EARLY CHILDBIRTH AND UNDER FIVE MALNUTRITION IN MALAWI

Adenike Onagoruwa and Quentin Wodon

June 2017

KEY MESSAGES:

- In Malawi, more than four in ten children under the age of five are stunted; but for children born of mothers younger than 18, the risk of stunting is higher.
- Controlling for socio-economic and other characteristics, being born of a mother younger than 18 does not lead to a statistically significant increase in the likelihood of stunting for children under five, as compared to otherwise similar children born of older mothers.

Nearly one-fifth of under-five deaths could be prevented with optimal feeding. Poor nutrition at a young age may also have irremediable consequences for brain development, cognitive skills, and productivity in adult life.

Malnutrition has severe consequences for children.

Poor nutrition weakens children’s immune systems, putting them at a greater risk of falling sick from preventable illnesses such as pneumonia and diarrhea. According to Horton et al. (2008), nearly one-fifth of under-five deaths in the world could be prevented with optimal feeding. Research also suggests that poor nutrition at a young age may have irremediable consequences for brain development, cognitive skills, and ultimately productivity in adult life. Unfortunately, a large share of children in the developing world are malnourished. The question considered in this brief is whether early childbirth (defined as a child being born of a mother younger than 18), which in many countries is the result of child marriage, contributes to under five malnutrition in a significant way in Malawi. The brief is part of a series of similar standardized country-specific briefs on the same topic for a number of countries.

Box 1: Brief and Series Primer

How is early childbirth defined? Early childbirth is defined in this brief as a child being born of a mother younger than 18. Early childbearing is often related to the practice of child marriage.

Why a series on child marriage? Child marriage has significant negative impacts – not only for girls, but also for a range of development outcomes. Demonstrating these impacts will assist governments and others to make the case for intervening to reduce the practice.

What are the topics discussed in the series? The series looks at the impacts of child marriage on health, population, education, employment, agency, and violence, among other outcomes. The welfare, budget, and non-monetary costs of child marriage are estimated. Legal/institutional aspects and options to reduce the practice are also discussed.

What is the question asked in this brief? The question is: What is the impact at the margin of an early childbirth on the probability of malnutrition (stunting) for children under five years of age?

How is the question answered? Econometric analysis of Demographic and Health Survey data is used to estimate the impact of an early childbirth on under five malnutrition.
Statistically, children from young mothers in Malawi are four percentage points less likely to be stunted than if the mother is between 18 and 34 years of age.

The focus in this brief is on stunting as a measure of persistent exposure to malnutrition with potentially severe long-term consequences throughout a person’s life (see box 2 on indicators used to measure malnutrition). The analysis is based on data from the 2010 Demographic and Health Survey for Malawi. Estimates suggest that 43.86 percent of children born of mothers younger than 18 are stunted. The proportion is slightly higher at 47.62 percent for children born of mothers 18 to 34 years of age. The difference in stunting rate between these two age groups is not statistically significant. For children of mothers older than 35, the incidence of stunting was 45.13 percent.

Table 1: Incidence of Stunting by Age of the Mother

<table>
<thead>
<tr>
<th>Age of the mother</th>
<th>Stunting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother younger than 18</td>
<td>43.86</td>
</tr>
<tr>
<td>Mother in 18-34 age bracket</td>
<td>47.62</td>
</tr>
<tr>
<td>Mother older than 35</td>
<td>45.13</td>
</tr>
</tbody>
</table>

Source: Authors.

Box 2: Measures of Malnutrition

Three main measures of malnutrition are used in applied work. A child is considered underweight if s/he has a weight more than two standard deviations below the reference median weight for the child’s age. A child is considered wasted if s/he has a weight to height ratio more than two standard deviations below the median weight for height for the reference population. A child is considered stunted if s/he has a height more than two standard deviations below the median reference height for that age. If a child on any of these measures is below three standard deviations of the norm, s/he is considered as severely underweight, wasted, or stunted. Among the three measures, stunting and wasting tend to be used the most. Stunting often results from persistent insufficient nutrient intake and infections. It may lead to delayed motor development and poor cognitive skills that can affect school performance as well as productivity and earnings later in life. Wasting tends to result more from acute food shortage or disease and may lead to death. For the purpose of this brief, given a separate brief of under five mortality, stunting is the best measure to focus on.

Box 3: Risk of Omitted Variable Bias

A number of results from the regression analysis not shown in table 2 are worth mentioning. The impact of wealth on the likelihood of stunting is statistically significant, with children from wealthier households tending to be less stunted. For example, compared to children in the poorest 20% of households, those from the second, third and fourth quintiles have a likelihood of stunting ranging from 7-8 percentage points lower. Children in the highest quintile (the richest 20% of households) have a likelihood of stunting 19 percentage points lower.

As shown in table 3, the marginal impact of a mother having a secondary education or better on the likelihood that her child will be stunted is not statistically significant, which is somewhat surprising.

Marginal effects do not change much when additional controls are added (extended model). There is thus some evidence that in the case of Malawi, after controlling for a wide range of other variables, early childbirth may not contribute to stunting, but prudence remains needed when interpreting these results given the risk of omitted variable bias (see box 3).

