Data Collection Strategies and Methods for Monitoring Student Flows

by

Ernesto Cuadra
(Consultant)

Education and Employment Division
Population and Human Resources Department
The World Bank

November 1991
The International Bank for Reconstruction and Development/
The World Bank, 1991
CONTENTS

Executive Summary ... 1
I. Introduction .. 1
II. Strategies Used to Obtain Information About Students’ Flow 2
 A. The Individualized Data System (IDS) or The True Pupil
 Accounting System .. 4
 B. The Cohort Coding System (CCS) 5
 C. The Grade Ratio Model (GRM) or The Apparent Cohort Model 9
 D. The Grade Transition Model or The Reconstructed Cohort
 Model ... 13
 E. The Age-Grade Reconstructed Flow Method 23
III. Conclusions ... 29
APPENDIX I .. 32
 Formal Description of the Age-Grade Reconstructed Flow Method ... 32
APPENDIX II .. 34
REFERENCES .. 35

TABLES

Table 1: Comparison of Strategies Used to
Obtain Students’ Flow data .. 3
Table 2: Summary Yearly Table of Coding Forms by Cohort 6
Table 3: Enrollment by Grade, Age, and Status
 for Female Students in 1988/89 7
Table 4: Enrollment in Grade 1: 1987/88 7
Table 5: Dropouts Between Grade 1 and 2 8
Table 6: Enrollment in Primary Education 10
Table 7: Cohort Survival and Proportion of Dropouts 11
Table 8: Enrollment and Repeaters in Primary Education 16
Table 9: Difference Between Survival and Dropout as Estimates
 Using the GRM and the GTM percentage points) 22
Table 10: Example of a Computation Matrix Used by
 the Age Grade Reconstructed Flow Method 24
Table 11: Honduras: Promotion, Repetition and Dropout
 Rates Estimated using the GTM and the
 Age-Grade Reconstructed Flow Model: 1983 26
Table 12: Comparison of Survival Rates as Estimated
 Using the Grade Transition Model and the
 Age-Grade Reconstructed Flow Model (1983-84) 27
Table 13: Comparison of Estimates of Repetition Rates
 in the First Grade for Honduras: 1978-1983 29
Table 14: Promotion, Repetition and Dropout Rates in 1983
 Estimated Using the Grade Transition Model 34
Table 15: Cohort Survival in 1983 as Estimated
 Using the Grade Transition Model 34
FIGURES AND GRAPHS

<table>
<thead>
<tr>
<th>Figure/Graph</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>Student Flows Between Grade 1 and Grade 2 from School Years (t) to (t+1)</td>
<td>13</td>
</tr>
<tr>
<td>Graph 1:</td>
<td>Patterns of Repetition by Grade for Burkina Faso, Belgium and Honduras</td>
<td>18</td>
</tr>
<tr>
<td>Graph 2:</td>
<td>Patterns of Promotion Rates by Grade for Burkina Faso, Belgium and Honduras</td>
<td>19</td>
</tr>
<tr>
<td>Graph 3:</td>
<td>Patterns of Dropout Rates by Grade for Burkina Faso, Belgium and Honduras</td>
<td>20</td>
</tr>
</tbody>
</table>
Executive Summary

This paper examines five methods used to collect or estimate the information needed to monitor the flow of a cohort of students through a cycle of education. Two of these five methods -- the True Pupil Accounting System and the Cohort Coding System -- are not currently used in developing countries because they are expensive to establish, difficult to maintain and demanding in terms of needed qualified personnel. Of the remaining three methods, the simplest and easiest to use and implement is the Grade Ratio Model. This approach, however, is applicable only for countries where repetition is negligible or non-existent, which is not the case of most developing countries. This leaves us with only two viable options for estimating flow rates for countries where repetition is common. One is the Grade Transition Model, which provides accurate description of how students move through a cycle of education when reliable data are available on enrollment and repetition by grade. Because of its simplicity and low data requirement, this is the most widely used method. The second is the Age-Grade Model which is designed for use in cases where more data are not available on repetition, or where such data are very unreliable, and where more reliable data are available on enrollment by grade and by age. However, this method is more difficult to use than the Grade Transition Model because it requires the use of a much more comprehensive data set, necessitating the use of a computer.

Since flow rate estimates obtained using the Grade Transition Model are so dependent on reliable repetition data, the reliability of this information should be evaluated before using this method. If repetition rates are deemed reliable but accurate data are available on enrollment by age and grade, then the Age-Grade Method can be used to estimate transition rates. If age-grade data are not available, then transition rates may still be estimated using linear programming models based on enrollment by grade for a few consecutive years. Computation algorithms and programs are available for use on personal computers for some such models.
I. Introduction.

The goal of ensuring "universal access to, and completion of, primary education by the year 2000," adopted by all countries participating at the World Conference on Education for All (WCEFA) in March 1990, coupled with increasing budget constraints, have added new pressures for developing countries to improve the efficiency and effectiveness of their educational systems.

How much students learn and how many students drop out, repeat, or successfully complete a grade are all dependent upon policies that determine the amount of resources allocated to education, upon how efficiently these resources are used and what type of administrative regulations govern repetition and promotion. Inefficiencies in the system occur partly because there is insufficient information upon which to design and implement these policies, and because, even with good information, implementation is poor. Therefore, enhancing the efficiency and effectiveness of education in developing countries requires, among other things, strengthening their education sector management, policy analysis and planning capacities. A prerequisite to achieving this is building a management information system capable of providing reliable, relevant and timely information about how well the sector functions.

Among the type of information most frequently missing in developing countries is data on learning outcomes derived, for example, through achievement tests. Such information is crucial to the assessment of school effectiveness. Although few developing countries have so far set up systems for collecting such information, increasingly more countries recognize the need to evaluate how much students have learned as they move through the school system.

Whether or not information on learning outcomes are available, promotion repetition and dropout rates are the most widely used indicators to describe how many and how fast students progress through the school system. These flow rates are used to: (i) assess the magnitude of wastage (repetition and dropout) prevalent in a school system; (ii) evaluate the capacity of the system to admit new students; (iii) project future enrollment and the number of graduates who
will enter the subsequent cycle of education or will join the labor market; and (iv) estimate the cost of operating the system.

This paper presents five data collection strategies and methods designed to gather the information required to compute these flow rates and, more broadly, to monitor progress of students, either as individuals or as a group (cohort) through a cycle of education.

II. Strategies Used to Obtain Information About Students' Flow.

In student flow analyses, five concepts are used to describe the flow of students through the educational system. These are: (i) new admission to the first grade of a cycle of education; (ii) repetition in any grade; (iii) dropout from any grade; (iv) promotion from one grade to the next; and (v) graduation from the final grade. Some countries have established monitoring systems to directly collect information on each of these student flows. However, since these systems are usually expensive and difficult to maintain, most countries have opted to directly collect data on one or two of these flows and to combine this basic information with data on enrollment by grade to derive estimated values for the other flows.

There are five major strategies used to study how a cohort of students moves through a cycle of education. These are the: (a) True Pupil Accounting System; (b) Cohort Coding System; (c) Grade Transition Model; (d) Age-Grade Reconstructed Flow Model; and (e) Grade Ratio Model. These methods differ both in the way data are collected and in the number of flow events on which information is directly collected. Table 1 presents a summary of the differences.

