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Abstract
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names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper investigates factors behind the growth of carbon 
dioxide emissions over the 35 years between 1980 and 
2015 in more than 100 countries, using an index decom-
position technique (the Logarithmic Mean Divisia Index). 
The results are further confirmed using an econometric 
technique (the general method of moments). The study 
finds that economic growth, measurred in per capita gross 
domestic product, and population growth are the main 
drivers of the growth of carbon dioxide emissions during 
1980–2015. Although economic growth is mainly respon-
sible for the growth of emissions in high-, upper-middle-, 
and lower-middle-income countries, population growth 

that is primarily responsilble for it in low-income coun-
tries. More than 70 percent of the global growth in carbon 
dioxide emissions over the past 35 years was contributed 
by upper-middle-income countries. Improved energy effi-
ciency, reflected in the declining energy intensity of gross 
domestic product, has substantially contributed to limit 
global carbon dioxide emissions at the current level; oth-
erwise, the world’s current carbon dioxide emissions would 
have been 40 percent higher. Despite the recent rapid expan-
sion of renewable energy, its contribution to slowing the 
growth of global carbon dioxide emissions is not noticeable 
yet, due to its small share in the global energy supply mix. 
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Are Driving Forces of CO2 Emissions Different across Countries? Insights from 

Identity and Econometric Analyses 

1. Introduction 

Over the past several decades, CO2 emissions have been increasing steadily in most 

countries around the world along with economic growth, population growth, 

industrialization and urbanization. At the global level (Fig. 1), the annual energy 

consumption and CO2 emissions have been increasing by, respectively 2.0% and 

1.7%, on average, over the 35 years during the 1980-2015 period. During the same 

period, the world economy has been growing at the rate of 2.9% and population is 

growing at the rate of 1.5%, on average, annually [1]. 

In this paper, we investigate the driving forces behind the rapid growth of CO2, 

emissions in more than 100 countries for the 35 years during the 1980-2015 period. We 

also analyze how the roles of the driving factors change in different groups of countries 

differentiated by their income. 

 

Fig. 1. Trends of global CO2 emissions, energy consumption, GDP and population (1980-2015) 

Data source: [1, 2]. Note: the value of each item in 1980 is equal to 100. 
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Two different approaches are found to be used in the literature to determine the 

causes of CO2, growth. Broadly, these approaches can be classified into two groups: 

identity approach and econometric approach. The first decomposes the independent 

variables to calculate their relative roles in driving the emission growth; it is also called 

index decomposition analysis, pioneered by Professor B.W. Ang of Singapore National 

University [3]. The second uses the standard econometric approach to check the 

causality between the dependent and independent variables. 

Within the decomposition or identity approach, there are several specific 

techniques, of which the Logarithmic Mean Divisia Index (LMDI) method introduced 

by Ang and Zhang in 2000 [4] has been widely used. The popularity of this technique 

has increased due to its ability to handle cases with zero values without leaving residuals, 

consistency in aggregation, and path independency [5-9]. Since the 2000s, a growing 

body of studies has employed the LMDI approach to identify the factors impacting 

CO2 at the country and regional levels (see Table A1). For instance, at the regional level, 

González et al. [10] decompose CO2 in the European Union (EU) from 2000 to 2010 

into five factors. Other scholars investigated CO2 at the country level (Hatzigeorgiou et 

al. [11] for Greece, Tunç et al. [12] for Turkey, Oh et al. [13] for the Republic of Korea, 

de Freitas and Kaneko [14] for Brazil, O’Mahony et al. [15] for Ireland, Zhang et al. 

[16] for China, Feng et al. [17] for the United States, and Mousavi et al. [18] for the 

Islamic Republic of Iran, among others). 

On the econometric side, various methods are employed where the focus of these 

studies is usually the relation between CO2 and income and carried out at the national, 

regional and global levels. At the national level, Bento and Moutinho [19] explore the 

linkage between renewables energy adoption and CO2 emissions in Italy using Toda-

Yamamoto causality tests. Similar studies have been conducted by Bélaïd and Youssef 

[20] for Algeria and Danish et al. [21] for Pakistan. At the regional level, Dong et al. 

[22, 23] use the VECM panel Granger causality method to estimate how expansion of 

renewable energy consumption would reduce CO2 emissions in the BRICS countries 
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(i.e., Brazil, Russia Federation, India, China, and South Africa). Other similar regional 

studies include Dogan and Seker [24] and Jebli et al. [25]. 

The added value of this paper is to complement the analysis using the LMDI 

approach with the econometric approach -- the generalized method of moments so that 

results derived from the former technique can be validated or strengthened with the 

latter thereby enhancing the robustness of the findings. Unlike many existing studies 

that determine the drivers of CO2 growth at the national or regional level, this study 

considers a global analysis using data from 100 plus countries.3 The data span (1980-

2015) considered in this study is much longer as compared to other existing literature. 

The remainder of this paper is structured as follows. Section 2 outlines the 

methodology and data used. Section 3 discusses the results from the decomposition 

analysis. Section 4 discusses the results from the econometric analysis. Section 5 

conducts a comparison of the results between the two approaches: statistical vs. 

numerical. Section 6 offers policy discussion and concluding remarks. 

 

2. Methodology and data 

Let us define global CO2 emissions from energy consumption in a country for a given 

year with the following identity: 

ij ij i i
ij i

i j i j ij i i i

C E E GDP
C C P

E E GDP P
                          (1) 

where C   denotes the global CO2 emissions; ijC   represents the amount of CO2 

emissions of energy type j  in country i ; ijE  stands for the energy consumption by 

energy type j  consumed in country i ; iE , iGDP , and iP  refer to the total primary 

                                                 
3 Two other global studies include Wang et al. [26] and Bacon et al. [27]. However, their period of analysis is 

much shorter than the one used in this paper. 

[26] Wang S, Li G, Fang C. Urbanization, economic growth, energy consumption, and CO2 emissions: 

Empirical evidence from countries with different income levels. Renew Sust Energ Rev. 2017. 

[27] Bacon RW, Bhattacharya S, Damania R, Kojima M, Lvovsky K. Growth and CO2 emissions: how do 

different countries fare. Environment Department Papers. 2007;113. 
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energy consumption, GDP, and total population in country i , respectively. 

Eq. (1) can then be written as follows:  

ij ij i i i
i j

C EC ECS EI PCG P                         (2) 

where ij ij ijEC C E  denotes the emission coefficient of fossil fuel j  in country i ; 

=ij ij iECS E E  denotes the energy mix of fossil fuel j  in country i ; =i i iEI E GDP  is 

the energy intensity in country i ; and iPCG  and iP  are the per capita GDP and total 

population of country i , respectively. 

Below we first present the identity approach -- LMDI methodology-- (Section 2.1) 

followed by the econometric approach - General Method of Moments (GMM) in 

Section 2.2. The fundamental difference between these techniques is that the LMDI 

approach assumes that relationship between the independent and dependent variables 

already exists, it only measures the relative importance of each independent variable to 

influence the change in the dependent variable. On the other hand, the econometric 

approach does not assume the relationship between the independent and dependent 

variables, instead it investigates if such relationship exists or it estimates the causal 

links between CO2 emissions and their potential determinants. Since the LMDI is the 

outcome of a numerical analysis, it does not account for variability and uncertainty. 