Table 2: Impact of Early Childbirth on Stunting

<table>
<thead>
<tr>
<th>Age at first marriage</th>
<th>Baseline model</th>
<th>Extended model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother younger than 18</td>
<td>-0.0442</td>
<td>-0.0415</td>
</tr>
<tr>
<td>Mother in 18-34 age bracket</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Mother older than 35</td>
<td>-0.0265</td>
<td>-0.0128</td>
</tr>
</tbody>
</table>

Source: Authors.

Levels of statistical significance: *** 1%, ** 5%, * 10%.

Controlling for other factors, early childbirth does not increase the likelihood of stunting substantially.

The difference in the likelihood of stunting between children of young and older mothers does not necessarily imply a causal effect of the age at delivery. To check whether controlling for other factors early childbirth is associated at the margin with higher under five malnutrition, regression analysis is used (see the annex for details on the methodology).

Table 2 provides key results with baseline and extended models. The interpretation of the coefficients is in terms of marginal impacts in percentage terms. For example, a statistically significant coefficient of 0.05 for a mother younger than 18 would indicate that children of very young mothers have a likelihood of stunting five percentage points higher than otherwise similar children of older mothers. With the baseline specification, table 2 indicates that deliveries at a young age do not significantly increase the likelihood of stunting for the children in comparison to a delivery at 18 to 34 years of age (in Malawi). The difference in risk of stunting between mothers ages 18-34 and mothers above 35 is also not statistically significant.

In Malawi, delivery at a young age does not increase the likelihood of stunting for the child in comparison to a delivery at 18 to 34 years of age.
Note though more generally that the inclusion of education as a control points to the possibility of indirect effects of early childbirth on stunting. Because early childbirth may have an impact on other variables used as controls in the regression, its overall effect on stunting, including indirect effects through these other variables, may be larger than the (non-significant) direct effect documented in Table 2. For example, for some girls having a baby at a young age, early childbirth could have reduced education attainment, which could lead to a higher risk of stunting (although not in Malawi according to the regression results). In addition, early deliveries, by increasing the number of household members may also contribute to lower standards of living. In Malawi, as mentioned earlier, the regression results suggest that the level of welfare as measured through wealth quintiles have an effect on stunting.

Table 3: Impact of the Mother’s Education on Stunting

<table>
<thead>
<tr>
<th>Age at first marriage</th>
<th>Baseline model</th>
<th>Extended model</th>
</tr>
</thead>
<tbody>
<tr>
<td>No education or below primary</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Primary education</td>
<td>-0.0450</td>
<td>-0.0413</td>
</tr>
<tr>
<td>Secondary education or higher</td>
<td>-0.0703</td>
<td>-0.0748</td>
</tr>
</tbody>
</table>

Source: Authors.
Levels of statistical significance: *** 1%, ** 5%, * 10%.

Simulations suggest that very few children under five are stunted directly due to early childbirth.

The last step in the analysis consists in assessing the potential impact of eliminating early childbirth on stunting. This can be done by predicting (i.e. simulating) the likelihood that children who were born of mothers younger than 18 would have been stunted if they had been born of older mothers. In other words, we are considering the direct effects of the age of the mother on stunting, shifting in the data deliveries by young mothers to deliveries at a later age, and observing the difference that this makes for stunting rates nationally. In the case of Malawi, because the effect of early childbirth on stunting is not statistically significant, direct effects are not (statistically speaking) present.

Because only a small share of deliveries are by mothers younger than 18, very few stunted children can be said to be stunted directly due to early childbirth.

Conclusion

Early childbirth may contribute to the risk of malnutrition for children, directly and indirectly. This brief has provided estimates of the direct impact of early childbirth on stunting in Malawi using the latest DHS survey. More than four in ten children under the age of five are stunted. Controlling for socio-economic and other characteristics, being born of a mother younger than 18 does not have a statistically significant effect on the likelihood of stunting as compared to otherwise similar children born of older mothers. This, together with small indirect effects of early childbirth through education in Malawi, suggests that few children are stunted directly or indirectly because of an early childbirth, even though some may be.

References

There is no doubt that children born to very young mothers are more likely to be malnourished than other children, but this might not specifically be due to the fact that the mothers are young. Girls who have children before the age of 18 tend to be poorer. This implies that their children are at higher risk of inadequate nutritional intake. Early pregnancies are more common in areas where access to healthcare is limited to prevent or treat malnutrition. Young girls also often suffer from a lack of agency and decision-making power in the household, which may reduce their ability to seek care for their children when needed. Girls who give birth early are likely to have dropped out of school due to pregnancy or marriage, which may also affects the nutritional status of their children due to lack of education or knowledge on how to best take care of young children.

These risk factors correlated with early childbirth do not necessarily imply that early pregnancies by themselves contribute in a direct way to child malnutrition. Controlling for other factors, it could be that early childbirth does not lead to a higher risk of malnutrition for children. But it could also be that there is a direct causal link between early childbirth and child malnutrition, for example if some young mothers giving birth are not yet be ready physiologically to give birth, which could in turn affect the health of their children. This brief estimates the direct impact of early childbirth on under five malnutrition.

In addition, the brief provides an assessment of the extent to which under five malnutrition would be reduced if early pregnancies/deliveries were eliminated. In order to measure the potential impact of early childbirth at the margin on stunting for children under the age of five, regression analysis is used. In the more detailed paper on which this brief is based, both tobit regressions (to measure the degree of stunting among children who are stunted) and probit regressions (to measure the likelihood of stunting) are provided.