Project-Related Training

Knowledge and Skill Levels Support Project Objectives

Including project-related training components in development projects is a sensible strategy. By ensuring that knowledge and skill levels are adequate to support the achievement of project objectives, the potential for a significant rate of return on training investments is high.

Despite the potential benefits of project-related training (PRT), these components in rural development projects appear to be on the decline while the number of components for capacity building and strengthening is increasing. This Note traces the evolution of PRT in World Bank projects, provides guidelines for PRT component design, and makes the case for continuing use of PRT to enhance short-term knowledge and skills for project implementation.

PRT in World Bank Projects

The Bank’s involvement in PRT was prompted by an increasing proportion of training investments in projects approved in the 1970s. Two publications concluded that more attention to training and human resource development would be needed if Bank operations were to make their intended contribution to member countries (World Bank, 1980; World Bank, 1982).

Bank financing for PRT in agriculture sector projects grew from $29 million (of a total of $67 million for PRT in all sectors) in FY 1976 to more than $157 million (of $451 million) by FY 1990. Funding for PRT decreased, however, to $103 million (of $326 million) by FY 1992. As a percentage of total Bank sector lending over this 16-year period, PRT usually ranged between 1.6 and 2.6 percent, with a high of 4.3 percent in FY 1990.

If projects are deemed technically feasible and economically sound, it is logical to ensure that capacity is sufficiently strong...
to achieve satisfactory implementation. The case for including PRT components in projects is compelling in terms of a rate of return. A 1987 report indicated that if the national level of literacy exceeded 50 percent, rates of return to agriculture sector projects ranged between 68 and 171 percent (Mingat and Tan, 1987).

PRT in Practice

It was thought that a training component to address weaknesses in knowledge and skills should provide projects with the required capacity for implementation. This logical approach, however, proved deceptively difficult to implement, and reviews of training components by the Education Department as early as 1984 found design quality less than satisfactory. The reviews concluded that PRT components frequently failed to meet expectations for a variety of reasons, which remain valid today:

Design of PRT components. While the logic of a PRT component — to provide the knowledge and skills needed to achieve project objectives — is compelling, design of an effective component is a precise and detailed exercise. People who are skilled in PRT work are excluded from project preparation teams by budgetary and time constraints, so that a full picture of how all training demands fit together in a coherent PRT component does not emerge. The result may be a collection of disconnected training activities that are difficult to implement, and which do little to build sustainable human resource capacity.

Incomplete analysis. In order to prepare for the design of PRT components, it is necessary to review assessments of human resource capacity contained in sector work documents. Human resource issues are seldom covered well in sector reports (World Bank, 1988). It is also not uncommon to find that borrower staff who will implement projects are not identified and appointed at the preparation stage, which makes it difficult to conduct an accurate needs assessment.

Lack of training capacity. Even with good component design, effective training cannot be carried out if the entity has little or no capacity to manage the training. In such a situation, it may be difficult to assign responsibility to manage training, check the accuracy of project preparation needs assessments, and plan training.

No systematic HRD. While a number of public sector institutions have training capability, few practice systematic human resource development (HRD) such as matching qualifications and experience to updated job descriptions, promoting on merit, observing staff knowledge and skill deficiencies, or arranging training to meet future job needs. Absence of such an approach to manpower management makes implementing PRT components difficult, and sustaining capacity to manage the training function virtually impossible.

Box 1. Key steps in PRT component design

- Analyze the skills and knowledge required by all actors in the project that are necessary to perform key tasks associated with achieving project objectives.
- Assess present capacity to complete project-related tasks (gap analysis).
- Identify training needs.
- Plan and implement appropriate training programs.
- Evaluate the effectiveness of training.

Box 2. How are training needs assessed?

- Review sector work for references to human resource capacity.
- Clarify project objectives that are essential in order to estimate the capacity of project staff to carry out assigned project duties based on those objectives.
- Identify knowledge and skills required to execute new or revised tasks and define 'gaps'.
- Quantify the number of people who require training by task, by level of need, and by training or other required intervention.

Unrealistic objectives. Effectively building capacity is usually unachievable in the span of a single project, but PRT components often include unrealistic objectives for HRD capacity. Examples include long-term fellowships for advanced degrees, design and construction of elaborate training facilities, and ambitious targets for training many people.

Incomplete documentation. Those who implement PRT components need clear instructions. It is difficult for a project staff member to launch a detailed training program armed only with a statement of component objectives and a detailed cost table. For successful implementation, the trainer needs a working paper that details the assumptions on which the component was based, along with clear descriptions of what needs to be done, by whom, when, where and at what cost.

Designing PRT Components

There are a number of key steps in designing a PRT component (Box 1), the most critical of which is assessment of training needs (Box 2). Needs assessment is at the core of designing good components. If training needs are not assessed accurately, training programs will not improve critical weaknesses in human resource capacity.