LMDI does not account for all data points, as it only includes the start and ending points, 

which may result in biased estimates. If the data exhibit good accuracy, averaging 

across all countries should account for lack of precision in the estimates. However, if 

the data exhibit lack of precision, then the LMDI estimates yield biased results. And 

LMDI does not account for some factors due to its limitation in specification (e.g., 

LMDI cannot accommodate the quadratic term of GDP). 

GMM is a statistical method that weighs observations using a measure of precision 

and controls country- and time-specific effects. Thus, it provides a more robust analysis 

of the causal links between CO2 emissions and their determinants. 

Another key difference between LMDI and GMM especially in the global analysis 
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is that LMDI counts the weight of an individual country in the global effects. Meaning 

that the global change in CO2 is largely influenced by big countries such as China and 

the United States (see the    
0

0

0

-
,

ln

t
ij ijt

ij ij t
ij ij

C C
L C C

C C
 component in Equations 4 to 8). This 

causes the results to be biased towards larger countries and effects of driving factors 

from small countries do not show up. For example, if the energy intensity of GDP in 

many countries is improving significantly, but decreasing in the large countries, the 

improvements in many countries will be overshadowed by deteriorations in the 

aggregate or the global result. The GMM method, on the other hand, corrects this bias 

by putting an equal weight on each country for a given driver. The results under the 

GMM are more representative of all countries instead of large countries only. Therefore, 

complementing LMDI analysis with GMM brings additional insights in the analysis. 

2.1. The LMDI decomposition method 

Using the LMDI decomposition technique, the following relationship can be derived 

from Eq. (2):  

0t EC ECS EI PCG PC C C C C C C C                         (3) 

where superscripts t   and 0  denote the final year and benchmark year; and ECC  , 

ECSC , EIC , PCGC , and PC  refer to emission coefficient effect, energy mix effect, 

energy intensity effect, income effect, and population growth effect, respectively. The 

five effects can be deduced as follows: 

   0 0, lnt t
EC ij ij ij ij

i j

C L C C EC EC                        (4) 

   0 0, lnt t
ECS ij ij ij ij

i j

C L C C ECS ECS                     (5) 

   0 0, lnt t
EI ij ij i i

i j

C L C C EI EI                         (6) 

   0 0, lnt t
PCG ij ij i i

i j

C L C C PCG PCG                     (7) 

   0 0, lnt t
P ij ij i i

i j

C L C C P P                           (8) 

where    
0

0

0

-
,

ln

t
ij ijt

ij ij t
ij ij

C C
L C C

C C
 , and subscripts i  and j  are energy and country types, 
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respectively. 

2.2. Econometric methodology 

For the GMM approach, we convert Eq. 2 to the relationship expressed in Eq. 9. In 

addition, we added one more factor, square of GDP per capita to investigate if the 

environmental Kuznets curve (EKC) ([28] & [29]) occurs. Note in Eq. 9 that we 

assumed a log-log relation between CO2 emissions and the driving factors. 

2
2 0 1 2 3 4 5 6ln ln ln ln ln ln lnit it it it it it it itCO EC ECS EI PCG PCG P                 (9) 

where subscripts i   and t   denote country and year, respectively; 1 6-    are the 

parameters to be estimated; 2CO  represents the amount of CO2 emissions (measured in 

million tonnes, Mt); EC  indicates the emission coefficient (measured in tonnes/toe); 

ECS   denotes energy mix (measured in the share of dirty fossil fuels (i.e., coal and 

petroleum) in total final energy consumption, %); EI   describes energy intensity 

(measured in tonnes/10,000 US$); PCG  ( 2P C G ) stands for per capita GDP (squared) 

(measured in 1,000 US$); P   is population size (measured in billions); 0   is a 

constant term; and   is a random error term. 

The dynamic relationship between 2CO  and its determinants suggests one should 

use a dynamic panel model, where the first-order lagged term of 2CO  (i.e., 2 -1itCO ) is 

taken into account and introduced into our empirical model (into Eq. (9)): 

2
2 0 1 2 -1 2 3 4 5 6 7ln ln ln ln ln ln ln lnit it it it it it it it itCO CO EC ECS EI PCG PCG P                 (10) 

An endogenous problem due to the correlation between the independent variable 

and error term results in biased estimates when conventional panel data estimation 

methods, such as pooled ordinary least squares (OLS), fixed effect, and random effect, 

are adopted. However, the GMM estimator proposed by Arellano and Bond [30] and 

developed by Arellano and Bover [31] and Blundell and Bond [32], provides a solution 

to the endogeneity and also controls individual- and time-specific effects. 

Two different types of GMM estimators are usually used in the literature: (i) 

difference GMM (i.e., first-difference GMM and orthogonal-difference GMM) 

developed by Arellano and Bond [30]; and, (ii) system GMM (Arellano and Bover [31] 
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and Blundell and Bond [32]). The main difference between the two methods is in the 

choice of the endogenous variables and corresponding instrumental variables. As 

reported by Sung et al. [33], the system GMM estimator is theoretically more efficient 

than the difference GMM estimator because it allows for a richer set of instruments. 

The difference GMM estimator may also suffer from weak finite sample bias when the 

cross-section dimension (N) is large enough. In our sample, the cross-section dimension 

(N=110) and time dimension (T=8). In this paper we adopt the system GMM estimator. 

The efficiency of the system GMM depends on the following two specification 

tests: (i) the difference-in-Hansen test for too many instruments; and (ii) the Arellano 

and Bond test for second-order autocorrelation (i.e., AR(2) test). When employing our 

data, the analysis suggests that there is no instruments proliferation or we do not have 

too many instruments. 

2.3. Data 

We use a balanced panel data set for 110 countries, with eight data points covering 

1980-2015 corresponding to 1980, 1985, 1990, 1995, 2000, 2005, 2010, and 2015. Prior 

to the Kyoto Protocol adopted in 1997, CO2 emissions where not much of a concern. 

However, mounting concerns to the environment and the need to limit CO2 emissions 

ignited worldwide concerns, (e.g., the establishment of the UNFCCC and the 2015 

Paris Climate Change Conference). To understand how changes in awareness of 

climate change impacts CO2, the analysis not only investigates the whole period of 

analysis, but also looks at two subsamples: early (1980-1990) and late (2005-2015) 

periods. 

The 110 countries are classified into four groups based on their per capita gross 

national income (GNI) calculated using the World Bank Atlas method 2016 [34]: low-

income countries (LI countries, less than $1,005), lower-middle-income countries (LMI 

countries, $1,006-$3,955), upper-middle-income countries (UMI countries, $3,956-

$12,235), and high-income countries (HI countries, more than $12,236). The low-

income subpanel in this study consists of data for 10 countries, while the lower-middle-



 

9 

income, upper-middle-income, and high-income subpanels comprise data for 28 

countries, 28 countries, and 44 countries, respectively (see Table A2 in Appendix A). 

The data on CO2 emissions from fuel combustion are collected from the CO2 

Emissions from Fuel Combustion 2017 published by the International Energy Agency 

(IEA) [35], while IEA’s World Energy Balances [36] provides the data on energy 

consumption across the globe. In this study, we use primary energy supplied defined as 

energy production plus energy imports plus increase in stocks (which is negative if the 

stock decreases), minus energy exports and international bunkers. In addition, the data 

on GDP and population are obtained from the World Development Indicators (WDI) 

published by the World Bank [2], in which the data on GDP are in 2010 constant prices. 

