Educational Expansion and the Kuznets Effect

World Bank Reprints

No. 253. Larry E. Westphal, "Fostering Technological Mastery by Means of Selective Infant-Industry Protection," *Trade, Stability, Technology, and Equity in Latin America*

No. 263. Carl Dahlman and Larry Westphal, "Technical Effort in Industrial Development: An Interpretive Survey of Recent Research," *The Economics of New Technology in Developing Countries*

No. 264. Michael Bamberger, "The Role of Self-Help Housing in Low-Cost Shelter Programs for the Third World," *Built Environment*

No. 266. Bela Balassa, "Outward Orientation and Exchange Rate Policy in Developing Countries: The Turkish Experience," *The Middle East Journal*

No. 268. Stephen P. Hevneeman and William A. Loxley, "The Effect of Primary-School Quality on Academic Achievement across Twenty-nine High- and Low-Income Countries," *The American Journal of Sociology*

No. 269. James R. Follain, Jr., Gill-Chin Lim, and Bertrand Renaud, "Housing Crowding in Developing Countries and Willingness to Pay for Additional Space: The Case of Korea," *Journal of Development Economics*

There is a widely accepted view that in the process of economic development, the inequality of income first increases and later decreases (see Montek Ahluwalia, 1976, and Ahluwalia et al., 1979). It is also recognized that the inequality of pay is an important component of total income inequality (see Alan Blinder, 1974; Henry Phelps Brown, 1977), and that education is a major determinant of pay. Whether the rapid expansion of education which has occurred in many countries has increased or decreased the inequality of pay is therefore of interest and of relevance to policy.

Our objective in this note is to show the change in wage dispersion in response to increases in the relative supply of educated workers in two low-income countries. We also measure the relative contributions to that change of its two components: the effect of the educational expansion on the educational composition of the labor force (holding the educational structure of wages constant), and the resultant compression of that structure (holding composition constant). We base our analysis on three precisely comparable surveys of wage employees conducted in Tanzania in 1971 and 1980, and in Kenya in 1980.

The change in the educational composition of the labor force itself has an effect on inequality. Whether it raises or lowers inequality, ceteris paribus, depends on the relative sizes of the different educational categories, their relative mean wages, and their relative wage dispersions. In a two-group model, a transfer of workers from the low- to the high-education (and wage) group can be shown to raise the variance (or log variance) until the high-education group reaches a certain proportion of the total, the precise proportion depending on the difference in the means and the variances of the two groups. Sherman Robinson (p. 438) has shown for workers in the jth group, that where \bar{x}_j is mean earnings, p_j is proportion of workers, σ_j is the variance of earnings, $j = 1, 2 = \text{educated and uneducated group, respectively, and } \sigma$ is the variance of earnings in the population, then inequality (as measured by σ) rises to a maximum where p_1 is equal to p_1^*:

\[
(1) \quad p_1^* = \frac{(\sigma_1^2 - \sigma_2^2)}{2(\bar{x}_1 - \bar{x}_2)} + 1/2.
\]

This implies that $p_1^* \geq \frac{1}{2}$ according as $\sigma_1^2 \geq \sigma_2^2$. If the variance of wages of the educated group exceeds that of the uneducated ($\sigma_1^2 > \sigma_2^2$), inequality reaches a peak after more than one-half the labor force have become educated. The condition $\sigma_1^2 > \sigma_2^2$ also implies that p_1^* is larger the smaller the difference in mean wages, that is, inequality peaks later in the process of educational expansion the lower is the premium on education. However, if the variance is higher for the uneducated group, this result is reversed.

This was the basis of Simon Kuznets' hypothesis: the transfer of people between sectors at different income levels initially raises inequality as more people acquire high income, but eventually lowers it as fewer low-income people remain; if the expanding sector has more inequality, the peaking of aggregate inequality is delayed.

Kuznets concentrated on the "composition effect" and did not incorporate any resulting "compression effect." Indeed, he suggested (p. 8) that urban-rural income differentials (with which he was concerned) were likely to increase with economic development. However, from the competitive market prediction...
that the returns to a factor decrease as its relative supply increases, we expect the coefficient on education in an earnings function to decline as education expands relative to other factors, that is, the premium on education falls as supply increases relative to demand. The narrowing of the educational structure of wages should, ceteris paribus, reduce inequality. This result can be formalized by differentiation of the well-known identity

\[
\sigma^2 = p_1 \sigma_1^2 + (1 - p_1) \sigma_2^2 + p_1(1 - p_1)(x_1 - x_2)^2
\]

to derive:

\[
\frac{\partial \sigma^2}{\partial p_1} = (\sigma_1^2 - \sigma_2^2) + (1 - 2p_1) \\
\times (x_1 - x_2)^2 + 2p_1(1 - p_1)(x_1 - x_2) \\
\times \left(\frac{\partial x_1}{\partial p_1} - \frac{\partial x_2}{\partial p_1} \right).
\]

Since \(x_1 > x_2, \frac{\partial x_1}{\partial p_1} < 0 \) and \(\frac{\partial x_2}{\partial p_1} > 0 \), the third term, which shows the effect of educational expansion on the wage structure, is negative. The effect of educational expansion on inequality is therefore the net outcome of two potentially countervailing tendencies, and no a priori prediction can be made about its sign.