1 Other flows exist, e.g. there may be new entrants to other grades than the first grade of the cycle; re-entrants to all grades by students who temporarily interrupt their schooling; and transfer between different sub-systems in the case where the data refers to one sub-system only (e.g. public schools). If any of these flows exist, it would naturally be desirable to treat them directly into account. However, collection of the required statistics is costly and the magnitudes of these other flows normally are too modest to warrant these additional costs.
between each of the methods in terms of which data flows are monitored using direct data collection procedures and which flows are monitored using estimates.

Table 1: Comparison of Strategies Used to Obtain Students' Flow data

<table>
<thead>
<tr>
<th>INFORMATION Collected</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Pupil Accounting System</td>
<td>A N E R P D G</td>
</tr>
<tr>
<td>Cohort Coding System</td>
<td>A E N R P D G</td>
</tr>
<tr>
<td>Grade Transition Model</td>
<td>E R G N P D</td>
</tr>
<tr>
<td>Age Grade Reconstructed Flow Model</td>
<td>A E N R P D</td>
</tr>
<tr>
<td>Grade Ratio Model</td>
<td>E D S</td>
</tr>
</tbody>
</table>

A=Age of students in each grade, N=New entrants, E=Enrollment, R=Repetition, P=Promotion, D=Dropout, G=Graduation, S=Survival between grades

Each of the strategies presented in Table 1 use different methodologies to collect information about how students progress through the system. If we were to arrange these strategies along a continuum, at one extreme would be a system where all information on student flow is based on data for individual students (the true pupil accounting system) and is compiled in the form of academic history for every student enrolled in the system. At the other extreme of the continuum we would find a system of data gathering which only collects annual data on stock of enrollment (the grade ratio model) which is subsequently used to estimate other student flow information. Unlike the True Pupil Accounting System, the other four methods cannot furnish information on individual students. Instead, they offer some indicators referring to the cohort\(^2\) as a whole.

Once the information on student flows, shown in Table 1, is collected, or estimated, policy makers and analysts can use it to assess how a cohort of pupils progress through a cycle of education and to derive various composite indicators characterizing this progress, e.g. what proportion of the cohort complete the

\(^2\) By "cohort" we understand all students entering Grade 1 for the first time during the same school year.
cycle, the magnitude of "wastage" in terms of repetition and dropout, and number of school years used per graduate.

A. The Individualized Data System (IDS) or The True Pupil Accounting System.

This system consist of a central register where individualized information on every student enrolled is kept. An academic history card is opened for every student when he/she is enrolled for the first time in a school. This card holds basic background information about the student such as age, sex, address, etc, and a detailed account of any changes in the student's academic status such as the grade in which she/he is enrolled, area of specialization, type of institution attended, etc.

On entering the educational system the student is assigned a reference number which is recorded on the student's card. This number is a unique code that the student carries throughout her/his career (Kendall 1968, UNESCO 1972). This system makes it possible not only to reconstruct the academic history of a cohort or any other group of students, but also of individual students. Therefore, it provides accurate measurement of promotion, repetition, dropout, survival, and graduation, thereby allowing the study of the impact of repetition and dropout on the overall efficiency of the educational system.

The main problems with IDS is that it is expensive and difficult to maintain, and demands thorough training of personnel in charge of data collection and of staff responsible for producing statistical reports and data analysis. Currently the system is only applied in a few small industrialized countries, and as a part of an overall individualized data system covering sectors other than education. This system was introduced on an experimental base in Honduras in the early 1980s but it was abandoned because it was too expensive and difficult to maintain. Because of its cost and complexity, the IDS system is not yet appropriate for most developing countries and will, therefore, not be discussed further in this paper.
B. The Cohort Coding System (CCS).

The Cohort Coding System (CCS) is a simplified version of the IDS. It is designed to provide information on how a cohort of students (rather than individual students as in the case of the IDS) moves through a cycle of education.

Using the Cohort Coding System, information about students is recorded on a cohort coding data collection form which is kept at the school. There may be two coding forms per school, one for girls and one for boys. In the case of a primary education system with six grades, it is recommended that the form contains 13 columns (Sammak 1981). The first column is used to record the student's name, the second the student's code. The next ten hold information about the grade in which the student is enrolled at the beginning of each academic year (i.e. first, second, third, etc), and the last column is used to record the date of graduation from the primary cycle.

The key to following the academic history of the students is the code that is assigned to each student upon first entering first grade. This code holds information about the student's year of entrance to school (two digits), the student's year of birth (two digits), and the region of the country where the student was first enrolled (two digits) (UNESCO 1980, Sammak 1981). All pupils born the same year and entering first grade of the cycle in the same school year and in the same region will have the same code. A student migrating to another region carries with her/him the original code. The school principal enters the student code in the school coding form and records the grade attended by the student under the appropriate column. Principals are also responsible for preparing a "summary yearly table of coding forms by cohort" containing information of enrollment by grade and cohort. For example, after two years of implementing the system, the summary form for female enrollment in region one would look like this:

3. This example was adapted from Sammak 1981, p.103. It is presented here to illustrate the complexity of the system both in terms of data collection as well as data processing, and to demonstrate the level of detailed information
Table 2: Summary Yearly Table of Coding Forms by Cohort

<table>
<thead>
<tr>
<th>Region</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Prev. Sch. Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>878101</td>
<td>375</td>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>878001</td>
<td>250</td>
<td>1,625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>877901</td>
<td>175</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>888201</td>
<td>5,250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>888101</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>888001</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 summarizes the enrollment in Grades 1 and 2 in academic year 1988/89. Column 2, for example, shows that 8800 students enrolled in Grade 1 in 1988/89. According to the codes on column 1, 800 of these 8800 students joined the system for the first time in 1987, i.e. they were repeating Grade 1 in 1988. These are the students who have a code beginning with the number "87" (i.e. 375 plus 250, plus 175). Of these 800 students, 375 were born in 1981, i.e. they are eight years old in 1988/89. These are the students with code 878101. Another 250 (code 878001) were born in 1980, which means that they are nine years old in 1988/89. And there are 175 students (code 877901) who were born in 1979, i.e. they are ten years old that academic year. The remaining enrollment in Grade 1 in 1988/89 are new entrants, i.e. 5,250 entering at the age of seven, 2,000 entering at the age of eight, and 750 entering at the age of nine.

The information derived from Table 2 can be tabulated and presented in a summary table as follows:

that it provides.
Table 3: Enrollment by Grade, Age, and Status for Female Students in 1983/89

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Age</th>
<th>New</th>
<th>Repeaters</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>5,250</td>
<td></td>
<td>5,250</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2,000</td>
<td>375</td>
<td>2,375</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>750</td>
<td>250</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 2</th>
<th>Age</th>
<th>Promotees</th>
<th>Repeaters</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>4,500</td>
<td>n/a</td>
<td>4,500</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1,625</td>
<td>n/a</td>
<td>1,625</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>375</td>
<td>n/a</td>
<td>375</td>
</tr>
</tbody>
</table>

If we knew that the enrollment in Grade 1 in the previous year was distributed in the following way:

Table 4: Enrollment in Grade 1: 1987/88

<table>
<thead>
<tr>
<th>Code</th>
<th>Grade 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>878101</td>
<td>5,000</td>
</tr>
<tr>
<td>878001</td>
<td>1,925</td>
</tr>
<tr>
<td>877901</td>
<td>625</td>
</tr>
</tbody>
</table>

and none of the students from region one moved to a different region in 1988/89, then the dropout by age between Grade 1 and 2 for the region can be easily estimated as the difference between enrollments that begin with code 87 in academic year 1987/88 (Table 4) and enrollments that start with the same code in 1988/89 (Table 2). In this example the dropout for age seven equals 125 students.