3. Results from the Decomposition Analysis 

3.1. Decomposition results of global CO2 emissions changes 

The decomposition results are depicted in Fig. 2a. The group with the highest 

contribution to global CO2 growth during the 1980-2015 period is UMI countries, 

contributing 71.3%, followed by the LMI, HI, and LI countries, which contributed 

21.7%, 9.8%, and 0.3%, respectively. 

  As shown in Figs. 2b and 2c, only the energy intensity effect ( EIC ) for the 1980-

2015 period is negative, while the income effect ( PCGC  ), population effect ( PC  ), 

emission coefficient effect ( ECC ), and energy mix effect ( ECSC ) are positive. These 

results suggest that, while economic and population growth have been driving up CO2 

emissions over the 1980-2015 period, improving energy efficiency is slowing down that 

growth. CO2 growth would have been even faster had there been no improvements of 

energy efficiency. Note that global CO2 emissions increased by more than 80% over the 

last 35 years (1980-2015). Total CO2 emissions added during that time are more than 

14,000 million tons (Fig. 1c). If the average energy intensity of GDP remained at the 

1980 level, global CO2 emissions in 2015 would have been almost 14,000 million tons 

(or more than 40%) higher than the actual level in that year.  

The income or economic growth effect is the primary factor driving CO2 emissions 
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up in most countries, in all groups of countries considered and ultimately at the global 

level. 

Although change in energy intensity slowed down global emissions by 98.9%, 

the change was overwhelmed by changes in income (148.9%) and population (48.5%) 

resulting in an increase in global emissions of 103.1% (see Fig. 2b) - see also Table A4. 

 
Fig. 2. Decomposition results of the global CO2 emissions changes between 1980 and 2015. Note: (a) 

indicates the contributions of various subpanels to the global emissions changes, (b) indicates the 

contributions of various driving forces, and (c) indicates the detailed decomposition results. In Fig. 2(c) 

C  denotes the total emissions changes, while ECC , ECSC , EIC , PCGC , and PC  refer to the 

effects of emission coefficient, energy mix, energy intensity, income, and population on the global 
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emissions changes, respectively; the grey bars indicate the total changes in the global emissions during 

the corresponding period, the green bars represent the effects decreasing emissions in the period, and the 

red bars stand for the effects increasing emissions in the period. 

 

It would be interesting to see the relationship between CO2 emission growth and 

driving factors at different periods. For this, we divide the entire period (1980-2015) 

into two periods: early period (1980-1990) and the late period (2005-2015) (see Section 

2.3).4 Changes in the global emissions from the four income-based subpanels over the 

periods 1980-1990 and 2005-2015 are shown in Fig. 3. For both subperiods, countries 

with the highest increase in global emissions were mainly UMI countries, contributing 

7.9% and 6.3% to the increase of global emissions, respectively. 

The LMI countries contributed 3.3% and 2.7% over these two periods, respectively, 

to the increase in global emissions. On the other hand, between 1980 and 1990 HI 

countries contributed 2.4% to the increase in global emissions. Growth of CO2 

emissions in the HI countries is slowing down yet still positive since 2005 (see Fig. 3). 

In addition, the LI countries’ contribution to CO2 emissions is small; LI countries 

contributed 0.1% to the increase in global emissions over the two investigated periods. 

These results have strong policy or international negotiation implications regarding 

climate change mitigation. While high-income countries are historically responsible for 

the current level of CO2 concentration in the earth’s atmosphere, upper-middle income 

countries are more responsible in more recent years (over the last few decades). 

Therefore, CO2 emission mitigation efforts should be focused on upper-middle income 

countries. This does not, however, mean other groups of countries do not pay attention 

to reduce their CO2 emissions. 

                                                 
4 The analysis can be carried out for every year for all 110 countries. 
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Fig. 3. Changes in the global emissions from the four income-based subpanels over the period 1980-

1990 and 2005-2015. 

 

Fig. 4 displays the decomposition results and the contributions of the various 

factors to global emissions over the early and late periods. Global CO2 emissions 

increased during the investigated period and the signs of the various effects did not 

change over time. In both periods, the economic growth or income effect is the primary 

driver to increase global CO2 emissions, especially in the 2005-2015 period. Population 

growth also made some contribution. Improved energy efficiency helped to slow the 

CO2 growth in both periods, much more strongly in the 2005-2015 period than earlier 

(1980-1990). It is interesting to note that despite the rapid expansion of renewable 

energy more recently, its share in the global energy supply mix is still small and has not 

contributed much to limit global CO2 emissions.  
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Fig. 4. Decomposition results and the contributions of various driving forces to the global emissions 

changes over the early and late periods. Note: (a) the upper part denotes the early period (i.e., 1980-

1990), and (b) the lower part denotes the late period (i.e., 2005-2015). 

 

3.2. Decomposition results in countries with different income levels 

What role would different drivers play across different groups of countries to 

influence CO2 emission growth? Figure 5 plots the impacts of various factors on CO2 

growth in different groups of countries. Change in the income level was the primary 

factor of increasing emissions in the countries with high income levels, such as the HI, 

UMI, and LMI countries; while change in population size was the main effect behind 

the increase in emissions for the countries with low income levels, such as the LI 

countries. Improved energy efficiency helped to slow down emission growth in all 

groups of countries in both periods. Its effect is more prominent in the HI and UMI 

groups of countries. In addition, changes in energy mix were a significant factor in 
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reducing CO2 emissions in HI countries. 

 
Fig. 5. Contributions of various driving forces to the emissions changes in countries with different income 

levels between 1980 and 2015. Note: (a) HI countries, (b) UMI countries, (c) LMI countries, and (d) LI 

countries. 

 

Fig. 6 depicts the contributions of various driving forces to the emissions changes 

in countries with different income levels between 1980 and 1990, and between 2005 

and 2015. It reveals some interesting facts. First, the income effect, which drives CO2 

growth, is much stronger in UMI and LMI group countries. This effect is stronger in 

the later period (2005-2015) as compared to the earlier period in all groups of countries 

except the HI group of countries where the reverse is the case. For the LI group of 

countries, the income effect is negative during the early period as the per capita GDP 

(i.e., economic growth) depicted a downward trend (see also Fig. B1 in Appendix B) 

due slower GDP growth as compared to population growth. The fuel mix effect has 

helped to slow down the CO2 emission growth only in the HI group of countries. 

Although fuel mix contributed to increase CO2 emissions, its effect weakened over time. 

The change of fuel mix effect in UMI is mainly dominated by China where natural gas 
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consumption increased by more than fourfold between 2005 and 2015 (in China it 

soared since 2005, from 482.0×108 m3 in 2005 to 1,973.0×108 m3 in 2015, with an 

average annual growth rate of 15.1% [37]). Detailed contributions of various factors to 

these four subpanels are also listed in Tables A5-A8. 

 
Fig. 6. Contributions of various driving forces to the emissions changes in countries with different income 

levels between 1980 and 1990, and between 2005 and 2015. Note: (a) HI countries, (b) UMI countries, 

(c) LMI countries, and (d) LI countries. 

 

4. Results from the Econometric Analysis 

4.1. The estimation results 

The results of the analysis using the GMM technique are presented in Table 1. In 

the table, column 1 presents the empirical results for 110 countries, while columns 2-5 

depict the empirical results for the HI, UMI, LMI, and LI groups of countries, 

respectively. As shown in the bottom of Table 1, the null hypotheses of the Hansen and 

AR (2) tests cannot be rejected, indicating that the instruments remain valid and that 

there is no evidence for second-order serial correlation. 