Owing to the expansion of educational enrollments over time in Tanzania, and the faster rate of expansion at the secondary school level in Kenya, our three samples show sharp differences in the educational attainment of the manufacturing sector labor force (Table 1). The differences are most marked at the secondary forms 1–4 level. The occupational structure is very similar in the three samples. Given our skill-based occupational classification, this suggests that the composition of demand for skills is also similar. The resultant differences in the education-occupation matrix are therefore likely
to be due to differences in the relative supply of educated labor, which is lowest in Tanzania 1971 and highest in Kenya 1980.

An earnings function which includes the educational categories among the independent variables and log earnings as the dependent variable, shows high and significant (gross) returns to education in all three samples (also Table 1). The coefficients for post-primary education (with primary standards 5–8 as the base subcategory) are higher in Tanzania 1980 than in Tanzania 1971.

Again, the differences are most marked at the secondary forms 1–4 level. This compression of the educational structure of wages with educational expansion is consistent with the competitive market prediction.

To measure the effect of educational expansion on the inequality of pay, and the relative contributions of the compression effect and the composition effect, we proceed

3The samples might be thought of as three points in a time-series, with Kenya 1980 representing Tanzania some years hence.

4The other independent variables are years of wage employment experience and its square, and dummy variables representing race, sex, employment status, and possession of formal training.
as follows. \(^5\) First, we estimate an earnings function

\[
(4) \quad w = a + \sum_i b_i e_i + \sum_j c_j z_j + u,
\]

where \(w\) is log earnings, \(e_i\) is a set of dummy variables representing different educational categories, \(z_j\) is a set of independent variables, \(u\) is an error term, and \(a, b_i, c_j\) are parameters.

The estimated earnings function is used to predict the wage of each individual worker \((\hat{w})\) from his set of characteristics; the inequality of predicted earnings is then measured. Second, we simulate the compression effect of increasing the relative supply of educated labor. The wages of workers in each sample are predicted using the education coefficients estimated for the other samples instead of the actual coefficients. For instance, where the subscript \(k\) denotes the Kenya 1980 and \(t\) the Tanzania 1980 sample, we predict the wages of the Kenya sample using the Tanzania education coefficients:

\[
(5) \quad \hat{w}_k = a_k + \sum_i b_{ik} e_i + \sum_j c_{jk} z_j.
\]

Third, we simulate the composition effect of increasing relative supply. Instead of the actual educational composition of each sample, we assume in turn the composition of the other samples. This involves reweighting the observations. For example, where \(\alpha_{ik}\) represents the proportion of workers in each educational category \(e_i\) in the Kenya sample, and \(\alpha_{ik}'\) the proportion in the Tanzania 1980 sample, in applying to the Kenya sample the Tanzania 1980 composition, we use the set of weights \(\alpha_{ik}'/\alpha_{ik}\). \(^6\) In this case the simulation involves a decrease in the proportion of workers with secondary education and an increase in the proportion with primary education. The former observations are therefore given a weight less than unity, and the latter a weight greater, in generating the assumed distribution. Fourth, we combine the composition effect and its consequent compression effect in a single simulation. The inequality of the simulated wage distribution is in each case measured.

The results of the first exercise, based on equation (4), indicate that the inequality of predicted wages is greatest in Tanzania 1971 and least in Kenya 1980: the log variances are .230, .128, and .097. Inequality is less the greater the relative supply of educated labor. But how much of these differences is due to the compression effect, to the composition effect, and/or to differences in the samples which are unconnected with education?

The results of the second exercise are shown in Figure 1. On the vertical axis is the log variance, and the horizontal axis shows which set of education coefficients (panel a), which educational composition (panel b), and which set of education coefficients and educational composition (panel c) is being assumed. The unsimulated but predicted log variances for the three samples are circled in each panel. A line connecting the points in panel a indicates the effect on the log variance for one sample of altering the education coefficients to equal those estimated for the other samples. The line marked T71, for instance, indicates the log variance when the education coefficients of the Tanzania 1971, Tanzania 1980, and Kenya 1980 samples are in turn applied to the Tanzania 1971 function. As expected, each of the lines is downward sloping: the decline in the premium on education, considered in isolation, consistently reduces inequality.

The effect of altering the educational composition of a sample while assuming that the coefficients on education remain unchanged is shown by the connecting lines in panel b. The line labeled T71, for instance, shows how inequality varies as the educational compositions of the Tanzania 1980 and Kenya 1980 samples are applied to the Tanzania 1971 earnings function and sample. In all but one of the six cases, inequality rises with the simulated expansion of education.