4. Because we are assuming that the CCS was established only two years ago the system is still unable to show repeaters in second grade. Therefore, the total enrollment by age presented in this table does not show the real number of students enrolled in second grade.
This number is estimated as the difference between the number of students enrolled in Grade 1 in 1987/88 with code 878101 (i.e. 5,000 students) minus the number of students enrolled with the same code (878101) in Grade 1 in 1988/89 (i.e. 375 students) minus the number of students enrolled with that code in Grade 2 in 1988/89 (i.e. 4,500 students). The summary for ages 7, 8, and 9 is presented in Table 5 below.

Table 5: Dropouts Between Grade 1 and 2

<table>
<thead>
<tr>
<th>Age</th>
<th>Dropout</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>125</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>75</td>
</tr>
</tbody>
</table>

If more regions were added and the previous example were extended over a longer period of time it would be very easy to see how the Cohort Coding System can be used to study the academic history of a cohort, as well as of any sub-cohort of students, such as the group of students who were born in a given year and entered first grade during the same school year, or a group of students from the same geographical area who were enrolled in first grade in the same academic year, etc.

The main difference between the Cohort Coding System (CCS) and the Individualized Data System is that the CCS can only be used to study the school history for groups of students who have been given a code, i.e., in the above example, students who entered at a given age, in a given year, or from a given geographical area. It cannot be used to study the academic history of individual students, and therefore cannot, for example, be used to study the behavior of first time repeaters and compare it to second time repeaters. Similarly, the CCS cannot distinguish between true repeaters and individual students who only interrupted their studies temporarily.

5. The age recorded in this column is the age that the students had in the previous academic year.
Although the Cohort Coding System is less resource demanding than the Individualized Data System, it still requires careful training and supervision and demands that school principals spend a great deal of time collecting the basic data and producing the summary reports needed at the national level. In addition to the needed human resource capacity, the CCS most likely requires a strong technological capacity. It is difficult to conceive a CCS reporting system operating without the support of computers.

C. The Grade Ratio Model (GRM) or The Apparent Cohort Model\(^6\).

The simplest model used to estimate the progression of a cohort through a cycle of education is the Grade Ratio Model (GRM). This model is based on data on enrollment by grade for consecutive years, and is only used when data on repeaters by grade is not available. (Fredriksen 1976, Thonstad 1976, Unesco 1972, 1980).

The basic relationship of the model is called the survival or progression rate, which is defined as the ratio of enrollment in a grade in a given year to the enrollment in the previous grade the year before:

\[
k_{g,t}^t = \frac{E_{g+1,t}}{E_g^t}
\]

where \(k_{g,t}^t\) is the survival ratio in school year \(t\) between Grades \(g\) and \(g+1\).

\(E_g^t\) is the enrollment in grade \(g\) in school year \(t\).

\(E_{g+1,t}^{t+1}\) is the enrollment in grade \(g+1\) in school year \(t+1\).

\(^6\) The Grade Ratio Model is presented before the Grade Transition Model to facilitate comparisons between the two models.
When this model is used for estimating the flow of a cohort through a cycle of education (as opposed to the projection of enrollment), it assumes that the decline in enrollment between two successive grades in two consecutive school years represents dropouts. The remainder is treated as promotees.

The main weakness of this method for analyzing student flows is that it disregards repetition. In cases where repetition is negligible or low the method will give good approximation of survival and dropout. In cases where repetition is not negligible, the magnitude of the error made depends on the level and pattern of repetition by grade. This will be illustrated below with data for Burkina Faso, Belgium and Honduras. These countries were selected because they all have a total repetition level of about 16% but, at the same time, they have very different grade specific repetition rates.

Table 6: Enrollment in Primary Education

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>61904</td>
<td>65106</td>
<td>132332</td>
<td>130847</td>
<td>236619</td>
<td>244643</td>
</tr>
<tr>
<td>Grade 2</td>
<td>51071</td>
<td>58546</td>
<td>122358</td>
<td>121944</td>
<td>144943</td>
<td>151062</td>
</tr>
<tr>
<td>Grade 3</td>
<td>42734</td>
<td>47268</td>
<td>121189</td>
<td>120143</td>
<td>111143</td>
<td>118481</td>
</tr>
<tr>
<td>Grade 4</td>
<td>33507</td>
<td>38411</td>
<td>124471</td>
<td>119391</td>
<td>86019</td>
<td>91423</td>
</tr>
<tr>
<td>Grade 5</td>
<td>27891</td>
<td>30323</td>
<td>129559</td>
<td>124166</td>
<td>68793</td>
<td>72280</td>
</tr>
<tr>
<td>Grade 6</td>
<td>33521</td>
<td>37078</td>
<td>128754</td>
<td>123031</td>
<td>56091</td>
<td>59013</td>
</tr>
<tr>
<td>Total</td>
<td>250628</td>
<td>276732</td>
<td>758663</td>
<td>739522</td>
<td>703608</td>
<td>736902</td>
</tr>
</tbody>
</table>

The survival rate between Grade 1 and 2 is computed as:

\[k_{1}^{82} = \frac{58546}{61904} = .946 \text{ for Burkina Faso} \]
\[k_{1}^{83} = \frac{121944}{132332} = .922 \text{ for Belgium} \]
\[k_{1}^{83} = \frac{151062}{236619} = .638 \text{ for Honduras} \]
The proportion of dropouts between Grade 1 and 2 is computed as:

\[d_1^{82} = \frac{61904 - 58546}{61904} \]

or

\[1 - k_1^{82} = .054 \] for Burkina Faso

\[d_1^{83} = \frac{132332 - 121944}{132332} \]

or

\[1 - k_1^{83} = .078 \] for Belgium

\[d_1^{83} = \frac{236619 - 151062}{236619} \]

or

\[1 - k_1^{83} = .362 \] for Honduras

Applying this approach for all grades gives the estimates for survival and dropout shown in Table 7 below.