The coefficient of the lag stock of CO2 (i.e., 2 1ln itCO  ) is positive and strongly 

significant. If countries emitted large amounts of CO2 in the past, then they are likely 
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to continue emitting large amounts of CO2 in the future in the absence of any policy 

intervention; this finding is consistent with Lee et al. [38]. 

 

Table 1. System GMM estimation results for full sample (1980-2015). 

Dependent variable: 2lnCO  

Variable (1) 

Global panel 

(2) 

HI countries 

(3) 

UMI countries 

(4) 

LMI countries 

(5) 

LI countries 

2 1ln itCO   0.718*** 

(35.898) 

0.445*** 

(15.847) 

0.584*** 

(16.592) 

0.640*** 

(16.156) 

0.085** 

(2.246) 

ln itEC  0.057*** 

(2.960) 

0.594*** 

(16.444) 

0.059** 

(2.275) 

0.027*** 

(7.270) 

0.050* 

(1.780) 

ln itECS  0.331*** 

(14.089) 

0.052** 

(2.323) 

0.475*** 

(11.507) 

0.507*** 

(9.463) 

0.976*** 

(11.504) 

ln itEI  0.445*** 

(13.891) 

0.619*** 

(17.098) 

0.509*** 

(9.586) 

0.471*** 

(7.369) 

0.308*** 

(11.927) 

ln itPCG  0.290*** 

(9.283) 

1.504*** 

(18.572) 

0.768*** 

(7.756) 

0.334*** 

(6.267) 

0.267*** 

(3.722) 
2ln itPCG  -0.045*** 

(-3.649) 

-0.201*** 

(-14.844) 

-0.148*** 

(-3.163) 

0.049 

(1.647) 

-0.185** 

(-2.054) 

ln itP  0.270*** 

(13.040) 

0.534*** 

(18.528) 

0.838*** 

(12.071) 

0.886*** 

(9.131) 

0.865*** 

(13.223) 

Constant 2.605*** 

(9.292) 

1.253*** 

(4.201) 

1.186*** 

(3.570) 

0.985*** 

(7.648) 

0.844*** 

(3.311) 

Hansen test 0.103 0.194 0.649 0.582 0.412 

AR(2) test 0.229 0.152 0.172 0.202 0.188 

Turning point 25,084 42,152 13,391 - - 

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively; the values in 

parentheses represent t-statistics; the values of Hansen and AR(2) tests represent p-values; and the unit 

of turning point is 2010 US$. 
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4.1.1 Results from the 110-country panel 

The estimated coefficients of ln GDP   and  2
ln GDP   are positive and negative, 

respectively, suggesting the presence of the EKC curve. Note that the EKC is a 

phenomenon of the long run [39, 40], further suggesting that the countries with 

different income levels should follow a long-term strategy that achieves the targeted 

balance between reduced CO2 emissions and high economic growth. 

The results further indicate that, for the whole sample of 110 countries, the 

estimated coefficients of ln EC  , ln ECS  , ln E I  , ln P C G  , and l n P   are positive and 

significant at a 1% significance level. Similar to the decomposition analysis presented 

in Section 3 above (see also Figs. B1 & B2 in Appendix B), the econometric analysis 

suggests that the change in emission increased with per capita GDP (i.e., economic 

growth) and population growth. These two factors are the primary drivers of the 

increase of CO2 between 1980 and 2015, while changes in fuel mix (i.e., increasing 

share of clean fuels in total primary energy supply) and improving energy efficiency 

(i.e., decreasing energy intensity of GDP) slowed this increase in growth of CO2 during 

the same period. 

4.1.2 Differences in impacts across income levels 

The theoretical EKC is an inverted U-curve, with the coefficients of ln GDP  and 

 2
ln GDP  positive and negative, respectively. However, in the results in columns 2-5, 

only for HI and UMI countries the estimated coefficients of ln GDP  and  2
ln GDP  are 

positive, and negative respectively. For HI and UMI countries, the estimated turning 

points are $42,152 and $13,391, respectively. In contrast, we cannot identify the turning 

point of the EKC hypothesis for LMI and LI countries. The large gap between the 

current economic level in LMI and LI countries ($2,030 and $599 in 2015, respectively; 

see Fig. 7) and the turning point of EKC may result in the data failing to identify the 

peak in CO2 emissions. 
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Fig. 7. The distribution of global CO2 emissions and per capita GDP in countries with different income 

levels. Data sources: IEA [35] and World Bank [2]. 

 

With regard to the estimated coefficients of ln EC  , ln ECS  , ln E I  , ln P C G  , and 

l n P , the four subpanels (i.e., HI, UMI, LMI, and LI countries) provide similar results 

to those of the LMDI estimates above, that is, they are both positive and significant. 

However, as seen in Figs. B1 & B2 in Appendix B, between 1980 and 2015, the trends 

of the five factors vary across time, with energy intensity displaying a downward trend 

while per capita GDP and population display upward trends. 

The effects of the five factors on emissions vary (see Fig. 8). The common factors 

are the effects of energy intensity, income growth, and population growth, the former 

mitigating CO2, whereas the latter two increasing CO2. 
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Fig. 8. Contribution coefficient of each factor for each panel between 1980 and 2015. 

 

4.2. Time and the importance of the various factors  

We utilize the system GMM technique to further estimate Eq. (10) for the early 

period (1980-1990) and late period (2005-2015), respectively; the results are listed in 

Tables 2 and 3. According to the bottom of Tables 2 and 3, for each income group, both 

tests (i.e., Hansen test and AR (2) test) fail to reject the null hypothesis. Furthermore, 

for each income group in Tables 2 and 3, the estimated coefficients of 
2 1ln itCO 

  are 

significantly positive, suggesting that there are persistent CO2 emissions from one year 

to the next. 

Table 2. System GMM estimation results for early period (1980-1990). 

Dependent variable: 2ln CO  

Variable (1) 

Global panel 

(2) 

HI countries 

(3) 

UMI countries 

(4) 

LMI countries 

(5) 

LI countries 

2 1ln itCO   0.643*** 

(15.801) 

0.418*** 

(7.018) 

0.520*** 

(6.612) 

0.601*** 

(7.507) 

0.067** 

(2.558) 

ln itEC  0.057*** 

(3.643) 

0.575*** 

(6.797) 

0.079*** 

(2.885) 

0.014*** 

(3.257) 

0.003** 

(2.025) 
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ln itECS  0.425*** 

(9.124) 

0.103* 

(1.724) 

0.595*** 

(6.452) 

0.563*** 

(5.367) 

0.941*** 

(6.564) 

ln itEI  0.476*** 

(7.541) 

0.621*** 

(7.067) 

0.566*** 

(4.850) 

0.481*** 

(4.895) 

0.169*** 

(8.787) 

ln itPCG  0.341*** 

(5.735) 

2.012*** 

(9.042) 

0.687*** 

(4.366) 

0.379*** 

(4.612) 

0.158** 

(2.393) 
2ln itPCG  0.014* 

(1.733) 

0.226*** 

(6.861) 

-0.065 

(-1.670) 

0.052 

(1.250) 

0.012 

(0.049) 

ln itP  0.344*** 

(8.454) 

0.560*** 

(9.200) 

0.804*** 

(6.429) 

0.839*** 

(5.479) 

0.789*** 

(9.364) 

Constant 0.812*** 

(5.830) 

2.026*** 

(3.955) 

1.186*** 

(3.570) 

0.648*** 

(2.986) 

1.168** 

(2.076) 

Hansen test 0.121 0.390 0.493 0.603 0.115 

AR(2) test 0.224 0.192 0.178 0.149 0.191 

Turning point - - - - - 

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively; the values in 

parentheses represent t-statistics; the values of Hansen and AR(2) tests represent p-values; and the unit 

of turning point is 2010 US$. 