Responsibility for PRT design. While the team task manager (TTM) is ultimately responsible for PRT design, each member of the preparation team is responsible for assessing knowledge, skills, or information needs of staff who will have a role in project implementation. Incorporating each team member’s assessment of skill gaps into an overall program, along with a detailed implementation plan, is the responsibility of the TTM or, if possible, an HRD/training specialist. The component Working Paper, included in the Project Implementation Plan, is essential for smooth implementation because it contains rationale for the component, nature of the skill gaps, numbers affected, proposed training/learning interventions, cost of training, timing and location of training, and indicators of component success.
including project-related training (PRT) components in development projects is a sensible strategy. By ensuring that knowledge and skill levels are adequate to support the achievement of project objectives, the potential for a significant rate of return on training investments is high. Despite the potential benefits of PRT, these components in rural development projects appear to be on the decline while the number of components for capacity building and strengthening is increasing. This Note traces the evolution of PRT in World Bank projects, provides guidelines for PRT component design, and makes the case for continuing use of PRT to enhance short-term knowledge and skills for project implementation. The note concludes that PRT has limitations because it focuses almost exclusively on training-related issues and they are not the preferred vehicle for building lasting capacity.
Box 3. Good practices

- Encourage review of human resources work in the sector.
- Clarify project objectives and assess implications for skills and knowledge.
- Work with technical specialists and administrators to identify skill gaps.
- Take the time to apply resources for appropriate program design.
- Use realistic unit pricing to calculate training program costs.
- Identify those responsible for managing the training program and assess their needs for additional training in management skills.
- Provide indicators of success for implementation of the training program.
- Create a detailed working paper to aid those who implement PRT.
- Include an evaluation component in the implementation completion report.

Influence of project scope. The training needs assessment may indicate that there are extremely wide capacity gaps between what the project staff knows and what they need to know, and that PRT will not be able to bridge the gaps during project implementation. If so, then the TTM may consider decreasing the scope of the overall project in order to avoid an implementation failure.

Technical assistance. When PRT components are large and training management is weak, technical assistance may be recommended. Technical assistance presents an opportunity, not only to guide implementation of the PRT component, but also to build capacity for training management by entering into a mentoring contract with counterpart trainers. Terms of reference for training specialist technical assistance personnel should include technology transfer.

Good practices. There are a number of good practices that should be considered throughout the entire process of design and implementation of PRT components (Box 3).

Lessons Learned

Well designed and managed PRT components can contribute to achieving project objectives, but because the time span of project implementation is limited, they rarely leave behind an effective capability to identify future manpower needs or systematically manage the training function. World Bank sector staff who took PRT design courses in the mid-1980s noted that while the systematic approach helped them deal with training issues, a deeper problem of weak institutional capacity was prevalent. The problem was not training alone, but overall institutional weakness. This prompted training specialists to explore approaches for a more comprehensive analysis of organizations and institutions in order to identify training and other constraints to project implementation.

Human resource development. One early approach was to look beyond specific training to a broader approach to human resource development. Borrower entities were encouraged to update job descriptions, improve training management, identify and encourage training suppliers outside the borrower entity to provide quality training, and evaluate the impact of training on performance. While this more comprehensive approach was a move in the right direction, it was a long-term solution in a window of short-term project implementation, and did not address general institutional weaknesses.

Components to Build Capacity

The PRT and HRD components gradually gave way to capacity building components. These frequently included some training, but also other inputs deemed likely to generally improve institutional capacity, including vehicles, computers, additional infrastructure for training or administration, technical assistance, and fellowships. Unfortunately, there was little systematic analysis of the cause of perceived institutional weakness associated with designing capacity building components.

A review of capacity building components in Africa Region forestry projects noted that a majority of projects do not undertake sector-wide institutional analysis before defining capacity building activities (World Bank, 1994). The same review concluded that institutional strengthening activities required for project implementation should be separate from the long-term institutional development of the forestry agencies, and that not all of the project implementation activities necessarily increase capacity of forestry institutions. These findings mirrored the earlier experience with PRT components.

Institutional Capacity Analysis

When borrower entities aim at comprehensive institutional strengthening and reform, an institutional capacity analysis is necessary to understand the full range of constraints affecting the stated change objectives. Tobelem (1992) developed an Institutional Capacity Analysis and Development System (ICADS) in response to this observation - the effectiveness of institutional development increases substantially when capacity is assessed beforehand and development inputs and institutional strategies are designed in response to the nature and scope of identified institutional capacity gaps. The ICADS model looks for a number of elements in an institution's development process:

- clearly defined and quantified development objectives;
- resources available for activities associated with the development objectives;
- detailed definition of tasks associated with development objectives and identification of responsibility for carrying them out;
- interinstitutional relationships associated with the achievement of development objectives;
- identification of gaps in institutional capacity arising from a "rules of the game" viewpoint. These rules include governance, constitution, legislation, regulations, and the mostly unwritten cultural "rules" that influence institutional actions;
- identification of gaps in institutional capacity arising from management of internal organization;
Conclusion

PRT has served agriculture and rural development projects well and has contributed much to our understanding of institutions and institutional change. PRT has limitations, however, because it focuses almost exclusively on training-related issues, and although these are vital to achieving project objectives, they are not the preferred vehicle for building lasting capacity.

This is especially true when the implementation span of a project is limited and it is not seen in the context of a follow-on program such as the Adaptable Program Loan. Capacity building components have increased in popularity, partly in response to the realization that institutional weaknesses have root causes other than those related to training.

Capacity building and strengthening components, however, are only as good as the analysis leading to identifying institutional constraints, and can only make a sustainable impact over a number of project cycles. Regardless of the approach to strengthening institutional capacity, a systematic approach to analyzing gaps in human resource capacity should always be employed. All rural development team task managers should be familiar with the design and implementation of the PRT component, and appreciate its usefulness and limitations.

References