<table>
<thead>
<tr>
<th>Grade</th>
<th>BURKINA FASO(*)</th>
<th>BELGIUM</th>
<th>BELGIUM</th>
<th>HONDURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survival Dropout</td>
<td>Survival Dropout</td>
<td>Survival Dropout</td>
<td></td>
</tr>
<tr>
<td>Grade 1-2</td>
<td>94.6% 5.4%</td>
<td>92.2% 7.8%</td>
<td>63.8% 36.2%</td>
<td></td>
</tr>
<tr>
<td>Grade 2-3</td>
<td>92.6% 7.4%</td>
<td>98.2% 1.8%</td>
<td>81.7% 18.3%</td>
<td></td>
</tr>
<tr>
<td>Grade 3-4</td>
<td>89.9% 10.1%</td>
<td>98.5% 1.5%</td>
<td>82.3% 17.7%</td>
<td></td>
</tr>
<tr>
<td>Grade 4-5</td>
<td>90.5% 9.5%</td>
<td>99.8% 0.2%</td>
<td>84.0% 16.0%</td>
<td></td>
</tr>
<tr>
<td>Grade 5-6</td>
<td>132.9% -32.9%</td>
<td>95.0% 5.0%</td>
<td>85.8% 14.2%</td>
<td></td>
</tr>
</tbody>
</table>

% Completing\(^7\) 94.7% 84.5% 30.9%

\(^7\) 1982

In comparison to the results for Honduras, Burkina Faso and Belgium show high survival rates across all grades. The Honduran case reveals a high proportion of dropouts which declines after Grade 1 but remains relatively high throughout the cycle.

\(^7\) The percent of students completing primary education was estimated by multiplying the survival rates of each grade. It is an estimate of the percent of students reaching Grade 6.
The main limitation of the Grade Ratio Model is that it assumes that students either dropout from the system or are promoted to a higher grade, therefore there is no place for repetition. This might be a true description of what happens in a system with automatic promotion and open access to secondary education, but is certainly not a realistic picture of what happens in most Third World countries. Model simplicity is obtained at the expense of excluding the parameters describing the internal efficiency of the school system.

This shortcoming of the GRM model is illustrated by the example of Burkina Faso where the survival rate between Grades 5 and 6 exceeds hundred percent (132.9%), yielding negative dropout (-32.9%). This results occurs because enrollment in Grade 6 in 1983 exceeded enrollment in Grade 5 in 1982 due to high levels of repetition in Grade 6. This situation is not uncommon in Third World countries, especially in Africa, where repetition in the last grade of primary education is very high because of high selectivity and/or limited capacity of the secondary cycle, which force enrollment in the last grade of the primary cycle to be higher than enrollment in the previous grade the year before.

The GRM method also yields negative estimates of dropout grades other than the final grade for countries such as Costa Rica in the 1970s and Egypt, where automatic promotion in one grade is followed by a grade with examinations and, therefore, with repetition. In these cases the higher of these two grades will almost invariably have more students enrolled than the lower grade the previous year. The GRM will yield a survival rate larger than 100 percent and, thus, a negative dropout rate.

The next section presents the Grade Transition Model and examines how these findings change when survival and dropout are estimated on the basis of a model that takes repetition explicitly into account. It also illustrates a common mistake made by some users of the Grade Ratio Model who treat the survival rate as the promotion rate and who consider the proportion of dropouts as equal to the dropout rate.
D. The Grade Transition Model or The Reconstructed Cohort Model

The Grade Transition Model (GTM) uses data on enrollment by grade for two consecutive years and data on repeaters by grade for the second of these two years to estimate new entrants to the first grade and promotion, repetition and dropout rates for all grades.

Figure 1 illustrates the basic assumptions of the Grade Transition Model and shows how the information on enrollment and repetition by grade is used to estimate new entrants, promotees and dropout.

Figure 1

Student Flow Between Grade 1 and Grade 2
from School Years t to t+1
Three assumptions govern the application of the GTM. The number of students enrolled in a given year in any grade consists of students repeating the grade and students who come from the previous grade with the status of promotees. The only exception to this rule is the first grade where new entrants replace promotees. The following equation illustrates this notion:

\[E_{g+1}^{t+1} = R_{g+1}^{t+1} + P_{g+1}^{t+1} \]

where

- \(E_{g+1}^{t+1} \) is the number of students enrolled in grade \(g+1 \) in school year \(t+1 \)
- \(R_{g+1}^{t+1} \) is the number of students enrolled as repeaters in grade \(g+1 \) in school year \(t+1 \)
- \(P_{g+1}^{t+1} \) is the number of students enrolled as promotees in grade \(g+1 \) in school year \(t+1 \)

Since educational systems using the GTM model gather data on enrollment and repetition, the only unknown in the previous equation is the number of promotees, which is estimated as the difference between enrollment and repeaters, i.e.

\[P_{g+1}^{t+1} = E_{g+1}^{t+1} - R_{g+1}^{t+1} \]

The second assumption is that students enrolled in a given grade in a given year will be enrolled, at the beginning of the following year, as either repeaters in the same grade or as promotees in the next grade, or will have dropped out before the start of the next school year. Thus, using the estimates of promotees derived above, together with the data on enrollment and repeaters, the dropout can be estimated according to the following equation:
where D_g^t is the number of students who drop from grade g between school years t and $t+1$.

Rearranging terms we get that dropout is equal to:

$$D_g^t = E_g^t - R_g^{t+1} - P_g^{t+1}$$

The data on enrollment and repeaters, plus the estimates of promotees and dropouts are used to estimate promotion, repetition, and dropout rates for grade g in year t according to the following formulae:

repetition: $$r_g^t = \frac{R_g^{t+1}}{E_g^t}$$

promotion: $$p_g^t = \frac{P_g^{t+1}}{E_g^t}$$

dropout: $$d_g^t = \frac{D_g^t}{E_g^t}$$

A third assumption of the Grade Transition Model is that the probability of repetition is the same for repeaters as for non repeaters. Although there is not much research on this topic in developing countries, evidence from the USA, Canada and Europe indicates that students repeating a grade have a higher chance of repeating in a subsequent grade and of dropping-out than non-repeaters (Holmes, 1989).

There are two extensions of the GTM that do not make the same assumption. One is the Age-Grade Transition Model. This model is based on the hypothesis that...
the transition rates are age dependent within each grade. For example, a seven year old in first grade will have a different probability of repeating, being promoted, or dropping out than will a ten year old. The second is the School-History Model which is based on the hypothesis that the transition rates in a grade depend on whether the student has repeated the previous grade, and her/his prior academic history (UNESCO 1980). The mechanics for computing the flow rates in these two versions of the GTM model are the same as in the original model, the only difference is that for each grade there are as many sets of flow rates as age groups or "historical" groups. These extensions of the GTM model are, therefore, much more data intensive than the original one.

The example below, using data from Honduras, illustrates how the GTM model can be used to estimate repetition, promotion, and dropout rates by grade.

Table 8: Enrollment and Repeaters in Primary Education

<table>
<thead>
<tr>
<th>Grade</th>
<th>BURKINA FASO</th>
<th>BELGIUM</th>
<th>HONDURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repeaters</td>
<td>Repeaters</td>
<td>Repeaters</td>
</tr>
<tr>
<td>Gr 1</td>
<td>61904 65106 8025</td>
<td>132332 130847 12537</td>
<td>236619 244643 64666</td>
</tr>
<tr>
<td>Gr 2</td>
<td>51071 58546 6745</td>
<td>122358 121944 17819</td>
<td>144943 151062 22952</td>
</tr>
<tr>
<td>Gr 3</td>
<td>42734 47268 6605</td>
<td>121189 120143 21421</td>
<td>111143 118481 13475</td>
</tr>
<tr>
<td>Gr 4</td>
<td>33507 38411 4943</td>
<td>124471 119391 24684</td>
<td>86019 91423 7579</td>
</tr>
<tr>
<td>Gr 5</td>
<td>27891 30323 4536</td>
<td>129559 124166 27989</td>
<td>68793 72280 4156</td>
</tr>
<tr>
<td>Gr 6</td>
<td>33521 37078 14838</td>
<td>128754 123031 26441</td>
<td>56091 59013 1104</td>
</tr>
</tbody>
</table>

The promotion rate for Honduras in Grade 1 is estimated as:

\[p_{1}^{83} = \frac{151062 - 22952}{236619} = .541 \]

The repetition rate for Honduras in Grade 1 is estimated as:

\[r_{1}^{83} = \frac{64666}{236619} = .273 \]
The dropout rate for Honduras in Grade 1 is estimated as:

\[d_1^{83} = 1 - p_1^{83} - r_1^{83} = 1 - .541 - .273 = .186 \]

The procedures for computing the flow rates for all other grades is the same as for Grade 1 except for Grade 6, where only the repetition rate can be estimated directly. The promotion rate in this grade is called the *graduation rate* and is estimated by using additional information on the number of students passing the final examination.