 

4.2.1 The 110-country panel 

According to the first column in Table 2, for the 110-country panel, the estimated 

coefficients of ln EC  , ln ECS  , ln E I  , ln P C G  , and l n P   between 1980 and 1990 are 

positive and significant at a 1% significance level. GDP per capita and population were 

the primary drivers leading to an increase in CO2 emissions between 1980 and 1990, 

while the factors that slowed the increase of the emissions over the same period were 

emission coefficient, energy mix, and energy intensity. 

The first column in Table 3 indicates that the estimated coefficients of the variables 

between 2005 and 2015 are positive and significant. Furthermore, Figs. B1 & B2 in 

Appendix B suggest that emission coefficient, per capita GDP, and population were the 

primary driving forces of increasing CO2 emissions between 2005 and 2015, while the 

factors that slowed the increase of the emissions over the same period were energy mix 
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and energy intensity (these latter variables depict a downward trend over time). 

Table 3. System GMM estimation results for late period (2005-2015). 

Dependent variable: 2ln CO  

Variable Global panel HI countries UMI countries LMI countries LI countries 

2 1ln itCO   0.815*** 

(23.035) 

0.248*** 

(4.804) 

0.456*** 

(5.915) 

0.572*** 

(7.350) 

0.104*** 

(3.804) 

ln itEC  0.017** 

(2.482) 

0.793*** 

(15.251) 

0.353*** 

(4.111) 

0.033** 

(2.401) 

0.293*** 

(3.044) 

 

ln itECS  0.210*** 

(5.038) 

0.017*** 

(3.606) 

0.151*** 

(2.376) 

0.523*** 

(4.938) 

1.073*** 

(6.783) 

ln itEI  0.401*** 

(7.028) 

0.814*** 

(15.376) 

0.541*** 

(5.998) 

0.773*** 

(4.804) 

0.170*** 

(5.149) 

ln itPCG  0.213*** 

(3.686) 

2.611*** 

(14.150) 

2.789*** 

(7.060) 

0.232** 

(2.041) 

0.229* 

(1.955) 
2ln itPCG  -0.001 

(-0.080) 

0.258*** 

(12.143) 

0.567*** 

(6.562) 

0.219 

(1.186) 

-0.175 

(-0.577) 

ln itP  0.181*** 

(4.941) 

0.738*** 

(14.232) 

0.857*** 

(7.214) 

0.941*** 

(5.404) 

0.870*** 

(6.607) 

Constant 0.943*** 

(7.091) 

0.963** 

(2.053) 

0.746** 

(2.458) 

1.193*** 

(4.420) 

1.283*** 

(5.189) 

Hansen test 0.163 0.158 0.178 0.156 0.606 

AR(2) test 0.220 0.106 0.110 0.237 0.122 

Turning point - - - - - 

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively; the values in 

parentheses represent t-statistics; the values of Hansen and AR(2) tests represent p-values; and the unit 

of turning point is 2010 US$. 

 

4.2.2 Varying income levels across countries 

Fig. 9 details the impact of each of the factors. In general, the main factors 

affecting the emissions for the four income groups did not change much over time. 

However, it is noteworthy that over time, the impact of changes in energy mix and 
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economic growth, i.e., ln ECS   and ln PCG  , would become more significant in 

developing countries, especially in the UMI countries. 

 

Fig. 9. Contribution coefficient of each factor for each panel over the a) early period (1980-1990) and b) 

late period (2005-2015). 

 

5. Comparing the two approaches: LMDI versus system GMM 

To further compare the two methods, we calculated the marginal impacts of 

various factors on CO2 growth using Eq. (11); the detailed results are listed in Table A8. 

   2 2f f
f

CO CO
E

f f





                       (11) 

where 
fE  denotes the marginal impact of the factor f  on CO2 growth; f  indicates 

various factors affecting CO2 emissions (i.e., EC  , ECS  , E I  , P C G  , and P  ); 2CO  

denotes the amount of total CO2 emissions; and  2 f
CO  represents the amount of CO2 

emissions changes affected by the factor f   (i.e., ECC  , ECSC  , EIC  , PCGC  , and 

PC ). 

We compare the results estimated using the LMDI and the system GMM methods 

through the comparison of the marginal impacts of various factors on CO2 growth. The 
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same marginal impact is calculated once under the LMDI method and once under the 

GMM method. We do this for the whole sample but also for the different income groups 

(Table 4). From this table, we can see that the level of the marginal impacts of various 

factors on CO2 growth obtained by the LMDI method are significantly bigger than that 

of the GMM. This may be because, as addressed previously (i.e., section 2), the system 

GMM estimator takes into account each country’s characteristics when calculating the 

marginal impact whereas the LMDI method ignores the individual characteristics. The 

difference in the results between LMDI and GMM are important to understand how 

CO2 growth responds to change in a given driver. Since the LMDI results are biased 

towards the country size (i.e., they are skewed due to China and the United States, the 

larger countries’ results), the response indicators (or marginal impact here) based on 

LMDI may be biased. The response indicators estimated based on GMM analysis are 

more credible. 

 

Table 4. A comparison in the marginal impacts of various factors on CO2 growth between system GMM 

technique and LMDI method for the period 1980-2015. 

Panel EC ECS EI PCG PCG2 P 

GMM method 

Global 0.057 0.331 0.445 0.290 -0.045 0.270 

HI 0.594 0.052 0.619 1.504 -0.201 0.534 

UMI 0.059 0.475 0.509 0.768 -0.148 0.838 

LMI 0.027 0.507 0.471 0.334 0.049 0.886 

LI 0.050 0.976 0.308 0.267 -0.158 0.865 

LMDI method 

Global 1.654 0.080 4.042 2.325 NA 0.724 

HI 0.024 0.646 1.464 0.760 NA 1.086 

UMI 0.661 3.978 8.904 2.087 NA 1.724 

LMI 0.362 2.877 4.089 1.983 NA 1.846 

LI 2.573 4.413 0.658 1.638 NA 0.911 
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Note: EC  indicates emission coefficient; ECS  denotes energy mix; EI  describes energy intensity; 

PC G  ( 2P C G ) stands for per capita GDP (squared); and  P  is population size. 

 

6. Conclusions  

In this study, we measured the role of various factors that have driven CO2 

emissions over the past 35 years at the global level and different groups of countries by 

their current income level (i.e., high income, upper-middle income, lower-middle 

income, and low income). We employ data from 110 countries in two different 

techniques: Index decomposition technique (identity analysis) and an econometric 

technique. We also examined if a factor has influenced CO2 growth differently during 

different time intervals: early period of the study horizon (1980-2015) and late interval 

of the study horizon (2005-2015). 