Panel c shows the effect on the inequality of wages in each sample of simulating both the educational composition of another sample and its accompanying education coefficients. The vertical distance between points therefore represents the differences in inequality among the samples which are attrib-
utable to differences in the noneducational characteristics and coefficients of the samples. As these differences are irrelevant to the analysis, it is the shape of each line which is important. In their affect on inequality, educational expansion and the consequent compression of the educational wage structure in Tanzania cancel each other out: the log variance rises very slightly in two cases and falls very slightly in the other. However, the move from the Tanzania 1980 to the Kenya 1980 educational composition and coefficients reduces inequality in every case.

There remains a puzzle. We argued above for the two-group case that, if the variance of wages of the educated exceeds that of the uneducated, the variance of the sample peaks when the proportion of workers in the educated group exceeds one-half; and that this proportion is greater the smaller the difference in group mean wages. Panel b, however, suggests that the reverse is the case. Comparing the educational composition of Tanzania and Kenya in 1980, inequality actually falls when the simulation is conducted on the Kenya earnings function, that is, the one for which educational wage differences are smallest. However, there is no necessary inconsistency here. First, it may not be the case that the inequality of earnings of the more educated is greater than that of the less educated. Second, the empirical analysis involves five educational categories, whereas the theoretical prediction is based on two.

In fact, there is a monotonic increasing relationship between the log variance of earnings and educational level in both Kenya and Tanzania 1980, and when each sample is divided into two educational categories instead of five, again the log variance of earnings of the “educated” (postprimary schooling) exceeds that of the “uneducated” (primary schooling or none) in each case. For the Kenya and Tanzania 1980 two-group earnings functions, Table 2 reproduces the simulation analysis conducted in panel b, viz, it indicates the effect on inequality of varying educational composition so as to equal that in the other two samples. For both functions, an increase in the proportion of

7 Results precisely corresponding to those of Figure 1 were obtained with the Gini coefficient as the measure of earnings inequality in place of the log variance.
eduard workers in the total (line \(p_1 \) in the table) raises the log variance of predicted wages (lines \(\sigma_{K80}^2 \) and \(\sigma_{F80}^2 \), where the subscript indicates the earnings function being used). It is no longer the case that inequality declines when the educational composition is changed from that of Tanzania 1980 to that of Kenya 1980 using the Kenya earnings function. These results are to be expected because the actual value of \(p_1 \) in the two-group case falls well short of the proportion yielding peak inequality in each sample (\(p^*_1 \) in Table 2). Indeed, in the case of the Kenya earnings function, the difference in log means is so small in relation to the difference in log variances that the peak is never reached (\(p^*_1 > 1 \)). The flatter slope of the curve based on the Kenya sample (\(\delta \sigma^2 / \delta p_1 \) in Table 2) does not, therefore, indicate that the peak is nearby.

The Kuznets effect has normally been considered in relation to the transfer of population from low-income rural to high-income urban areas. Such a transfer is not expected to produce a narrowing of the income gap, either because of labor market imperfections or because the accumulation of human and nonhuman capital in the urban areas tends to widen the gap. We have shown, however, that the expansion of the supply of educated labor relative to the demand has a powerful depressing effect on the intraurban educational structure of wages. The composition effect of educational expansion can indeed raise intraurban inequality, but the consequent compression effect outweighs it: relative educational expansion reduces inequality. Since this process occurs within the relatively expanding high-income, urban sector, it is hastening the arrival at the point beyond which economic growth is associated with a reduction in overall inequality.

REFERENCES

No. 274. Ron Duncan and Ernst Lutz, "Penetration of Industrial Country Markets by Agricultural Products from Developing Countries," World Development

No. 276. Sweder van Wijnbergen, "Interest Rate Management in LDCs," Journal of Money, Credit and Economics

No. 278. Oli Havrylyshyn and Martin Wolf, "Recent Trends in Trade among Developing Countries," European Economic Review

No. 280. Walter Schaefer-Kehnert and John D. Von Pischke, "Agricultural Credit Policy in Developing Countries," translated from Handbuch der Landwirtschaft und Ernährung in den Entwicklungsländern (includes original German text)

No. 281. Bela Balassa, "Trade Policy in Mexico," World Development

No. 283. Anne O. Krueger, "Trade Policies in Developing Countries," Handbook of International Economics

No. 288. Hollis B. Chenery, "Interaction between Theory and Observation in Development," World Development
The full range of World Bank publications, both free and for sale, is described in the World Bank Catalog of Publications, and of the continuing research program of the World Bank, in World Bank Research Program: Abstracts of Current Studies. The most recent edition of each is available without charge from:

PUBLICATIONS DISTRIBUTION UNIT
THE WORLD BANK
1818 H STREET, N.W.
WASHINGTON, D.C. 20433
U.S.A.

ISSN 0253-2131