In contrast to the Grade Ratio Model, the Grade Transition Model gives direct estimates of new entrants to the first grade, calculated as the difference between repeaters and the total enrollment in this grade. In our example the number of new entrants into first grade, in 1984, is equal to:

\[N_1^{84} = 244643 - 64666 - 179977 \text{ for Honduras} \]

Although the three countries used in the example have almost the same overall level of repetition in primary education (18% in Burkina Faso, 17% in Belgium and 16% in Honduras) their patterns of repetition rates by grade are very different, as depicted in Graph 1. This illustrates how similar levels of overall repetition may hide quite wide differences in repetition by grade, and how poorly the indicator of total repetition describes a national system.
From Graph 1\(^8\) we can see that Burkina Faso has the highest repetition rate in Grade 6 (44.3\%) and that the difference between the highest and the lowest rate is 31.3 percentage points. We also observe that repetition levels remain almost unchanged for Burkina Faso between Grade 1 and 5 and that it jumps from 16.3\% to 44.3\% between Grade 5 and 6. In contrast, Honduras has the highest repetition rate in Grade 1 (27.3\%) and there is a steady decline in repetition to a 2\% level in Grade 6. The difference between the highest and the lowest rate in Honduras is 25.3 percentage points. Although repetition in Belgium increases from Grade 1 to 5 there is less difference in repetition across grades. As a matter of fact, the difference between the highest (21.6\% in Grade 5) and the lowest (9.5\% in Grade 1) repetition is only 11 percentage points\(^9\).

\(^8\) The actual rates are presented in Table 14 of Appendix II.

\(^9\) The high level of repetition in Belgium is quite atypical for industrialized countries.
Graph 2 shows that promotion rates follow a pattern very similar to repetition but with the reverse sign. Burkina Faso has the lowest promotion in Grade 6 (55.7%) and the highest in Grade 1 (83.7%). In this country, promotion levels remain almost unchanged between Grade 1 and Grade 5 but drastically decline by 24 percentage points between Grades 5 and 6. Almost the opposite is true for Honduras where promotion increases from Grade 1 (54.1%) to Grade 6 (98%) with two big jumps in between. The first big increase occurs between Grades 1 and 2 where promotion jumps by 18.3 percentage points, after Grade 2 promotion increases at a regular pace to jump again by 13.8 percentage points between Grades 5 and 6. Belgium has very similar promotion levels across all grades, and the difference between the highest (80.7% in Grade 2) and the lowest (74.6% in Grade 5) promotion rate is only 6.1 percentage points.

10 The actual rates are presented in Table 14 of Appendix II.
Another contrast between these countries is that of the patterns and levels of dropout. Graph 3 shows that, of the three countries, Honduras has the highest dropout in every grade and, although declining from Grade 1 to 5, it remains high throughout the cycle. Belgium has an unexpected high dropout rate in Grade 1 but dropout declines substantially in subsequent grades11. Burkina Faso has a low dropout level in Grade 1 but dropouts increase from Grade 2 to 4 and decline again in Grade 5.

To compare the results obtained using the Grade Ratio Model (GRM) with those derived using the Grade Transition Model (GTM) we calculated the difference in cohort survival12 and dropout levels between these two models. The results

11 This high level of dropout appears unlikely in a country with compulsory primary education and suggests errors in the statistics for enrollment in Grade 1.

12 The formula used to compute the survival rate with GTM data is: $p_e/(1-r_e)$. This concept and the computation steps are fully explained in a separate background paper prepared for the seminar for which the present report was prepared, see Fredriksen (1991).
are shown in Table 9. The first conclusion that we draw from this comparison is that it is almost impossible to predict the effect that not taking repetition into account (as implied by using the GRM) will have on the estimates of survival and dropout. For example, dropout levels are underestimated in Belgium in all grades but Grade 5, whereas they are overestimated in Honduras in all grades and in Burkina Faso in all grades except in Grade 5, where dropout is grossly underestimated by almost 37 percentage points. Furthermore, the difference in survival levels between grades for Belgium indicates that the GRM overestimates survival in all grades but Grade 5, but for Honduras it underestimates survival in all grades but Grade 5. Burkina Faso's survival rates are overestimated for three grades (Grades 2, 4, and 5), and underestimated for two grades (Grades 1 and 4). In Grade 5 the survival rate is overestimated by almost 38 percentage points.

The cumulative effect of overestimating cohort survival in Belgium and in Burkina Faso, especially in Grade 6, can be appreciated when comparing the number of students reaching Grade 6 suggested by the survival rates\(^\text{13}\). For example, the Grade Ratio Model overestimates the number of students reaching Grade 6 by 24.3 percentage points in Burkina Faso, and by 13.4 percentage points in Belgium; but underestimates the number of pupils reaching the last grade of the cycle by 11.9 percentage points in Honduras.

\(^{13}\) The percentage of students reaching Grade 6 is estimated by multiplying the survival rates for each grade.
Table 9: Difference Between Survival and Dropout as Estimates Using the GRM and the GTM percentage points)14

<table>
<thead>
<tr>
<th>Grade</th>
<th>BURKINA FASO</th>
<th>BELGIUM</th>
<th>HONDURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survival</td>
<td>Dropout</td>
<td>Survival</td>
</tr>
<tr>
<td></td>
<td>Grade 1-2</td>
<td>-1.6</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Grade 2-3</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Grade 3-4</td>
<td>-2.8</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Grade 4-5</td>
<td>0.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Grade 5-6</td>
<td>37.7</td>
<td>-36.9</td>
</tr>
<tr>
<td>% Completing</td>
<td>24.3</td>
<td>13.4</td>
<td>-11.9</td>
</tr>
</tbody>
</table>

The comparison also shows that the lower the repetition rate the closer will be the cohort survival and the dropout rates estimated by the two methods. In fact, in situations where repetition is equal to zero, which is what is expected to happen in countries that have automatic promotion, the flow rates estimated by the two the GRM and the GTM will be the same.