The results from our identity and econometric analysis reveal that income 

(measured in terms of per capita GDP) growth and population growth are the major 

drivers for the increased CO2 emissions during the period. Improved energy efficiency 

(i.e., decreasing energy intensity of GDP) has slowed down the growth; otherwise, CO2 

emissions would have increased even further. 

Improvement of energy efficiency has contributed in all groups of countries to 

slow down their CO2 emission growth. This factor is more prominent in the high-

income and upper-middle-income groups of countries. The fuel mix factor or the 

increasing share of low carbon (e.g., natural gas) or no carbon (e.g., renewable) fuels in 

the total primary energy supply mix contributed to slow down CO2 growth in the high-

income group of countries. It is income growth that is responsible for CO2 growth in 

the upper-income and middle-income countries. Population growth is more responsible 

for CO2 emission growth in low-income countries, although they have a very small role 

in the growth of global CO2 emissions. 

The analysis provides some important policy insights. Although one could argue 

that upper-middle-income countries’ per-capita emissions are lower than that of high-

income countries and therefore pressure should still be on high-income countries, our 
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analysis shows that since the upper-middle-income group of countries is mostly 

responsible for the recent global CO2 growth, more efforts should be paid to reduce their 

CO2 emissions. This study does not mean that these countries have to take on most of 

the financial burden to reduce their CO2 emissions. How to share the global burden of 

CO2 reduction is a different question and it is beyond the scope of this study. Improving 

energy efficiency has contributed historically to slow down the CO2 growth and this 

effect is basically driven through various policies (e.g., incentives for energy efficiency 

improvements) and technological innovation. Although the world has witnessed a rapid 

expansion of renewable energy more recently, the expansion is still too small to make 

a noticeable impact in limiting the growth of global CO2 emissions.  Further expansion 

of clean and renewable energy would be needed for a noticeable impact on slowing 

down the global CO2 growth. 

Acknowledgments 

We acknowledge the financial support from Knowledge for Change Trust fund of 

the World Bank. 

 

References 

[1] BP. BP Statistical Review of World Energy 2017. 
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-
energy/downloads.html. Accessed 30 June 2017. 2017. 
[2] World-Bank. World Development Indicators. 
http://databank.worldbank.org/data/reports.aspx?source=World%20Development%20
Indicators#  (Accessed 10 July 2017). 2017. 
[3] Ang B-W. The structure of energy demand in East Asian developing countries: 
University of Cambridge; 1981. 
[4] Ang BW, Zhang F. A survey of index decomposition analysis in energy and 
environmental studies. Energy. 2000;25:1149-76. 
[5] Ang B. LMDI decomposition approach: a guide for implementation. Energy Policy. 
2015;86:233-8. 
[6] Ang BW. The LMDI approach to decomposition analysis: a practical guide. Energy 
Policy. 2005;33:867-71. 
[7] Ang BW. Decomposition analysis for policymaking in energy:: which is the 



 

26 

preferred method? Energy Policy. 2004;32:1131-9. 
[8] Ang BW, Liu F, Chew EP. Perfect decomposition techniques in energy and 
environmental analysis. Energy Policy. 2003;31:1561-6. 
[9] Ang BW, Liu FL. A new energy decomposition method: perfect in decomposition 
and consistent in aggregation. Energy. 2001;26:537-48. 
[10] González PF, Landajo M, Presno M. Tracking European Union CO 2 emissions 
through LMDI (logarithmic-mean Divisia index) decomposition. The activity 
revaluation approach. Energy. 2014;73:741-50. 
[11] Hatzigeorgiou E, Polatidis H, Haralambopoulos D. CO 2 emissions in Greece for 
1990–2002: a decomposition analysis and comparison of results using the Arithmetic 
Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy. 
2008;33:492-9. 
[12] Tunç GI, Türüt-Aşık S, Akbostancı E. A decomposition analysis of CO 2 emissions 
from energy use: Turkish case. Energy Policy. 2009;37:4689-99. 
[13] Oh I, Wehrmeyer W, Mulugetta Y. Decomposition analysis and mitigation 
strategies of CO 2 emissions from energy consumption in South Korea. Energy Policy. 
2010;38:364-77. 
[14] de Freitas LC, Kaneko S. Decomposition of CO 2 emissions change from energy 
consumption in Brazil: challenges and policy implications. Energy Policy. 
2011;39:1495-504. 
[15] O’Mahony T, Zhou P, Sweeney J. The driving forces of change in energy-related 
CO 2 emissions in Ireland: a multi-sectoral decomposition from 1990 to 2007. Energy 
Policy. 2012;44:256-67. 
[16] Zhang M, Liu X, Wang W, Zhou M. Decomposition analysis of CO 2 emissions 
from electricity generation in China. Energy Policy. 2013;52:159-65. 
[17] Feng K, Davis SJ, Sun L, Hubacek K. Drivers of the US CO2 emissions 1997-
2013. Nature communications. 2015;6. 
[18] Mousavi B, Lopez NSA, Biona JBM, Chiu AS, Blesl M. Driving forces of Iran's 
CO 2 emissions from energy consumption: An LMDI decomposition approach. Appl 
Energ. 2017;206:804-14. 
[19] Bento JPC, Moutinho V. CO 2 emissions, non-renewable and renewable electricity 
production, economic growth, and international trade in Italy. Renew Sust Energ Rev. 
2016;55:142-55. 
[20] Bélaïd F, Youssef M. Environmental degradation, renewable and non-renewable 
electricity consumption, and economic growth: Assessing the evidence from Algeria. 
Energy Policy. 2017;102:277-87. 
[21] Danish, Zhang B, Wang B, Wang Z. Role of renewable energy and non-renewable 
energy consumption on EKC: Evidence from Pakistan. J Clea Prod. 2017;156:855-64. 
[22] Dong K, Sun R, Hochman G. Do natural gas and renewable energy consumption 
lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. 
Energy. 2017;141:1466-78. 
[23] Dong K, Sun R, Li H, Jiang H. A review of China’s energy consumption structure 



 

