.08958 -0.02886 EI 1996 0.01337 -0.00007 -0.00004 0.00000 -0.04031 0.05379 EA 1997 0.06336 0.00045 -0.00015 0.00000 -0.01492 0.07798 EA 1998 0.58953 0.02437 0.00024 0.00000 0.52795 0.03697 EI 1999 0.08597 -0.00204 -0.00002 0.00000 0.12245 -0.03443 EI 2000 0.01921 0.00033 0.00000 0.00000 0.02681 -0.00792 EI 2001 0.02200 -0.00029 0.00000 0.00000 0.06737 -0.04509 EI 2002 0.02908 0.00022 -0.00001 0.00000 0.14422 -0.11535 EI 2003 0.01762 -0.00035 0.00001 0.00000 -0.06672 0.08468 EA 2004 0.08967 0.00021 -0.00006 0.00000 0.00310 0.08642 EA 2005 0.01069 -0.00001 0.00000 0.00000 -0.07713 0.08782 EA 54