If repetition is equal to zero, then the promotion rate will be:

\[
\text{promotion: } p_{g}^{t} = \frac{E_{g}^{t+1}}{E_{g}^{t}} \quad \text{which is equal to } k_{g}^{t}
\]

and the dropout rate will be estimated as a residual, i.e.:

\[
d_{g}^{t} = 1 - p_{g}^{t} \quad \text{or} \quad 1 - k_{g}^{t}
\]

The main strength of the GTM model is its simplicity. All the necessary computations can be done with pencil and paper or, with a hand calculator. The main weakness of the model is that it relies too much on one single piece of flow data, namely repeaters, as reported by schools. Any problem that affects the quality of these data will also have an impact on the other estimates of students.

14 The differences presented in this table is the difference between the survival as estimated by the GRM and presented in Table 7 minus the survival as estimated by the GTM. These estimates are presented in Table 15 in Appendix II.
flow, i.e. promotion and dropout. The impact of some common errors in data on the estimation of the flow rates has been discussed in Fredriksen 1991. One method designed to deal with under-estimation of repetition, a problem particularly relevant in some countries, is presented in the following section.

E. The Age-Grade Reconstructed Flow Method.

Several analyses of educational and demographic statistics of Latin American countries have shown that while schools tend to accurately report enrollment by grade and age, there is a substantial under-reporting of repetition (Schiefelbein 1981, 1989). This under-reporting is largest in the first grade.

The implication of this finding is that, in these countries, the Grade Transition Model yields biased estimates of repetition, promotion, dropout and intake rates. Therefore, there is a need for an alternative method for estimating transition rates that is not based on information about repeaters. Schiefelbein (1981 and 1985) has proposed a method which does not rely on data on repeaters but uses one piece of information that schools in Latin America report more accurately, i.e. the age distribution of students enrolled in each grade. This method is called the Age-Grade Reconstructed Flow Method (Schiefelbein and Grossi 1981).

The Age-Grade Reconstructed Flow Method uses data on enrollment by age and grade for two consecutive years to estimate promotion, repetition and dropout rates by grade. The basic idea behind this method is that the enrollment by age and grade of any single academic year is related to the enrollment of the following year by a set of implicit promotion, repetition, and dropout rates. These rates can be identified using data on enrollment by age and grade for two consecutive years and two informed guesses, or unrestricted assumptions. One informed guess concerns the percentage of students repeating the last grade and the second the percentage of non-promoted students who drop out from each grade.
The role of these informed guesses will become clearer in the following paragraphs which present a more detailed explanation of this method.

The method starts by reorganizing the enrollment for two consecutive years into a series of matrices of enrollment by age and grade similar to Table 10. This table shows in the second column the enrollment of students aged 11 years in 1983 and, in the last column, the enrollment of the same group one year later (1984) when they were 12 years old.

Table 10: Example of a Computation Matrix Used by the Age Grade Reconstructed Flow Method

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10132</td>
<td>0</td>
<td>7823</td>
<td>6724</td>
<td>1099</td>
<td>0</td>
<td>6724</td>
</tr>
<tr>
<td>2</td>
<td>14753</td>
<td>2309</td>
<td>7849</td>
<td>7692</td>
<td>157</td>
<td>0</td>
<td>10001</td>
</tr>
<tr>
<td>3</td>
<td>18225</td>
<td>6904</td>
<td>6911</td>
<td>6773</td>
<td>138</td>
<td>0</td>
<td>13677</td>
</tr>
<tr>
<td>4</td>
<td>19136</td>
<td>11314</td>
<td>4688</td>
<td>4594</td>
<td>94</td>
<td>0</td>
<td>15908</td>
</tr>
<tr>
<td>5</td>
<td>16997</td>
<td>14448</td>
<td>1998</td>
<td>1958</td>
<td>40</td>
<td>0</td>
<td>16406</td>
</tr>
<tr>
<td>6</td>
<td>9333</td>
<td>14999</td>
<td>187</td>
<td></td>
<td></td>
<td>0</td>
<td>15186</td>
</tr>
</tbody>
</table>

To fill in the rest of the columns in the table the method starts by computing the number of repeaters in the highest grade of the second year. The repeaters in sixth grade in 1984 must come from the eleven year old students who were enrolled in the same grade in 1983. This number is estimated by making an assumption or an informed guess about the proportion of students in sixth grade in 1983 who are enrolled as repeaters in the same grade in 1984. In this example we used as an informed guess the repetition rate for Grade 6 as estimated using official data on the total number of students repeating that grade (two percent). The repeaters (i.e. $9333 \times 0.02 = 187$) are then subtracted from the 1984 sixth

15 A full presentation of each of the formulas and procedures involved in the estimation of promotion, repetition and dropout using this method is introduced in Appendix I.

16 The total number of matrices will equal the number of age groups for which enrollment is reported minus one. That is, if enrollment is reported for ages six to twenty one, then fifteen computation matrices are required.
grade enrollment to get the number of students who were promoted from Grade 5 in 1983 (15186-187 - 14999). Next, the number of non-promoted students from Grade 5 in 1983 is calculated as the difference between the enrollment in that grade and the number of students who were promoted to sixth grade in 1984 (16997-14999 = 1998). Next, the estimated number of non-promoted students is split between repeaters and dropouts. To split this group a second assumption is made about the proportion of the non-promoted who dropout from school17. In this example we assumed that two percent of the non-promoted will not be enrolled next year (1998*0.02 = 40). Finally, the rest of the non-promoted are considered repeaters (1998-40 = 1958) which are then used to estimate the students promoted from fourth grade. The computations then proceed grade by grade estimating non-promoted students, dropouts, repeaters, and promoted until reaching the first grade.

It is possible to find cases where the enrollment in a grade in the second of two consecutive years (let us say Grade 6 in 1984) will be higher than the enrollment in the previous grade the year before (Grade 5 in 1983) plus the repeaters in that grade (Grade 6 in 1984). Since Grade 5 in 1983 defines the maximum number of students who could be promoted to Grade 6 in 1984 there is a need to find out where the additional number of students found in sixth grade in 1984 come from. This is done by introducing the possibility of new students entering to the grade. The new-entrants to any grade are estimated as the difference between enrollment in the specific grade minus promotees from the previous grade, minus student repeating that grade. In grades above Grade 1, the new-entrants will be either international immigrants or children reentering the system after a period of absenteeism.

Although the Age-Grade Reconstructed Flow method is less resource demanding than the CCS or the IDS, it requires more detailed data than does the Grade

17. In 1986 a research team from the Harvard Institute for International Development carried out more than thirty experimental applications of this method to estimate transition rates in six Central American countries. Their work showed that because repetition is low in Grade 6, the final estimates of the flow rates are not very sensitive to informed guesses about the proportion of dropouts or the proportion of students who repeat the highest grade (Cuadra 1987).
Transition Model. Age data might not seem very difficult to collect but a review of the UNESCO Statistical Year Book shows that this kind of information is available for relative few countries. This is partly because for schools to report enrollment by grade cross-classified by age considerably increases the work involved in completing and processing the annual school census. Furthermore, in some regions (e.g. Africa) the information on age of students is very unreliable. Finally, even in cases where reliable data on enrollment by grade and age are available (e.g., in Latin America), a real problem with this method is that it requires many calculations which are cumbersome without the assistance of a computer. However, given that personal computers are now available, and contemplating the very considerable magnitude of errors in the data on repeaters in many countries, it is highly desirable to use the age-grade data to compute alternative estimates of flow rates in cases where the age-grade data are considered more reliable than those available on repetition.