27 

and outlook based on a long-range energy alternatives modeling tool. Petroleum 
Science. 2016:1-14. 
[24] Dogan E, Seker F. Determinants of CO 2 emissions in the European Union: the 
role of renewable and non-renewable energy. Renew Energ. 2016;94:429-39. 
[25] Jebli MB, Youssef SB, Ozturk I. Testing environmental Kuznets curve hypothesis: 
The role of renewable and non-renewable energy consumption and trade in OECD 
countries. Ecological Indicators. 2016;60:824-31. 
[26] Wang S, Li G, Fang C. Urbanization, economic growth, energy consumption, and 
CO2 emissions: Empirical evidence from countries with different income levels. Renew 
Sust Energ Rev. 2017. 
[27] Bacon RW, Bhattacharya S, Damania R, Kojima M, Lvovsky K. Growth and CO2 
emissions: how do different countries fare. Environment Department Papers. 2007;113. 
[28] Kuznets S. Economic growth and income inequality. The American economic 
review. 1955:1-28. 
[29] Sugiawan Y, Managi S. The environmental Kuznets curve in Indonesia: Exploring 
the potential of renewable energy. Energy Policy. 2016;98:187-98. 
[30] Arellano M, Bond S. Some tests of specification for panel data: Monte Carlo 
evidence and an application to employment equations. The review of economic studies. 
1991;58:277-97. 
[31] Arellano M, Bover O. Another look at the instrumental variable estimation of error-
components models. J Econometrics. 1995;68:29-51. 
[32] Blundell R, Bond S. Initial conditions and moment restrictions in dynamic panel 
data models. J Econometrics. 1998;87:115-43. 
[33] Sung B, Song W-Y, Park S-D. How foreign direct investment affects CO 2 
emission levels in the Chinese manufacturing industry: Evidence from panel data. 
Economic Systems. 2018. 
[34] World-bank. World Bank Country and Lending Groups. 
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519. 2017. 
[35] IEA. International Energy Agency, CO2 Emissions from Fuel Combustion 2017. 
http://www.oecd-ilibrary.org/energy/co2-emissions-from-fuel-
combustion_22199446;jsessionid=7bbqif75he1ft.x-oecd-live-03. 2017. 
[36] IEA. International Energy Agency, Energy Balances of OECD and Non-OECD 
countries; Various Issues. https://www.oecd-ilibrary.org/energy/world-energy-
balances_25186442. 2017. 
[37] Dong K, Sun R, Hochman G, Zeng X, Li H, Jiang H. Impact of natural gas 
consumption on CO2 emissions: Panel data evidence from China’s provinces. J Clea 
Prod. 2017;162:400-10. 
[38] Lee C-C, Chiu Y-B, Sun C-H. The environmental Kuznets curve hypothesis for 
water pollution: Do regions matter? Energy Policy. 2010;38:12-23. 
[39] Dinda S. Environmental Kuznets curve hypothesis: a survey. Ecol Econ. 
2004;49:431-55. 
[40] Ali W, Abdullah A, Azam M. Re-visiting the environmental Kuznets curve 



 

28 

hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach. Renew 
Sust Energ Rev. 2017;77:990-1000. 
[41] Pani R, Mukhopadhyay U. Identifying the major players behind increasing global 
carbon dioxide emissions: a decomposition analysis. The Environmentalist. 
2010;30:183-205. 
[42] Vinuya F, DiFurio F, Sandoval E. A decomposition analysis of CO2 emissions in 
the United States. Applied Economics Letters. 2010;17:925-31. 
[43] Zhang Y, Zhang J, Yang Z, Li S. Regional differences in the factors that influence 
China’s energy-related carbon emissions, and potential mitigation strategies. Energy 
Policy. 2011;39:7712-8. 
[44] O'Mahony T. Decomposition of Ireland's carbon emissions from 1990 to 2010: An 
extended Kaya identity. Energy Policy. 2013;59:573-81. 
[45] Xie X, Shao S, Lin B. Exploring the driving forces and mitigation pathways of CO 
2 emissions in China’s petroleum refining and coking industry: 1995–2031. Appl Energ. 
2016;184:1004-15. 
[46] Henriques ST, Borowiecki KJ. The drivers of long-run CO 2 emissions in Europe, 
North America and Japan since 1800. Energy Policy. 2017;101:537-49. 
[47] Shahiduzzaman M, Layton A. Decomposition analysis for assessing the United 
States 2025 emissions target: How big is the challenge? Renew Sust Energ Rev. 
2017;67:372-83. 
[48] Chen B, Li J, Zhou S, Yang Q, Chen G. GHG emissions embodied in Macao's 
internal energy consumption and external trade: Driving forces via decomposition 
analysis. Renew Sust Energ Rev. 2018;82:4100-6. 

Appendix A 

Table A1. Selected prior studies on decomposition of CO2 emissions using the LMDI 

approach (2008-2018). Source: Compiled by the authors. 

Author [ref.] Study area Study period Driving force 

Hatzigeorgiou et al. [11] Greece 1990-2002 1, 2, 3 

Tunç et al. [12] Turkey 1970-2006 2, 4, 5, 6 

Oh et al. [13] Korea, Rep. 1990-2005 1, 2, 4, 5 

Pani and Mukhopadhyay [41] 114 countries 1992-2004 1, 3, 5, 6 

Vinuya et al. [42] United States 1990-2004 1, 2, 3, 5, 6 

de Freitas and Kaneko [14] Brazil 1970-2009 2, 3, 4, 5, 6, 7 

Zhang et al. [43] China 1995-2009 2, 4, 5, 6, 8 

O’Mahony et al. [15] Ireland 1990-2010 2, 4, 5, 6, 8 

O'Mahony [44] Ireland 1990-2010 1, 2, 3, 5, 6 

Zhang et al. [16] China 1991-2009 6, 7, 9, 10, 11, 12 

González et al. [10] European Union 2001-2010 1, 2, 3, 5, 6 
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Feng et al. [17] United States 1997-2013 2, 3, 5, 13, 14 

Xie et al. [45] China 1995-2013 2, 5, 6, 15, 16 

Mousavi et al. [18] Iran, Islamic Rep. 2003-2014 2, 3, 4, 5, 6 

Henriques and Borowiecki 

[46] 

Europe, North 

America and Japan 

1980-2011 1, 2, 3, 5, 6 

Shahiduzzaman and Layton 

[47] 

United States 1973-2014 1, 2, 3, 5, 6 

Chen et al. [48] Macao 2000-2011 2, 4, 5, 8 

Notes: a) 1. Income effect, 2. Energy mix effect, 3. Population effect, 4. Economic 
structure effect, 5. Energy intensity effect, 6. Emission coefficient effect, 7. Economic 
activity effect, 8. GDP, 9. Electricity generation efficiency effect, 10. Thermal power 
structure effect, 11. Electricity structure effect, 12. Electricity intensity effect, 13. 
Consumption pattern effect, 14. Production structure effect, 15. Industrial activity 
effect, and 16. Industrial scale effect; and b) EU denotes European Union and US 
denotes United States.
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Table A2. List of countries based on income level. 

Subpanel Countries 
Low-income countries 
(10 countries) 

Benin, Democratic Republic of Congo, Ethiopia, 
Haiti, Mozambique, Nepal, Senegal, Tanzania, 
Togo, and Zimbabwe 

Lower-middle-income 
countries 
(28 countries) 

Angola, Bangladesh, Bolivia, Cameroon, Republic 
of Congo, Côte d'Ivoire, Arab Republic of Egypt, El 
Salvador, Ghana, Guatemala, Honduras,  
India, Indonesia, Jordan, Kenya, Morocco, 
Myanmar, Nicaragua, Nigeria, Pakistan, 
Philippines, Sri Lanka, Sudan, Syrian Arab 
Republic, Tunisia, Vietnam, Republic of Yemen, 
and Zambia 

Upper-middle-income 
countries 
(28 countries) 

Albania, Algeria, Argentina, Brazil, Bulgaria, 
China, Colombia, Costa Rica, Cuba, Dominican 
Republic, Ecuador, Gabon, Islamic Republic of 
Iran, Iraq, Jamaica, Lebanon, Libya, Malaysia, 
Mauritius, Mexico, Panama, Paraguay, Peru, 
Romania, South Africa, Thailand, Turkey, and 
Venezuela, RB 

High-income countries 
(44 countries) 

Australia, Austria, Bahrain, Belgium, Brunei, 
Darussalam, Canada, Chile, Curacao, Cyprus, 
Czech Republic, Denmark, Finland, France, 
Germany, Gibraltar, Greece, Hungary, Iceland, 
Ireland, Israel, Italy, Japan, the Republic of Korea, 
Kuwait, Luxembourg, Malta, New Zealand, 
Netherlands, Norway, Qatar, Oman, Poland, 
Portugal, Saudi Arabia, Singapore, Slovak 
Republic, Spain, Sweden, Switzerland, Trinidad 
and Tobago, United Arab Emirates, United 
Kingdom, United States, and Uruguay 
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Table A3. Eight possible cases with zero values. 