An application of the Age-Grade Reconstructed Flow method to the 1983 and 1984 enrollment in primary school in Honduras produced the transition rates presented in Table 11:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Promotion GTM</th>
<th>Promotion AGE-GR</th>
<th>Repetition GTM</th>
<th>Repetition AGE-GR</th>
<th>Dropout GTM</th>
<th>Dropout AGE-GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54.1%</td>
<td>42.5%</td>
<td>27.3%</td>
<td>51.7%</td>
<td>18.6%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Grade 2</td>
<td>72.4%</td>
<td>58.9%</td>
<td>15.8%</td>
<td>34.6%</td>
<td>11.8%</td>
<td>6.5%</td>
</tr>
<tr>
<td>Grade 3</td>
<td>75.4%</td>
<td>65.2%</td>
<td>12.1%</td>
<td>27.2%</td>
<td>12.5%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Grade 4</td>
<td>79.2%</td>
<td>71.9%</td>
<td>8.8%</td>
<td>22.0%</td>
<td>12.0%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Grade 5</td>
<td>84.2%</td>
<td>81.4%</td>
<td>6.0%</td>
<td>15.2%</td>
<td>9.8%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Grade 6</td>
<td>98.0%</td>
<td>98.0%</td>
<td>2.0%</td>
<td>2.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

What Table 11 shows is how the estimates obtained using the GTM are dramatically different from the estimates derived using the Age-Grade Model in Honduras. On the one hand, the repetition rates estimated using the Age-Grade Reconstructed Flow Method are generally twice the size of those estimated using
the Grade Transition Model, which is a very significant difference for repetition rates of the magnitude found in Honduras. On the other hand, the promotion and dropout rates are much lower in the Age-Grade Model.

The consequences of having such different estimates of repetition and promotion rates can be assessed by examining the impact of these rates on the survival of a cohort of students. Table 12 shows that the Grade Transition Model systematically under-estimates the capacity of the system to retain students due to the combined effect of underestimating repetition and overestimating dropouts. This combined effect becomes particularly striking when we compare the percentage of student who complete up to Grade 6, i.e. 43.7% according to the GTM, as compared to 62.8% for the Age Grade Model.

<table>
<thead>
<tr>
<th>Survival Rates</th>
<th>Difference (percentage points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1-2</td>
<td>76.2% 38.0%</td>
</tr>
<tr>
<td>Grade 2-3</td>
<td>86.0% 90.1%</td>
</tr>
<tr>
<td>Grade 3-4</td>
<td>85.8% 89.6%</td>
</tr>
<tr>
<td>Grade 4-5</td>
<td>86.8% 92.1%</td>
</tr>
<tr>
<td>Grade 5-6</td>
<td>89.6% 96.0%</td>
</tr>
<tr>
<td>% Completing</td>
<td>43.7% 62.8%</td>
</tr>
</tbody>
</table>

Obviously, such major differences in the estimates would affect the relative priority given in an eventual Bank project to address repetition and dropout. The Grade Transition Model suggest that Honduras has problems with retaining students in schools since only 43.7% complete up to Grade 6. This low percentage is strongly influenced by the estimated low cohort survival between Grade 1 and 2. Contrary to this picture, the Age-Grade Model suggest that 62.8% students complete up to Grade 6. While still low, this indicates that dropout is less of a problem than suggested by the GTM, and that repetition is a much more serious problem than what is indicated by the data available on repetition.
These findings have important implications for project preparation and for monitoring the progress of educational systems. On the one hand, using the Age-Grade estimates of repetition rates suggest that the system spends almost 52% more student-years in educating a cohort of student than what is estimated when using the GTM figures. This happens because, due to higher repetition and lower dropout rates estimated by the Age-Grade Model, it is predicted that more students will remain in the system and eventually graduate and, at the same time, that they will stay longer on average in the system than what is predicted by the GTM. As a matter of fact, according to the Age-Grade Model, the system graduates almost 50% more students (62.8%) than what the official repetition figures suggest (42%), and the average duration of study is almost 7 years and not 4.5 years as estimated when using the GTM figures. On the other hand, the combined effect of a higher level of total expenditures (i.e. student-years) with a higher number of graduates only translates in a 2.5% increase in the cost per graduate.

The 1983-84 results presented in Table 12 are consistent with results for other years in Honduras. A comparison between the repetition rates for the first grade during six consecutive years estimated using the Grade Transition Model with the same rates estimated using the Age-Grade Model shows that both models give very consistent results over time, yet the latter model invariably estimates repetition rates that are about twice the size of those derived from using the GTM.

18 The number of student-years estimated using the flow rates estimated by the Age-Grade Reconstructed Flow Model is equal to 6827 as compared to 4500 obtained when using the flow rates produced by the GTM.
Table 13: Comparison of Estimates of Repetition Rates in the First Grade for Honduras: 1978-1983

<table>
<thead>
<tr>
<th>Year</th>
<th>Grade Transition Model</th>
<th>Age-Grade Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>27.3%</td>
<td>51.8%</td>
</tr>
<tr>
<td>1979</td>
<td>26.7%</td>
<td>54.1%</td>
</tr>
<tr>
<td>1980</td>
<td>26.1%</td>
<td>57.6%</td>
</tr>
<tr>
<td>1981</td>
<td>28.0%</td>
<td>50.1%</td>
</tr>
<tr>
<td>1982</td>
<td>27.3%</td>
<td>50.7%</td>
</tr>
<tr>
<td>1983</td>
<td>27.3%</td>
<td>51.7%</td>
</tr>
</tbody>
</table>

The question is: Which model yields rates that best represent what actually happens in primary education in Honduras? Indirect evidence from Honduras and other Central American countries suggest that, in the case of these countries, the Age-Grade Model gives more accurate estimates of transition rates than the GTM. This evidence has been empirically verified in the case of Honduras through a school sample survey conducted in 1987. This survey concluded that in Honduras the information that schools send to the Ministry of Education regarding enrollment by grade and age is fairly accurate. The information about the status of students (i.e. repeater or promotee), however, is not so accurate and tend to underreport repetition, especially in lower grades. The under-reporting of repetition is higher for students attending first grade for the first time than for students who had repeated before.

III. Conclusions.

This paper examines five methods used to collect or estimate the information needed to monitor the flow of a cohort of students through a cycle of education. Two of these five methods -- the True Pupil Accounting System and the Cohort Coding System -- are not currently used in developing countries because they are too expensive to establish, difficult to maintain and too demanding in terms of needed qualified personnel. Of the remaining three methods, the simplest and easiest to use and implement is the Grade Ratio Model. This approach, however, is applicable only for countries where repetition is negligible or not

19 For more information about this research see Cuadra (1989).
existant, which is not the case of most developing countries. This leaves us with only two viable options to estimate flow rates in cases where repetition is common. One is the Grade Transition Model, which provides accurate description of how students move through a cycle of education in cases where reliable data are available on enrollment and repetition by grade. Because of its simplicity and low data requirement, this is the most widely used method. The second is the Age-Grade Model which is designed for use in cases where data are not available on repetition, or where such data are very unreliable, and where reliable data are available on enrollment by grade and by age. However, this method is more difficult to use than the Grade Transition Model because it demands much more data and requires the use of a computer.

Given that flow rate estimates obtained using the Grade Transition Model are so dependent on reliable repetition data, the reliability of this information should be evaluated before using this method. There are some crude techniques which, based on data already available in most ministries of education, can be used for this purpose. One of these consists of estimating the difference between the gross and the net enrollment ratios and to use this difference as a gross indicator of the overall level of repetition for the country. Note, however, that this is a crude indicator of overall repetition that should not be used in countries where late entrance is common. However, in countries where many students enter late, this indicator will overstate repetition because all overage students will be counted as repeaters. The problem is further complicated if dropout is related to repetition. For example, if the propensity to drop out is higher among repeaters than among non-repeaters, the difference between gross and net enrollment ratios will, other things equal, tend to under-estimate repetition.

Another technique to assess the reliability of repetition data in countries with high admission rates is to estimate the apparent intake rate\(^{20}\) for a period of approximately 10 years and to use this estimate to assess the quality of the reported repetition data for Grade 1. As a general rule, if the value of this

\(^{20}\) The apparent intake rate is the ratio of new-entrants to the number of children in the admission age group.
rate remains above, say, 110% during most of this period and there are good reasons to believe that the enrollment and population estimates are reliable, then there is a strong indication that repetition in Grade 1 is under-reported.

If repetition rates are deemed unreliable while accurate data are available on enrollment by age and grade, then the Age-Grade Method can be used to estimate transition rates. If age-grade data are not available, there is still the possibility of estimating transition rates using linear programming models which in many cases only require data on enrollment by grade for a few consecutive years. Computation algorithms and programs for use on personal computers are available for some such models21. These programs are not only user friendly but also require minimum knowledge of the principles governing linear programming. Notwithstanding these qualities, these linear programming software are still not extensively used in educational planning either because they are in their developing stages and have not been disseminated well, or because educational planners do not feel comfortable using models where the computation algorithms do not seem fully transparent. While the quality of repetition data remains poor, these models are a very good and inexpensive instrument for estimating transition rates.

APPENDIX I

Formal Description of the Age-Grade Reconstructed Flow Method

The computations described above can be represented by the following set of mathematical relationships:

$$r_{(6)} = r_{(6)} * E_{(6,t-1,a-1)}$$

where \(r_{(6)} \) is an assumed value.

Then we calculate the total number of students promoted from grades 5 to 6 as follows:

we first check if \(E_{(5,t-1,a-1)} + R_{(6,t,a)} \geq E_{(6,t,a)} \), if this is true then:

\[
P_{(6,t,a)} = E_{(6,t,a)} - R_{(6,t,a)} \quad \text{otherwise},
\]

\[
P_{(6,t,a)} = E_{(5,t-1,a-1)}
\]

Now, if \(E_{(5,t-1,a-1)} + R_{(6,t,a)} < E_{(6,t,a)} \), then we need to compute the number of new entrants into sixth grade, which will be equal to:

\[
N_{(6,t,a)} = E_{(6,t,a)} - P_{(6,t,a)} - R_{(6,t,a)}
\]

Then we calculate the number of non-promoted from the earlier grade in the previous year as the difference between the enrollment and promotees. This is represented as:

\[
NP_{(6-1,t-1,a-1)} = E_{(6-1,t-1,a-1)} - P_{(6,t,a)}
\]

22. These relationships are described in Schiefelbein and Grossi (1985) and Crouch (1988).
To calculate the number of repeaters we check if:

\[NP_{(g-1,t-1,a-1)} \leq E_{(g-1,t,a)} \quad \text{if this is not the case} \]

then the repeaters are set to:

\[R_{(g-1,t-1,a-1)} = E_{(g-1,t,a)} \quad \text{if this is the case then we} \]

must first compute the dropout rate which is estimated as a fixed proportion of the non-promoted. This proportion is an assumed value which is set at the same level for all the grade. This is represented as:

\[D_{(g-1,t-1,a-1)} = pd \times NP_{(g-1,t-1,a-1)} \quad \text{where pd is a constant with a value less than one.} \]

When \(NP_{(g-1,t-1,a-1)} \leq E_{(g-1,t,a)} \), then the total number of repeaters is computed as a residual in the following way:

\[R_{(g-1,t-1,a-1)} = 1 - D_{(g-1,t-1,a-1)} \]

The number of repeaters calculated in this way is then used to compute the number of students promoted from the previous grade in the same manner as it was done for the sixth grade, then, the number of new entrants and non-promoted are thus calculated following the same rule. The iteration continues up until the first grade.

Grade 1 is the last grade in the series of iterations. Therefore this grade cannot have promotees from a previous grade. In fact, the promotees to this grade are new-entrants to the grade. To calculate the new-entrants in Grade 1 the method operates as follows:
we must first check if \(R_{(1,t,a)} \leq E_{(1,t,a)} \) If this is true then:
\[
N_{(1,t,a)} = E_{(1,t,a)} - R_{(1,t,a)} \quad \text{otherwise,}
\]
\[
N_{(1,t,a)} = 0
\]

APPENDIX II

Table 14: Promotion, Repetition and Dropout Rates in 1983 Estimated Using the Grade Transition Model

<table>
<thead>
<tr>
<th>Grade</th>
<th>BURKINA FASO(*)</th>
<th>BELGIUM</th>
<th>HONDURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prom</td>
<td>Rep</td>
<td>Drop</td>
</tr>
<tr>
<td>Gr 1</td>
<td>83.7%</td>
<td>13.0%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Gr 2</td>
<td>79.6%</td>
<td>13.2%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Gr 3</td>
<td>78.3%</td>
<td>15.5%</td>
<td>6.2%</td>
</tr>
<tr>
<td>Gr 4</td>
<td>77.0%</td>
<td>14.8%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Gr 5</td>
<td>79.7%</td>
<td>16.3%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Gr 6</td>
<td>55.7%</td>
<td>44.3%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

(*) 1982

Table 15: Cohort Survival in 1983 as Estimated Using the Grade Transition Model

<table>
<thead>
<tr>
<th>Grade</th>
<th>COHORT SURVIVAL RATES</th>
<th>BURKINA FASO(*)</th>
<th>BELGIUM</th>
<th>HONDURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prom</td>
<td>Rep</td>
<td>Drop</td>
</tr>
<tr>
<td>Grade 1-2</td>
<td>96.1%</td>
<td>86.9%</td>
<td>74.5%</td>
<td></td>
</tr>
<tr>
<td>Grade 2-3</td>
<td>91.7%</td>
<td>94.4%</td>
<td>86.1%</td>
<td></td>
</tr>
<tr>
<td>Grade 3-4</td>
<td>92.6%</td>
<td>94.9%</td>
<td>85.8%</td>
<td></td>
</tr>
<tr>
<td>Grade 4-5</td>
<td>90.3%</td>
<td>96.4%</td>
<td>86.8%</td>
<td></td>
</tr>
<tr>
<td>Grade 5-6</td>
<td>95.2%</td>
<td>95.1%</td>
<td>89.6%</td>
<td></td>
</tr>
<tr>
<td>% Graduating</td>
<td>70.4%</td>
<td>71.1%</td>
<td>42.8%</td>
<td></td>
</tr>
</tbody>
</table>

(*) 1982
REFERENCES