Case 0
ijX  t

ijX  0
ijC  t

ijC  
 

0

00
ln

lnij

t t
ij ij ij

X t
ijij ij

C C X
C

XC C

 
     

 
 

1 0 + 0 + 
ij

t
X ijC C   

2 + 0 + 0 
0

ijX ijC C   

3 0 0 0 0 0 

4 + + 0 + 0 

5 + + + 0 0 

6 + + 0 0 0 

7 + 0 0 0 0 

8 0 + + + 0 
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Table A4. Decomposition results of the emissions changes and contributions of various 
driving forces across the globe over the early period (1980-1990), late period (2005-
2015), and entire period (1980-2015). 

Period 1980-1990 2005-2015 1980-2015 

Emissions change (Mt) 

Overall change 1,898.5 4,952.6 14,299.9 

EC -141.9 67.3 521.4 

ECS -468.0 -208.0 108.6 

EI -2,780.1 -5,909.6 -13,716.7 

PCG 3,719.8 8,758.4 20,655.0 

P 1,568.7 2,244.4 6,731.6 

Contribution (%) 

Growth rate 13.7 21.3 103.1 

EC -1.0 0.3 3.8 

ECS -3.4 -0.9 0.8 

EI -20.0 -25.4 -98.9 

PCG 26.8 37.7 148.9 

P 11.3 9.7 48.5 

Note: EC, ECS, EI, PCG, and P refer to emission coefficient, energy mix, energy 
intensity, income, and population, respectively.
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Table A5. Decomposition results of the emissions changes and contributions of various 
driving forces in the HI countries over the early period (1980-1990), late period (2005-
2015), and entire period (1980-2015). 

Period 1980-1990 2005-2015 1980-2015 

Emissions change (Mt) 

Overall change 338.0 -1,165.1 1,357.6 

EC -3.5 -267.2 40.5 

ECS -733.9 -610.3 -1,737.7 

EI -2,053.6 -2,285.2 -6,184.4 

PCG 2,304.7 928.2 6,081.7 

P 824.2 1,069.4 3,157.5 

Contribution (%) 

Growth rate 3.2 -9.0 12.9 

EC -0.1 -2.1 0.4 

ECS -7.0 -4.7 -16.6 

EI -19.6 -17.6 -58.9 

PCG 22.0 7.1 57.9 

P 7.9 8.2 30.1 

Note: EC, ECS, EI, PCG, and P refer to emission coefficient, energy mix, energy 
intensity, income, and population, respectively.
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Table A6. Decomposition results of the global emissions changes and contributions of 
various driving forces in the UMI countries over the early period (1980-1990), late 
period (2005-2015), and entire period (1980-2015). 

Period 1980-1990 2005-2015 1980-2015 

Emissions change (Mt) 

Overall change 1,095.4 4,770.7 9,886.4 

EC -122.8 453.7 391.7 

ECS 131.0 61.9 1,038.6 

EI -719.9 -2,948.2 -6,756.7 

PCG 1,247.9 6,457.0 12,683.9 

P 559.3 746.4 2,528.9 

Contribution (%) 

Growth rate 39.1 60.2 352.5 

EC -4.4 5.7 14.0 

ECS 4.7 0.8 37.0 

EI -25.7 -37.2 -240.9 

PCG 44.5 81.5 452.3 

P 19.9 9.4 90.2 

Note: EC, ECS, EI, PCG, and P refer to emission coefficient, energy mix, energy 
intensity, income, and population, respectively.
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Table A7. Decomposition results of the global emissions changes and contributions of 
various driving forces in the LMI countries over the early period (1980-1990), late 
period (2005-2015), and entire period (1980-2015). 

Period 1980-1990 2005-2015 1980-2015 

Emissions change (Mt) 

Overall change 456.4 1,318.1 3,012.3 

EC -15.6 -123.2 82.8 

ECS 132.1 330.7 800.2 

EI -5.7 -667.0 -767.3 

PCG 167.4 1,360.3 1,881.5 

P 178.2 417.3 1,015.2 

Contribution (%) 

Growth rate 82.1 58.6 542.1 

EC -2.8 -5.5 14.9 

ECS 23.8 14.7 144.0 

EI -1.0 -29.6 -138.1 

PCG 30.1 60.5 338.6 

P 32.1 18.5 182.7 

Note: EC, ECS, EI, PCG, and P refer to emission coefficient, energy mix, energy 
intensity, income, and population, respectively.
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Table A8. Decomposition results of the global emissions changes and contributions of 
various driving forces in the LI countries over the early period (1980-1990), late period 
(2005-2015), and entire period (1980-2015). 

Period 1980-1990 2005-2015 1980-2015 

Emissions change (Mt) 

Overall change 8.7 28.9 43.6 

EC 0.1 4.1 6.4 

ECS 2.8 9.6 7.5 

EI -0.9 -9.1 -8.2 

PCG -0.3 13.0 7.9 

P 7.0 11.3 30.0 

Contribution (%) 

Growth rate 42.9 82.6 214.8 

EC 0.2 11.6 31.7 

ECS 13.7 27.5 37.1 

EI -4.3 -26.0 -40.6 

PCG -1.5 37.1 38.9 

P 34.7 32.4 147.8 

Note: EC, ECS, EI, PCG, and P refer to emission coefficient, energy mix, energy 
intensity, income, and population, respectively. 
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Table A8. The marginal impacts of various factors on CO2 growth based on the LMDI 

decomposition results. 

Factor Global panel HI countries UMI countries LMI countries LI countries 
1980-2015 
EC 1.654 0.024 0.661 0.362 2.573 
ECS 0.080 0.646 3.978 2.877 4.413 
EI 4.042 1.464 8.904 4.089 0.658 
PCG 2.325 0.760 2.087 1.983 1.638 
P 0.724 1.086 1.724 1.846 0.911 
1980-1990 
EC 0.178 0.005 4.407 0.339 0.042 
ECS 0.532 0.742 1.895 1.496 1.361 
EI 1.859 1.108 5.686 0.260 2.985 
PCG 2.055 0.851 3.697 1.999 0.318 
P 0.578 1.072 1.070 1.181 1.088 
2005-2015 
EC 0.357 0.303 0.857 0.277 0.438 
ECS 0.359 0.425 1.348 1.113 1.311 
EI 3.430 1.181 2.421 1.475 0.227 
PCG 2.450 1.000 1.275 1.089 0.925 
P 0.764 1.161 1.143 1.086 1.048 

Note: EC   indicates emission coefficient; ECS   denotes energy mix; EI   describes 
energy intensity; PC G  stands for per capita GDP; and P  is population size. 
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Appendix B 

 
Fig. B1. Emission coefficient (EC), energy intensity (EI), per capita GDP (PCG), and 
population size (P) in different subpanels from 1980 to 2015. Data sources: IEA’s 
World Energy Balances 2017 [36] and World Bank’s WDI [2].
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Fig. B2. Energy mix in different subpanels from 1980 to 2015. Note: Grey denotes the 
share of coal and oil, which represents the energy mix in this study, while green 
indicates the share of natural gas, renewable energy, and others (see the numbers). Data 
source: IEA’s World Energy Balances 2017 [36]. 


